
Faster BGV Bootstrapping for Power-of-Two
Cyclotomics through Homomorphic NTT

Shihe Ma1, Tairong Huang2, Anyu Wang2,3,4(B), and Xiaoyun Wang2,3,4,5,6

1 Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing,
China, msh21@mails.tsinghua.edu.cn

2 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China,
htr19@mails.tsinghua.edu.cn, anyuwang,xiaoyunwang@tsinghua.edu.cn

3 Zhongguancun Laboratory, Beijing, China
4 National Financial Cryptography Research Center, Beijing, China

5 Shandong Institute of Blockchain, Jinan, China
6 Key Laboratory of Cryptologic Technology and Information Security (Ministry of
Education), School of Cyber Science and Technology, Shandong University, China

Abstract. Power-of-two cyclotomics is a popular choice when instanti-
ating the BGV scheme because of its efficiency and compliance with
the FHE standard. However, in power-of-two cyclotomics, the linear
transformations in BGV bootstrapping cannot be decomposed into sub-
transformations for acceleration with existing techniques. Thus, they can
be highly time-consuming when the number of slots is large, degrading
the advantage brought by the SIMD property of the plaintext space. By
exploiting the algebraic structure of power-of-two cyclotomics, this pa-
per derives explicit decomposition of the linear transformations in BGV
bootstrapping into NTT-like sub-transformations, which are highly effi-
cient to compute homomorphically. Moreover, multiple optimizations are
made to evaluate homomorphic linear transformations, including mod-
ified BSGS algorithms, trade-offs between level and time, and specific
simplifications for thin and general bootstrapping. We implement our
method on HElib. With the number of slots ranging from 4096 to 32768,
we obtain a 7.35x∼143x improvement in the running time of linear trans-
formations and a 4.79x∼66.4x improvement in bootstrapping through-
put, compared to previous works or the naive approach.

Keywords: Fully Homomorphic Encryption · BGV · Bootstrapping ·
NTT.

1 Introduction

Fully homomorphic encryption (FHE) allows anyone to compute over encrypted
data without access to the decryption key or the underlying plaintext. Thus,
FHE is useful in privacy-preserving computing like outsourced computation and
privacy-preserving machine learning [24,4]. Among the various FHE schemes,
when the data to be computed homomorphically are represented as integers,
the common choice of the underlying FHE scheme is BGV [5] or BFV [14].

BGV/BFV offers the single instruction multiple data (SIMD) functionality, in
which a plaintext encodes an array of elements and homomorphic operations are
performed simultaneously on each slot of the array.

The bootstrapping technique first proposed by Gentry [17] plays an impor-
tant role in FHE. By homomorphically decrypting the ciphertext, it refreshes the
noise in the ciphertext before the validity of the ciphertext is corrupted, thus
allowing for an unlimited number of homomorphic operations. The bootstrap-
ping of BGV has been studied extensively in the past years [18,10,21,15,16,25],
leading to significant improvements in its performance.

From an implementation standpoint, power-of-two cyclotomics are frequently
employed to instantiate BGV. A majority of FHE libraries, including SEAL [28],
OpenFHE [3], and lattigo [23], exclusively use power-of-two cyclotomics, which is
also the only cyclotomics recommended in the FHE standard [1]. However, in the
context of power-of-two cyclotomics, the existing techniques [21,10,16] for com-
puting the linear transformations in BGV bootstrapping are highly inefficient
when dealing with a large number of slots.

Let M denote the cyclotomic order and p the prime of the plaintext modulus
in the BGV scheme. Halevi and Shoup [21] propose a method for enabling fast
linear transformations in bootstrapping, which requires M to have multiple dis-
tinct prime factors so that the linear transformations can be decomposed into
multiple sub-transformations by leveraging the structure of the powerful basis.
Each sub-transformation has a dimension much smaller than the entire transfor-
mation, making it more computationally efficient. However, this decomposition
is impossible when M is a power of two, as M only has a single prime factor 2
and a trivial powerful basis structure. Furthermore, Halevi and Shoup’s method
requires that Z∗

M/⟨p⟩ is a cyclic group, which is not the case when M is a power
of two and p ≡ 1 mod 4.

To circumvent the cyclicity constraint on Z∗
M/⟨p⟩ when M is a power of two,

Chen and Han [10] design a linear transformation tailored for thin bootstrapping
where each slot stores only an integer. The algorithm is later revised by Geelen
and Vercauteren [16]. However, this method still computes the linear transfor-
mations as a whole, which means it still suffers from long running time when
the number of slots is large.

Since FHE applications over integers typically seek a large number of slots to
fully exploit the SIMD property [27,12]. Given that the dimension of the linear
transformations is equal to the number of slots, the poor performance of linear
transformations with a large dimension in power-of-two cyclotomics greatly lim-
its the flexibility of BGV bootstrapping, resulting in diminished compatibility
with the SIMD feature. This may account for why previous works opt for pa-
rameters supporting at most 128 slots for BGV bootstrapping in power-of-two
cyclotomics [10,11] and why most FHE libraries (except HElib) do not support
BGV/BFV bootstrapping. Therefore, accelerating the linear transformations in
BGV bootstrapping is crucial if we want to exploit both the NTT efficiency of
power-of-two cyclotomics and the SIMD property of BGV.

2

1.1 Our Techniques and Results

Our basic observation is that the primary component of the linear transfor-
mation in BGV bootstrapping can be interpreted as an NTT, and thus can
be decomposed into linear sub-transformations based on fast-NTT algorithms
(such as the Cooley-Tukey algorithm [13]). This opens up the potential for an
accelerated linear transformation in BGV bootstrapping by considering the ho-
momorphic evaluation of these sub-transformations. Although NTT in plaintext
has been extensively studied and various fast-NTT algorithms are known, the
scope of homomorphic evaluation presents unique challenges. General BGV lin-
ear transformations are typically implemented using a combination of funda-
mental transformations (i.e., one-dimensional linear transformations [19]). The
evaluation complexity of a general linear transformation is determined by its
specific form. Therefore, to achieve an efficient linear transformation in BGV
bootstrapping, it is essential to first ascertain the feasibility of decomposing the
NTT into multiple linear sub-transformations that can be evaluated efficiently.
This paper addresses this problem by proposing a concrete construction for such
a decomposition. Furthermore, we introduce several novel optimizations to both
the decomposition and the evaluation of sub-transformations. Our contributions
can be summarized as follows.

(1) We provide an explicit framework for homomorphic NTT in BGV boot-
strapping by leveraging the algebraic properties of power-of-two cyclotomics.
Specifically, we demonstrate that for any power-of-two M and prime p > 2, both
the NTT and its inverse can be decomposed into one-dimensional linear sub-
transformations. These sub-transformations exhibit different forms for different
p, as p affects the hypercube structure and the number of non-zero coefficients
in each factor of XM/2+1. For p ≡ 1 mod 4, these one-dimensional linear trans-
formations all fall within the MatMul1D type as defined in [19]. Furthermore,
we show that, based on the specific vector representation of each slot, the ma-
trix for each one-dimensional linear transformation is tridiagonal, which allows
for highly efficient homomorphic evaluation. For p ≡ 3 mod 4, we demonstrate
that all but the first one of these one-dimensional linear transformations are of
the MatMul1D type, which can be represented as matrices with 6 ∼ 7 diago-
nals. For further optimization, we illustrate how we can ‘fold’ multiple non-zero
diagonals of the matrices inside a single slot, thereby producing new tridiago-
nal matrices that correspond to one-dimensional linear transformations of the
BlockMatMul1D type. This leads to reduced running time in most cases.

(2) We propose several further optimizations for the homomorphic evaluation
of linear transformations. Firstly, we introduce a modified Baby-Step Giant-Step
(BSGS) technique, which accelerates the homomorphic linear transformations
under certain conditions. Secondly, we demonstrate that our framework is appli-
cable to both thin and general bootstrapping, each with different optimizations.
For thin bootstrapping, where each slot stores an integer, we observe that some
sub-transformations can either be omitted or computed on a subfield (or subring)
of each slot, thereby reducing the running time. For general bootstrapping, where
each slot stores a Galois field/ring element, we reorder the final transformation

3

that moves slot coefficients from the power basis to the normal basis, resulting
in improved performance. Lastly, we show that the level-collapsing method used
in CKKS bootstrapping [9,22] can be adapted to our framework, which allows
for a trade-off between the time and depth consumption of homomorphic linear
transformations.

(3) We implement our approach for both general and thin bootstrapping
based on HElib with the optimization in [25]. The parameters have slot numbers
ranging from 4096 to 32768. For thin bootstrapping, we reduce the running time
of linear transformations in bootstrapping by 7.35∼63 times and obtain a boot-
strapping throughput 4.79x∼36.0x that of prior works or the naive approach.
For general bootstrapping, the improvement in the running time of linear trans-
formations is 48.9x∼143x, while the improvement in bootstrapping throughput
is 28.6x∼66.4x.

1.2 Related Works.

FFT Based Linear Transformations in CKKS Bootstrapping. In [9,22],
it was shown that the homomorphic linear transformations in CKKS bootstrap-
ping can be decomposed into FFT-like matrices for acceleration. Our idea can
be viewed as an analogue of this approach for BGV bootstrapping. However, the
decomposition of linear transformations in BGV bootstrapping into NTT-like
matrices is significantly more complex than in CKKS. Firstly, the cyclotomic
polynomial XM/2 +1 splits in C, implying that the linear transformations eval-
uated during CKKS bootstrapping closely resemble the standard FFT. Con-
versely, in BGV, XM/2 + 1 can be factorized into binomials or trinomials of
degrees greater than one, which correspond to incomplete NTT or incomplete
Bruun-like NTT [6]. Secondly, each slot in a CKKS ciphertext stores a scalar
value in C, while a slot in BGV may store an element in a Galois field or Ga-
lois ring, which can be interpreted as a vector of integers modulo the plaintext
modulus. Consequently, the linear transformations are purely inter-slot in CKKS
bootstrapping, while they are both inter-slot and intra-slot in BGV bootstrap-
ping. This fact complicates the form of the linear transformations and provides
multiple design possibilities. Thirdly, the slots in CKKS always form a one-
dimensional vector, while slots in BGV can form a hypercube with multiple
dimensions. This further complicates the linear transformations in BGV com-
pared to those in CKKS. Finally, when the plaintext modulus of BGV is a prime
power pr and each slot stores an element in a Galois ring, it remains unexplored
whether the factorization of XM/2+1 modulo pr still enables efficient homomor-
phic NTT. Although NTT in arbitrary algebras has been investigated by Cantor
and Kaltofen, it is realized through root adjoining [7], which is infeasible in the
FHE setting.

Optimized Digit Removal for Large Plaintext Prime. In BGV bootstrap-
ping, the digit removal procedure is also a computationally expensive component.
This is particularly true when facilitating SIMD for power-of-two cyclotomics,

4

where the plaintext prime p scales with the number of slots. For instance, to
achieve 2A slots, p should be at least 2A+1+1 if p ≡ 1 mod 4, or at least 2A+1−1
if p ≡ 3 mod 4 [26]. As a result, it is necessary to leverage the technique intro-
duced in [25] to expedite the digit removal procedure in BGV bootstrapping
with a large p. However, in [25], the powerful basis decomposition method of
HElib [21] is employed to compute linear transformations, implying that the
linear transformations will dominate the running time of BGV bootstrapping
when the slot number is large. Therefore, our approach to accelerate the linear
transformations contributes to completing the final piece for efficient BGV boot-
strapping for highly-SIMD integer arithmetic in power-of-two cylotomics (e.g.,
p = 65537 with 215 slots for M = 216 cyclotomics).

2 Preliminary

2.1 Notations

– Let ΦM (X) represent the M -th cyclotomic polynomial, and let Rq be the
quotient ring Zq[X]/(ΦM (X)), where q ≥ 2 is an integer. The Euler function
is denoted by φ(·), and thus deg(ΦM) = φ(M). This paper primarily focuses
on the case where M is a power of two, impling that φ(M) = M/2 and
ΦM (X) = XM/2 + 1.

– Let G be a finite group. The order of an element g in G is denoted by ordG(g),
and the subgroup generated by elements g1, . . . , gl in G is represented as
⟨g1, . . . , gl⟩.

– For positive integers a and b, we denote the set {0, 1, . . . , a− 1} as [a], and
denote the remainder of a modulo b as [a]b ∈ [b]. For a set S and an integer
a, we denote a× S for {a · s | s ∈ S}, a+ S for {a+ s | s ∈ S} and [S]a for
{[s]a | s ∈ S}.

– Let a =
∑k−1

i=0 ai2
i be the bit decomposition of a k-bit nonnegative inte-

ger a, we define BitRevk,t(a) = [a]2t +
∑k−1

i=t ak−1−i2
i for 0 ≤ t ≤ k, and

BitRev′k,t(a) = [a]2t +ak−12
k−1+

∑k−2
i=t ak−2−i2

i for t ∈ [k]. In other words,

BitRevk,t reverses all but the lowest t bits in a, while BitRev′k,t preserves
the highest bit and the lowest t bits in a, reversing all other bits.

– Given an array of size 2k with elements ai, i ∈ [2k], we define BRk,t(ai) =
aBitRevk,t(i) and BR′

k,t(ai) = aBitRev′
k,t(i)

. Both BRk,t and BR′
k,t are order-

two permutations on the array.

– All vectors are assumed to be column vectors, and all linear transformations
correspond to left-multiplying a column vector by a matrix. For a vector v
of length n, its i-th entry is denoted as v[i] for i ∈ [n], and the notation
v[i +: ∆] stands for the ∆-sized subvector (v[i],v[i + 1], . . . ,v[i +∆ − 1]).

For a polynomial m(x) =
∑n−1

i=0 mix
i, the notation m[i +: ∆] stands for the

coefficient vector (mi,mi+1, . . . ,mi+∆−1).

5

– For an n×n matrix N, the entry at the i-th row and j-th column is denoted
by N[i, j], with i, j ∈ [n]. The i-th diagonal of N is the vector whose j-
th entry is N[j, [i + j]n]. Note that the i-th and j-th diagonals coincide if
i ≡ j mod n. Let In be the identity matrix of size n.

– The power basis of Rq consists of Xi for i ∈ [φ(M)]. Let M = M1M2 . . .Mk

be the factorization of M into prime powers. The powerful basis of Rq con-

sists of
∏k

i=1 X
ei
i , where Xi = XM/Mi and ei ∈ [φ(Mi)]. We note that the

powerful basis is identical to the standard basis when M is a power of 2.

2.2 Galois Fields and Rings

Let p be a prime number. The Galois field with characteristic p and cardinality pd

is denoted by GF(pd), and the Galois ring with characteristic pr and cardinality
prd is denoted by GR(pr; d). In the special case where r = 1, it has GR(p; d) =
GF(pd). We introduce some conclusions about Galois rings that will be used in
subsequent proofs. Refer to [29] for the details of the following conclusions.

Hensel’s Lemma. Let f be a monic polynomial in Zpr [X], and denote f̄ =
f mod p ∈ Zp[X]. Assume that f̄ = g1g2 . . . gn, where g1, g2, . . . , gn ∈ Zp[X]
are pairwise coprime monic polynomials. Then Hensel’s lemma guarantees that
there exist pairwise coprime monic polynomials f1, f2, . . . , fn ∈ Zpr [x] such that
f = f1f2 . . . fn and f̄i = gi for 1 ≤ i ≤ n.

Hensel’s Lemma can be generalized to extension rings. Let f be a monic
polynomial in GR(pr; d)[X], and denote f̄ = f mod p ∈ GF(pd)[X]. Assume that
f̄ = g1g2 . . . gn ∈ GF(pd)[X], where g1, g2, . . . , gn ∈ GF(pd)[X] be pairwise co-
prime monic polynomials. Then there exist pairwise coprime monic polynomials
f1, f2, . . . , fn ∈ GR(pr; d)[X] such that f = f1f2 . . . fn and f̄i = gi for 1 ≤ i ≤ n.

The Group of Units. Assume p is an odd prime number. Let R = GR(pr; d)
and let R∗ denote the group of multiplicative units in R. Then it has R∗ =
G1 ×G2, where G1 is a cyclic group of order pd − 1 and G2 is a direct product
of d cyclic groups each of order pr−1.

Primitive Element. There exists a nonzero element γ ∈ GR(pr;ml) such that

a) γ has multiplicative order pml − 1;

b) γ is a root of a basic primitive polynomial7 h(X) of degree l over GR(pr;m),

where h(X) divides Xpml−1 − 1 over GR(pr;m);

c) GR(pr;ml) = GR(pr;m)[γ] = {a0 + a1γ + . . .+ al−1γ
l−1 : ai ∈ GR(pr;m)}.

7 A non-constant monic polynomial h(X) over GR(pr;m) is a monic basic primitive
polynomial if h̄(X) is a primitive polynomial over GF(pm).

6

Frobenius Automorphism. Let R = GR(pr;m) and R′ = GR(pr;ml) = R[γ],
where γ ∈ R′ is a primitive element. Define a map π : R′ → R′ by

π(a0 + a1γ + . . .+ al−1γ
l−1) = a0 + a1γ

pm

+ . . .+ al−1γ
(l−1)pm

for all a0, a1, . . . , al−1 ∈ R. Then π is an automorphism of R′ leaving R fixed
elementwise. Moreover, for α ∈ R′, π(α) = α if and only if α ∈ R.

Throughout the remainder of this paper, the symbol E will always denote
the Galois ring GR(pr; d). Besides, if GF(pd) is represented as Zp[X]/f(X) for
some irreducible polynomial f(X), its power basis is defined as Xi for i ∈ [d].
The power basis of a Galois ring is defined similarly.

2.3 BGV Plaintext Space

The BGV plaintext space is Rpr = Zpr [X]/(ΦM (X)), where p is a prime num-
ber, M is coprime to p, and r is a positive integer (known as the Hensel lift-
ing parameter). Let d = ordZ∗

M
(p). It is known that ΦM (X) factorizes into

L = φ(M)/d irreducible and pairewise coprime monic polynomials of degree

d over Zpr , i.e., ΦM (X) =
∏L−1

i=0 Fi(X). The Chinese Reminder Theorem pro-
vides an isomorphism between Rpr and

∏
0≤i<L Zpr [X]/(Fi(X)). Specifically, let

η = X mod F0(X) and let S ⊆ Z∗
M be a set of representatives of Z∗

M/⟨p⟩, then
for any m(X) ∈ Rpr the isomorphism can be explicitly expressed as

Decode(m(X)) = (m(ηs0), . . . ,m(ηsL−1))si∈S .

Note that Zpr [X]/(Fi(X)) ∼= GR(pr; d). By denoting E = GR(pr; d), Decode
eventually induces an isomorphism between Rpr and EL, and the L coordinates
of EL are referred to as slots in the plaintext.

In the context of rotation operations in BGV, S is typically expressed as
the products of several generators, i.e., S = {

∏n
i=1 g

ei
i }ei∈[Li], where Li is the

order of gi in Z∗
M/⟨p, g1, · · · , gi−1⟩. By assigning the index (e1, . . . , en) to the

slot
∏n

i=1 g
ei
i , the L slots can be organized into an n-dimensional hypercube. A

hypercolumn along the s-th dimension is composed of Ls slots, where ej remains
constant for j ̸= s and es varies from 0 to Ls − 1. It is evident that there are
L/Ls hypercolumns in the s-th dimension.

A dimension s is referred to as a good dimension if ordZ∗
M
(gs) = Ls, other-

wise, it is termed a bad dimension. It is known that we can rotate all the L/Ls

hypercolumns along the s-th dimension simultaneously with one Galois automor-
phism in a good dimension, or two in a bad dimension. Specifically, let ρs be the
rotation-up-by-one-slot operation along the s-th dimension that moves the slot
at index (e1, . . . , en) to (e1, . . . , es−1, [es − 1]Ls , es+1, . . . , en). Let θs be the Ga-
lois automorphism that sends m(X) to m(Xgs). If this dimension is good, it has
ρs = θs. Otherwise, for i ∈ [Ls], it has ρ

i
s(m) = θis(m)·µs(i)+θi−Ls

s (m)·µs(i)
′ for

some constants µs(i) and µs(i)
′ [19,20]. This rotation operation plays a pivotal

role in executing homomorphic linear transformations on the slots.

7

2.4 Homomorphic Linear transformations

Let T be a linear transformation from EL to EL. We say that T is a one-
dimensional linear transformation along the s-th dimension if the value in any
slot of T(α) only depends on the slots of the same hypercolumn along the s-
th dimension of α. One-dimensional linear transformations have been studied
extensively due to their role as fundamental building blocks of arbitrary linear
transformations on slots [19].

The one-dimensional transformations fall into two categories. The first type,
calledMatMul1D in HElib, is the one-dimensional E-linear transformation. Specif-
ically, a MatMul1D transformation T along the s-th dimension can be expressed
as

T(m) =
∑

i∈[Ls]

κ(i)ρis(m), for m ∈ Rpr , (1)

where κ(i) ∈ Rpr are constants determined by T. When considering the restric-
tion of T on a hypercolumn k along the s-th dimension, it can be represented as
a matrix Tk ∈ ELs×Ls . Besides, Decode(κ(i)) is composed of the i-th diagonals
of all Tk’s.

The other type, called BlockMatMul1D, is the one-dimensional Zpr -linear
transformation. Specifically, a BlockMatMul1D transformation T′ along the s-th
dimension can be expressed as

T′(m) =
∑
j∈[d]

∑
i∈[Ls]

κ(i, j)σj(ρis(m)), for m ∈ Rpr , (2)

where κ(i, j) ∈ Rpr are constants determined by T′, and σ is the Frobenius
automorphism. When considering the restriction of T′ on a hypercolumn k along
the s-th dimension, it can be represented as an Ls×Ls matrix T′

k such that each
of its entries is a Zpr -linear transformation on E . Such an entry can be represented
as either a matrix in Zd×d

pr or a linearized polynomial f(v) =
∑

j∈[d] ajσ
j(v),

where aj ∈ E . Again, Decode(κ(i, j)) is composed of the j-th coefficients of the
i-th diagonals in all T′

k’s (in the linearized polynomial form).

For a MatMul1D or BlockMatMul1D type one-dimensional linear transforma-
tion T along the s-th dimension, define DiagSets(T) ⊆ [Ls] as the union of the
sets of the indices of nonzero diagonals in Tk for k ∈ [L/Ls], where Tk is the
restriction of T on a hypercolumn k. For convenience in proof, we relax the def-
inition of DiagSet by allowing DiagSets(T) to include the indices of some zero
diagonals. Since κ(i) in Equation 1 and κ(i, j) in Equation 2 are composed of
the i-th diagonals in all Tk, we can replace ‘i ∈ [Ls]’ with ‘i ∈ DiagSets(T)’ by
omitting the zero diagonals. Moreover, for two one-dimensional linear transfor-
mations T and T′ on the s-th dimension, their composition satisfies

DiagSets(T
′ ◦ T) = {[a+ b]Ls

| a ∈ DiagSets(T), b ∈ DiagSets(T
′)}

due to Equation 1 and Equation 2.

8

Hoisting. When multiple automorphisms need to be computed on the same
ciphertext, the hoisting technique could be used to significantly speed up the
computation [10,19]. In an ordinary automorphism, the decomposition of the
ciphertext before re-linearization is the most expensive part because it requires
NTTs. When hoisting is applied, the ciphertext is decomposed and moved into
the NTT domain in the first step. Utilizing this pre-computed result, we can per-
form multiple automorphisms on this ciphertext without further decomposition
or NTTs.

2.5 BGV Bootstrapping

BGV bootstrapping is categorized into two types, general bootstrapping [18,21]
and thin bootstrapping [10]. The general bootstrapping consists of four steps:
(1) decryption formula simplification; (2) CoeffToSlot transformation; (3) digit
removal; (4) SlotToCoeff. Given m ∈ Rpr , the CoeffToSlot moves the powerful
basis coefficients ofm into the slots, where each slot is identified as a d-dimension
vector space w.r.t. the normal basis of E . In contrast, the SlotToCoeff is almost
the inverse of CoeffToSlot, moving the coefficients in slots (w.r.t. the power basis
of E) into the powerful basis in Rpr . We omit the descriptions of (1) and (3)
because they are not the focus of this work. We can consider a simplified version
of CoeffToSlot that homomorphically computes the encoding map Encode(·) =
Decode−1(·), which is the most complicated part of CoeffToSlot and only needs
to be composed with lightweight transformations to be converted to the actual
CoeffToSlot. SlotToCoeff is also simplified as the decoding map Decode(·).

If each slot stores only an integer instead of a Galois ring/field element, the
bootstrapping is called a thin bootstrapping. In thin bootstrapping, the steps
come in a different order, namely (4)(1)(2)(3). The input ciphertext to SlotTo-
Coeff now encrypts a plaintext whose slots store integers instead of Galois ring
elements, which reduces the cost of SlotToCoeff. Since step (1) adds undesired
coefficients into the plaintext polynomial, an extra linear map is needed to clear
these extra coefficients. This map can be performed after CoeffToSlot in general
cyclotomics [21] or before CoeffToSlot in power-of-two cyclotomics [10].

2.6 Number Theoretic Transform (NTT)

In this paper, we focus on the NTT mapping which maps m ∈ Rpr to (m mod
F0(X), . . . ,m mod FL−1(X)) ∈

∏
i∈[L] Zpr [X]/Fi(X), where Fi(X)’s are the ir-

reducible factors of ΦM (X) defined in Section 2.3. The inverse NTT (iNTT) is
defined as the inverse of this map. There has been plenty of research about the
NTT/iNTT on the plaintext [8], and various fast NTT algorithms have been
proposed, such as Cooley-Tukey [13] and Bruun [6]. These algorithms typically
decompose NTT/iNTT into multiple layers to speed up the computation. We
do not delve into their details here, as we will present explicit decompositions of
NTT/iNTT within the framework of BGV linear transformations.

9

3 The Decomposition of Linear Transformations

As discussed previously, this section focuses on the decomposition of Decode and
Encode. Let ΦM (X) =

∏L−1
i=0 Fi(X), where Fi(X) is the minimal polynomial of

ηsi and {si}i∈[L] ⊆ Z∗
M is a set of representatives of Z∗

M/⟨p⟩. Then Decode can
be decomposed into two sub-maps Red and Eval, i.e., Decode = Eval ◦ Red,
where Red is an NTT map from Rpr to

∏
i∈[L] Zpr [X]/Fi(X) such that

Red(m) = (m mod F0,m mod F1, . . . ,m mod FL−1), for m ∈ Rpr ,

and Eval is a map from
∏

i∈[L] Zpr [X]/Fi(X) to EL such that

Eval(m0(X), . . . ,mL−1(X)) = (m0(η
s0), . . . ,mL−1(η

sL−1)).

Both Red and Eval are Zpr -linear transformations, and they can be represented
as matrices in (Zd×d

pr)L×L by identifying the input and output as vectors in

(Zd
pr)L via coefficient embedding. Specifically, for m(X) ∈ Rpr , the i-th entry is

the vector m[id +: d] for i ∈ [L]. For (mi(X))i∈[L] ∈
∏

i∈[L] Zpr [X]/Fi(X), the i-

th entry is the coefficient vector of mi(X). For EL, the i-th entry is the coefficient
vector of the i-th slot with respect to the power basis of E = Zpr [X]/F0(X).
When we represent a homomorphic linear transformation as a matrix, each of
its entries is an element in Zd×d

pr .
Clearly Eval is a BlockMatMul1D type one-dimensional linear transformation

such that its main diagonal is the only nonzero diagonal (in terms of an L × L
block matrix). Thus Eval and Eval−1 can be computed by evaluating a linearized
polynomial in Equation 2 with i = 0. In the remainder of this section, we focus
on the decomposition of Red (and Red−1) into linear sub-transformations for
power-of-two cyclotomics.

In the case when M is a power of two, it is known that Z∗
M = ⟨−1, 5⟩ ∼=

Z2 × ZM/4. If p ≡ 1 mod 4, Z∗
M/⟨p⟩ = ⟨−1, 5⟩ ∼= Z2 × ZM/(4d), implying a 2 by

M
4d sized hypercube generated by g1 = −1, g2 = 5. If p ≡ 3 mod 4, Z∗

M/⟨p⟩ =
⟨5⟩ ∼= ZM/(2d). The hypercube has a single generator g1 = 5 and collapses into a

single dimension of size M
2d . We call the dimension generated by 5 (in both cases

of p) the major dimension and denote its size as D, i.e., D = L/2 = M/(4d)
for p = 1 mod 4 and D = L = M/(2d) for p ≡ 3 mod 4. We call the dimension
generated by −1 (in case of p ≡ 1 mod 4) the minor dimension, which has a size
of 2. We omit the subscript s in ρs, θs, µs, µ

′
s,DiagSets when they are related to

the one-dimensional linear transformations on the major dimension. The main
result of this section can be summarized as follows.

Theorem 1. (1) If p ≡ 1 mod 4, we have the decomposition

Red−1 = BR′log2(2dD),log2(d)
◦ Red−1

BR and

Red−1
BR = Nlog2(D)+1 ◦ . . . ◦ N1,

where BR′ is interpreted as a permutation on (Zd
pr)2D in the natural manner. For

j ∈ [1, log2(D)], both Nj and N−1
j are MatMul1D transformations on the major

10

dimension with nonzero diagonals indexed by 2−jD × {−1, 0, 1}. Nlog2(D)+1 and
its inverse are MatMul1D transformations on the minor dimension.

(2) If p ≡ 3 mod 4, we have the Bruun style decomposition

Red−1 = BRlog2(dD),log2(d)
◦ Red−1

BR and

Red−1
BR = Nlog2(D) ◦ . . . ◦ N1,

where N1 and N−1
1 are BlockMatMul1D transformations with nonzero diagonals

indexed by D/2×{−1, 0, 1}. For j ∈ [2, log2(D)], Nj is a MatMul1D transforma-
tion with nonzero diagonals indexed by 2−jD × [−3, 3], and N−1

j is a MatMul1D

transformation with nonzero diagonals indexed by 2−jD× [−3, 2]. Alternatively,
Red−1 can also be decomposed in a Radix-2 style into

Red−1 = BRlog2(dD),log2(d)−1 ◦ Red′−1
BR and

Red′−1
BR = N′log2(D) ◦ . . . ◦ N

′
1,

where both N′j and N′−1
j are BlockMatMul1D transformations with nonzero diag-

onals indexed by 2−jD × {−1, 0, 1} for j ∈ [1, log2(D)].

Recall that for a one-dimensional linear transformation N along the s-th di-
mension, the number of rotations required to evaluate it equals |DiagSet(N)|. Ac-
cording to Theorem 1, both |DiagSet(Nj)| and |DiagSet(N−1

j)| are small (usually
two to three) because they have only a few diagonals. Therefore, the compu-
tation time for the linear transformations in bootstrapping can be significantly
reduced by utilizing the decomposition presented in Theorem 1. In the subse-
quent discussion, we provide the derivation of Theorem 1 for two cases of p.
Moreover, in Section 3.1 and Section 3.2 we make the assumption that r = 1 in
the plaintext modulus, implying that each slot corresponds to the Galois field
GF(pd). The general case where r > 1 (corresponding to the Galois ring case)
will be addressed in Section 3.3.

3.1 The Case of p ≡ 1 mod 4

In this case, we can select the set of representatives {si}i∈[L] such that se1D+e2 =
(−1)e15e2 for e1 ∈ [2], e2 ∈ [D], which constructs an arrangement of the slots
into the hypercube. We note that the minor dimension is always good, while
the major dimension is good whenever p ≡ 1 mod M . By [26], it has ΦM (X) =∏

i∈Z∗
4D

(Xd − ζi) over Zp, where ζ ∈ Zp is a primitive 4D-th root of unity and

each factor is irreducible over Zp. Without loss of generality, we can assume that
F0(X) = Xd − ζ, which leads to Fi(X) = Xd − ζsi for i ∈ [L]. To begin with,
we prove the following lemma.

Lemma 1. Let F
(0)
i = Fi(X) for i ∈ [L], and F

(j)
i = F

(j−1)
i F

(j−1)
i+2−jD for 1 ≤

j ≤ log2(D) and i ∈ [0, 2−jD) ∪ [D,D + 2−jD), then it has

F
(j)
i = Xd·2j − ζsi·2

j

, for j ∈ [0, log2(D)], i ∈ [0, 2−jD) ∪ [D,D + 2−jD).

11

Proof. Clearly, the statement is true for j = 0. Now let 1 ≤ j ≤ log2(D) and
suppose the statement holds for j−1 and i ∈ [0, 2−(j−1)D)∪ [D,D+2−(j−1)D).

By the definition of F
(j)
i it has

F
(j)
i = F

(j−1)
i F

(j−1)
i+2−jD = (Xd·2j−1

− ζsi·2
j−1

)(Xd·2j−1

− ζsi+2−jD·2j−1

)

for i ∈ [0, 2−jD) ∪ [D,D + 2−jD). Denote i = e1D + e2 for 0 ≤ e1 ≤ 1 and

0 ≤ e2 < 2−jD, then si = (−1)e15e2 and si+2−jD = (−1)e15e2+2−jD. Since ζ is

a primitive 4D-th root of unity and 52
−jD · 2j−1 ≡ 2D+ 2j−1 mod 4D, we have

ζsi+2−jD·2j−1

= −ζsi·2
j−1

. Then it follows directly that F
(j)
i = Xd·2j − ζsi·2

j

. ⊓⊔

In addition, we denote F
(log2(D)+1)
0 =

∏
i∈[2D] F

(0)
i = ΦM (X).

The Definition of Nj. Suppose m ∈ Rpr , then Nj can be roughly viewed as

the linear transformation that maps (m mod F
(j−1)
i)i∈Ij−1

to (m mod F
(j)
i)i∈Ij ,

where Ij is the range of i defined in Lemma 1. For the specific definition of Nj ,
we need to handle the bit-reversal phenomenon to design matrices that can be
homomorphic evaluated efficiently. In our case, the bit-reversal primarily arises

due to the slots occupied by the two factors that combine into F
(j)
i are in an

interleaving order. As an example, we illustrate the bit-reversal phenomenon in

the computation of m mod F
(2)
i from m mod F

(1)
i and m mod F

(1)
i+D/4 in Fig-

ure 1. Taking this into consideration, we first define vectors αj ∈ (Zd
pr)L for

0 ≤ j ≤ log2(D)+1 as follows. The vector α0 corresponds to α = Red(m) ∈ EL.
For 1 ≤ j ≤ log2(D), we define αj such that

αj [i+ k · 2−jD] = (m mod F
(j)
i)[BitRevj,0(k) · d +: d]

for i ∈ [0, 2−jD) ∪ [D,D + 2−jD), k ∈ [2j]. For j = log2(D) + 1, we define

αlog2(D)+1[k] = m[BitRev′log2(D)+1,0(k) · d +: d]

for k ∈ [2D].

Fig. 1. An example of the butterfly structures in Red−1
BR that leads to bit-reversal. ai,bi

and cij are degree d− 1 polynomials in Zp[X].

For 1 ≤ j ≤ log2(D)+1, we define Nj as the linear transformation that maps
αj−1 to αj , where the coefficients of m are regarded as independent variables.

12

Denote Red−1
BR = Nlog2(D)+1 ◦ . . . ◦ N1, then it can be readily checked that

BR′log2(2dD),log2(d)
(Red−1

BR(α))) = m.

Notably, the output of Red−1
BR(α) is a permutated version of m’s coefficients,

which is a common phenomenon in fast NTT algorithms. As in [9,22], we will
not reorder the slots into their ordinary order by computing the inverse per-
mutation homomorphically. Instead, we directly pass the output of RedBR and
Red−1

BR to the next stage of bootstrapping. This will not affect the correctness
of bootstrapping, similar to the observations in previous works on CKKS boot-
strapping. This is because: (1) the digit removal step is performed in a SIMD
manner and is insensitive to the order of the values in the slots; (2) the coeffi-
cients in each slot remain as a whole group during the permutation, which makes
it possible to repack the output ciphertexts of digit removal.

Let Nj ∈ (Zd×d
pr)L×L denote the matrix corresponding to Nj . In the following

lemma, we discuss the structure of the Nj ’s. An example illustrating the Nj ’s
for D = 4 is provided in Figure 2 for a better understanding.

Fig. 2. An illustration of Red−1
BR for D = 4 and p ≡ 1 mod 4. A ‘∗’ in matrices stands

for a nonzero entry that is a multiple of Id, while a ‘∗’ in the vectors means log2(d) bits
ranging from all zeros to all ones. Each slot stores part of the coefficients of m mod
F

(j)
i . The (binary format of) indices of the coefficients are displayed along with the

corresponding F
(j)
i . E.g., ‘01∗, F (2)

0 ’ means that this slot stores (m mod F
(2)
0)[d +: d].

Lemma 2. (1) For j ∈ [1, log2(D)], Nj can be viewed as a 2j×2j diagonal block
matrix. Each block has a size of 2−j+1D × 2−j+1D, which has three non-zero
diagonals indexed by 2−jD × {−1, 0, 1}.

13

(2) When viewed as an L × L block matrix, Nlog2(D)+1 has three non-zero
diagonals indexed by D × {−1, 0, 1}.

Besides, for j ∈ [1, log2(D) + 1], all non-zero entries of Nj in Zd×d
pr are

multiples of Id. All the above properties also hold for N−1
j .

Proof. For a fixed j ∈ [1, log2(D)], let i ∈ [0, 2−jD)
⋃
[D,D + 2−jD). For k ∈

[2j−1], let

u′ = (m mod F
(j)
i)[kd +: d] u = (m mod F

(j−1)
i)[kd +: d]

v′ = (m mod F
(j)
i)[2j−1d+ kd +: d] v = (m mod F

(j−1)
i+2−jD)[kd +: d].

By traversing k and i, u,v and u′,v′ cover all the inputs and outputs of Nj .

According to Lemma 1, F
(j)
i = F

(j−1)
i F

(j−1)
i+2−jD and F

(j−1)
i = X2j−1d − ai,j−1,

F
(j−1)
i+2−jD = X2j−1d + ai,j−1 for some ai,j−1 ∈ Zp, thus it can be deduced that{

u′ = (u+ v)/2

v′ = (u− v)/(2ai,j−1)
,

{
u = u′ + ai,j−1v

′

v = u′ − ai,j−1v
′ .

Using the definition of αj and αj−1, the index of u′ in αj and the index of u
in αj−1 are both l = i + BitRevj,0(k) · 2−jD. v′ and v also have the identical
index of h = i+ 2−jD + BitRevj,0(k) · 2−jD. Thus, the Zp-linear combinations
of u,v into u′,v′ correspond to the following 2× 2 submatrix in Nj[

Nj [l, l] Nj [l, h]
Nj [h, l] Nj [h, h]

]
,

where each entry is a multiple of Id. Let i = e1D + e2 for e1 ∈ [2] and e2 ∈
[2−jD], traversing e2 for a fixed value of the pair (e1, k) will extend the submatrix
above into a 2−j+1D-sized diagonal block of Nj . As indicated by the indices of
u,v,u′,v′ in αj and αj−1, each diagonal block has three nonzero diagonals
indexed as {0,±(l − h)} = 2−jD × {−1, 0, 1}. The structure of N−1

j can be
deduced similarly.

Concerning Nlog2(D)+1, for k ∈ [D], i = 0, j = log2(D) + 1, we have

u′ = (m mod F
(j)
0)[kd +: d] u = (m mod F

(j−1)
0)[kd +: d]

v′ = (m mod F
(j)
0)[Dd+ kd +: d] v = (m mod F

(j−1)
D)[kd +: d],

where u′,u share the same index BitRev′j,0(k) while v′,v′ share the same index

BitRev′j,0(k) +D. The remaining proof is similar to the case of j ∈ [1, log2(D)].
⊓⊔

Proof of (1) in Theorem 1. According to Lemma 2, for j ∈ [1, log2(D)], Nj

and N−1
j can be viewed as [

A0 0
0 A1

]
,

14

where A0 and A1 are D×D matrices, and At is a linear transformation on the
t-th hypercolumn of the major dimension for 0 ≤ t ≤ 1. Thus Nj and N−1

j are
linear transformations on the major dimension

For Nlog2(D)+1 and its inverse, the t-th hypercolumn of the minor dimension
consists of the t-th and (t+D)-th slot, where t ∈ [D]. The 2× 2 submatrix[

Nlog2(D)+1[t, t] Nlog2(D)+1[t, t+D]
Nlog2(D)+1[t, t+D] Nlog2(D)+1[t+D, t+D]

]
is a linear transformation on the t-th hypercolumn of the minor dimension.
Thus both Nlog2(D)+1 and its inverse are linear transformations on the minor
dimension.

For j ∈ [1, log2(D)+1], Nj is a MatMul1D transformation because each entry
of Nj is a multiple of Id. The indices of nonzero diagonals in Nj and N−1

j follow
directly from Lemma 2.

3.2 The Case of p ≡ 3 mod 4

In this case, we have se1 = 5e1 for e1 ∈ [D], and the only dimension in the
hypercube is always bad. According to [26], ϕM (X) factors into trinomials for
d ≥ 2, i.e.,

ΦM (X) =
∏

i∈Z∗
4D/⟨p⟩

(Xd − (ζi + ζip)Xd/2 + ζi(p+1)),

where ζ ∈ GF(p2) is a primitive 4D-th root of unity, and each factor is an
irreducible polynomial in Zp[X]. Without loss of generality, we can assume that
F0(X) = Xd−(ζ+ζp)Xd/2+ζp+1, which leads to Fi(X) = Xd−(ζsi+ζsip)Xd/2+
ζsi(p+1) for i ∈ [D]. Similarly, we can prove the following lemma.

Lemma 3. Let F
(0)
i = Fi for i ∈ [D], and F

(j)
i = F

(j−1)
i F

(j−1)
i+2−jD for 1 ≤ j ≤

log2(D), i ∈ [2−jD]. Then it has

F
(j)
i = X2jd − (ζ2

j ·si + ζ2
j ·sip)X2j−1d + ζ2

j ·si(p+1),

for 0 ≤ j ≤ log2(D) and i ∈ [2−jD]. Moreover, the middle term is nonzero
except for j = log2(D).

Proof. Clearly, the statement is true for j = 0. Now let 1 ≤ j ≤ log2(D) and
suppose the statement holds for j − 1. Similar to Lemma 1, it can be proved

that F
(j−1)
i+2−jD = X2j−1d + (ζ2

j−1·si + ζ2
j−1·sip)X2j−1−1d + ζ2

j−1·si(p+1). Thus for

i ∈ [2−jD] we have

F
(j)
i = F

(j−1)
i F

(j−1)
i+2−jD

= (X2j−1d − (ζ2
j−1·si + ζ2

j−1·sip)X2j−1−1d + ζ2
j−1·si(p+1))

× (X2j−1d + (ζ2
j−1·si + ζ2

j−1·sip)X2j−1−1d + ζ2
j−1·si(p+1))

= X2jd − (ζ2
j ·si + ζ2

j ·sip)X2j−1d + ζ2
j ·si(p+1).

15

For the middle term, ζ2
j ·si + ζ2

j ·sip = 0 ⇐⇒ ζ2
j ·si(p−1) = −1. Since

si = 5i and ζ is a primitive 4D-th root of unity, this condition is equivalent to
2j · 5i(p− 1) ≡ 2D mod 4D. Thus for j < log2(D), the maximum power of two
that divides 2j · 5i(p − 1) is 2j+1 < 2D, which implies that the middle term is
nonzero. For j = log2(D), it can be verified that D · 5i(p − 1) ≡ 2D mod 4D,
which implies that the middle term is zero. ⊓⊔

The Definition of Nj. Suppose m ∈ Rpr , we first define vectors αj ∈ (Zd
pr)L

for 0 ≤ j ≤ log2(D) as follows. The vector α0 corresponds to α = Red(m) ∈ EL.
For 1 ≤ j ≤ log2(D), we define αj such that

αj [i+ k · 2−jD] = (m mod F
(j)
i)[BitRevj,0(k) · d +: d]

for i ∈ [2−jD], k ∈ [2j].
For 1 ≤ j ≤ log2(D), we define Nj as the linear transformation that maps

αj−1 to αj . Denote Red−1
BR = Nlog2(D) ◦ . . . ◦ N1, then it can be checked that

BRlog2(2dD),log2(d)
(Red−1

BR(α))) = m.

In contrast to the case of p ≡ 1 mod 4, the fact the F
(j)
i ’s are trinomials com-

plicates the butterfly structure, turning its outputs from linear combinations of
two terms into linear combinations of four terms. For example, given two poly-
nomials f0(X) = X2k + sXk + t and f1(X) = X2k − sXk + t of degree 2k,
let l + hXk ∈ Zp[X]/f0(X) and l′ + h′XK ∈ Zp[X]/f1(X), where s, t ∈ Zp

and l, h, l′, h′ ∈ Zp[X] with degrees less than k. Denote the polynomial recon-
structed from l + hXk and l′ + h′Xk as a00 + a01X

k + a10X
2k + a11X

3k ∈
Zp[X]/(f1(X)f2(X)), where a00, . . . , a11 are polynomials with degree less than
k. Then we have the following Bruun butterfly structure, where ‘∗’ represents a
non-zero entry in Zp.

a00
a01
a10
a11

 =

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗

∗ ∗

×

l
h
l′

h′

 ,

l
h
l′

h′

 =

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

×

a00
a01
a10
a11

 . (3)

In the first layer of Red−1
BR, the i-th Bruun butterfly has two input slots α0[i]

and α0[i +D/2], where the former stores l and h while the latter stores l′ and
h′. The output of this butterfly is stored in α1[i] and α1[i+D/2].

The natural approach is to store the lower coefficients a00 and a01 in α1[i],
while the higher ones a10 and a11 are stored in α1[i+D], i.e., in a non-bit-reversed
order. In this case, for j ≥ 2, the four inputs to each Bruun butterfly in Nj lie
in four distinct slots, which means each entry in αj are Zp-linear combinations
of entries in αj−1 and each entry of Nj is a multiple of Id. We call this way
of constructing Nj as the Bruun style. An example for D = 8 is presented in
Figure 3 for better illustration. The formal statements about the structure of Nj
are given in Lemma 4 and proved in Supplementary Material A.

16

Fig. 3. An illustration of Red−1
BR in Bruun style for D = 8 and p ≡ 3 mod 4. A ‘#’

in matrices stands for a nonzero entry with the form of

[
a0Id/2 a1Id/2
a2Id/2 a3Id/2

]
for ai ∈ Zp.

Other symbols have the same meaning as in Figure 2.

Lemma 4. (1) In the Bruun style decomposition, when viewed as D×D matri-
ces, N1 and its inverse have only three non-zero diagonals indexed by D/2 ×

{−1, 0, 1}. Each entry in N1 and N−1
1 has the form of

[
a0Id/2 a1Id/2
a2Id/2 a3Id/2

]
for

ai ∈ Zp that may vary for each entry.
(2) For j ∈ [2, log2(D)], Nj can be viewed as a 2j−2 × 2j−2 diagonal block

matrix. Each block has a size of 22−jD×22−jD, which has 7 non-zero diagonals
indexed by 2−jD× [−3, 3]. Each entry in Nj is a multiple of Id. These properties
also hold for N−1

j , except that the nonzero diagonals of N−1
j are indexed by

2−jD × [−3, 2].

Reducing the Number of Nonzero Diagonals. As an optimization, we can
reduce the number of nonzero diagonals in the Bruun style decomposition from
6∼7 to only three by folding some nonzero diagonals inside each entry of Nj .

To achieve this effect, we need to modify the output of the i-th Bruun butter-
fly in the first layer by storing a00 and a10 in α1[i] with a01 and a11 in α1[i+D/2],
i.e., in a bit-reversed order.

Suppose m ∈ Rpr , we first define vectors αj ∈ (Zd
pr)L and α′

j ∈ (Zd/2
pr)2L for

0 ≤ j ≤ log2(D) as follows. The vector α0 corresponds to α = Red(m) ∈ EL.
α′

0 is defined by α′
0[2i] = α0[i][0 +: d/2] and α′

0[2i+ 1] = α0[i][d/2 +: d/2] for
i ∈ [D]. For 1 ≤ j ≤ log2(D), we define α′

j such that

α′
j [2(i+ k · 2−jD) + k0] = (m mod F

(j)
i)[BitRevj+1,0(2k + k0)d/2 +: d/2]

17

for i ∈ [2−jD], k ∈ [2j] and k0 ∈ [2]. Moreover, αj is defined by αj [i][0 +: d/2] =
α′

j [2i] and αj [i][d/2 +: d/2] = α′
j [2i+ 1] for i ∈ [D].

For 1 ≤ j ≤ log2(D), we define N′j as the linear transformation that maps

αj−1 to αj . Denote Red′−1
BR = N′log2(D) ◦ · · · ◦ N

′
1, then

Red′−1
BR = BRlog2(dD),log2(d)−1 ◦ Red−1.

We call this kind of Red′BR as a Radix-2 style one. An example for D = 8 is
shown in Figure 4. The formal statements about and the structure of N′j are
given in Lemma 5 and its proof is provided in Supplementary Material A.

Fig. 4. An illustration of Red′−1
BR in Radix-2 style for D = 8 and p ≡ 1 mod 4. A

‘∗’ in vectors means log2(d) − 1 bits ranging from all zeros to all ones while a ‘X’
means a single bit running from 0 to 1. For example, when d = 8, ‘X0∗’ stands for
(0000, 0001, 0010, 0011, 1000, 1001, 1010, 1011). Other symbols have the same meaning
as in Figure 2 and Figure 3.

Lemma 5. In the Radix-2 style Red′−1
BR , for j ∈ [1, log2(D)], N′

j can be viewed as

a 2j−1×2j−1 diagonal block matrix. Each block has a size of 2−j+1D×2−j+1D,
which has three non-zero diagonals indexed by 2−jD× {−1, 0, 1}. Each entry in

N′
j has the form of

[
a0Id/2 a1Id/2
a2Id/2 a3Id/2

]
for ai ∈ Zp that may vary for each entry.

These properties also hold for N′−1
j .

Proof of (2) in Theorem 1. Clearly, all Nj , N
′
j and their inverses are linear

transformations on the major dimension because it is the only dimension. The
indices of the nonzero diagonals stated in Theorem 1 can be directly derived
from Lemma 4 and Lemma 5.

18

According to Lemma 4, the entries of Nj and N−1
j are multiples of Id if

j ∈ [2, log2(D)]. Consequently, these linear transformations are in MatMul1D
type. The entries of N1 and N−1

1 have the form[
a0Id/2 a1Id/2
a2Id/2 a3Id/2

]
for ai ∈ Zp. These entries generally cannot be represented as a E-linear map.
Therefore, these matrices should be implemented as BlockMatMul1D type trans-
formations.

On the other hand, according to Lemma 5, the entries of N′
j and N′−1

j have
the same form as N1 in the Bruun style decomposition. Thus, they should be
implemented as BlockMatMul1D as well.

3.3 The Galois Ring Case

In this subsection, we give the proof of Theorem 1 for the case r > 1. Again, the
derivation is different for the two cases of p.

The Case of p ≡ 1 mod 4. To begin with, we provide the factorization of
ΦM (X) over Zpr using Hensel’s lifting.

Lemma 6. For p ≡ 1 mod 4, it has ΦM (X) =
∏

i∈Z∗
4D

(Xd − ζi), where ζ ∈ Zpr

is a 4D-th primitive root of unity.

Proof. Let ΦM (X) =
∏

i∈Z∗
4D

(Xd − ζi0) be the factorization into irreduible poly-

nomials over Zp, where ζ0 ∈ Zp is a primitive 4D-th root of unity. By substituting
Y = Xd, we obtain ΦM/d(Y) =

∏
i∈Z∗

4D
(Y − ζi0). This factorization can be lifted

to Zpr using Hensel’s lemma, giving

ΦM/d(Y) =
∏

i∈Z∗
4D

(Y − ui) for some distinct ui ∈ GR(pr).

Note that u4D
i − 1 = ΦM/d(ui) = 0. Furthermore, the ui’s are primitive 4D-th

root of unity due to ui ≡ ζi0 mod p and ζi0 ∈ Zp is a primitive 4D-th root of
unity. Since Z∗

pr is a cyclic group, we can assume that ui = ζi for i ∈ Z∗
4D, where

ζ ∈ Zpr is a 4D-th primitive root of unity. The lemma then follows directly by
replacing Y with Xd. ⊓⊔

Note that the hypercube structure for the Galois ring case is identical to that

of r = 1. Based on the factorization presented in Lemma 6, we can define F
(j)
i

and prove properties that are analogous to those stated in Lemma 1. Then by
defining the linear transformation Nj in the same manner as in Section 3.1, we
can prove statement (1) of Theorem 1 using the method outlined in Lemma 2.

19

The Case of p ≡ 3 mod 4. Again, we first provide the factorization of ΦM (X)
over Zpr using Hensel’s lifting.

Lemma 7. For p ≡ 3 mod 4, it has ΦM (X) =
∏

i∈Z∗
4D/⟨p⟩(X

d−(ζi+ζip)Xd/2+

ζi(p+1)), where ζ ∈ GR(p2; 2) is a 4D-th primitive root of unity and each factor
is a polynomial in Zpr [X].

Proof. Let ΦM (X) =
∏

i∈Z∗
4D

(Xd/2 − ζi0) be the factorization into irreduible

polynomials over GF(p2), where ζ0 ∈ GF(p2) is a primitive 4D-th root of unity.
By substituting Y = Xd/2, we get Φ2M/d(Y) =

∏
i∈Z∗

4D
(Y − ζi0) over GF(p2).

This factorization can be lifted from GF(p2) to GR(pr; 2) using Hensel’s lemma,
i.e.,

Φ2M/d(Y) =
∏

i∈Z∗
4D

(Y − ui), ui ∈ GR(pr; 2).

Similarly, the ui’s form the complete set of 4D-th primitive roots of unity in
GR(pr; 2), and we can assume that ui = ζi for a primitive 4D-th root of unity
ζ ∈ GF(p2). It only remains to prove that (Y i − ζi)(Y i − ζip) ∈ Zpr [X], which is
equivalent to proving both −(ζi + ζip) and ζi(p+1) are in Zpr .

Let γ be a primitive element such that GR(pr; 2) = Zpr [γ]. According to
Section 2.2, the unit group GR(pr; 2)∗ is isomorphic to Cp2−1 × Cpr−1 × Cpr−1 ,
where Ci denotes a cyclic group of order i. Given that ordGR(pr;2)∗(γ) = p2 − 1
and ordGR(pr;2)∗(ζ) = 4D are both coprime to p, it follows that ζ is a power of γ.

Furthermore, as 4D divides p2−1, we can deduce that ζ = γk for some integer k
that is divisible by (p2 − 1)/4D. Let π be the Frobenius automorphism, we have

π(ζi + ζip) = π(γki + γkip) = γkip + γkip2

= γkip + γki = ζi + ζip,

π(ζi(p+1)) = π(γki(p+1)) = γki(p2+p) = γki(p+1) = ζi(p+1).

Thus, (ζi + ζip) and ζi(p+1) are in Zpr , and the lemma follows directly. ⊓⊔
Drawing upon the factorization presented in Lemma 7, we are able to define

F
(j)
i and establish properties that are same to those stated in Lemma 3. Sub-

sequently, we can construct the linear transformation Nj in a manner consistent
with Section 3.2, and validate properties that are same to those in Lemma 4. In
addition, it can be verified that the methodology presented in Lemma 5 is still
applicable, thereby enabling us to prove statement (2) of Theorem 1.

4 Algorithmic Optimizations of Homomorphic NTT

In this section, we introduce multiple optimizations based on the decomposition
in Theorem 1. In Section 4.1, we combine consecutive Nj ’s to realize a tradeoff
between level consumption and running time. In Section 4.2, we modify the
logic of the BSGS-style linear transformation to reduce the number of unhoisted
automorphisms for better efficiency. In Section 4.3, we discuss the interaction of
our decomposed CoeffToSlot/SlotToCoeff with general and thin bootstrapping.
Finally, we analyze and compare the asymptotic complexity of the previous and
our method in Section 4.4.

20

4.1 Combining Consecutive Nj’s

Note that the evaluation of each MatMul1D or BlockMatMul1D consumes a
multiply-by-constant depth. Thus evaluating all the Ni’s one by one will con-
sume a depth of log2(L), which can significantly diminish the remaining depth
after bootstrapping when L is large. This issue can be mitigated by combining
several consecutive Ni’s and evaluating the resulting composite linear transfor-
mations as a whole. We note that a similar technique, known as level-collapsing,
has been proposed for FFT-based CKKS bootstrapping in [9,22].

The properties of the composite linear transformations can be stated as fol-
lows.

Lemma 8. Let k ∈ [1, log2(D)] and 1 ≤ j ≤ k.
If p ≡ 1 mod 4, then it has

DiagSet(Nk . . . Nj) = DiagSet(N−1
j . . . N−1

k) = 2−kD× [−21+k−j +1, 21+k−j −1]2k .

If p ≡ 3 mod 4, then it has

DiagSet(Nk . . . Nj) = 2−kD × [−3(21+k−j − 1), 3(21+k−j − 1)]2k ,

DiagSet(N−1
j . . . N−1

k) = 2−kD × [−3(21+k−j − 1), 2(21+k−j − 1)]2k ,

DiagSet(N′k . . . N
′
j) = DiagSet(N′−1

j . . . N′−1
k) = 2−kD×[−21+k−j−1, 21+k−j−1]2k .

Specifically, if j = 1, all the RHS become 2−kD × [2k].

Proof. We prove the conclusions about DiagSet(Nk . . . Nj) by induction on k.
When k = j, the conclusions are true due to Theorem 1. Suppose they hold for
some k0 with j ≤ k = k0 < log2(D), we prove they still hold for k + 1. Since

DiagSet(Nk+1 . . . Nj) =
⋃

a∈DiagSet(Nk+1)

[a+DiagSet(Nk . . . Nj)]D,

substituting DiagSet(Nk+1) and DiagSet(Nk . . . Nj) with the corresponding values
in each case will lead to the desired results.

For the inverses of the transformations above, the conclusions can be obtained
similarly. ⊓⊔

In the case of p ≡ 1 mod 4, the composition of multiple Ni may not be a
one-dimensional linear transformation if Nlog2(D)+1 is included. Let ρ1 be the ro-
tation operation along the minor dimension. According to Theorem 1, Nlog2(D)+1

represents a MatMul1D in the minor dimension, which can be implemented as
Nlog2(D)+1(m) = κ0(0)m + κ0(1)ρ1(m) for some κ0(0), κ0(1) ∈ Rpr . Thus, for
N = Nk ◦· · ·◦Nj with 1 ≤ k ≤ log2(D) as in Lemma 8, which is a one-dimensional
linear transformation along the major dimension, the cross-dimensional trans-
formation Nlog2(D)+1 ◦ N can be computed in the form of

Nlog2(D)+1 ◦ N(m) =
∑

i∈DiagSet(N)

κ1(i)ρ
i(m) + ρ1

 ∑
i∈DiagSet(N)

κ2(i)ρ
i(m)

for some κ1(i) and κ2(i) ∈ Rpr . This is called a MatMulFull transformation [19].

21

4.2 Modified BSGS Style Linear Transformations

We note that a large number of slots L implies that the size D of the main
dimension is large. Thus the rotation keys for the main dimension should be
generated in a baby-step-giant-step (BSGS) way, which can reduce the number
of rotation keys from D to about 2

√
D. As stated in [19], the BSGS method

chooses g = ⌈
√
D⌉ as the ‘giant step’. Denote h = ⌈D/g⌉, it generates the

rotation keys for Galois rotations θi, where either i ∈ [g] (i.e., the baby steps)
or i ∈ g · [h] (i.e., the giant steps). Then for a good dimension, it has ρ = θ and
MatMul1D is implemented as

TN (m) =
∑
k∈[h]

ρgk

∑
j∈[g]

κ′(j + gk)ρj(m)

 , for m ∈ Rpr , (4)

where κ′(j+gk) = ρ−gk(κ(j+gk)). The ρj(m)’s are computed using the hoisting
technique, while the ρgk’s cannot be computed with hoisting because they have
different inputs. For a bad dimension, MatMul1D is implemented as

TN (m) =
∑
k∈[h]

θgk

∑
j∈[g]

κ′(j + gk)θj(m) + κ′′(j + gk)θj−D(m)

 (5)

for m ∈ Rpr , where κ′(j + gk) = θ−gk(µ(j + gk)κ(j + gk)) and κ′′(j + gk) =
θ−gk(µ′(j+gk)κ(j+gk)). Again, θj(m) and θj−D(m) are computed with hoisting
on m and θ−D(m) while θgk are computed without hoisting.

Modified BSGS Method for MatMul1D. For a MatMul1D map N along

the major dimension, define GiantSet(N) = {⌊ [i]D
g ⌋ | i ∈ DiagSet(N)} and

BabySet(N) = {[i]D mod g | i ∈ DiagSet(N)}. Then, we can replace ‘[h]’ with
‘GiantSet(N)’ and ‘[g]’ with ‘BabySet(N)’ in Equation 4 and Equation 5.

Our key observation is that the matrices that Red−1
BR splits into usually

have either a small GiantSet or a small BabySet. For example, consider the
case of p ≡ 1 mod 4 and D = 22k for some integer k. Using Theorem 1 and
Lemma 8, consider two composite linear transformations N(1) = Nk . . . N1 and
N(2) = N2k . . . Nk+1. We have DiagSet(N(2)) = [−2k+1, 2k−1] and DiagSet(N(1)) =
2k×[2k]. Since g = h = 2k, we have GiantSet(N(2)) = {−1, 0, 1}, BabySet(N(2)) =
[2k] and GiantSet(N(1)) = [2k], BabySet(N(1)) = {0}. If |GiantSet(N)| is small for
a linear transformation N, the number of unhoisted automorphisms (i.e., ρgk and
θgk) in Equation 4 and Equation 5 is greatly reduced.

In the other case where BabySet(N) is small, we exchange the role of j, k to
obtain the revised MatMul1D in a good dimension

N(m) =
∑

j∈BabySet(N)

ρj

 ∑
k∈GiantSet(N)

κ′(j + gk)ρgk(m)

 , (6)

where κ′(j+ gk) = ρ−jκ(j+ gk), and the revised MatMul1D in a bad dimension

22

N(m) =
∑

j∈BabySet(N)

θj

(∑
k∈GiantSet(N)

κ′(j + gk)θgk(m) + κ′′(j + gk)θgk−D(m)

)
,

where κ′(j+gk) = θ−j(µ(j+gk)κ(j+gk)) and κ′′(j+gk) = θ−j(µ′(j+gk)κ(j+
gk)).

Swapping the roles of j and k whenever |GiantSet(N)| > |BabySet(N)| en-
sures that the number of unhoisted automorphisms is minimized while the total
number of automorphisms is fixed. This reduces the running time since hoisted
automorphisms are cheaper than unhoisted ones.

In our example above, the sparsity of BabySet(N(1)) relies on the fact that
g =

√
D is a power of 2. However, this is not true if D = 22k+1 for some integer

k. Thus, in this case, we choose g = 2k+1 and h = 2k so that the previous
optimizations are still valid. Compared to the original choice of g, such choice
of g will slightly increase the number of rotation keys from 21.5 · 2k to 3 · 2k by
about 6%, which is an acceptable cost.

Modified BSGS Method for BlockMatMul1D. The tricks for MatMul1D
can be applied to the computation of BlockMatMul1D in either good or bad
dimensions.

When HElib computes a BlockMatMul1D transformation, ρi(m)’s in Equa-
tion 2 are computed for all i ∈ [D] if the dimension is good. In a bad dimension,
θi(m)’s are computed for all i ∈ [D]. Let j = [i]g and k = ⌊ i

g ⌋, these ciphertexts

are generated in two steps, (1) θgk(m) are generated from m with hoisting for
k ∈ [h], (2) θi(m) = θj(θgk(m)) are generated from θgk(m) with hoisting for
j ∈ [g]. Thus, we can still replace [g] with BabySet(N) and [h] with GiantSet(N)
for faster computation. The role of giant and baby steps can also be swapped if
|BabySet(N)| < |GiantSet(N)|, which reduces the number of hoisting precompu-
tations from |GiantSet(N)| + 1 to |BabySet(N)| + 1. If they are swapped, θj(m)
will be generated from m and θj+gk(m) will be computed from θj(m).

4.3 Applying the Decomposition to BGV Bootstrapping

In this subsection, we describe how the decomposition of linear transformations
can be deployed into general or thin bootstrapping, including some modifications
to them for better efficiency.

Recall that Decode = Eval ◦ Red and Red−1 = BR ◦ Red−1
BR, where BR is an

order-two permutation of the L · d slot coefficients induced by some bit-reversal
map. Then the polynomial m ∈ Rpr and its slot values α are related as

α = Decode(m) = Eval ◦ Red(m) = Eval ◦ RedBR ◦ BR−1(m).

Applying to General Bootstrapping. The workflow of general bootstrap-
ping is illustrated in Figure 5. Note that the output of CoeffToSlot and the

23

Fig. 5. Workflow of general BGV bootstrapping. The slot values in BR(m) after Co-
effToSlot are identified with Zd

pr with respect to the normal basis of E . Other slot values
are represented with respect to the power basis of E .

input of SlotToCoeff is a permutated version of m or m0. This helps to avoid
computing BR and its inverse homomorphically, which will be rather expensive.

The CoeffToSlot transformation (corresponding to the Red−1
BR ◦ Eval−1) is

followed by a BlockMatMul1D transformation that moves the power basis coef-
ficients of each slot into the normal basis [21]. Denoting this transformation as
PtoN, the overall transformation applied is PtoN ◦ Red−1

BR ◦ Eval−1, where PtoN

and Eval−1 are slot-wise BlockMatMul1D. Denote the split Red−1
BR as Red−1

BR =
N(k) . . . N(1). As the first optimization, we merge Eval−1 with N(1) to save a
multiply-by-constant level, which is a tradeoff between level and time. More-
over, this is free if N(1) is already a BlockMatMul1D. This trick is applied to both
SlotToCoeff and CoeffToSlot transformations, whether the bootstrapping is a
general one or a thin one.

As the second optimization, we merge PtoN with the N(k) to save a multiply-
by-constant level, again increasing its running time if it is not a BlockMatMul1D.
However, we can avoid the extra cost by reordering N(k). If p ≡ 1 mod 4, all
N(i)’s are either MatMul1D or MatMulFull. For p ≡ 3 mod 4, N(1) is a BlockMat-
Mul1D and other N(i)’s are either MatMul1D (for Bruun style decomposition) or
BlockMatMul1D (for Radix-2 style decomposition). Each entry of a MatMul1D
or MatMulFull used here is a multiple of Id, which is a linear transformation that
multiplies the input v ∈ E by some constant in Zpr . Note that such a multiply-
by-integer map remains the same regardless of the basis we use for E (i.e., the
power basis or the normal basis). Thus, PtoN commutes with all N(i)’s that are
MatMul1D or MatMulFull. It is easy to see that there exists some integer j such
that N(i) is a BlockMatMul1D ⇐⇒ i ≤ j. Then we can rewrite the overall linear
transformation as

N(k) ◦ . . . ◦ N(j+1) ◦ (PtoN ◦ N(j)) ◦ N(j−1) ◦ . . . ◦ N(2) ◦ (N(1) ◦ Eval−1).

In this way, we ensure that the number of BlockMatMul1D transformations dur-
ing SlotToCoeff is minimized to max(j, 1). Since BlockMatMul1D is usually more
time-consuming than MatMul1D, running time is saved by the reordering of
transformations.

24

Fig. 6. Workflow of thin BGV bootstrapping. The SlotToCoeff and CoeffToSlot trans-
formations are compositions of different sub-transformations for different parameters.
All slot values are represented with respect to the power basis of E .

Applying to Thin Bootsgrapping. The workflow of thin bootstrapping is
illustrated in Figure 6. The permutation BR is also not computed homomorphi-
cally, similar to that in general bootstrapping.

SlotToCoeff (corresponding to Eval ◦ RedBR) is performed first on a thin
ciphertext, where each slot contains an integer instead of a Galois ring element.
Let the slot values of the input to SlotToCoeff be α ∈ EL. If p ≡ 1 mod 4, each
slot in RedBR(α0) still stores an integer because the entry in RedBR is a multiple
of Id. This means the restriction of Eval on RedBR(α0) is an identity map and
can be omitted. For p ≡ 3 mod 4, the value in each slot during the computation
of RedBR lies in the subring F ⊂ E satisfying [F : GR(pr)] = 2 because each entry

of Nj has the form of

[
a0Id/2 a1Id/2
a2Id/2 a3Id/2

]
for ai ∈ Zp. This means the linearized

polynomials in the BlockMatMul1D maps of RedBR and in Eval can be built on
F instead of on E , reducing the highest power of σ in the linearized polynomials
from d− 1 to 1.

Another feature of thin bootstrapping is that a trace-like map needs to be
applied to the ciphertext to clear the extra coefficients introduced by the decryp-
tion formula simplification. For a power-of-2 M , Chen and Han found that such
a map can be computed efficiently before CoeffToSlot [10]. As their core obser-
vation, for m ∈ Rpr and 0 ≤ k ≤ log2(M/2), it is possible to obtain m′ ∈ Rpr

such that m′[i] = 0 for [i]2k ̸= 0 and m′[i] = m[i] otherwise. In other words, RMk
keeps m[i] if and only if the lowest k bits in the binary representation of i are
zero. Denote this map as RMk : Rpr → Rpr , its computation proceeds as follows,
where Γj(m(X)) = m(Xj).

In Figure 6, Rm and Rm′ clear the extra coefficients in BR(α∗) introduced by
decryption formula simplification into BR(α0). Using our FFT-like linear trans-
formations, the permutation BR satisfies

BR =

BR′log2(D)+1,log2(d)

, if p ≡ 1 mod 4

BRlog2(D),log2(d)
, if p ≡ 3 mod 4, Bruun style decomposition

BRlog2(D),log2(d)−1, if p ≡ 3 mod 4, Radix-2 style decomposition

.

25

Algorithm 1 RMk map [10]

Input: m
Output: m′ = RMk(m)
m0 ← m
for i = 1, . . . , k do

mi ← mi−1 + Γ2−iM+1(mi−1)
end for
m′ ← 2−kmk

For p ≡ 1 mod 4, the indices of the coefficients of BR(α0) in Figure 6 form the set
d× [2D]. I.e., BR(α∗)[i] should be kept by RM if and only if the lowest log2(d) bits
of i are all zeros. Thus, we let RM = RMlog2(d)

and RM′ be the identity map. Note
that we abuse the notation of RMk : Rpr → Rpr here to denote its corresponding
map on the slots, which is a EL → EL map.

For p ≡ 3 mod 4 and Bruun style decomposition, the indices of coefficients
of BR(α0) form d× [D] and RM = RMlog2(d)

suffices to clear the extra coefficients.
However, for Radix-2 style decomposition, the indices of the coefficients of BR(α0)
form the set {BRlog2(D),log2(d)−1(i) | i ∈ d × [D]} = d/2 × [D]. In other words,
BR(α∗)[i] should be kept by RM if and only if the highest bit and the lowest
log2(d) − 1 bits of i are all zeros. In this case, although we can clear BR(α∗)[i]
with [i]d/2 ̸= 0 using RM = RMlog2(d)−1, those undesired coefficients with indices
in d/2× [D/2, D − 1] cannot be cleared. This means that the first D/2 slots in
Red−1

BR ◦ Eval−1 ◦RM(β) will have the form of αi + bXd/2, with b being the un-
desired coefficient. Thus, an extra map Rm′ needs to be applied slot-wise to clear
b in these slots. We note that Rm′ can also be represented as a linearized polyno-
mial in the subring F ⊂ E and can be incorporated into the last BlockMatMul1D
in Red−1

BR for free.

The optimizations we made to SlotToCoeff can be applied to CoeffToSlot
as well. Specifically, if p ≡ 1 mod 4, Eval−1 in CoeffToSlot can also be omitted
because Rm(β) stores an integer in each of its slots. For p ≡ 3 mod 4, Rm(β) and
the intermediate results during the computation of Red−1

BR store an element in
the subring F in each of their slots. Again, this means the linearized polynomials
of Eval−1 and the BlockMatMul1D maps that Red−1

BR splits into can be built on
F instead of on E .

Remark. When p ≡ 3 mod 4, let RedBR = N(k) ◦ · · · ◦ N(1), where N(i)’s are
composition of multiple N′−1

j ’s. We remark that N(1) can be simplified from a
BlockMatMul1D into a MatMul1D because each slot in its input stores only an
integer in Zpr . This is not true for N(i) with i ≥ 2 or the inverse matrices in
Red−1

BR because each slot in their inputs lies in the subring F . We do not include
this optimization in our implementation for simplicity.

26

4.4 Asymptotic Complexity Analysis

In this subsection, we discuss the asymptotic complexity of linear transforma-
tions in BGV bootstrapping for both our method and the baseline approach. The
results are summarized in Table 1. For our method, we ignore the optimization of
combining Eval, Nj , and PtoN due to the maximum number of decompositions is
logarithmic in L, rendering the depth consumption negligible in the asymptotic
analysis. For the baseline method, we assume that the rotation keys are gen-
erated in the BSGS manner, and CoeffToSlot/SlotToCoeff is evaluated without
decomposition. The complexity of both methods is estimated by counting the
number of unhoisted automorphisms and hoisting precomputation, which are
the most computationally expensive operations.

Table 1. Asymptotic complexity of linear transformations in BGV bootstrapping for
our method and the baseline method.

Complexity Thin Bootstrapping General Bootstrapping

Baseline O(log2(d) +
√
L) O(d+

√
L)

Ours O(log2(d) + log2(L)) O(d · log2(L))

For the baseline method, the whole CoeffToSlot/SlotToCoeff in thin boot-
strapping is a MatMul1D [19,16], requiring a complexity of O(

√
L). For both

methods, the complexity of RM and RM′ is O(log2(d)). In general bootstrapping,
CoeffToSlot and SlotToCoeff become BlockMatMul1D, thus having a complexity
of O(d+

√
L) according to [19]. Thus, the total complexity is O(log2(d) +

√
L)

for thin bootstrapping and O(d+
√
L) for general bootstrapping.

For our method, the complexity of PtoN is O(d) for general bootstrapping,
while the complexity of Eval and its inverse is O(1) for thin bootstrapping and
O(d) for general bootstrapping. Each Nj in our method has a computational
complexity of O(1) in thin bootstrapping and O(d) in general bootstrapping.
Thus, the total complexity of evaluating all Nj ’s is O(log2(L)) in thin bootstrap-
ping and O(d · log2(L)) in general bootstrapping, leading to a total complexity
of O(log2(d) + log2(L)) and O(d+ d · log2(L)) = O(d · log2(L)). Additionally, if
we generate all the Frobenius key-switching keys of σi for i ∈ [d] and exchange
the order of θ and σ (as mentioned in [19]), the complexity of each Nj in general
bootstrapping can be lowered to O(1), leading to a O(d + log2(L)) complexity
for general bootstrapping using our method.

5 Implementation

5.1 Experiment Setup

We implemented our approach in BGV bootstrapping based on HElib (commit
id 3e337a6) with the optimization in [25]. The security level of BGV parameter

27

sets is estimated using the lattice estimator [2] with commit id fd4a460. The
experiments are conducted on a machine running Fedora 33 (Workstation Edi-
tion) equipped with a 3 GHz Intel(R) Core(TM) i9-10980XE CPU and 125GB
of RAM. The compiled program is executed in a single thread, as in previous
works on BGV bootstrapping [21,25].

Parameter selection. We set p to be of the form 2i ± 1 for friendly integer
arithmetic, and choose it to correspond to a large number of slots L, ranging
from 4096 to 32768. The Hamming weight h of the main secret key is set to
120, aligning with the default value used in HElib. In accordance with previous
works [21,15,25], we choose the maximum ciphertext modulus Q to guarantee
a security level of at least 80 bits. The Hamming weight of the encapsulated
bootstrapping key is chosen to have a security level of at least 128 bits to defend
against potential attacks on sparse secrets, which is consistent with the choice
in [25]. The selected parameter sets are displayed in Table 2.

Table 2. The parameter sets. h and λ are the Hamming weight and the security level
of the main secret key, while h′ and λ′ are those for the encapsulated bootstrapping
key.

ID p r M L D d log2(Q) h λ h′ λ′

I 65537
1

65536 32768 16384 1
1332 120 81.13

26 134.4
II 8191 65536 4096 4096 8 24 129.8
III 131071 65536 16384 16384 2 26 133.81

The Decomposition of Red
−1
BR. Recall that we combine consecutive NTT

matrices Nj to reduce the number of levels consumed by homomorphic NTT. We
use a list P to represent a partition of Nj ’s. The list stores nmats+1 integers in an
increasing order with P [0] = 1 and N(i) =

∏
P [i]≤j<P [i+1] Nj for 0 ≤ i < nmats.

We use the same P for CoeffToSlot and SlotToCoeff, although we could use
different P for more fined-grained performance tuning.

The optimal partition for a fixed nmats can be obtained using the dynamic
programming method of Chen et al. [9]. However, their method requires an accu-
rate estimation of the running time, which means one may have to benchmark the
running time of a series of basic operations, including hoisting precomputation,
hoisted automorphism, non-hoisted automorphism, plaintext-ciphertext multi-
plication (with plaintext in both double-CRT and non-double-CRT form), and
ciphertext summation. Thus, considering the difficulty of obtaining an accurate
model of the running time, we choose to determine the partitions experimentally
through trial and error, which we believe suffices to demonstrate the effectiveness
of our method. The obtained partitions are listed in Table 3.

28

Table 3. The partitions under different parameter sets for general and thin bootstrap-
ping.

Bootstrapping Type I Style II III

Partition
Thin (1,6,12,16)

Bruun (1,6,10,13) (1,7,12,15)
Radix-2 (1,5,9,13) (1,6,10,15)

General (1,6,12,16)
Bruun (1,5,10,13) (1,7,12,15)
Radix-2 (1,5,9,13) (1,6,10,15)

5.2 Experimental Results

The benchmark results for thin bootstrapping are shown in Table 4 while those
for general bootstrapping are in Table 5. The case IDs without primes or sub-
scripts represent the baselines with corresponding parameter sets. I′ is the case
of p ≡ 1 mod 4 under parameter set I. IIBr and IIIBr use Bruun-style decompo-
sition while IIR2 and IIIR2 use Radix-2 style decomposition.

For thin bootstrapping, the algorithm proposed in [10] and refined in [16] is
chosen as the baseline of comparison. Since the method in [10] only applies to
thin bootstrapping, for general bootstrapping, the single-matrix representation
of Red−1

BR (i.e., nmats = 1) is taken as the baseline. For general bootstrapping, the
running time of CoeffToSlot and SlotToCoeff includes the unpacking/repacking
procedure before/after digit removal. The capacity of a ciphertext is defined
as log2(ciphertext modulus/bound of ciphertext noise). The capacity needed by
the next bootstrapping is subtracted from the remaining capacity, e.g., the ca-
pacity required by SlotToCoeff in thin bootstrapping or the decryption formula
simplification process. The throughput of the bootstrapping procedure is defined
as the remaining capacity divided by the running time, as in [15].

HElib stores the ring constants of a linear transformation (e.g., κ(i) in Equa-
tion 1) in two ways, either as plain Rpr elements or in the double-CRT form.
The former format has lower memory cost while the latter leads to faster homo-
morphic computation at the cost of memory overhead. Thus, we only store these
constants in the double-CRT form if they fit in the memory of our machine. Note
that in all baselines but the baseline of II in thin bootstrapping, these constants
will cause an out-of-memory error if represented in double-CRT form.

As shown in the tables, compared to the baselines where SlotToCoeff and
CoeffToSlot are represented as a whole dense matrix, our NTT-like linear trans-
formations run 7.35x∼63x faster in thin bootstrapping and 48.9x∼143x faster
in general bootstrapping. Consequently, the throughput of thin bootstrapping
is improved by 4.79x∼36.0x and the throughput of general bootstrapping is im-
proved by 28.6x∼66.4x. Although the cases using our method consume more
capacity than the baseline cases, they have much shorter running times, out-
weighing the extra capacity consumption and leading to a higher throughput.

Our method’s advantage in running times is still significant even if the κ(i)’s
are not stored in the double-CRT form. Moving from double-CRT to non-double-
CRT will increase the running time of our methods by no more than 19.7%, but
will double the running time of the baseline of II in thin bootstrapping. In this

29

Table 4. Benchmark results for thin bootstrapping. Capacity refers to the capacity
consumed by each stage of bootstrapping. The speedup is computed as the ratio of
throughput with respect to the baseline case.

Case ID I I′ II IIBr IIR2 III IIIBr IIIR2

Capacity
(bits)

Initial 941 941 947 947 947 939 939 939
SlotToCoeff 39 79 34 70 70 40 85 85
CoeffToSlot 62 134 58 119 118 66 144 143
Digit removal 265 264 232 231 232 277 276 277
Remaining 556 446 609 511 513 537 415 415

Time
(sec)

SlotToCoeff 99 3.8 31 3.4 2.8 255 4.3 3.3
CoeffToSlot 522 10.8 89 12.9 10.1 686 13.8 11.6
Digit removal 5.4 5.1 5.2 5.3 5.2 5.2 5.0 5.0

Total 627 20.0 126 22.1 18.6 947 23.4 20.3

Throughput (bps) 0.89 22.2 4.84 23.2 27.6 0.57 17.7 20.4

Speedup 1x 25.1x 1x 4.79x 5.71x 1x 31.2x 36.0x

case, the throughput of our methods is still 8.36x∼30.2x that of baselines in thin
bootstrapping, and 24.7x∼55.5x that of baselines in general bootstrapping.

For p ≡ 3 mod 4, the two styles of decomposition exhibit different running
times (the cases of IIBr, IIIBr versus IIR2, IIIR2 in Table 4 and Table 5). For gen-
eral bootstrapping with a small d or thin bootstrapping (i.e., except for the cases
IIBr/IIR2 in Table 5), the Radix-2 style decomposition is faster than the Bruun
style because the NTT/INTT matrices in Radix-2 style have fewer nonzero di-
agonals. In general bootstrapping with a larger d (i.e., the cases IIBr/IIR2 in
Table 5), however, the Bruun style one is faster than the Radix-2 style. This is
because the computational overhead of BlockMatMul1D over MatMul1D grows
with d. Recall that only one of the split NTT/INTT matrices in Brunn style is
BlockMatMul1D, while all the NTT/INTT matrices in Radix-2 style are Block-
MatMul1D. Thus, the disadvantage of having more BlockMatMul1D overweights
the advantage of having fewer diagonals in each matrix, making the Radix-2-style
transformation slower than the Bruun-style one.

References

1. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi,
S., Hoffstein, J., Laine, K., Lauter, K., Lokam, S., Micciancio, D., Moody, D.,
Morrison, T., Sahai, A., Vaikuntanathan, V.: Homomorphic Encryption Security
Standard. Tech. rep., HomomorphicEncryption.org, Toronto, Canada (November
2018)

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of
Learning with Errors. Journal of Mathematical Cryptology 9(3), 169–203
(2015). https://doi.org/doi:10.1515/jmc-2015-0016, https://doi.org/10.1515/

jmc-2015-0016

3. Badawi, A.A., Bates, J., Bergamaschi, F., Cousins, D.B., Erabelli, S., Genise, N.,
Halevi, S., Hunt, H., Kim, A., Lee, Y., Liu, Z., Micciancio, D., Quah, I., Polyakov,

30

https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016

Table 5. Benchmark results for general bootstrapping. Capacity refers to the capacity
consumed by each stage of bootstrapping. The speedup is computed as the ratio of
throughput with respect to the baseline case.

Case ID I I′ II IIBr IIR2 III IIIBr IIIR2

Capacity
(bits)

Initial 918 918 927 927 927 915 915 915
CoeffToSlot 54 126 86 148 157 91 169 169
SlotToCoeff 54 126 83 156 154 90 168 168
Digit extract 281 282 245 246 245 294 293 293
Remaining 526 382 511 375 369 439 282 282

Time
(sec)

CoeffToSlot 525 10.8 1579 17.6 21.5 1688 13.8 11.9
SlotToCoeff 528 10.8 1579 16.1 18.0 1687 13.5 11.6
Digit extract 5.3 4.9 42 39 40 10.1 8.8 8.8

Total 1059 26.9 3200 73 80 3386 36.5 32.3

Throughput (bps) 0.50 14.2 0.16 5.1 4.6 0.13 7.7 8.6

Speedup 1x 28.6x 1x 32.0x 28.9x 1x 59.7x 66.4x

Y., R.V., S., Rohloff, K., Saylor, J., Suponitsky, D., Triplett, M., Vaikuntanathan,
V., Zucca, V.: OpenFHE: Open-Source Fully Homomorphic Encryption Library.
Cryptology ePrint Archive, Paper 2022/915 (2022), https://eprint.iacr.org/
2022/915, https://eprint.iacr.org/2022/915

4. Blatt, M., Gusev, A., Polyakov, Y., Rohloff, K., Vaikuntanathan, V.: Optimized
homomorphic encryption solution for secure genome-wide association studies. BMC
Medical Genomics 13(7), 83 (Jul 2020). https://doi.org/10.1186/s12920-020-0719-
9, https://doi.org/10.1186/s12920-020-0719-9

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully Homomorphic En-
cryption without Bootstrapping. ACM Trans. Comput. Theory 6(3) (jul 2014).
https://doi.org/10.1145/2633600, https://doi.org/10.1145/2633600

6. Bruun, G.: z-transform DFT filters and FFT’s. IEEE Transactions
on Acoustics, Speech, and Signal Processing 26(1), 56–63 (1978).
https://doi.org/10.1109/TASSP.1978.1163036

7. Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials
over arbitrary algebras. Acta Informatica 28(7), 693–701 (Jul 1991).
https://doi.org/10.1007/BF01178683, https://doi.org/10.1007/BF01178683

8. Chen, H.T., Chung, Y.H., Hwang, V., Liu, C.T., Yang, B.Y.: Algorithmic Views
of Vectorized Polynomial Multipliers for NTRU and NTRU Prime (Long Paper).
Cryptology ePrint Archive, Paper 2023/541 (2023), https://eprint.iacr.org/
2023/541, https://eprint.iacr.org/2023/541

9. Chen, H., Chillotti, I., Song, Y.: Improved Bootstrapping for Approximate Homo-
morphic Encryption. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology –
EUROCRYPT 2019. pp. 34–54. Springer International Publishing, Cham (2019)

10. Chen, H., Han, K.: Homomorphic Lower Digits Removal and Improved FHE Boot-
strapping. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology – EURO-
CRYPT 2018. pp. 315–337. Springer International Publishing, Cham (2018)

11. Chen, H., Han, K.: Homomorphic Lower Digits Removal and Improved FHE Boot-
strapping. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology – EURO-
CRYPT 2018. pp. 315–337. Springer International Publishing, Cham (2018)

12. Cong, K., Moreno, R.C., da Gama, M.B., Dai, W., Iliashenko, I., Laine,
K., Rosenberg, M.: Labeled PSI from Homomorphic Encryption with Re-

31

https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://doi.org/10.1186/s12920-020-0719-9
https://doi.org/10.1186/s12920-020-0719-9
https://doi.org/10.1186/s12920-020-0719-9
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1109/TASSP.1978.1163036
https://doi.org/10.1007/BF01178683
https://doi.org/10.1007/BF01178683
https://eprint.iacr.org/2023/541
https://eprint.iacr.org/2023/541
https://eprint.iacr.org/2023/541

duced Computation and Communication. In: Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. p. 1135–1150.
CCS ’21, Association for Computing Machinery, New York, NY, USA (2021).
https://doi.org/10.1145/3460120.3484760, https://doi.org/10.1145/3460120.

3484760

13. Cooley, J.W., Tukey, J.W.: An Algorithm for the Machine Calculation of Complex
Fourier Series. Mathematics of Computation 19(90), 297–301 (1965), http://www.
jstor.org/stable/2003354

14. Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic Encryption.
Cryptology ePrint Archive, Paper 2012/144 (2012), https://eprint.iacr.org/
2012/144, https://eprint.iacr.org/2012/144

15. Geelen, R., Iliashenko, I., Kang, J., Vercauteren, F.: On Polynomial Functions
Modulo pe and Faster Bootstrapping for Homomorphic Encryption. In: Hazay,
C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023. pp. 257–286.
Springer Nature Switzerland, Cham (2023)

16. Geelen, R., Vercauteren, F.: Bootstrapping for BGV and BFV Revisited. Journal
of Cryptology 36(2), 12 (Mar 2023). https://doi.org/10.1007/s00145-023-09454-6,
https://doi.org/10.1007/s00145-023-09454-6

17. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Pro-
ceedings of the Forty-First Annual ACM Symposium on Theory of Comput-
ing. p. 169–178. STOC ’09, Association for Computing Machinery, New York,
NY, USA (2009). https://doi.org/10.1145/1536414.1536440, https://doi.org/

10.1145/1536414.1536440

18. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
Advances in Cryptology – EUROCRYPT 2015. pp. 641–670. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2015)

19. Halevi, S., Shoup, V.: Faster Homomorphic Linear Transformations in HElib. In:
Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018. pp.
93–120. Springer International Publishing, Cham (2018)

20. Halevi, S., Shoup, V.: Design and implementation of HElib: a homomorphic en-
cryption library. Cryptology ePrint Archive, Paper 2020/1481 (2020), https:

//eprint.iacr.org/2020/1481, https://eprint.iacr.org/2020/1481
21. Halevi, S., Shoup, V.: Bootstrapping for HElib. Journal of Cryptology 34(1),

7 (Jan 2021). https://doi.org/10.1007/s00145-020-09368-7, https://doi.org/10.
1007/s00145-020-09368-7

22. Han, K., Hhan, M., Cheon, J.H.: Improved Homomorphic Discrete Fourier
Transforms and FHE Bootstrapping. IEEE Access 7, 57361–57370 (2019).
https://doi.org/10.1109/ACCESS.2019.2913850

23. Lattigo v5. Online: https://github.com/tuneinsight/lattigo (Nov 2023),
ePFL-LDS, Tune Insight SA

24. Lee, J.W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin, M., Lee, E., Lee,
J., Yoo, D., Kim, Y.S., No, J.S.: Privacy-Preserving Machine Learning With Fully
Homomorphic Encryption for Deep Neural Network. IEEE Access 10, 30039–30054
(2022). https://doi.org/10.1109/ACCESS.2022.3159694

25. Ma, S., Huang, T., Wang, A., Wang, X.: Accelerating BGV Bootstrapping for Large
p Using Null Polynomials Over Zpe . Cryptology ePrint Archive, Paper 2024/115
(2024), https://eprint.iacr.org/2024/115, https://eprint.iacr.org/2024/

115

26. Meyn, H.: Factorization of the Cyclotomic Polynomialx2n+ 1 over
Finite Fields. Finite Fields and Their Applications 2(4), 439–442

32

https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1145/3460120.3484760
http://www.jstor.org/stable/2003354
http://www.jstor.org/stable/2003354
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://doi.org/10.1007/s00145-023-09454-6
https://doi.org/10.1007/s00145-023-09454-6
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://doi.org/10.1007/s00145-020-09368-7
https://doi.org/10.1007/s00145-020-09368-7
https://doi.org/10.1007/s00145-020-09368-7
https://doi.org/10.1109/ACCESS.2019.2913850
https://github.com/tuneinsight/lattigo
https://doi.org/10.1109/ACCESS.2022.3159694
https://eprint.iacr.org/2024/115
https://eprint.iacr.org/2024/115
https://eprint.iacr.org/2024/115

(1996). https://doi.org/https://doi.org/10.1006/ffta.1996.0026, https:

//www.sciencedirect.com/science/article/pii/S107157979690026X

27. Ng, L.K.L., Chow, S.S.M.: GForce: GPU-Friendly Oblivious and Rapid Neural
Network Inference. In: 30th USENIX Security Symposium (USENIX Security
21). pp. 2147–2164. USENIX Association (Aug 2021), https://www.usenix.org/
conference/usenixsecurity21/presentation/ng

28. Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL (Jan 2023),
microsoft Research, Redmond, WA.

29. Wan, Z.: Lectures on Finite Fields and Galois Rings. G - Reference,Information and
Interdisciplinary Subjects Series, World Scientific (2003), https://books.google.
com.hk/books?id=uCSVbYMljNIC

33

https://doi.org/https://doi.org/10.1006/ffta.1996.0026
https://www.sciencedirect.com/science/article/pii/S107157979690026X
https://www.sciencedirect.com/science/article/pii/S107157979690026X
https://www.usenix.org/conference/usenixsecurity21/presentation/ng
https://www.usenix.org/conference/usenixsecurity21/presentation/ng
https://github.com/Microsoft/SEAL
https://books.google.com.hk/books?id=uCSVbYMljNIC
https://books.google.com.hk/books?id=uCSVbYMljNIC

Supplementary Material

A Proofs of Lemma 4 and Lemma 5

Proof (Lemma 4).
Concerning N1, for i ∈ [D/2] and k ∈ [2], define

l = α0[i][0 +: d/2]

h = α0[i][d/2 +: d/2]

l′ = α0[i+D/2][0 +: d/2]

h′ = α0[i+D/2][d/2 +: d/2]

,

a00 = α1[i][0 +: d/2]

a01 = α1[i][d/2 +: d/2]

a10 = α1[i+D/2][d/2 +: d/2]

a11 = α1[i+D/2][d/2 +: d/2]

.

By traversing i and k, l,h, l′,h′ and a00, . . . ,a11 cover all the inputs and outputs
of N1. a00, . . . ,a11 are Zp-linear combinations of l,h, l′,h′ because they form a
Bruun butterfly with respect to f0(X) = Fi and f1(X) = Fi+D/2 as in Equa-
tion 3, which can be deduced from the definition of αj and αj−1. The linear
combinations correspond to a 2× 2 submatrix in N1[

N1[i, i] N1[i, i+D/2]
N1[i+D/2, i] N1[i+D/2, i+D/2]

]
.

Each entry is in the form of

[
a0Id/2 a1Id/2
a2Id/2 a3Id/2

]
for some a0, . . . , a3 ∈ Zp. Traversing

i will expand the submatrix into N1. Thus, N1 has three nonzero diagonals
indexed as D/2× {−1, 0, 1}. The structure of N−1

1 can be proved similarly.
Concerning Nj with j ∈ [2, log2(D)], for i ∈ [2−j+1D] and k0 ∈ [2j−2],

a00 = αj [i+BitRevj,0(k0) · 2−jD]

a01 = αj [i+BitRevj,0(k0 + 2j−2) · 2−jD]

a10 = αj [i+BitRevj,0(k0 + 2 · 2j−2) · 2−jD]

a11 = αj [i+BitRevj,0(k0 + 3 · 2j−2) · 2−jD]

are Zp-linear combinations of

l = αj−1[i+BitRevj−1,0(k0) · 2−j+1D]

h = αj−1[i+BitRevj−1,0(k0 + 2j−2) · 2−j+1D]

l′ = αj−1[i+ 2−jD +BitRevj−1,0(k0) · 2−j+1D]

h′ = αj−1[i+ 2−jD +BitRevj−1,0(k0 + 2j−2) · 2−j+1D],

because they form a Bruun butterfly with respect to F
(j−1)
i and F

(j−1)
i+2−jD as

in Equation 3, which can be deduced from the definition of αj and αj−1. By
traversing i and k0, l, l

′,h,h′ and a00,a10,a01,a11 cover all the inputs and out-
puts of Nj . Observe that a00,a10,a01,a11 and l, l′,h,h′ share the same index

34

s0, s1, s2, s3 in sequence, where st = i + (BitRevj,0(k0) + t) · 2−jD. Thus, the
linear combinations between them correspond to a 4× 4 submatrix in NjNj [s0, s0] · · · Nj [s0, s3]

...
. . .

...
Nj [s3, s0] · · · Nj [s3, s3]

 =

∗ ∗ ∗ ∗

∗ ∗
∗ ∗ ∗ ∗
∗ ∗

 ,

where a ‘∗’ means a nonzero multiple of Id. Traversing i for a fixed value of
k0 will expand the submatrix into a 2−j+2D-sized diagonal block in Nj , whose
nonzero diagonals are indexed by {su − sv | u, v ∈ [4]} = 2−jD × [−3, 3]. The
structure ofN−1

j can be proved by expressing l,h, l′,h′ as Zp-linear combinations
of a00, . . . ,a11.

⊓⊔

Proof (Lemma 5).
Concerning a fixed j ∈ [1, log2(D)], for i ∈ [2−jD], k ∈ [2j−1],

a00 = α′
j [2(i+ 2k · 2−jD)]

a10 = α′
j [2(i+ 2k · 2−jD) + 1]

a01 = α′
j [2(i+ (2k + 1) · 2−jD)]

a11 = α′
j [2(i+ (2k + 1) · 2−jD) + 1]

are Zp-linear combinations of

l = α′
j−1[2(i+ k · 2−j+1D)]

h = α′
j−1[2(i+ k · 2−j+1D) + 1]

l′ = α′
j−1[2(i+ 2−jD + k · 2−j+1D)]

h′ = α′
j−1[2(i+ 2−jD + k · 2−j+1D) + 1],

because they form a Bruun butterfly with respect to F
(j−1)
i and F

(j−1)
i+2−jD as

in Equation 3, which can be deduced from the definition of α′
j and α′

j−1. By
traversing i and k, l,h, l′,h′ and a00,a10,a01,a11 cover all the inputs and outputs
of Nj . The index of a00,a10 in αj and the index of l,h in αj−1 are both s =
i+k·2−j+1D. a01,a11 and l,h also share the same index t = i+2−jD+k·2−j+1D.
Thus, the linear combinations correspond to a 2× 2 submatrix in N′

j[
N′

j [s, s] N
′
j [s, t]

N′
j [t, s] N

′
j [t, t]

]
,

where each entry has the form of

[
a0Id/2 a1Id/2
a2Id/2 a3Id/2

]
for a0, . . . , a3 ∈ Zp. Traversing

i for a fixed value of k will expand the submatrix into a 2−j+1D-sized diagonal
block in N′

j , which has three nonzero diagonals indexed as {0,±(s − t)} =

2−jD × {−1, 0, 1}. The structure of N′−1
j can be proved similarly.

⊓⊔

35

	Faster BGV Bootstrapping for Power-of-Two Cyclotomics through Homomorphic NTT

