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Abstract. Matrix multiplication is a common operation in applications
like machine learning and data analytics. To demonstrate the correct-
ness of such an operation in a privacy-preserving manner, we propose
zkMatrix, a zero-knowledge proof for the multiplication of committed
matrices. Among the succinct non-interactive zero-knowledge protocols
that have an O(logn) transcript size and O(logn) verifier time, zkMa-
trix stands out as the first to achieve O(n2) prover time and O(n2) RAM
usage for multiplying two n× n matrices. Significantly, zkMatrix distin-
guishes itself as the first zk-SNARK protocol specifically designed for
matrix multiplication. By batching multiple proofs together, each addi-
tional matrix multiplication only necessitates O(n) group operations in
prover time.
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1 Introduction

Matrix multiplication is a fundamental operation with wide applications in ap-
plied mathematics, statistics, finance, engineering, and more. It plays an essen-
tial role in handling high-dimensional datasets in data analytics and machine
learning. In these applications, sometimes we need to protect the privacy of sen-
sitive data. While zero-knowledge proofs offer a solution, providing an efficient
zero-knowledge proof for large-scale matrix multiplications, which may contain
thousands of rows, remains challenging.

Current protocols often struggle to simultaneously meet the following three
key requirements:

– Succinctness: When dealing with big datasets, it is a standard requirement
for a polylogarithmic transcript size and polylogarithmic verifier time.

⋆ Both authors contributed equally to this research.
⋆⋆ Siu Ming Yiu is the corresponding author.
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– Linear prover time with respect to the witness size: Many zero-knowledge
proofs based on arithmetic circuits require prover time linear to the number
of multiplication gates, which is roughly proportional to the 1.5-power of the
number of elements in the matrices. 3

– Consistency with commitments: In many applications, matrix multiplications
are performed sequentially (e.g., neural networks in Subsection 1.4). Given
the non-uniqueness of matrix multiplication outcomes (i.e., for any given
matrix c, there are infinite distinct matrices a and b such that c = ab), it
is vital to verify that the private inputs are the same across multiple matrix
multiplications. Therefore, the zero-knowledge proof should guarantee that
the private matrices are consistent with the same commitments. Ideally, the
commitment scheme should be independent of specific matrix operations.

Providing proof for the multiplication of two n × n matrices necessitates
roughly n3 multiplication gates. Direct application of zero-knowledge Succinct
Non-interactive ARgument of Knowledge (zk-SNARK) protocols, like those in
[Groth(2016),Parno et al.(2016),Bowe et al.(2019),Chiesa et al.(2020b),Maller
et al.(2019), Bünz et al.(2020), Gabizon et al.(2019), Chen et al.(2023), Chiesa
et al.(2020a)], results in O(n3) prover time and potential memory overflow due
to the O(n3) circuit size. Thaler’s specialized protocol [Thaler(2013)] transforms
matrix multiplication into a sumcheck relation, resulting in greater efficiency in
prover time. However, it is not a zk-SNARK protocol and necessitates linear time
for verification. Despite subsequent improvements by LegoSNARK [Campanelli
et al.(2019)] and Libra [Xie et al.(2019)], achieving O(n2) prover time with poly-
logarithmic verifier time remains unaccomplished. QuickSilver uses an interactive
protocol and secure multiparty computation, trimming down the prover time to
O(n2) but introducing a higher communication overhead of O(n2). A detailed
comparison is provided in Table 1. Among protocols with logarithmic verifier
time, such as Pinocchio [Parno et al.(2016)] and Libra [Xie et al.(2019)], our
zkMatrix protocol is the first to achieve O(n2) prover time.

1.1 Main Result

This paper seeks to construct a zero-knowledge proof for witness matrices a, b
and c such that c = ab. The matrices a, b, and c are committed using Pedersen
vector commitments Ca, Cb, and Cc respectively. Throughout the paper, we will
use bold letters for matrices (e.g., a) and smaller letters with index i, j for
elements inside the matrices (e.g., aij). We use the symbol ⊕ for point addition
in the elliptic curve group G of prime order p.

3 For n×n square matrices, the number of multiplication gates is n3 using the school-
book algorithm. The best algorithm in the literature is > n2.37 multiplications.
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Table 1: Comparison of the Zero-Knowledge Proofs for Matrix Multiplication of
n× n Matrices

Protocol
Communi-
cation

RAM Usage Timing Consis-
tencyProver Verifier Prover Verifier

Pinocchio
[Parno et al.(2016)]

O(1) O(n3) O(1) O(n3) O(1) No

Thaler
[Thaler(2013)]

O(logn) O(n2) O(n2) O(n2) O(n2) No

LegoSNARK
[Campanelli et al.(2019)]

O(logn) O(n2) O(n2) O(n2) O(n2) Yes

Libra
[Xie et al.(2019)]

O(logn) O(n3) O(logn) O(n3) O(logn) No

QuickSilver
[Yang et al.(2021)]

O(n2) O(n2) O(n2) O(n2) O(n2) Yes

zkMatrix
(single proof)

O(logn) O(n2) O(logn) O(n2) O(logn) Yes

zkMatrix
(batched proof for t

matrix multiplications)
O(t logn)O(n2+ tn) O(t logn)

O(n2 + tn)E
+O(tn2)M O(t logn) Yes

Note: The timing columns only show the dominating factor(s). For most schemes, it is
the number of exponentiations E in ECC or pairing groups. M represents the number
of multiplications in Zp, and one exponentiation roughly takes log2 p multiplications.
All group and modular additions, hashing operations, and non-dominating pairing
operations are omitted in the table for simplicity.

We consider the following relation for public group matrices U ,G,H:

RcomMatMul

=




Cc, Ca, Cb ∈ G;

U ∈ Gm×n,

G ∈ Gm×l,

H ∈ Gl×n

 :

c ∈ Zm×n
p ,

a ∈ Zm×l
p ,

b ∈ Zl×n
p


∣∣∣∣∣∣∣∣∣


c = ab,

∧ Cc = ⟨c,U⟩
∧ Ca = ⟨a,G⟩
∧ Cb = ⟨b,H⟩


 , (1)

where ⟨a,G⟩ is the Pedersen vector commitment of the matrix a:

⟨a,G⟩ := a11G11 ⊕ a12G12 ⊕ · · · ⊕ a1lG1l

⊕ a21G21 ⊕ a22G22 ⊕ · · · ⊕ a2lG2l

⊕
...

...
...

...
⊕ am1Gm2 ⊕ am2Gm2 ⊕ · · · ⊕ amlGml.

(2)

Analogous definitions apply to ⟨b,H⟩ and ⟨c,U⟩.4

4 Mathematically, ⟨a,G⟩ is defined as 1⃗⊤(a ◦ G)1⃗, where 1⃗ is a unit vector with a
suitable length, ⊤ stands for transpose and ◦ is the Hadamard product.
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Our paper introduces the zkMatrix protocol for the relation RcomMatMul char-
acterized by a logarithmic transcript size, O(n2) prover time, and logarithmic
verifier time. Specifically, the prover time is O(n2) (∼ 14n2 exponentiations),
and the verifier runs O(log n) exponentiations and O(1) pairings. Given that
one optimal Ate pairing operation takes around 12 exponentiations and 4 field
multiplications, the verifier time is on the order of O(log n).

We can optimize the prover time though batch processing. When provid-
ing proof for t instances of n × n matrix multiplications (with the witness ma-
trices collectively comprising 3tn2 elements), the prover’s time complexity is
O(n2 + nt) in terms of group operations , while the verifier’s time complexity is
O(t log n). For each additional matrix multiplication, the marginal prover time
takes roughly ∼ 8n exponentiations and ∼ 5n2 field multiplications.

1.2 High-Level Idea

Reducing matrix multiplication to four inner-product relations. The
foundational idea is derived from Groth’s seminal work on providing sublinear
zero-knowledge proofs for linear algebra relations [Groth(2009)]. Linear algebra
relations can be reduced to high-dimensional inner-product relations (as seen in
Section 1.3 of [Groth(2009)]).

Using the following equivalence, we can prove matrix multiplication by prov-
ing four inner-product relations, denoted by the superscripts 1○, 2○, 3○, 4○ in
the equation below:

{c = ab} ⇔ {∀y ∈ Zp, (y⃗
⊤
L cy⃗R)

1○ = ((y⃗⊤
La)

2○(by⃗R)
3○) 4○}. (3)

The inner-product relation 1○ is the standard polynomial of the matrix c.
Specifically, for an (m × n)-matrix c, we can multiply it on the left by an m-
row-vector y⃗⊤

L = (1, yn, · · · , y(m−1)n) to obtain y⃗⊤
L c, and then on the right by

a n-column-vector y⃗R = (1, y, · · · , yn−1)⊤ to obtain y⃗⊤
L cy⃗R. We can directly

compute a degree (mn− 1) polynomial of y:

y⃗⊤
L cy⃗R =

m∑
i=1

n∑
j=1

cijy
(i−1)n+(j−1).

It can be viewed as an inner product of a vector formed by cij (i.e., a vec-
tor of flattened c), and a vector (1, y, y2, . . . , ymn−1). As a result, we can use
Bulletproofs [Bünz et al.(2018)] to prove the inner-product relation.

Working with committed vectors. While using Bulletproofs [Bünz et al.(2018)]
for proving inner-product relations might seem intuitive, ensuring the soundness
of the entire matrix multiplication protocol requires consistent witness vectors
across these four inner-product relations. Specifically, the left values of the second
and third inner-products, a⃗y ← y⃗⊤

La and b⃗y ← by⃗R, must align with the witness
of the fourth inner-product relation. One straightforward method to achieve this
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consistency is by incorporating these intermediate variables into the transcript,
but this will result in a large transcript size. We address this by compressing
each high-dimensional intermediate variable into a single group element through
Pedersen vector commitments.

Bulletproofs cannot ensure that the two witness vectors are consistent with
previous commitments. Despite this, we observe that this consistency can be
achieved when one vector is constructed from a public-coin challenge. Hence, we
present two variants of Bulletproof:

– Committed Semi-Inner-Product Argument : It proves the inner-product of a
committed vector and a public vector for the inner product 1○.

– Committed High-Dimensional Semi-Inner-Product Argument : It proves a lin-
ear combination of committed vectors for inner products 2○ and 3○.

Combining with the Bulletproof for the inner product 4○, we obtain an argument
of knowledge for matrix multiplication.

Single zkMatrix: Shifting the verifier’s multi-exponentiation compu-
tation load to the prover. The primary bottleneck in verification efficiency
of Bulletproof is attributed to the elliptic curve multi-exponentiation involved.
In short, it involves the verification of a group element V such that:

V = [ζ1][G1]⊕[ζ2][G2]⊕ · · ·⊕[ζq][Gq],

where q is the total size of the prover’s secret vectors, [G1], . . . , [Gq] are public
group elements and [ζ1], . . . , [ζq] ∈ Zp can be computed by the verifier. The
verifier time of Bulletproofs is dominated by the multi-exponentiation of size q.

In this paper, we want to transfer the burden of this multi-exponentiation
calculation from the verifier to the prover. Bulletproofs require that the pub-
lic group elements [G1], . . . , [Gq] are randomly sampled such that the mutual
discrete logarithm between them are unknown. We propose the use of struc-
tured bases [ŝĜ], [ŝ2Ĝ], . . . , [ŝqĜ] for some ŝ ∈ Zp and Ĝ ∈ G. Now consider the
multi-exponentiation given by:

V = [ζ1][ŝĜ]⊕[ζ2][ŝ2Ĝ]⊕ · · ·⊕[ζq][ŝqĜ] := ϕ(ŝ)Ĝ,

where ϕ(x) = [ζ1]x + · · · + [ζq]x
q ∈ Zp[X] represents a polynomial with known

coefficients. Instead of requiring the verifier to compute the multi-exponentiation
of size q, the prover can provide a proof that V is valid. In response to a random

challenge [s]
$←− Z∗

p, the prover computes [W ] ← (ϕ(s)−ϕ(ŝ)
s−ŝ )Ĝ, which requires a

multi-exponentiation of size q. Subsequently, the verifier evaluates ϕ([s]) in Zp

and checks whether [V ] aligns with ϕ([s]) and [W ] by using the following pairing
equation:

e([W ], [s][Ĝ]⊖[ŝĜ]) = e(ϕ([s])[Ĝ]⊖ V, [Ĝ]),

where ⊖ is the inverse of ⊕. The pairing equation in our protocol is actually
more complicated, and details can be found in Section 3.
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Batched zkMatrix: Batch processing before inner-products. For use
cases requiring proofs for thousands of matrix multiplications, our proposed
solution entails executing t zkMatrix protocols in parallel, utilizing identical
public-coin challenges. In essence:

– The prover is restricted to batch computing transcript elements for the inner-
product relations 1○, 2○, and 3○.

– The introduction of the batching randomness should come after the prover’s
commitment to the intermediate variables that serve as public inputs of the
sub-protocols. Specifically, this should occur post commitments to a⃗y, b⃗y,
and y⃗⊤

L cy⃗R.

Zero-knowledge proof via random blinding matrices. To transform an
argument of knowledge for the matrix multiplication of c = ab into a zero-

knowledge one, we introduce two random blinding matrices α
$←− Zm×l

p ,β
$←−

Zl×n
p . We then provide a proof for the multiplication of x(α+xa) and x(β+xb),

where x
$←− Z∗

p is a public-coin challenge. This approach increases the transcript
size by a constant factor. In the context of batched proofs, these blinding matrices
are introduced within the sub-protocols on batched inputs.

1.3 Our Contribution

Among succinct non-interactive zero-knowledge protocols, characterized by an
O(log n) transcript size and O(log n) verifier time for the multiplication of two
n× n matrices, our zkMatrix is the first to accomplish O(n2) prover time.

 � = �1                                   �1 = �2                                   �2 = �3                                  �3 = �4                                   �4 = �                                 �1                                                  �2                                                ��                                                 �4                               

                     �1(�1, �1) = �1                �2(�2, �2) = �2                  �3(�3, �3) = �3                 �4(�4, �4) = �4

� �

                       ��                                              �1                                               �2                                               �3                                               ��                                                ��1                                            ��2                                            ��3                                            ��4                                                                               

               Proof  1                              Proof  2                             Proof  3                            Proof  4

Fig. 1: CNNs with zero-knowledge proofs. Xi and Yi represent the input and
output of the CNN’s layer i, with a weightWi such that fi(Xi,Wi) = Yi for some
matrix function fi. CA stands for the commitment to the secret vector/matrix
A, bridging sub-protocols throughout the CNN computation.

First zk-SNARK for matrix multiplication with linear prover time.
The zkMatrix protocol achieves a strictly linear prover time while maintaining
a succinct transcript. No existing zk-SNARK protocol for matrix multiplication
has achieved such a level of asymptotic efficiency.
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Bulletproof as zk-SNARK with universal structured reference string.
Our methodology reduces the verifier time of Bulletproofs to a logarithmic scale.
Bulletproof is not categorized as a zk-SNARK protocol due to its linear verifier
time. Our methods can reduce the verifier time of the Bulletproof-version R1CS
protocol (see Protocol 3 in [Bünz et al.(2018)]) to logarithmic exponentiations.
Though our technique requires a trusted setup phase to generate the structured
reference string (SRS), this setup is a one-shot procedure. Consequently, the
SRS is universal and upgradable — features that align with contemporary zk-
SNARK solutions like Sonic [Maller et al.(2019)], Marlin [Chiesa et al.(2020a)],
and PLONK [Gabizon et al.(2019)].

1.4 Potential Applications

Privacy-preserving data mining Privacy-preserving data mining aims to
construct data models without direct access to the underlying data records [Agrawal
and Srikant(2000)]. A succinct zero-knowledge proof, published alongside the
data mining results, can validate the reliability of these results without revealing
the underlying data [Duan and Canny([n. d.])]. Given the crucial role of matrix
multiplication in data mining techniques such as Linear Regression (LR), Prin-
cipal Component Analysis (PCA), and graph mining via adjacency matrices,
zkMatrix becomes indispensable in enabling privacy-preserving data mining.

Range proof for vectors Bulletproof is a widely-used technique for range
proofs. In blockchain applications, confidential transactions that conceal trans-
action details can be achieved through Pedersen commitments. In this scenario,
range proofs are essential to guarantee that the hidden values fall within a spec-
ified range. For example, this ensures that the amount sent does not exceed the
current balance. Pedersen vector commitments can commit multiple confiden-
tial transactions collectively. Just as Bulletproof provides range proofs for single
committed values [Bünz et al.(2018)], zkMatrix is capable of providing the nec-
essary range proofs for these committed vectors. Specifically, that all elements
of a secret vector c⃗ ∈ Zm

p fall within the range (0, 2n − 1) is equivalent to:

∃a ∈ Zm×n
p , s.t.a ◦ (a− 1) = 0 ∧ c⃗ = ab⃗,

where the vector b⃗ ∈ Zn
p is (1, 2, 22, · · · , 2n−1)T .

Non-interactive zero-knowledge proofs for machine learning model.
Matrix multiplication is also fundamental in machine learning. Zero-knowledge
proofs for convolutional neural networks (CNNs) highlight the importance of
zk-SNARKs for matrix multiplications [Weng et al.(2021),Liu et al.(2021)]. Fig-
ure 1 illustrates a basic CNN architecture, where the convolutional layers are
transformed into matrix multiplications [Vasudevan et al.(2017)]. Pedersen vec-
tor commitments to the intermediate variables can link the sub-protocols for
successive layers. This ensures the output-input consistency across successive
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layers. Machine learning necessitates floating-point matrix multiplications. The
appendix of the online full version of this paper elaborates on the method used
to adapt zkMatrix for floating-point matrices.

2 Preliminaries

2.1 Notation

Group and field elements. Let G represents a cyclic group of prime order
p, and let Zp denote the ring of integers modulo p. Z∗

p is defined as Z∗
p :=

Zp\{0}. N, Z, and R denote the sets of natural numbers, integers, and real

numbers, respectively. We use the symbol
$←− to indicate the uniform sampling

of an element from a set. If not otherwise clear from context, group elements are
denoted by G,H,U, V,W,P ∈ G. Field elements are denoted by a, b, c, d ∈ Zp,
and their Pedersen commitments are denoted by Ca, Cb, Cc, Cd ∈ G. A random
challenge x ∈ Z∗

p sent from the verifier to the prover is considered public-coin
if it is public information and is selected uniformly at random. We denote this

process as [x]
$←− Coin(Z∗

p), and use x, y, z to denote such public-coin challenges.

θ, ρ, ϑ
$←− Z∗

p are uniformly distributed randomness for batch processing. We use

the superscript ·̃ to denote the blinding factors ã, b̃, c̃
$←− Z∗

p corresponding to a,

b, and c, respectively. The base for these blinding factors is denoted by G̃ ∈ G.

We adopt the additive notation for group operations. We use ⊕ to denote
group addition, and O is the identity element of G.

⊕end
i=start represents the

summation of multiple group elements indexed by i ∈ range(start, end). For
comparison, the summation of field elements is denoted by Σend

i=start. We also
employ the term exponentiation to indicate the scalar multiplication of group
elements.

Pairing A pairing is a bilinear map, denoted by e : G1 ×G2 7→ GT , that maps
two cryptographic groups G1 and G2 to a third group GT . This third group GT

is referred to as the target group. The bilinear property is given by the equation:

e(aG, bH) = ab e(G,H), ∀ a, b ∈ Zp, G ∈ G1, H ∈ G2.

When the same group is used for the first two groups (i.e. G1 = G2 = G), the
pairing is referred to as symmetric or type-1 pairing. Otherwise, it is asymmetric.

Symmetric pairings are easier to read and analyze, but asymmetric pairings
often offer greater computational efficiency. For our purposes, throughout our
main text, we will primarily employ symmetric pairings . Our protocols can be
readily adapted to use asymmetric pairings.

In the context of asymmetric pairing, the group generators in G1 and G2 are
denoted by Ĝ and Ĥ, respectively.
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Matrix and matrix operation We employ a slightly unconventional notation
for matrices and vectors. Specifically, we use bold letters to represent matrices, ·⃗
to denote column vectors, and ·⃗⊤ to denote row vectors. To distinguish between
matrices of field elements (field matrices) and those containing group elements
(group matrices), we utilize uppercase and lowercase bold letters. Field matrices
are denoted by a, b, c, and group matrices are denoted by G,H,U .

Recall that in linear algebra, a matrix can be partitioned into smaller matri-
ces known as blocks. Specifically, we use a = {aij} to represent the mn elements
aij ∈ Zp, i ∈ range(1,m), j ∈ range(1, n) in a matrix. The matrix a can be
divided into m row-vectors, denoted by a⃗⊤

1∗, · · · , a⃗⊤
m∗, or n column-vectors, de-

noted by a⃗∗1, · · · , a⃗∗n.

Informally, we use the notation (a⃗⊤
1∗, a⃗

⊤
2∗, · · · , a⃗⊤

m∗)
⊤ part←−− a to indicate that

we have partitioned a into m row vectors, and

(a⃗∗1, a⃗∗2, · · · , a⃗∗n)
part←−− a to signify that we have partitioned a into n column

vectors. Additionally, we use the expression:

a⃗ := (a11, a12, · · · , a1n; · · · ; am1, am2, · · · , amn)
flat←−− a,

to indicate that we have flattened a into a (mn)-vector. To distinguish between
the set of matrices and the set of vectors, we denote the former by Zm×n

p and
the latter by Zmn

p . Similar notations apply to group matrices and group vectors.

When a⃗ ∈ Zn
p is a vector, we separate it to the left half a⃗L ← (a1, · · · , an/2)

and the right half a⃗R ← (an/2+1, · · · , an). We use (a⃗L||a⃗R)
half←−− a⃗ to denote this

procedure. For simplicity, we assume that n is a power of 2. We use the symbol
|| to denote the concatenation of two vectors into a longer vector.

We can define addition and scalar multiplication on group matrices similarly
to those on field matrices. Additionally, we define ⟨a,G⟩, the inner product
between a field matrix a ∈ Zm×n

p and a group matrix G ∈ Gm×n, as in Eq. 2.
To avoid ambiguity, we use the bullet symbol • instead of ⟨·⟩ to denote the inner
product operation between field vectors (this happens to be a coincidence with
the name Bulletproof).

Bracket representation We introduce the bracket representation [·] as a new
notation. [·] signifies that the value within the bracket has been known by both
the prover and the verifier. To be more specific, we put into brackets the public
parameters, the commitments, the public-coin challenges, and the intermediate
variables computed from values in brackets. The bracket representation is es-
pecially useful from the verifier’s viewpoint. As a convention of this paper, we
do not use the bracket representation within the prover’s algorithm, or in cases
where no ambiguity exists.

For instance, in Schnorr’s protocol, by employing the bracket representation,
we avoid using extra symbols for [aG], [αG], and [α + xa]. The verifier checks

whether [α+ xa][G]
?
=[αG] + [x][aG], which holds obviously.
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Miscellaneous Throughout this paper, the security parameter is denoted by
λ. We use Setup(1λ) to represent the generation of public parameters, like the
order p of G, based on the security parameter. P,V, E , S, and A stand for the
prover, the verifier, the emulator, the simulator, and the adversary, respectively.
(P ⇌ V) represents the interaction between P and V. We use R ={ Public
Input : Witness | Relation } to denote a relation with the specified Public Input
and Witness. For clarity, We separate the inputs of algorithms with commas
‘,’, semicolons ‘;’, or colons ‘:’, e.g., (Commitments; Bases; Auxiliary bases if
applicable: Witnesses). When applicable, we place the parameters corresponding
to c before other parameters, e.g., ([Cc], [Ca], [Cb]; [U ], [G], [H]; [U ′], [G′], [H ′] :
c,a, b).

Furthermore, to avoid ambiguity, we use← for the assignment operation and
= to indicate equivalence. We denote the dimensions of matrices or vectors with
n,m, l, the batch size with t, and the indices with i, j, k, τ .

Symbol table We summarize the symbols used in this paper as follows. Symbols
not listed below are local and will be defined when they first appear.

– c ∈ Zm×n
p ,a ∈ Zm×l

p , b ∈ Zl×n
p : Private witness matrices.

– m,n, l ∈ N: Dimensions of the matrices.
– i, j, k ∈ N: Indices of the matrix/vector elements.
– Ĝ ∈ G or Ĝ ∈ G1, Ĥ ∈ G2; ŝ, ν ∈ Z∗

p: Group generators and random numbers
used to generate the SRS.

– U ∈ Gm×n,G ∈ Gm×l,H ∈ Gl×n: Public group matrices serving as bases
for c,a, and b.

– Cc, Ca, Cb ∈ G: Commitments to the matrices.
– q ∈ N: The length of the SRS.
– S⃗, S⃗′ ∈ Gq or Gq

1: The SRS generated from Ĝ, Ĥ, ŝ, and ν. Their specific
form depends on the setup of the protocols.

– ζ⃗ ∈ Zq
p: The public coefficients on S⃗ in the verification check. Its specific

form varies in different protocols.
– ϕ(·) ∈ Zp[X]: A polynomial defined by ζ⃗ as in Eq. 10.
– s ∈ Zp: The random challenge used to accelerate Bulletproofs and other

protocols, as in Subsection 3.1.
– x(j) ∈ Z∗

p: The random challenge used in the Bulletproof protocol during the
jth round of iteration.

– L(j), R(j) ∈ G: Transcript elements generated by the Bulletproof protocol
during the jth round of iteration.

– â, b̂ ∈ Zp: Transcript elements generated at the end of the Bulletproof pro-
tocol.

– ξ⃗ ∈ Zn
p : A public vector computed from x(1), · · · , x(log2 n) according to the

rule in Eq. 7.
– x ∈ Z∗

p: The random challenge used to multiply Cc in Algorithms 2 and 3.
– y⃗L ∈ Zm

p , y⃗R ∈ Zn
p , y⃗ ∈ Zmn

p : The random challenge vectors used in the four
inner products in Eq. 3.

– y ∈ Z∗
p: The random challenge used to compute y⃗L, y⃗R, y⃗.
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– d ∈ Zp, a⃗y ∈ Zl
p, b⃗y ∈ Zl

p: Intermediate variables such that a⃗y = y⃗⊤
La,

b⃗y = by⃗R, and d = y⃗⊤
L cy⃗R.

– U ′ ∈ G, G⃗′ ∈ Gl, H⃗ ′ ∈ Gl: Public bases for d,ay, by.
– γ ∈ Zm×n

p ,α ∈ Zm×l
p ,β ∈ Zl×n

p : Random matrices used by Algorithm 5 for
blinding the matrices c,a, and b.

– ρ ∈ Z∗
p: The random challenge used for batch processing.

– ϑ, θ ∈ Z∗
p: Random values used to combine multiple verification equations

into a single equation, as in Eq. 13 and 21.

2.2 Cryptographic Assumptions and Definitions

Cryptographic assumptions for our work include the discrete logarithm rela-
tion assumption [Bünz et al.(2018)], the q-Power Diffie-Hellman (q-PDH) as-
sumption [Groth(2010), Parno et al.(2016)], the q-Power Knowledge of Expo-
nent (q-PKE) assumption [Groth(2010),Parno et al.(2016)], and the q-Bilinear
Strong Diffie-Hellman (q-BSDH) assumption [Kate et al.(2010)]. Our defini-
tions for for Pedersen vector commitment, zero-knowledge arguments of knowl-
edge, perfect completeness, computational knowledge soundness, perfect Special
Honest-Verifier Zero-Knowledge (SHVZK), public-coin, Fiat-Shamir heuristics,
and fully succinct zk-SNARK align with the definitions presented in [Bünz
et al.(2018),Attema et al.(2021),Attema et al.(2022),Gabizon et al.(2019)] These
assumptions and definitions are also provided in the appendix of the online full
version of this paper.

3 Accelerating Bulletproof Verification

Bulletproof [Bünz et al.(2018)] provides an efficient argument of knowledge for

a⃗, b⃗ ∈ Zn
p with a communication complexity of 2 log2 n group elements and 2

field elements for the following relation:

Rbullet = (4){(
[C] ∈ G; [U ] ∈ G;

[G⃗] ∈ Gn, [H⃗] ∈ Gn

)
:

(
a⃗ ∈ Zn

p ,

b⃗ ∈ Zn
p

)∣∣∣∣∣
(
C = (a⃗ • b⃗)U

⊕⟨a⃗, G⃗⟩⊕⟨⃗b, H⃗⟩

)}
.

To understand Bulletproof in Algorithm 1, let us consider a simplified sce-
nario where b⃗ = 0⃗. Given the public group vector [G⃗] ∈ Gn and a commitment
[C] ∈ G, the prover aims to prove the knowledge of a secret vector a⃗ ∈ Zn

p such

that ⟨a⃗, [G⃗]⟩ = [C].

Bulletproof divides the vectors a⃗ and [G⃗] into their left and right halves.
There are four inner products of the half vectors as follows:

⟨a⃗L, G⃗L⟩, ⟨a⃗R, G⃗R⟩, ⟨a⃗L, G⃗R⟩, ⟨a⃗R, G⃗L⟩. (5)

The last two terms, denoted as:

[L(1)] = ⟨a⃗L, G⃗R⟩, [R(1)] = ⟨a⃗R, G⃗L⟩,
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are included into the transcript.

Upon receiving [L(1)] and [R(1)], the verifier sends a random challenge [x(1)]
$←−

Z∗
p. The prover scales the right halves of a⃗ and G⃗ with factors x−1

(1) ∈ Z∗
p and

x(1) ∈ Z∗
p, respectively, and then folds the right halves with the left halves to

derive a⃗′ = a⃗L + x−1
(1)a⃗R and [G⃗′] = [G⃗L]⊕[x(1)][G⃗R] . Their inner product

becomes:

⟨a⃗′, [G⃗′]⟩ = ⟨a⃗, [G⃗]⟩⊕([x(1)][L(1)])⊕([x(1)]−1[R(1)]).

This simplifies the original problem to one of half the length. This folding pro-
cedure can be recursively applied to reduce the original inner product into a
Pedersen commitment to a scalar.

To accelerate Bulletproof, we employ a modified version of the updating
rule as described in [Gentry et al.(2022)], which results in an approximate 1/4
reduction in prover time. The corresponding Bulletproof protocol can be found
in Algorithm 1.

Algorithm 1: Bulletproof in [Gentry et al.(2022)]

Input: Public input: [C] ∈ G; [U ] ∈ G, [G⃗], [H⃗] ∈ Gn;

P’s private input: a⃗, b⃗ ∈ Zn
p

Output: TRUE (V accepts) or FALSE (V rejects)
1 if n = 1 then
2 P → V: [a], [b] ∈ Zp;

3 V checks if [C]
?
=[a][b][U ]⊕[a][G]⊕[b][H]:

4 if yes, return TRUE; otherwise, return FALSE

5 else
// P and V compute:

6 n′ ← n/2;

7 ([G⃗L] || [G⃗R])
half←−− [G⃗], ([H⃗L] || [H⃗R])

half←−− [H⃗];
// P computes:

8 (a⃗L||a⃗R)
half←−− a⃗, (⃗bL||⃗bR)

half←−− b⃗;

9 L← ⟨a⃗L, G⃗R⟩⊕⟨⃗bR, H⃗L⟩⊕(a⃗L • b⃗R)U ∈ G ;

10 R← ⟨a⃗R, G⃗L⟩⊕⟨⃗bL, H⃗R⟩⊕(a⃗R • b⃗L)U ∈ G ;
11 P → V: [L], [R] ∈ G;

12 V → P: [x] $←− Coin(Z∗
p) ;

// P computes:

13 a⃗′ ← a⃗L + [x]−1a⃗R ∈ Zn′
p , b⃗′ ← b⃗L + [x]⃗bR ∈ Zn′

p ;
// P and V compute:

14 [C′]← ([x][L])⊕[C]⊕([x]−1[R]) ∈ G ;

15 [G⃗′]← [G⃗L]⊕[x][G⃗R] ∈ Gn′
;

16 [H⃗ ′]← [H⃗L]⊕[x]−1[H⃗R] ∈ Gn′
;

17 P and V recursively run Bulletproof on input: ([C′]; [U ], [G⃗′], [H⃗ ′] : a⃗′, b⃗′);
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3.1 Verification through Multi-Exponentiation

The entire verification process in the Bulletproof protocol can be condensed
into a single multi-exponentiation with the following form (refer to Section 3.1
of [Bünz et al.(2018)]):

[C]⊕
⊕log2 n

j=1
([x(j)][L(j)]⊕[x(j)]−1[R(j)])

= ([â][b̂])[U ]⊕[â]⟨[ξ⃗], [G⃗]⟩⊕[b̂]⟨[ξ⃗−1], [H⃗]⟩. (6)

Here, [x(j)] represents the challenge in the jth round, while [â] and [b̂] denote

field elements in the transcript generated in the final round. [ξ⃗] = ([ξ1], · · · , [ξn])
is a vector computed from the public-coin challenges as follows:

ξi = Π
log2 n
j=1 x

ι(i,j)
(j) ,

where ι(i, j) is the jth bit of (i − 1) in big-endian format or, equivalently, the

(log2 n− j + 1)th bit in little-endian format. Alternatively, the vector ξ⃗ can be
computed recursively as follows:

ξ⃗(0) ← (1); ξ⃗(j+1) ← (ξ⃗(j) ||x(log2 n−j)ξ⃗(j)); ξ⃗ ← ξ⃗(log2 n). (7)

In subsequent discussion, where the specific coefficients are not relevant,
we define the symbols ⟨[ζ⃗], [S⃗]⟩ to represent the right hand side of the multi-
exponentiation Eq. 6, by setting:

ζ⃗ = (âb̂, âξ1, b̂ξ
−1
1 , · · · , âξn, b̂ξ−1

n ), S⃗ = (U,G1, H1, · · · , Gn, Hn). (8)

We can see that the verification of Eq.6 requires 2n+2 log2 n+1 exponentiations.

Our verification acceleration via prover. In Eq.6, the primary compu-
tational burden arises from the evaluation of the multi-exponentiation on the
right-hand side. Halo attempts to address this issue by introducing a third party
“helper” to collaboratively compute this value [Bowe et al.(2019)]. Our proposi-
tion is to let the prover act as the “helper” if they can provide additional proof
of the correctness of this computed value.

Our acceleration requires a structured reference string (SRS), and employs
the Bulletproof setup described by computing:

[ŝωiĜ], where ωi = ω0 + ϵ

log2 i∑
j=1

ι(i, j)2ϵ(j) . (9)

Here, ι(i, j) represents the jth bit of i−1 in little-endian format. The parameters
ω0, ϵ, and ϵ(j) are chosen such that the sets U,G,H contain distinct group
elements. For example, by setting ω0 = 1, 2, 3 for U,G,H, ϵ = 2 and ϵ(j) = j,

we derive U = ŝĜ, Gi = ŝ2iĜ, and Hi = ŝ1+2iĜ.
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During the setup phase, the setup algorithm selects Ĝ and randomly chooses
ŝ, ν ∈ Z∗

p. It computes the SRS as:

[S⃗], [S⃗′] := ([ŝĜ], · · · , [ŝqĜ]), ([νĜ], [νŝĜ], [νŝ2Ĝ], · · · , [νŝqĜ]),

where q > 2n+ 1. It subsequently securely discards ν and ŝ.
By employing a change of notation to ζ⃗ = (ζ1, · · · , ζq), where [ζi] = 0 for

i > 2n+ 1, the right-hand side of Eq. 6 can be represented as:

⟨[ζ⃗], [S⃗]⟩ = [ζ1][ŝĜ]⊕[ζ2][ŝ2Ĝ]⊕ · · ·⊕[ζq][ŝqĜ].

This expression can be viewed as a KZG commitment [Kate et al.(2010)] to the
following polynomial ϕ(x) ∈ Zp[X]:

ϕ(x) = [ζ1]x+ · · ·+ [ζq]x
q. (10)

Observe that the polynomial ϕ(x) is public knowledge, as it is uniquely deter-
mined by the public parameters [ζ1], . . . , [ζq].

During the proving phase, the prover and the verifier runs the original Bul-
letproof first. Afterward, the verifier sends an additional public-coin challenge

[s]
$←− Coin(Z∗

p). In response, the prover computes:

[V ′]← [ζ1][νŝĜ]⊕[ζ2][νŝ2Ĝ]⊕ · · ·⊕[ζq][νŝqĜ],

[W ]←
⊕q

i=1
ζi(
si − ŝi

s− ŝ
)Ĝ =

⊕q

i=1
ψi[ŝ

i−1Ĝ],

where the coefficients ψi, i ∈ range(1, q) can be computed recursively using the
following equations:

ψq ← ζq, ψi ← ψi+1s+ ζi.

The prover then sends V ′ and W to the verifier.
The verifier computes:

[V ]← [C]⊕
⊕log2 n

j=1
([x(j)][L(j)]⊕[x(j)]−1[R(j)]). (11)

The verifier checks the consistency of [V ], [V ′], [W ], and the public polynomial
ϕ(x) by verifying the two pairing equations:

e([V ], [νĜ])
?
=e([V ′], [Ĝ]),

e(ϕ([s])[Ĝ]⊖[V ], [Ĝ])
?
=e([s][Ĝ]⊖[ŝĜ], [W ]). (12)

These two pairing equations can be consolidated into a single pairing equation

by using an additional randomness ϑ
$←− Z∗

p:

e(ϕ([s])[Ĝ]⊖[V ]⊕[ϑ][V ′], [Ĝ])

?
=e([s][Ĝ]⊖[ŝĜ], [W ])⊕e([ϑ][V ], [νĜ]). (13)
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It is also possible to employ asymmetric pairing to perform our acceleration.
Let Ĥ ∈ G2 be the generator of G2 and include [Ĥ], [νĤ] ∈ G2 into the SRS,
Eq. 12 becomes:

e([V ], [νĤ])
?
=e([V ′], [Ĥ]),

e(ϕ([s])[Ĝ]⊖[V ], [Ĥ])
?
=e([W ], [s][Ĥ]⊖[ŝĤ]). (14)

The cryptographic assumptions for asymmetric pairing should be altered slightly.

Running time evaluation. As shown above, the running time for the verifier
includes 2 log2 n exponentiations and 2 log2 n additions in G (for computing V ),
3 pairing computations, 4 exponentiations and 3 additions in G (for Eq. 13), and
the computation of the public polynomial ϕ(s) with the form:

ϕ(s) = âb̂s+ â

n∑
i=1

ξis
2i + b̂

n∑
i=1

ξ−1
i s1+2i

= âb̂s+ âξ⃗ • s⃗G + b̂ξ⃗−1 • s⃗H ,

where s⃗G = (s2, · · · , s2n) and s⃗H = (s3, · · · , s2n+1). Remember that ξ and ξ−1

can be recursively calculated using Eq. 7. When a vector s⃗ can be computed
through a similar updating rule:

s⃗(0) ← (s1); s⃗(j+1) ← (s⃗(j) || υ(j+1)s⃗(j)); s⃗← s⃗(log2 n),

where s1 = sω0 is the first element of s⃗, and υ(j) = ŝϵ·2
ϵ(j)

by Eq. 9. Then, by

utilizing the following formula, the verifier can compute ξ⃗ • s⃗ without explicitly
calculating ξ⃗:

ξ⃗ • s⃗ = s1

log2 n∏
j=1

(1 + x(log2 n−j+1)υ(j)). (15)

This method demands only 5 log2 n + 3 multiplications in Zp to compute ξ⃗ • s⃗
and ξ⃗−1 • s⃗. To compute ϕ(s), there are 4 additional multiplications involving â

and b̂. As a result, the time complexity for verifying Eq. 13 is logarithmic.

Theorem 1 (Accelerated Bulletproof). Under the discrete logarithm rela-
tion assumption, the q-PDH assumption, the q-PKE assumption, and the q-
BSDH assumption, our accelerated Bulletproof is an argument of knowledge if
the original Bulletproof is an argument of knowledge.

The proof for Theorem 1 is presented in Appendix A.1.
In this section alone, we will be relying on the q-PDH, q-PKE and q-BSDH

assumptions. Importantly, it should be noted that this additional proof serves
as an accelerating alternative. The verifier retains the option to verify the multi-
exponentiation directly by computing it themselves, without being reliant on the
accuracy of the additional proof (V ′,W ) provided by the prover, or the q-PDH,
q-PKE and q-BSDH assumptions.
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Batch processing. An additional useful point is that the prover can provide a
batched proof for t multi-exponentiations under the same base by utilizing an

extra batching randomness [ρ]
$←− Z∗

p. Let the multi-exponentiations be expressed
as:

V(1) = ⟨ζ⃗(1), S⃗⟩, V(2) = ⟨ζ⃗(2), S⃗⟩, · · · , V(t) = ⟨ζ⃗(t), S⃗⟩.

Instead of computing t sets of V ′
(i) andW(i), i ∈ range(1, t), the prover only needs

to compute (V̄ ′, W̄ ) to prove:

V̄ = ⟨¯⃗ζ, S⃗⟩,

where V̄ =
⊕t

i=1ρ
i−1V(i) and

¯⃗
ζ =

∑t
i=1 ρ

i−1ζ⃗(i).

4 Building Blocks

4.1 Semi-Inner-Product Argument

Bulletproof is an argument of knowledge that the prover knows the openings of
two Pedersen vector commitments a⃗, b⃗ that satisfy the inner product relation
c = (a⃗ • b⃗), where c is public information. When b⃗ is a public vector, we can

set the bases of b⃗ to be O⃗. In this case, ⟨⃗b, H⃗⟩ in Rbullet is identical to O. We
refer to the corresponding protocol as semi-inner-product argument. Consider
the extreme case of n = 1, we have c = ab, where b is public. We have to
hide both c and a in commitments Cc and Ca respectively. Hence, we define the
relation of semi-inner-product Rsip as:

Rsip = (16)

[Cc] ∈ Zp, [Ca] ∈ G,

[⃗b] ∈ Zn
p ;

[U ] ∈ G, [G⃗] ∈ Gn

 :
(
a⃗ ∈ Zn

p

)∣∣∣∣∣∣∣∣
(
Cc = (a⃗ • b⃗)U

∧ Ca = ⟨a⃗, G⃗⟩

) .

In the semi-inner-product argument protocol, we do not compute the expo-
nentiations of O. Consequently, the prover’s algorithm involves 3n+4 log2(n)−1
exponentiations. This is similar to the Lightweight Bulletproof proposed by [Gen-
try et al.(2022)], although the details differ. The verifier checks a single multi-
exponentiation with the following form:

[x][Cc]⊕[Ca]⊕
⊕log2 n

j=1
([x(j)][L(j)]⊕[x(j)]−1[R(j)])

= [â][x]([ξ⃗] • [⃗b])[U ]⊕[â]⟨[ξ⃗], [G⃗]⟩ (17)

Theorem 2 (Semi-Inner-Product). The semi-inner-product argument pro-
tocol is an argument of knowledge if the discrete logarithm relation assumption
holds and the underlying Bulletproof is an argument of knowledge.

The proof for Theorem 2 is given in Appendix A.2.
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Algorithm 2: Protocol of Semi-Inner-Product Argument

Input: Public input: [Cc], [Ca] ∈ G, [⃗b] ∈ Zn
p ;

[U ] ∈ G, [G⃗] ∈ Gn;
P’s private input: a⃗ ∈ Zn

p

Output: TRUE (V accepts) or FALSE (V rejects)

1 P → V: [R]← rU ∈ G, where r
$←− Z∗

p;

2 V → P: [h] $←− Coin(Z∗
p);

3 P → V : [z]← r + h(a⃗ • b⃗) ∈ Zp and [x]
$←− Coin(Z∗

p);
4 V returns FALSE if [z][U ] ̸= [R]⊕[h][Cc] ;
5 P and V compute [C]← [x][Cc]⊕[Ca] and run Bulletproof on input:

([C]; [x][U ], [G⃗], O⃗ : a⃗, [⃗b]) ;

Variations. Our semi-inner-product argument is similar to the sum argument
in [Yuen et al.(2021)] with two main differences: (1) the sum argument requires

that b⃗ = 1⃗, (2) the value c is not committed.

It is also worth noting that when Cc = O and b⃗ = 0⃗, our protocol serves as
a proof for the following relation:

Rcom =
{
[Ca] ∈ G, [G⃗] ∈ Gn : a⃗ ∈ Zn

p

∣∣ Ca = ⟨a⃗, G⃗⟩
}
,

that is, we know a witness a⃗ for the commitment Ca using the base G⃗. The
protocol for Rcom enables us to develop a protocol for a linear combination of
high-dimensional vectors in latter sections.

Optimizations. In Algorithm 2, we use the standard proof of knowledge of
discrete logarithm in line 1-4 to ensure that Cc = cU for some c ∈ Zp. This
increases the transcript size by 1 group element R and 2 field elements (h, z).

To further improve the performance, we can drop the part related to (R, h, z).
In that case, we are only able to prove a relaxed relation of Rsip, i.e., Cc =

(a⃗ • b⃗)U⊕⟨c⃗′, G⃗⟩ for some c⃗′ • b⃗ = 0. Instead of using a proof of knowledge
of discrete logarithm, an alternative solution involves demonstrating, through a
separate protocol, that Cc = (a⃗ • b⃗)U⊕⟨c⃗′′, G⃗′⟩. Given that G⃗ and G⃗′ share no

common member, we can confidently deduce that c⃗′ = 0⃗ and c⃗′′ = 0⃗.

For the relation Rcom, the verifier can directly observe that Cc = 0. Hence,
the lines related to (R, h, z) can also be dropped.

4.2 High-Dimensional Semi-Inner-Product Argument

We can generalize the semi-inner-product argument to the high-dimensional sce-
nario where a⃗i, i ∈ range(1, n) are m-dimensional vectors in Zm

p . We provide a
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proof for the following relation:

Rhd−sip = (18)


[Cc], [Ca] ∈ G,
[b1], · · · , [bn] ∈ Zp;

[U⃗ ] ∈ Gm,

[G⃗1], · · · , [G⃗n] ∈ Gm

 :

(
a⃗1, · · · , a⃗n

∈ Zm
p

)∣∣∣∣∣∣∣∣∣∣


Cc = ⟨Σn

i=1a⃗ibi, U⃗⟩
∧

Ca =
⊕n

i=1
⟨a⃗i, G⃗i⟩


 .

The protocol is presented in Algorithm 3.

Algorithm 3: High-Dimensional Semi-Inner-Product Argument

Input: Public input: [Cc], [Ca] ∈ G, [⃗b] ∈ Zn
p ;

[U⃗ ] ∈ Gm, [G⃗1], · · · , [G⃗n] ∈ Gm;
P’s private input: a⃗1, · · · , a⃗n ∈ Zm

p

Output: TRUE (V accepts) or FALSE (V rejects)

1 V → P: [x] $←− Coin(Z∗
p) ;

// P and V compute:

2 foreach i ∈ range(1, n) and j ∈ range(1,m) do
3 [Wij ]← [Gij ]⊕[x][bi][Uj ] ∈ G ;

4 [W⃗ ]← ([W11], · · · , [W1m]; · · · ; [Wn1], · · · , [Wnm]) ∈ Gmn ;
5 P and V run the Semi-Inner-Product Argument (Algorithm 2) on input:

(O, [Cc], 0⃗; [G11], [U⃗ ] :
∑n

i=1 a⃗ibi);
6 P and V run the Semi-Inner-Product Argument (Algorithm 2) on input:

(O, [x][Cc]⊕[Ca], 0⃗; [U1], [W⃗ ] : (a⃗1||a⃗2|| · · · ||a⃗n));

Theorem 3. The high-dimensional semi-inner-product argument is an argu-
ment of knowledge if the discrete logarithm relation assumption holds and the
underlying semi-inner-product argument is an argument of knowledge.

The proof for Theorem 3 is given in Appendix A.3.

Optimizations. In Algorithm 3, we incorporate an additional semi-inner-product
argument in line 5 to ensure that Cc = ⟨c⃗, U⃗⟩ for some c⃗ ∈ Zm

p . This increases
the transcript size by 2 log2m group elements and 2 field elements. It is possible
to eliminate this additional semi-inner-product argument and verify a relaxed

version of this relation Rhd−sip, i.e., Cc = ⟨
∑n

i=1 a⃗ibi, U⃗⟩⊕
⊕n

i=1⟨c⃗′i, G⃗i⟩ for some∑n
i=1 c⃗

′
ibi = 0. We will show in the subsequent section that, in the context of

the zkMatrix protocol, where Algorithm 3 is used as a sub-protocol, if another
sub-protocol can ensure that Cc = ⟨c⃗, U⃗⟩⊕⟨c⃗′′, G⃗′⟩ for some c⃗ and c⃗′′, we can

infer, given that ∪ni=1G⃗i and G⃗′ share no common member, that c⃗′i = c⃗′′ = 0⃗,∀i.
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Algorithm 4: Protocol MatMul

Input: Public input: [Cc], [Ca], [Cb] ∈ G;
[U ′] ∈ G, [G⃗′], [H⃗ ′] ∈ Gl;
[U ] ∈ Gm×n, [G] ∈ Gm×l, [H] ∈ Gl×n;

P’s private input: c ∈ Zm×n
p ,a ∈ Zm×l

p , b ∈ Zl×n
p

Output: TRUE (V accepts) or FALSE (V rejects)

1 V → P: [y]
$←− Coin(Z∗

p) ;
// P and V compute:

2 [y⃗]← (1, [y], [y]2, · · · , [y]mn−1) ∈ Zmn
p ;

3 [y⃗L]← (1, [y]n, [y]2n, · · · , [y](m−1)n) ∈ Zm
p ;

4 [y⃗R]← (1, [y], [y]2, · · · , [y]n−1) ∈ Zn
p ;

// Partition G into m row vectors

5 (G⃗⊤
1∗ ∈ Gl, · · · , G⃗⊤

m∗ ∈ Gl)⊤
part←−− G ;

// Partition H into n column vectors

6 (H⃗∗1 ∈ Gl, · · · , H⃗∗n ∈ Gl)
part←−−H ;

// Flatten U into (mn)−dimensional vectors

7 U⃗ = (U11, · · · , U1n; · · · ;Um1, · · · , Umn)
flat←−− U ;

// P computes:

8 a⃗y ←
∑m

i=1[y]
(i−1)na⃗i∗ ∈ Zl

p, where (a⃗⊤
1∗, · · · , a⃗⊤

m∗)
⊤ part←−− a ;

9 b⃗y ←
∑n

j=1[y]
j−1b⃗∗j ∈ Zl

p, where (⃗b∗1, · · · , b⃗∗n)
part←−− b ;

10 d← c⃗ • y⃗ ∈ Zp, where c⃗ = (c11, · · · , c1n; · · · ; cm1, · · · , cmn)
flat←−− c;

11 [Cay]← ⟨a⃗y, G⃗
′⟩ ∈ G, [Cby]← ⟨⃗by, H⃗ ′⟩ ∈ G, [Cd]← d[U ′] ∈ G ;

12 P → V: [Cd], [Cay], [Cby] ;
13 P and V run Semi-Inner-Product Argument on input:

([Cd], [Cc], [y⃗]; [U
′], [U⃗ ] : c⃗) ;

14 P and V run High-Dimensional Semi-Inner-Product Argument on input:

([Cay], [Ca], [y⃗L]; [G⃗
′], ([G⃗⊤

1∗], · · · , [G⃗⊤
m∗]) : (a⃗1∗, · · · , a⃗m∗)) ;

15 P and V run High-Dimensional Semi-Inner-Product Argument on input:

([Cby], [Cb], [y⃗R]; [H⃗
′], ([H⃗∗1], · · · , [H⃗∗n]) : (⃗b∗1, b⃗∗2, · · · , b⃗∗n)) ;

16 P and V run Bulletproof on input: ([Cd]⊕[Cay]⊕[Cby]; [U
′], [G⃗′], [H⃗ ′] : a⃗y, b⃗y) ;

17 If all return TRUE, then return TRUE; otherwise return FALSE

Accelerating Verification. In this protocol, the verifier checks a single multi-
exponentiation as follows:

[x][Cc]⊕[Ca]⊕
⊕log2(mn)

j=1
([x(j)][L(j)]⊕[x(j)]−1[R(j)])

= [â][x]⟨[ξ][⃗b], [U⃗ ]⟩⊕[â]⟨[ξ], [G]⟩, (19)

where [G⃗] ∈ Gm×n = ([G⃗1], · · · , [G⃗n]). [ξ] ∈ Zm×n
p

fold←−− [ξ⃗] ∈ Zmn
p is a matrix

determined by the public-coin challenges. Direct mathematical derivation shows
that [ξ] = ξ⃗mξ⃗⊤n , where ξ⃗m is computed from the last log2m public-coin chal-

lenges via Eq. 7, and ξ⃗n is computed from the first log2 n public-coin challenges
via Eq. 7.
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Here, we adopt the following setup:

U⃗ = (ŝnm+1Ĝ, ŝnm+2Ĝ, · · · , ŝnm+mĜ) := ⃗̂sU Ĝ,

G =


ŝ1Ĝ ŝm+1Ĝ · · · ŝ(n−1)m+1Ĝ

ŝ2Ĝ ŝm+2Ĝ · · · ŝ(n−1)m+2Ĝ
...

...
...

...

ŝmĜ ŝ2mĜ · · · ŝnmĜ


= (ŝ, ŝ2, · · · , ŝm)T (1, ŝm, · · · , ŝ(n−1)m)Ĝ

:= ⃗̂sGL
⃗̂s
⊤
GRĜ.

With the above setup, we can derive the following:

⟨ξb⃗, U⃗⟩ = ((ξb⃗) • ⃗̂sU )Ĝ = (⃗ŝ
⊤
U ξ⃗mξ⃗⊤n b⃗)Ĝ

= (ξ⃗m • ⃗̂sU )(ξ⃗n • b⃗)Ĝ.

⟨ξ,G⟩ = ⟨ξ, ⃗̂sGL
⃗̂s
⊤
GRĜ⟩ = ⟨ξ⃗mξ⃗⊤n ,

⃗̂sGL
⃗̂s
⊤
GRĜ⟩

= (ξ⃗m • ⃗̂sGL)(ξ⃗n • ⃗̂sGR)Ĝ.

The inner products on the right-hand sides of these equations can be calculated
using the formula in Eq. 15. Through these equations, we can apply a proce-
dure similar to the one described in Section 3 to reduce the verifier time to a
logarithmic scale.

5 zkMatrix

In this section, we will give a zero-knowledge proof that a matrix c ∈ Zm×n
p is

the product of a ∈ Zm×l
p and b ∈ Zl×n

p .

5.1 Committed Matrix Multiplication

For any y ∈ Zp, we define vectors y⃗
⊤
L := (1, yn, · · · , y(m−1)n), y⃗R := (1, y, · · · , yn−1)⊤

and a matrix y := y⃗Ly⃗
T
R ∈ Zm×n

p . Recall that c⃗
flat←−− c and y⃗

flat←−− y.
Matrix multiplication can be performed by combining four sub-protocols,

based on the following equivalence:

{c = ab} ⇐⇒ {∀y, y⃗⊤
L cy⃗R = (y⃗⊤

La)(by⃗R)}

⇐⇒ {∀y, ∃d, a⃗y, b⃗y s.t. (d = c⃗ • y⃗) ∧ (a⃗y =

m∑
i=1

a⃗i∗y
(i−1)n)

∧ (⃗by =

n∑
j=1

b⃗∗jy
j−1) ∧ (d = a⃗y • b⃗y)}. (20)

We first show the equivalence of Eq. 20 above:
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1. For the relation a⃗y = y⃗⊤
La, recall that a⃗i∗ is the i-th row-vector of a. Hence,

we have a⃗y =
∑m

i=1 a⃗i∗y
(i−1)n.

2. For the relation b⃗y = by⃗R, recall that b⃗∗j is the j-th column-vector of b.

Hence, we have b⃗y =
∑n

j=1 b⃗∗jy
j−1.

3. We define d := a⃗y • b⃗y = (y⃗⊤
La)(by⃗R). Hence we have:

d = y⃗⊤
L cy⃗R = (

m∑
i=1

c⃗i∗y
(i−1)n) • y⃗R =

m∑
i=1

n∑
j=1

cij · y(i−1)n+j−1

= c⃗ • y⃗.

The matrix multiplication argument MatMul is provided in Algorithm 4.
We use the relaxed version of semi-inner-product argument for d = c⃗ • y⃗, and
the relaxed version of high-dimensional semi-inner-product argument for a⃗y =∑m

i=1 a⃗i∗y
(i−1)n and b⃗y =

∑n
j=1 b⃗∗jy

j−1. We use the (accelerated) Bulletproof

for d := a⃗y • b⃗y. We employ the commitment to d and the Pedersen vector

commitments to a⃗y and b⃗y as the bridges between these four sub-protocols.

Theorem 4 (MatMul Protocol). The protocol MatMul exhibits perfect com-
pleteness and computational knowledge soundness.

The proof for Theorem 4 is presented in Appendix A.4.

Accelerating Verification. By employing an additional public-coin batching
randomness [θ] ∈ Z∗

p, we can merge the first four sub-protocols of the MatMul
protocol into a single multi-exponentiation check as follows:

θ · [(LHS - RHS) of Eq. 17 for the inner product 1○]

+ θ2 · [(LHS - RHS) of Eq. 19 for the inner product 2○]

+ θ3 · [(LHS - RHS) of Eq. 19 for the inner product 3○]

+ [(LHS - RHS) of Eq. 6 for the inner product 4○] = 0. (21)

By adopting the following setup and applying the techniques outlined in Sec-
tion 3, the verifier can efficiently validate this multi-exponentiation equation
through the calculation of a known polynomial and three pairings, achieving
logarithmic time complexity.

U =


ŝĜ ŝ2Ĝ · · · ŝnĜ

ŝn+1Ĝ ŝn+2Ĝ · · · ŝ2nĜ
...

...
...

...

ŝ(m−1)n+1Ĝ ŝ(m−1)n+2Ĝ · · · ŝmnĜ

 ,

G =


ŝĜ ŝ2Ĝ · · · ŝlĜ

ŝl+1Ĝ ŝl+2Ĝ · · · ŝ2lĜ
...

...
...

...

ŝ(m−1)l+1Ĝ ŝ(m−1)l+2Ĝ · · · ŝmlĜ

 ,
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H =


ŝĜ ŝ2Ĝ · · · ŝnĜ

ŝn+1Ĝ ŝn+2Ĝ · · · ŝ2nĜ
...

...
...

...

ŝ(l−1)n+1Ĝ ŝ(l−1)n+2Ĝ · · · ŝlnĜ

 ,

U ′ = ŝmax {mn,ml,ln}+1Ĝ,

G⃗′ = ŝmax {mn,ml,ln}(ŝ2Ĝ, ŝ4Ĝ, · · · , ŝ2lĜ),

H⃗ ′ = ŝmax {mn,ml,ln}(ŝ3Ĝ, ŝ5Ĝ, · · · , ŝ2l+1Ĝ). (22)

In this setting, U , G, and H share elements in common. Despite this, the
computational knowledge soundness of the MatMul protocol, as outlined in the
proof of Theorem 4, remains unaffected.

Algorithm 5: zkMatrix

Input: Public input: [Cc], [Ca], [Cb] ∈ G; G̃ ∈ G;
[U ′] ∈ G, [G⃗′], [H⃗ ′] ∈ Gl;
[U ] ∈ Gm×n, [G] ∈ Gm×l, [H] ∈ Gl×n;

P’s private input: c ∈ Zm×n
p ,a ∈ Zm×l

p , b ∈ Zl×n
p ,

c̃, ã, b̃ ∈ Z∗
p

Output: TRUE (V accepts) or FALSE (V rejects)
// P chooses the blinding factors at random:

1 α
$←− Zm×l

p , β
$←− Zl×n

p , α̃, β̃, γ̃, δ̃
$←− Zp;

// P computes:

2 Cα ← ⟨α,G⟩⊕α̃G̃ ∈ G, Cβ ← ⟨β,H⟩⊕β̃G̃ ∈ G;

3 Cγ ← ⟨αβ,U⟩⊕γ̃G̃ ∈ G, Cδ ← ⟨αb+ aβ,U⟩⊕δ̃G̃ ∈ G;
4 P → V: [Cα], [Cβ ], [Cγ ], [Cδ] ;

5 V → P : [x]
$←− Coin(Z∗

p) ;
// P computes:

6 za ← [−α̃− xã] ∈ Zp, zb ← [−β̃ − xb̃] ∈ Zp ;

7 zc ← [−γ̃ − xδ̃ − x2c̃] ∈ Zp ;
8 P → V: [za], [zb], [zc] ;

// P and V compute:

9 [Pa]← [x]([Cα] + [x][Ca] + [za][G̃]) ∈ G;

10 [Pb]← [x]([Cβ ] + [x][Cb] + [zb][G̃]) ∈ G ;

11 [Pc]← [x]2([Cγ ] + [x][Cδ] + [x]2[Cc] + [zc][G̃]) ∈ G ;
12 P and V run Protocol MatMul on input:

([Pc], [Pa], [Pb]; [U
′], [G⃗′], [H⃗ ′]; [U ], [G], [H] : x2(α+ xa)(β + xb),

x(α+ xa), x(β + xb));
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5.2 Adding Zero-Knowledge

The zero-knowledge version of committed matrix multiplication corresponds to
the following relation:

RzkMatMul = (23)



[Cc], [Ca], [Cb] ∈ G
[U ] ∈ Gm×n,

[G] ∈ Gm×l,

[H] ∈ Gl×n;

[G̃] ∈ G


:


c ∈ Zm×n

p

a ∈ Zm×l
p ,

b ∈ Zl×n
p ,

c̃, ã, b̃ ∈ Zp


∣∣∣∣∣∣∣∣∣∣


c = ab

∧ Cc = ⟨c,U⟩⊕c̃G̃
∧ Ca = ⟨a,G⟩⊕ãG̃
∧ Cb = ⟨b,H⟩⊕b̃G̃




.

Here, blinding factors are used for the commitments to matrices.
To transform a single MatMul protocol into a zero-knowledge protocol, we

can introduce two blinding matrices α ∈ Zm×l
p and β ∈ Zl×n

p , along with addi-

tional random factors α̃, β̃, γ̃, δ̃ ∈ Zp.
In the first step of zkMatrix, the prover sends a series of commitments:

[Cα], [Cβ ], [Cγ ], [Cδ] ∈ G. Subsequently, in response to a public-coin challenge

[x]
$←− Z∗

p, the prover provides an argument of knowledge for a relation between
x(α+ xa), x(β + xb), and x2(α+ xa)(β + xb). The transcript size is increased
by a constant factor. The zkMatrix protocol is detailed in Algorithm 5.

The perfect completeness and computational knowledge soundness of the
zkMatrix protocol is based on the following equivalence:

{c = ab} ⇔

{
∀[x], [x]2(αβ + [x](aβ +αb) + [x]2c)

= ([x](α+ [x]a))([x](β + [x]b))

}
, (24)

and:

⟨α+ [x]a,G⟩ = [⟨α,G⟩⊕α̃G̃]⊕[x][⟨a,G⟩⊕ãG̃]⊕[−α̃− xã][G̃],
⟨β + [x]b,H⟩ = [⟨β,H⟩⊕β̃G̃]⊕[x][⟨b,H⟩⊕b̃G̃]⊕[−β̃ − xb̃][G̃],
⟨αβ + [x](aβ +αb) + [x]2c,U⟩⊕[γ̃ + xδ̃ + x2c̃][G̃]

= [⟨αβ,U⟩⊕γ̃G̃]⊕[x][⟨a∗β +αb,U⟩⊕δ̃G̃]⊕[x]2[⟨c,U⟩⊕c̃G̃].

The zero-knowledge property is based on the observation that x(α+xa) and
x(β+ xb) exhibit uniform distributions, regardless of the distributions of a and
b. Consequently, the simulator of the proof is able to generate a valid transcript
using two random matrices, which is indistinguishable from a genuine one.

Theorem 5. The zkMatrix protocol exhibits perfect completeness, perfect special
honest verifier zero-knowledge, and computational knowledge soundness.

The proof for Theorem 5 is provided in Appendix A.5.
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Line 3 of Algorithm 5 requires O(n3) filed multiplications for n × n matrix
multiplications. This conflicts with our goal of achieving O(n2) prover time. De-
spite this, we note that: (1) Algorithm 5 can be applied to any bilinear matrix or
vector operations; (2) The additional prover time reduces to O(n2) when either
a or b is a n-vector, which applies to the inner products 2○ and 3○; (3) Comput-
ing the inner products of two n2-vectors takes O(n2) field multiplications, which
applies to the inner product 1○; (4) Blinding matrices are unnecessary for public
matrices or vectors, which applies to the inner products 1○, 2○, and 3○. There-
fore, in the final zkMatrix protocol, we introduce the blinding matrices within
the sub-protocols of lines 13-16 in Algorithm 4. Specifically, we use blinding ma-
trices γ ∈ Zm×n

p for the inner product 1○, α ∈ Zm×l
p for the inner product 2○,

β ∈ Zl×n
p for the inner product 3○, and two blinding vectors α⃗y, β⃗y ∈ Zl

p for the
inner product 4○. As a result, the additional prover time to add zero-knowledge
is O(n2) exponentiations and O(n2) field multiplications.

6 Optimizations

6.1 Batched zkMatrix

It is feasible to batch process tmatrix multiplication relations. This insight stems
from the observation that when a matrix [b] is publicly known and shared across
t relations, the prover can prove:{

a(i)[b] = c(i), ∀i ∈ (1, t)
}

⇐⇒

{
∀ρ ∈ Z∗

p, (

t∑
i=1

ρi−1a(i))[b] =

t∑
i=1

ρi−1c(i)

}
, (25)

where [ρ]
$←− Coin(Z∗

p) is an additional public-coin randomness for batch pro-
cessing. Consequently, the prover is able to batch processing the inner-product
relations 1○, 2○, and 3○. In the batched zkMatrix, the marginal prover time for
each additional matrix multiplication is on the order of O(n) (∼ 10n exponenti-
ations) for n× n matrix multiplications.

Theorem 6. The batched zkMatrix protocol exhibits perfect completeness, per-
fect special honest verifier zero-knowledge, and computational knowledge sound-
ness.

The proof for Theorem 6 is provided in Appendix A.6.

6.2 Fixed-Base Optimization and Parallelization

It is standard practice to accelerate multi-exponentiations by using fixed-base op-
timization and parallelization. Each additional fixed-base multi-exponentiation
of length n requires on average n(log2 p)/2 group additions. Almost all opera-
tions in zkMatrix are parallelizable. This means that the performance of zkMa-
trix can scale with the number of cores available on the machine. It can also
leverage GPUs in some applications.
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Algorithm 6: zkMatrix (Batched Proof)

Input: Public input: [Cc(i)], [Ca(i)], [Cb(i)] ∈ G,
i ∈ range(1, t);

[G̃] ∈ G; [U ′] ∈ G, [G⃗′], [H⃗ ′] ∈ Gl;
[U ] ∈ Gm×n, [G] ∈ Gm×l, [H] ∈ Gl×n;

P’s private input: c(i) ∈ Zm×n
p ,a(i) ∈ Zm×l

p ,

b(i) ∈ Zl×n
p , c̃(i), ã(i), b̃(i) ∈ Zp,

i ∈ range(1, t)
Output: TRUE (V accepts) or FALSE (V rejects)
// V sends the challenge for reducing matrix multiplication:

1 V → P: [y] $←− Coin(Z∗
p);

// P makes hiding commitments to t sets of intermediate variables:

2 foreach i ∈ range(1, t) do

3 P runs line 2-13 of MatMul to compute a⃗y(i) ∈ Zl
p, b⃗y(i) ∈ Zl

p, d(i) ∈ Zp;

4 d̃(i), ãy(i), b̃y(i)
$←− Zp ;

5 Cay(i) ← ⟨a⃗y(i), G⃗
′⟩⊕ãy(i)G̃ ∈ G;

6 Cby(i) ← ⟨⃗by(i), H⃗ ′⟩⊕b̃y(i)G̃ ∈ G;

7 Cd(i) ← dy(i)U
′⊕d̃(i)G̃ ∈ G;

8 P → V: [Cd(i)], [Cay(i)], [Cby(i)] ∈ G;

// V sends the batching randomness

9 V → P: [ρ]
$←− Coin(Z∗

p) ;
// P and V compute:

10 [C̄c]←
∑t

i=1[ρ]
i−1Cc(i), [C̄a]←

∑t
i=1[ρ]

i−1Ca(i), [C̄b]←
∑t

i=1[ρ]
i−1Cb(i),

[C̄d]←
∑t

i=1[ρ]
i−1Cd(i), [C̄ay]←

∑t
i=1[ρ]

i−1Cay(i),
[C̄by]←

∑t
i=1[ρ]

i−1Cby(i);

11 P computes c̄,
¯̃
d, ¯̃c, ā, ¯̃ay, ¯̃a, b̄;

¯̃
by,

¯̃
b;

// P and V run homomorphic sub-protocols on batched inputs

12 P and V run zk semi-inner-product argument on batched inputs:

([C̄d], [C̄c], [y⃗]; [U
′], [U⃗ ], [G11] : c̄;

¯̃
d, ¯̃c) ;

13 P and V run zk high-dimensional semi-inner-product argument on batched

inputs: ([C̄ay], [C̄a], [y⃗L]; [G⃗
′] [Ḡ] : ā; ¯̃ay, ¯̃a) ;

14 P and V run zk high-dimensional semi-inner-product argument on batched

inputs: ([C̄by], [C̄b], [y⃗R]; [H⃗
′], [H] : b̄;

¯̃
by,

¯̃
b) ;

// P and V run t Bulletproofs in parallel

15 foreach i ∈ range(1, t) do
16 P and V run zk Bulletproof on input: ([Cd(i)]⊕[Cay(i)]⊕[Cby(i)]; [U

′],

[G⃗′], [H⃗ ′] : a⃗y(i), b⃗y(i); ¯̃ay(i),
¯̃
by(i)) ;

17 If all return TRUE, then return TRUE; otherwise return FALSE

7 Theoretical Performance

The theoretical performance of the protocols discussed in this paper is detailed
in Table 2. When estimating this table, we use the same random challenges for
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concurrent Bulletproof protocols. An inverse operation in Zp takes log2 p field
multiplications. When using the BLS12-381 curve, the size of elements in Zp and
G1 are 256bits and 382 bits, respectively. We tested the performance of the Rust
BLS12 381 library5 on a machine equipped with Intel Core i7 and 64G RAM.
The execution times for a single exponentiations in G1 and G2 were 0.355ms and
1.123ms, respectively. A doubling operation and a group addition in G1 took
0.520µs and 0.829µs, respectively. A pairing computation took 1.400ms. A field
multiplication took 0.031µs. Based on these metrics and assuming parallelization
across 16 threads, we estimated the performance of zkMatrix in Table 3.

Without using pairings for faster verification, we may also implement zkMa-
trix using curve255196. A single exponentiation on curve25519 took 24.664µs.
A single group addition took 0.179µs. Pre-computation for a fixed-base multi-
exponentiation of length 1, 024 took 6.527ms; each subsequent fixed-base multi-
exponentiation took 1.614ms. A field multiplication took 0.082µs. Given this,
the estimated runtimes for the prover and the verifier for a single multiplication
of 1, 024× 1, 024 matrices are 11.37s and 1.64s, respectively. For each additional
matrix multiplication in batched zkMatrix, the incremental runtime is 0.44s for
the prover and 0.82ms for the verifier.

5 https://github.com/zkcrypto/bls12_381https://github.com/zkcrypto/bls12 381
6 https://github.com/dalek-cryptography/curve25519-dalekhttps://github.com/dalek-
cryptography/curve25519-dalek
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Table 3: Estimated performance using BLS12-381 for multiplication of 1, 024×
1, 024 matrices

Protocol
Transcript

Size
RAM
Usage

Prover
Time

Verifier
Time

Single zkMatrix 7.67KB 176MB 197.04s 70.15ms
Batched zkMatrix

(total) 1.42MB 304MB 512.48s 12.06s
(per proof) 1.42KB 304KB 0.50s 11.77ms

Note: The batched proof handles 1, 024 instances of multiplications of 1, 024 × 1, 024
matrices. We assume parallelization of the multi-exponentiations on an 8-core machine
with 16 threads.
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Marc Fischlin and Jean-Sébastien Coron (Eds.). Springer, 305–326.

[Kate et al.(2010)] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010.
Constant-size commitments to polynomials and their applications. In ASIACRYPT
2010 (Lecture Notes in Computer Science, Vol. 6477), Masayuki Abe (Ed.).
Springer, 177–194.

[Liu et al.(2021)] Tianyi Liu, Xiang Xie, and Yupeng Zhang. 2021. zkCNN: Zero
knowledge proofs for convolutional neural network predictions and accuracy. In
CCS 2021 (Proceedings of the ACM SIGSAC Conference on Computer and Com-
munications Security), Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi
(Eds.). ACM, 2968–2985.

[Maller et al.(2019)] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meikle-
john. 2019. Sonic: Zero-knowledge SNARKs from linear-size universal and updat-
able structured reference strings. In CCS 2019 (Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security), Lorenzo Cavallaro, Jo-
hannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM, 2111–2128.

[Parno et al.(2016)] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova.
2016. Pinocchio: Nearly practical verifiable computation. Commun. ACM 59, 2
(2016), 103–112.

[Thaler(2013)] Justin Thaler. 2013. Time-optimal interactive proofs for circuit eval-
uation. In CRYPTO 2013 (Lecture Notes in Computer Science, Vol. 8043), Ran
Canetti and Juan A. Garay (Eds.). Springer, 71–89.

[Vasudevan et al.(2017)] Aravind Vasudevan, Andrew Anderson, and David Gregg.
2017. Parallel Multi Channel convolution using General Matrix Multiplication.
In ASAP 2017 (Proceedings of the IEEE International Conference on Application-
specific Systems, Architectures and Processors). IEEE, 19–24. https://doi.org/

10.1109/ASAP.2017.7995254

[Weng et al.(2021)] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao
Wang. 2021. Mystique: Efficient Conversions for Zero-Knowledge Proofs with Ap-
plications to Machine Learning. In USENIX 2021 (Proceedings of the 28th USENIX
Conference on Security Symposium), Michael Bailey and Rachel Greenstadt (Eds.).
USENIX Association, 501–518.

[Xie et al.(2019)] Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papa-
manthou, and Dawn Song. 2019. Libra: Succinct zero-knowledge proofs with opti-
mal prover computation. In CRYPTO 2019 (Lecture Notes in Computer Science,
Vol. 11694), Alexandra Boldyreva and Daniele Micciancio (Eds.). Springer, 733–
764.



zkMatrix: Batched Short Proof for Committed Matrix Multiplication 31

[Yang et al.(2021)] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021.
Quicksilver: Efficient and affordable zero-knowledge proofs for circuits and polyno-
mials over any field. In CCS 2021 (Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security), Yongdae Kim, Jong Kim, Giovanni
Vigna, and Elaine Shi (Eds.). ACM, 2986–3001.

[Yuen et al.(2021)] Tsz Hon Yuen, Muhammed F. Esgin, Joseph K. Liu, Man Ho Au,
and Zhimin Ding. 2021. DualRing: Generic Construction of Ring Signatures with
Efficient Instantiations. In CRYPTO 2021 (Lecture Notes in Computer Science,
Vol. 12825), Tal Malkin and Chris Peikert (Eds.). Springer, 251–281.

A Proofs of Theorems

A.1 Proof of Theorem 3.1

Proof (Accelerated Bulletproof). Perfect completeness. To establish perfect com-
pleteness, we demonstrate that if P possesses a valid witness satisfying the re-
lation Rbullet as outlined in Eq. 4, then P can generate a valid transcript:

[L(1)], [R(1)], · · · , [L(log2 n)], [R(log2 n)], [â], [b̂], [V
′], [W ′],

such that Eq. 12 is satisfied.
Utilizing the perfect completeness of the original Bulletproof, we assert that

if P holds a valid witness for Rbullet, then the [V ] computed by the verifier as
per Eq. 11 must satisfy:

[V ] = [C]⊕
⊕log2 n

j=1
([x(j)][L(j)]⊕[x(j)]−1[R(j)])

= ([â][b̂])[U ]⊕[â]⟨[ξ⃗], [G⃗]⟩⊕[â]⟨[ξ⃗−1], [H⃗]⟩.

Here, the coefficients on the RHS can be computed by both parties. These coef-
ficients are collectively denoted by [ζ⃗] ∈ Z2n+1

p , in accordance with the notation
change in Eq. 8. We assert:

[V ] = [ζ1][ŝĜ] + [ζ2][ŝ
2Ĝ] + · · ·+ [ζ2n+1][ŝ

2n+1Ĝ] + ..+ [ζq][ŝ
qĜ],

where [ζ]2n+2 = [ζ]2n+3 · · · = [ζ]q = 0.
Given a random challenge [s] ∈ Z∗

p, the verifier can compute:

ϕ([s]) = [ζ1][s] + [ζ2][s]
2 + · · ·+ [ζ2n+1][s]

2n+1.

From the computation formula of [V ′] and [W ′], we deduce:

e([V ′], [Ĝ]) = e([ζ1][νŝĜ] + [ζ2][νŝ
2Ĝ] + · · ·+ [ζq][νŝ

qĜ], [Ĝ])

= e([ζ1][ŝĜ] + [ζ2][ŝ
2Ĝ] + · · ·+ [ζq][ŝ

qĜ], [νĜ]) = e([V ], [νĜ]),

e([ŝ][Ĝ]⊖[ŝĜ], [W ]) = e

(
(ŝ− s)Ĝ,

⊕q

i=1
ζi(
si − ŝi

s− ŝ
)Ĝ

)
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= e
(⊕q

i=1
ζi(s

i − ŝi)Ĝ, Ĝ
)
= e

(
(

q∑
i=1

ζis
i)Ĝ− (

⊕q

i=1
ζiŝ

iĜ), Ĝ

)
= e(ϕ([s])[Ĝ]⊖[V ], [Ĝ]).

As a consequence, the perfect completeness property of the accelerated Bullet-
proof protocol is established.

Computational knowledge soundness. To establish computational knowledge
soundness (implied by witness-extended emulation [Groth(2004)] or special sound-
ness [Attema et al.(2021)]), we aim to demonstrate that if an adversarial prover
A can generate transcript elements [V ], [V ′], [W ] that satisfy Eq.12, then we
show how to construct an adversary B that uses A and a q-PKE assumption
knowledge extractor to break either the q-PDH assumption, the q-BSDH as-
sumption or the witness-extended emulation of the (original) Bulletproof with
high probability.

The Setup algorithm picks a random ν ∈ Zp and uses the q-PDH problem

instance Ĝ, ŝĜ, . . . , ŝqĜ, to generate the SRS for the original Bulletproof. B re-
ceives the Bulletproof challenges from the challenger of the original Bulletproof.

Suppose that A wants to prove a relation with size 2n + 1 ≤ q. In the

accelerated Bulletproof, B picks a random challenge [s]
$←− Z∗

p. A generates valid
transcript elements [V ], [V ′], [W ]. From the first pairing equation of Eq.12, we
have V ′ = νV . By using the q-PKE assumption knowledge extractor KA, with
probability no less than 1− neglPKE, KA can extract ζ ′0, · · · , ζ ′q such that:

V = (ζ ′0 + ζ ′1ŝ+ ζ ′2ŝ
2 + · · ·+ ζ ′q ŝ

q)Ĝ.

If:

(ζ ′0, ζ
′
1, ζ

′
2, · · · , ζ ′q) = (0, ζ1, ζ2, · · · , ζ2n+1, 0, . . . , 0), (26)

then V is equal to the right-hand side of Eq.6 of the original Bulletproof. Hence, B
can use them to break the witness-extended emulation of the original Bulletproof.

If Eq.26 does not hold, we define a bivariate polynomial g : Zp × Zp 7→ Zp

as:

g(s, ŝ) :=(ζ1s+ ζ2s
2 + · · ·+ ζ2n+1s

2n+1)

− (ζ ′0 + ζ ′1ŝ+ ζ ′2ŝ
2 + · · ·+ ζ ′q ŝ

q) ̸= 0. (27)

First, if (s − ŝ) (considered as a bivariate function) divides g(s, ŝ), then, it
also divides:

g′(s, ŝ) :=− ζ ′0 + (ζ1 − ζ ′1)ŝ+ · · ·+ (ζ2n+1 − ζ ′2n+1)ŝ
2n+1

− ζ ′2n+2ŝ
2n+2 − . . .− ζ ′q ŝq.

In this case, when ŝ is fixed, and both (s−ŝ) and g′(s, ŝ) are treated as univariate
functions, (s− ŝ) must divide g′(s, ŝ). Considering that the degree of s in g′(s, ŝ)
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is 0, this division only occurs under the conditions when:

− ζ ′0 + (ζ1 − ζ ′1)ŝ+ · · ·+ (ζ2n+1 − ζ ′2n+1)ŝ
2n+1

− ζ ′2n+2ŝ
2n+2 − . . .− ζ ′q ŝq = 0.

We define ζ0 = ζ2n+2 = · · · = ζq := 0, and let q∗ ∈ [1, q] represents the biggest
index for which (ζq∗ − ζ ′q∗) ̸= 0, we obtain:

(ζq∗ − ζ ′q∗)ŝq
∗
= −

q∗−1∑
i=0

(ζi − ζ ′i)ŝi.

Consequently, by multiplying (ζq∗−ζ ′q∗)−1ŝq+1−q∗Ĝ to both sides of the equation,
we have:

ŝq+1Ĝ = ⊖(ζq∗ − ζ ′q∗)−1
⊕q∗−1

i=1
(ζi − ζ ′i)[ŝi+q+1−q∗Ĝ].

Here, B solves the q-PDH problem. By the q-PDH assumption, the probability
of this occurrence is no more than neglPDH.

Otherwise, if g(s, ŝ) is coprime with s− ŝ, the prover can find two bivariate
functions, α(s, ŝ) and β(s, ŝ), both with degrees less than q, such that:

α(s, ŝ)g(s, ŝ) + β(s, ŝ)(s− ŝ) = 1.

Then B can compute E ← α(s, ŝ)e(Ĝ,W ) ⊕ β(s, ŝ)e(Ĝ, Ĝ) by using s, the
coefficients of α(s, ŝ), β(s, ŝ), and [Ĝ], [ŝĜ], . . . , [ŝqĜ]. According to the second
pairing equation in Eq. 12, E satisfies:

(s− ŝ)E
=(s− ŝ){α(s, ŝ)e(Ĝ,W )⊕β(s, ŝ)e(Ĝ, Ĝ)}
={α(s, ŝ)e((s− ŝ)Ĝ,W )}⊕{β(s, ŝ)(s− ŝ)e(Ĝ, Ĝ)}
={α(s, ŝ)e(ϕ(s)Ĝ− V, Ĝ)}⊕{β(s, ŝ)(s− ŝ)e(Ĝ, Ĝ)} by Eq. 12

={α(s, ŝ)g(s, ŝ)e(Ĝ, Ĝ)}⊕{β(s, ŝ)(s− ŝ)e(Ĝ, Ĝ)} by Eq.27

=e(Ĝ, Ĝ).

As a result, B obtains a solution (⊖E, s) to the q-BSDH problem. According to
the q-BSDH assumption, the probability for this case is no greater than neglBSDH.

Consequently, the probability that Eq.6 holds true is no less than (1 −
neglPKE)(1− neglPDH − neglBSDH). Suppose A generates an acceptable transcript
with probability p(A) and the knowledge error of the original Bulletproof pro-
tocol is κbullet. Then, B can output a valid witness with probability:

(p(A)(1− neglPKE)(1− neglPDH − neglBSDH)− κbullet)/poly(n)
≥(p(A)− neglPKE − neglPDH − neglBSDH − κbullet)/poly(n)

As a result, we obtain the computational knowledge soundness of the accelerated
Bulletproof protocol.
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Variation. We can also accelerate Bulletproof using asymmetric pairings. Under
the assumptions of the asymmetric versions of q-PKE and q-BSDH, the pairing
equations in Eq. 12 evolve to:

e([V ], [νĤ])
?
=e([V ′], [Ĥ]),

e(ϕ([s])[Ĝ]⊖[V ], [Ĥ])
?
=e([W ], [s][Ĥ]⊖[ŝĤ]).

Here, [Ĥ] ∈ G2 is a generator of G2. [Ĥ], [νĤ], and [ŝĤ] are also included into
the SRS.

The demonstration of computational knowledge soundness for the acceler-
ated Bulletproof using asymmetric pairings is in essence identical to that using
symmetric pairing. Further details are omitted here due to page limitations.

A.2 Proof of Theorem 4.1

Proof (Semi-Inner-Product). Perfect completeness. If P possesses a valid witness
for Rsip, then it also holds a valid witness for Rbullet under the following notation
substitution:

U ← xU, G⃗← G⃗, H⃗ ← O⃗,

C = (a⃗ • b⃗)U⊕⟨a⃗, G⃗⟩⊕⟨⃗b, H⃗⟩ ← (a⃗ • b⃗)xU⊕⟨a⃗, G⃗⟩ = xCc⊕Ca.

Given the perfect completeness of Bulletproof, P can generate a valid transcript
acceptable by the verifier of Bulletproof. Consequently, the verification check in
line 5 of Algorithm 2 returns true. Additionally, since:

[z][U ] = [r + h(a⃗ • b⃗)][U ] = [rU ]⊕[h][(a⃗ • b⃗)U ] = [R]⊕[h][Cc],

we know that the verification check in line 4 of Algorithm 2 also returns true.
Consequently, P generates a valid transcript that is accepted by the verifier of
the semi-inner-product argument.

Computational knowledge soundness. To prove the witness-extended emula-
tion (this implies computational knowledge soundness as per [Groth(2004)]),
we first notice that lines 1 to 4 are the argument of knowledge of the discrete
logarithm of Cc with respect to the base U . We can construct an extractor KDL

to output c such that Cc = cU if the discrete logarithm assumption holds.
Next, we notice that in line 5 we run Bulletproof with H⃗ = O⃗. This special

case of Bulletproof is actually the same as the algorithm 10 of the full version
of [Yuen et al.(2021)]. Yuen et al. showed that there exists an efficient extractor

Ksemi that can output either a discrete logarithm relation among U , G⃗, or a
witness a⃗ such that:

C = ⟨a⃗, G⃗⟩⊕(a⃗ • b⃗)xU.
(It is relation 6 of the full version of [Yuen et al.(2021)]). Since C = xCc⊕Ca =
xcU⊕Ca, we have:

xcU⊕Ca = ⟨a⃗, G⃗⟩⊕(a⃗ • b⃗)xU. (28)
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For our protocol, we construct an extractor K which receives a witness c using
KDL, and receives witnesses a⃗(1), a⃗(2) using Ksemi twice with different challenges
x(1), x(2). By Eq. 28, we have:

(x(1) − x(2))cU = ⟨a⃗(1) − a⃗(2), G⃗⟩⊕((x(1)a⃗(1) − x(2)a⃗(2)) • b⃗)U.

Assuming that we cannot find a non-trivial discrete logarithm relation among
U , G⃗, we have a⃗(1) = a⃗(2), and hence c = (a⃗(1) • b⃗).

By Eq. 28, we also have:

(x(1) − x(2))Ca =⟨x(1)a⃗(2) − x(2)a⃗(1), G⃗⟩

⊕((a⃗(1) − a⃗(2)) • b⃗)x(1)x(2)U

=⟨x(1)a⃗(1) − x(2)a⃗(2), G⃗⟩.

Hence we have Ca = ⟨a⃗(1), G⃗⟩ and Cc = cU = (a⃗(1) • b⃗)U . As a result, we
conclude that our protocol has witness-extended emulation.

For the relaxed version of the semi-inner-product argument, the subsequent
relation remains valid for each x(τ) with τ = 1, 2:

x(τ)Cc⊕Ca = ⟨a⃗(τ), G⃗⟩⊕(a⃗(τ) • b⃗)x(τ)U, τ = 1, 2. (29)

We can compute:

aU :=
x(1)x(2)(a⃗(2) − a⃗(1)) • b⃗

x(1) − x(2)
, a⃗G :=

x(1)a⃗(2) − x(2)a⃗(1)

x(1) − x(2)
,

cU :=
(x(1)a⃗(1) − x(2)a⃗(2)) • b⃗

x(1) − x(2)
, c⃗G :=

a⃗(1) − a⃗(2)

x(1) − x(2)
.

Then, we have:

Ca = aUU⊕⟨a⃗G, G⃗⟩, Cc = cUU⊕⟨c⃗G, G⃗⟩. (30)

By comparing Eq.29 and Eq.30, if the pairwise discrete logarithm between U
and elements in G⃗ is difficult, we obtain:

(x(τ))(a⃗(τ) • b⃗) = (x(τ))cU + aU , a⃗(τ) = (x(τ))c⃗G + a⃗G.

Putting them together, we have:

(x(τ))2c⃗G • b⃗+ (x(τ))a⃗G • b⃗ = (x(τ))cU + aU .

By comparing the coefficients corresponding to different degrees of x(τ), we de-
duce:

aU = 0, c⃗G • b⃗ = 0, a⃗G • b⃗ = cU .

By the definition of aU , and x
(1) ̸= 0, x(2) ̸= 0, we have:

x(1)x(2)((a⃗(2) − a⃗(1)) • b⃗)
x(1) − x(2)

= 0.
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Hence, we have a⃗(1) • b⃗ = a⃗(2) • b⃗. Putting it back to the definition of cU , we
have:

cU = a⃗(1) • b⃗.

Let a⃗ = a⃗G and c⃗′ = c⃗G. Then, we obtain a valid witness for the relaxed
version of Rsip.

A.3 Proof of Theorem 4.2

Proof (High-dimensional semi-inner-product).
Perfect completeness. If P possesses a valid witness a⃗1, · · · , a⃗n ∈ Zm

p for
Rhd−sip, then it also holds a valid witness (a⃗1|| · · · ||a⃗n) for Rsip under the fol-
lowing notation substitution:

U ← U1, G⃗← (G⃗1⊕xb1U⃗ || · · · ||G⃗n⊕xbnU⃗), b⃗← 0⃗,

C = (a⃗ • b⃗)U⊕⟨a⃗, G⃗⟩

← (a⃗ • 0⃗)U1⊕⟨(a⃗1|| · · · ||a⃗n), (G⃗1⊕xb1U⃗ || · · · ||G⃗n⊕xbnU⃗)⟩

= O⊕{
⊕n

i=1
⟨a⃗i, (G⃗i⊕xbiU⃗⟩}

= {
⊕n

i=1
⟨a⃗i, G⃗i⟩}⊕x⟨Σn

i=1a⃗ibi, U⃗⟩)} = xCc⊕Ca.

Given the perfect completeness of Bulletproof, P can generate a valid transcript
acceptable by the verifier. Consequently, the verification check in line 6 of Algo-
rithm 2 returns true.

Similarly, P can also compute a valid witness
∑n

i=1 a⃗ibi ∈ Zm
p for Rsip under

the following notation substitution:

U ← G11, G⃗← U⃗ , b⃗← 0⃗,

C = (a⃗ • b⃗)U⊕⟨a⃗, G⃗⟩ ← (a⃗ • 0⃗)G11⊕⟨Σn
i=1a⃗ibi, U⃗⟩ = O⊕Cc = Cc.

Hence, the verification check in line 5 of Algorithm 2 also returns true. As a
result, P generates a valid transcript acceptable by the verifier of the high-
dimensional semi-inner-product argument.

Computational knowledge soundness. To demonstrate computational knowl-
edge soundness, let Kcom and Ksip be the extractor for the relation Rcom and Rsip

in line 5 and line 6 respectively. By Kcom, it outputs c⃗ such that Cc = ⟨c⃗, U⃗⟩.
Then, for challenges x(τ), τ = 1, 2 in the high-dimensional semi-inner-product

argument protocol,Ksip can extract, with very high probability, a
(τ)
ij , i ∈ range(1, n), j ∈

range(1,m) such that:

Ca⊕{(x(τ))Cc} =
⊕n

i=1

⊕m

j=1
{a(τ)ij (Gij⊕x(τ)biUj)}

={
⊕n

i=1

⊕m

j=1
a
(τ)
ij Gij}⊕{x(τ)

⊕m

j=1
(

n∑
i=1

a
(τ)
ij bi)Uj}. (31)
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By Eq. 31, we have:

(x(1) − x(2))Cc ={
⊕n

i=1

⊕m

j=1
(a

(1)
ij − a

(2)
ij )Gij}

⊕{
⊕m

j=1
(

n∑
i=1

(x(1)a
(1)
ij − x

(2)a
(2)
ij )bi)Uj}.

Suppose that the pairwise discrete logarithms between elements in U⃗ and all

Gij are difficult. By Kcom, we have a
(1)
ij = a

(2)
ij , ∀i, j and:

Cc = ⟨c⃗, U⃗⟩ =
⊕m

j=1
(

n∑
i=1

a
(1)
ij bi)Uj := ⟨

n∑
i=1

a⃗
(1)
i bi, U⃗⟩.

By Eq. 31 and a
(1)
ij = a

(2)
ij , we also have:

(x(1) − x(2))Ca ={
⊕n

i=1

⊕m

j=1
(x(1)a

(2)
ij − x

(2)a
(1)
ij )Gij}

⊕{x(1)x(2)
⊕m

j=1
(

n∑
i=1

(a
(2)
ij − a

(1)
ij )bi)Uj}

=
⊕n

i=1

⊕m

j=1
(x(1) − x(2))a(1)ij Gij .

Hence we obtain:

Ca =
⊕n

i=1

⊕m

j=1
a
(1)
ij Gij =

⊕n

i=1
⟨a⃗(1)

i , G⃗i⟩.

Consequently, a⃗
(1)
1 , · · · , a⃗(1)

n form a valid witness for Rhd−sip.
Utilizing reasoning analogous to what was presented in the proof of Theo-

rem 4.1, we can demonstrate that the relaxed version of the high-dimensional
semi-inner-product protocol serves as an argument of knowledge for the relaxed
version of Rhd−sip.

A.4 Proof of Theorem 5.1

Proof (MatMul Protocol). Perfect completeness. Building on the equivalence es-
tablished in Eq. 20, if P possesses a valid witness for RcomMatMul, then for any
y ∈ Zp, P is capable of generating witnesses for the four inner products 1○,
2○, 3○, and 4○ in Eq. 3. Given the perfect completeness of Bulletproof, the
semi-inner-product argument, and the high-dimensional semi-inner-product ar-
gument, it follows that P can produce transcripts that are acceptable to the
verifiers of the corresponding sub-protocols.

Computational knowledge soundness. To demonstrate computational knowl-
edge soundness, we rewind the MatMul protocol mn times and provide it with
mn pairwise distinct challenges y(τ), τ ∈ range(1,mn). Utilizing Theorem 2 and
Theorem 3, we employ the extractors Ksip and Khd−sip to obtain a(τ), b(τ), c(τ),

d(τ), C
(τ)
d , C

(τ)
ay , C

(τ)
by , a⃗y

(τ), b⃗y
(τ)

as follows.
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First, we employ the extractor Ksip to obtain c⃗(τ) and c⃗
′(τ)
cy such that:

Cc = ⟨c⃗(τ), U⃗⟩, C
(τ)
d = (c⃗(τ) • y⃗(τ))U ′⊕⟨c⃗

′(τ)
cy , U⃗⟩. (32)

Since Cc = ⟨c⃗(1), U⃗⟩ = . . . = ⟨c⃗(mn), U⃗⟩ and the pairwise discrete logarithm

between elements in U⃗ is unknown, we have c⃗ := c⃗(1) = . . . = c⃗(mn) such that
Cc = ⟨c⃗, U⃗⟩.

We use the extractor Khd−sip to obtain a⃗
(τ)
i and c⃗

′(τ)
ay such that:

Ca =
⊕m

i=1
⟨a⃗(τ)

i , G⃗⊤
i∗⟩,

Cay = ⟨
m∑
i=1

a⃗
(τ)
i (y(τ))(i−1)n, G⃗′⟩⊕⟨c⃗

′(τ)
ay , G⃗⟩. (33)

Similarly, we have a⃗i := a⃗
(1)
i = . . . = a⃗

(mn)
i such that Ca =

⊕m
i=1⟨a⃗i, G⃗

⊤
i∗⟩, if

the pairwise discrete logarithm between elements in G⃗⊤
i∗ is unknown.

We use the extractor Khd−sip to obtain b⃗
(τ)
j and c⃗

′(τ)
by such that:

Cb =
⊕n

i=1
⟨⃗b(τ)j , H⃗∗j⟩,

Cby = ⟨
n∑

j=1

b⃗
(τ)
j (y(τ))j−1, H⃗ ′⟩⊕⟨c⃗

′(τ)
by , H⃗⟩. (34)

Similarly, we have b⃗j := b⃗
(1)
j = . . . = b⃗

(mn)
j such that Cb =

⊕n
i=1⟨⃗bj , H⃗∗j⟩, if

the pairwise discrete logarithm between elements in H⃗∗j is unknown.

Next, we apply the Bulletproof extractor to obtain a⃗
′(τ)
y , b⃗

′(τ)
y :

C
(τ)
d ⊕C

(τ)
ay ⊕C

(τ)
by = (a⃗

′(τ)
y • b⃗

′(τ)
y )U ′⊕⟨a⃗

′(τ)
y , G⃗′⟩⊕⟨⃗b

′(τ)
y , H⃗ ′⟩.

Assume that the pairwise discrete logarithm between elements in U ′, G⃗′, H⃗ ′,
U⃗ ∪ G⃗ ∪ H⃗ are difficult7. Comparing the above equation with Eq. 32, Eq. 33
and Eq. 34, we deduce:

a⃗
′(τ)
y =

m∑
i=1

a⃗i(y
(τ))(i−1)n, b⃗

′(τ)
y =

n∑
j=1

b⃗j(y
(τ))j−1,

a⃗
′(τ)
y • b⃗

′(τ)
y = c⃗ • y⃗(τ).

We define a as a matrix formed by row vectors a⃗1, . . . , a⃗m, b as a matrix formed
by column vectors b⃗1, . . . , b⃗n, c is an m× n matrix formed by the reverse oper-
ation of flat over c⃗. By Eq. 20, the above relation is equivalent to:

7 Here we require that elements in U ′, G⃗′, H⃗ ′ has no known discrete logarithm with
elements in U⃗ ∪ G⃗ ∪ H⃗. It is possible to have common elements within U⃗ , G⃗ and
H⃗. In fact, we use common elements within these sets for accelerating verification.
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y⃗
(τ)T
L cy⃗

(τ)
R = y⃗

(τ)T
L aby⃗

(τ)
R , ∀τ ∈ range(1,mn).

Consider that y⃗T
Lcy⃗R is a polynomial of y with degree mn− 1, and its coef-

ficients are determined by c. Similarly, we can define y⃗T
Laby⃗R as a polynomial

of y with degree mn − 1, and its coefficients are determined by a, b. Since the
equation above holds for mn different values of y, we conclude that c = ab.
Hence, the extracted witness c,a, b satisfies RcomMatMul.

A.5 Proof of Theorem 5.2

Proof (zkMatrix (Single Proof)).

Perfect completeness. Given the perfect completeness of the MatMul protocol
and the equivalence established in Eq. 24, if P holds a valid witness a, b, c such
that c = ab, then for any x ∈ Zp, P is able to produce the valid witness
x(α + xa), x(β + xb), and (x(α + xa))(x(β + xb)), which will be accepted by
the verifier of the MatMul protocol.

Computational knowledge soundness. To demonstrate computational knowl-
edge soundness, we will show that by rewinding the zkMatrix protocol multiple
times and applying the extractor of the MatMul protocol, we can extract a valid
witness for RzkMatMul.

In the zkMatrix protocol, by rewinding six times with different values of

x(τ), τ = 1, . . . , 6 and applying the extractorKcomMatMul, we obtain c
′(τ),a

′(τ), b
′(τ), P

(τ)
c ,

P
(τ)
a , P

(τ)
b , z

(τ)
c , z

(τ)
a , z

(τ)
b such that:

P (τ)
c = ⟨c

′(τ),U⟩, P (τ)
a = ⟨a

′(τ),G⟩, P
(τ)
b = ⟨b

′(τ),H⟩, (35)

c
′(τ) = a

′(τ)∗b
′(τ), (36)

P (τ)
c = (x(τ))2(C ′

γ⊕x(τ)C ′
δ⊕(x(τ))2Cc⊕z(τ)c G̃), (37)

P (τ)
a = (x(τ))(C ′

α⊕x(τ)Ca⊕z(τ)a G̃), (38)

P
(τ)
b = (x(τ))(C ′

β⊕x(τ)Cb⊕z(τ)b G̃). (39)

Drawing from Eq. 35, 37, 38, 39, we can represent C ′
γ , C

′
δ, C

′
α, C

′
β , Cc, Ca, Cb in

the following form:

C ′
γ = ⟨γ∗,U⟩⊕γ̃∗G̃, C ′

δ = ⟨δ∗,U⟩⊕δ̃∗G̃, (40)

C ′
α = ⟨α∗,G⟩⊕α̃∗G̃, C ′

β = ⟨β∗,H⟩⊕β̃∗G̃, (41)

Cc = ⟨c∗,U⟩⊕c̃∗G̃, Ca = ⟨a∗,G⟩⊕ã∗G̃, Cb = ⟨b∗,H⟩⊕b̃∗G̃. (42)
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Upon comparing Eq. 40, 41, 42 with Eq. 35, 37, 38, 39, we derive either a
non-trivial logarithm relation or the subsequent equations:

c
′(τ) = (x(τ))2(γ∗ + x(τ)δ∗ + (x(τ))2c∗), (43)

z(τ)c = (x(τ))2(γ̃∗ + x(τ)δ̃∗ + (x(τ))2c̃∗),

a
′(τ) = (x(τ))(α∗ + x(τ)a∗), z(τ)a = (x(τ))(α̃∗ + x(τ)ã∗), (44)

b
′(τ) = (x(τ))(β∗ + x(τ)b∗), z

(τ)
b = (x(τ))(β̃∗ + x(τ)b̃∗). (45)

We have: 
c

′(1) z
(1)
c a

′(1) z
(1)
a b

′(1) z
(1)
b

c
′(2) z

(2)
c a

′(2) z
(2)
a b

′(2) z
(2)
b

...
...

...
...

...
...

c
′(6) z

(6)
c a

′(6) z
(6)
a b

′(6) z
(6)
b



=


1 x(1) . . . (x(1))5

1 x(2) . . . (x(2))5

...
...

...
...

1 x(6) . . . (x(6))5




0 0 0 0 0 0

0 0 α∗ α̃∗ β∗ β̃∗

γ∗ γ̃∗ a∗ ã∗ b∗ b̃∗

δ∗ δ̃∗ 0 0 0 0
c∗ c̃∗ 0 0 0 0
0 0 0 0 0 0

 .

By utilizing the inverse of the Vandermonde matrix, we can compute γ∗, δ∗,
α∗,β∗, c̃∗, ã∗, b̃∗, γ∗, δ∗, α∗, β∗, c∗,a∗, b∗. Substituting Eq. 43, 44, 45 into Eq. 36
and comparing the coefficients of (x(τ))4, we obtain:

c∗ = a∗b∗. (46)

Eq. 42 and Eq. 46 show that c∗,a∗, b∗ and c̃∗, ã∗, b̃∗ form a valid witness for the
zkMatrix protocol. As a result, we obtain the extractor KzkMatrix.

Perfect special honest-verifier zero-knowledge. When S knows the public-coin

challenge [x] in advance, it randomly selects a′ $←− Zm×l
p , b′

$←− Zl×n
p . S computes:

P ∗
c = ⟨a′b′,U⟩, P ∗

a = ⟨a′,G⟩, P ∗
b = ⟨b′,H⟩.

Then, S can generate the transcript elements for the zkMatrix protocol by uti-
lizing the random matrices a′ and b′.

S randomly chooses z∗c , z
∗
a, z

∗
b , δ̃

∗ $←− Zp and calculates C∗
γ , C

∗
α, C

∗
β , and C

∗
δ ,

using the following method:

C∗
δ ← δ̃∗G̃, C∗

γ ← x−2(P ∗
c ⊖xC∗

δ⊖x2Cc⊖z∗c G̃),
C∗

α ← x−1(P ∗
a⊖xCa⊖z∗aG̃), C∗

β ← x−1(P ∗
b ⊖xCb⊖z∗b G̃).

Additionally, these transcript elements conform to uniform distributions,
identical to the distributions of a genuine transcript. To observe this, we uti-
lize the fact that when α̃ ∈ Zp follows a uniform distribution over Zp, then for
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any arbitrary P ∈ G that is independent of α̃, P⊕α̃G̃ ∈ G follows a uniform
distribution that is independent of the distribution of P . The input matrices of
the zkMatrix protocol in line 12 also follow uniform distributions.

Therefore, no PPT distinguisher D can differentiate between a simulated
transcript and a genuine one. Consequently, the zkMatrix protocol exhibits the
SHVZK property.

A.6 Proof of Theorem 6

Proof (zkMatrix (Batched Proof)).
Perfect completeness. The perfect completeness follows directly from the per-

fect completeness of the protocols in Section 4, the equivalence in Eq. 25, and
the equation:

⟨
t∑

i=1

ρi−1a(i),G⟩⊕(
t∑

i=1

ρi−1ã(i))G̃ =

t⊕
i=1

ρi−1[⟨a(i),G⟩⊕ã(i)G̃],

as well as similar equations for b(i), c(i), i ∈ range(1, t).
Computational knowledge soundness. By rewinding batched zkMatrix mn× t

times, we provide it with mn values of y(τ), τ ∈ range(1,mn). For each y(τ), we
provide t instances of ρ(τ

′), τ ′ ∈ range(1, t).
By using the extractors of the zero-knowledge semi-inner-product argument

and the zero-knowledge high-dimensional-inner-product argument, we extract

ā(τ ′), b̄(τ
′), ¯⃗c(τ

′), ¯̃a(τ
′),

¯̃
b(τ

′), ¯̃c(τ
′) such that:

C̄(τ ′)
a = ⟨ā(τ ′),G⟩⊕¯̃a(τ

′)G̃, C̄
(τ ′)
b = ⟨b̄(τ

′),H⟩⊕¯̃b(τ
′)G̃,

C̄(τ ′)
c = ⟨¯⃗c(τ

′), U⃗⟩⊕ ¯̃
d(τ

′)G̃.

By applying the inverse of the Vandermonde matrix composed of t values of
ρ(τ

′), we can extract a(i), b(i), c⃗(i), ã(i), b̃(i), c̃(i) for each i ∈ range(1, t) such that:

Ca(i) = ⟨a(i),G⟩⊕ã(i)G̃, Cb(i) = ⟨b(i),H⟩⊕b̃(i)G̃,

Cc(i) = ⟨c⃗(i), U⃗⟩⊕c̃(i)G̃.

Further, applying the extractor of the zero-knowledge Bulletproof and pro-
ceeding with a process analogous to the one described in Appendix A.4, we can
ensure that:

c(i) = a(i)b(i),∀i ∈ range(1, t). (47)

Perfect special honest-verifier zero-knowledge. Every element in the transcript
of Algorithm 6 adheres to a uniform distribution.

When the randomness involved in Algorithm 6 is known in advance, S can

randomly select values for Cd(i), Cay(i), Cby(i)
$←− G for i ∈ range(1, t). Then,

S uses the sub-protocol’s simulators to generate a simulated transcript. The
simulated transcript cannot be distinguished from a genuine one.
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B Cryptographic Preliminaries

B.1 Assumptions

Assumption for knowledge soundness of zkMatrix. The computational knowl-
edge soundness of the fundamental zkMatrix protocol (without acceleration) is
dependent solely on the assumption of the following discrete logarithm relation.

Assumption 1 (Discrete Logarithm Relation [Bünz et al.(2018)]) For all
PPT adversaries A and for all n ≥ 2 there exists a negligible function negl(λ)
such that:

Pr

(∃ai ̸= 0

∧
⊕n

i=1
aiGi = O

∣∣∣∣∣(p,G)← Setup(1λ), G1, · · · , Gn
$←− G;

a1, · · · , an ∈ Zp ← A(p,G, G1, · · · , Gn)

)
≤ negl(λ).

We say
⊕n

i=1aiGi = O is a non-trivial discrete logarithm relation between
G1, · · · , Gn. The discrete logarithm relation assumption states that an adversary
cannot find a non-trivial discrete logarithm relation between randomly chosen
group elements. This assumption implies the standard discrete logarithm as-
sumption (i.e., given (p,G, G1, G2), output (1,−x) such that G1⊕(−x)G2 = O).

Assumption for accelerating zkMatrix. To accelerate zkMatrix, we will also re-
quire assumptions related to a bilinear pairing e : G×G 7→ GT , including q-PDH,
q-PKE, and q-BSDH.

Assumption 2 (q-PDH [Groth(2010),Parno et al.(2016)]) The q-Power
Diffie-Hellman (q-PDH) assumption holds for the bilinear group generator Setup
if for all PPT adversary A we have:

Pr

C = ŝq+1Ĝ

∣∣∣∣∣∣∣∣∣∣

(p,G,GT , e)← Setup(1λ);

Ĝ
$←− G; ŝ

$←− Z∗
p;

srs← (p,G,GT , e; [Ĝ], [ŝĜ], · · · , [ŝqĜ]);
C ← A(srs)


≤ negl(λ).

Assumption 3 (q-PKE [Groth(2010),Parno et al.(2016)]) The q-Power Knowl-
edge of Exponent (q-PKE) assumption holds for (G,GT ) if for all PPT adversary
A, there exists a non-uniform PPT extractor KA such that:

Pr


V ′ = νV

∧ V ̸= (

q∑
i=0

αiŝ
i)Ĝ

∣∣∣∣∣∣∣∣∣∣∣∣∣

(p,G,GT , e)← Setup(1λ);

Ĝ
$←− G; ν, ŝ

$←− Z∗
p;

srs← (p,G,GT , e; [Ĝ], [ŝĜ], · · · , [ŝqĜ],
[νĜ], [νŝĜ], · · · , [νŝqĜ]);

(V ′, V ;α0, · · · , αq)← (A||KA)(srs, z)


≤ negl(λ),
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for any auxiliary information z ∈ {0, 1}poly(λ) that is generated independently of
ν. Note that (y1; y2) ← (A||KA)(x) means that on input x, A outputs y1 and
that KA with the same input x and A’s random tape, produces y2.

Assumption 4 (q-BSDH [Kate et al.(2010)]) The q-Bilinear Strong Diffie-
Hellman (q-BSDH) assumption holds for (G,GT ) if for all PPT adversary A we
have:

Pr

E = (ŝ− r)−1e(Ĝ, Ĝ)

∣∣∣∣∣∣∣∣∣∣

(p,G,GT , e)← Setup(1λ);

Ĝ
$←− G; ŝ

$←− Z∗
p;

srs← (p,G,GT , e; [Ĝ], [ŝĜ], · · · , [ŝqĜ])
(E ∈ GT , r ∈ Z∗

p)← A(srs)


≤ negl(λ).

B.2 Pedersen Vector Commitment

Definition 1 (Commitment). A non-interactive commitment scheme con-
sists of a pair of probabilistic polynomial time algorithms (Setup,Com). The
setup algorithm pp← Setup(1λ) generates public parameters pp for the scheme,
for security parameter λ. The commitment algorithm Compp defines a function
Mpp × Rpp 7→ Cpp for the message space Mpp, the randomness space Rpp, and
the commitment space Cpp determined by pp. for a message a ∈ Mpp, the al-

gorithm draws ã
$←− Rpp uniformly at random, and computes the commitment

Ca ← Compp(a; ã).

Definition 2 (Pedersen Vector Commitment). Let the message space Mpp =
Zn
p , the randomness space Rpp = Zp, and the commitment space Cpp = G with

G of order p. The Pedersen vector commitment of a vector a⃗ ∈ Zn
p and a ran-

domness ã ∈ Zp is

Setup : G⃗
$←− Gn, G̃

$←− G, Com(a; ã) : Ca ← ⟨a⃗, G⃗⟩⊕ãG̃.

With the bracket representation introduced in Section 2.1, we write the Pedersen
vector commitment as [⟨a⃗, G⃗⟩⊕ãG̃]. We often set ã = 0, in which case the
commitment is binding but not hiding.

Pedersen vector commitment for a matrix is the Pedersen vector commitment
to the flattened vector of the matrix.

B.3 Zero-Knowledge Arguments of Knowledge

An Argument of Knowledge (AoK) is a protocol that allows a computationally
bounded prover P to convince a verifier V that he knows a witness w for a
certain statement u. Zero-knowledge Arguments of Knowledge (zkAoK) or zero-
knowledge proofs further require that the prover can convince the verifier that
the statement holds without revealing any information about why it holds.
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Let R ⊂ {0, 1}∗×{0, 1}∗×{0, 1}∗ be a polynomial-time-decidable ternary re-
lation. Given a structured reference string srs, we call w a witness for a statement
u if (srs, u, w) ∈ R, and define the SRS-dependent language:

Lsrs = {u | ∃w s.t. (srs, u, w) ∈ R},

as the set of statements u that have a witness w in the relation R.
We consider arguments consisting of three interactive algorithms (Setup,P,V),

all running in probabilistic polynomial time. On input 1λ, the algorithm Setup
produces a structured reference string (SRS) srs. Then, P and V interact on
input (srs, u : w), responding to the verifier’s randomness rand and producing
a transcript tr. This process is denoted by tr ← (P ⇌ V)(srs, u : w), where the
prover’s view is (srs, u : w) and the verifier’s view is (srs, u; tr; rand). We mark
flag = V(srs, u; tr; rand) depending on whether the verifier rejects, flag = FALSE,
or accepts, flag = TRUE.

Definition 3 (Argument of Knowledge). The triple (Setup,P,V) is called
an argument of knowledge for the relation R if it satisfies perfect completeness
and knowledge soundness as defined below.

Definition 4 (Perfect Completeness [Attema et al.(2021)]). (Setup,P,V)
has perfect completeness if for all non-uniform polynomial time adversaries A:

Pr

 (srs, u : w) /∈ R
∨ V(srs, u; tr; rand) = TRUE

∣∣∣∣∣∣∣
srs← Setup(1λ);

(u,w)← A(srs);
tr← (P ⇌ V)(srs, u : w)

 = 1.

Definition 5 (Computational Knowledge Soundness [Attema et al.(2021)]).

(Setup,P,V) for the relation R is knowledge sound with error κλ(|u|) : N 7→ [0, 1]
if there exists an algorithm K, called a knowledge extractor, with the following
properties. Given input u and -box oracle access to a (potentially dishonest)
prover P∗, the extractor K runs in an expected number of steps that is poly-
nomial in |u| (counting queries to P as a single step) and outputs a witness
(srs, u : w) ∈ R with probability:

Pr((srs, u : K(u)) ∈ R) ≥ p(P∗, u)− κλ(|u|)
poly(|u|)

,

where p(P∗, u) is the probability that P∗ generates an accepted transcript.

Previous studies have shown that with the utilization of public-coin ran-
domness, as defined in the subsequent subsection, witness-extended emulation
is an alternative approach to define knowledge soundness [Groth(2004),Attema
et al.(2022),Attema et al.(2021)].

Definition 6 (Witness-Extended Emulation [Bünz et al.(2018)]). (Setup,P,V)
has witness-extended emulation if for all deterministic polynomial time P∗, and
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PPT adversaries A and all PPT distinguishers D, there exists a negligible func-
tion neglλ(|u|) and an expected polynomial time emulator E(P∗⇌V) such that:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

D(srs, u; tr∗; rand)= TRUE

∣∣∣∣∣∣∣∣
srs← Setup(1λ);

rand
$←− {0, 1}∗;

tr∗ ← (P∗⇌V)(srs, u; rand)



−Pr


(D(srs, u; tr∗; rand)

= TRUE) ∧
(V(srs, u; tr∗; rand)

= TRUE ⇒
(srs, u : w∗) ∈ R)

∣∣∣∣∣∣∣∣∣∣

srs← Setup(1λ);

rand
$←− {0, 1}∗;

tr∗ ← (P∗⇌V)(srs, u; rand)
w∗ ← E(P

∗⇌V)(srs, u)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ neglλ(|u|),

where E(P∗⇌V) is the emulator on the oracle (P∗⇌V) that permits rewinding to
a specific point and resuming with fresh randomness rand for the verifier from
this point onwards.

Definition 7 (Perfect Zero-Knowledge). A non-interactive argument of knowl-
edge (Setup,P,V) is perfect zero-knowledge if there exists a PPT simulator S
and a trapdoor trap such that for all stateful distinguishers D the following two
probabilities are equal:

Pr

(
D(srs, u; tr; trap) = TRUE

∣∣∣∣∣(srs, trap)← Setup(1λ);

tr← (P ⇌ V)(srs, u : w)

)

=Pr

(
D(srs, u; tr∗; trap) = TRUE

∣∣∣∣∣(srs, trap)← Setup(1λ);

tr∗ ← S(srs, u; trap)

)
.

When using public-coin challenges, perfect Special Honest-Verifier Zero-Knowledge
(SHVZK) offers a more convenient means of defining perfect zero-knowledge. It
is feasible to transform an SHVZK argument into a perfect zero-knowledge ar-
gument, utilizing established techniques [Groth(2004)].

Definition 8 (Perfect Special Honest-Verifier Zero-Knowledge). An ar-
gument of knowledge (Setup,P,V) has perfect special honest-verifier zero-knowledge
if there exists a PPT simulator S such that for all pairs of interactive adversaries
A and D, the following two probabilities are equal:

Pr

 (srs, u, w) ∈ R
∧D(srs, u; tr; rand) = TRUE

∣∣∣∣∣∣∣
srs← Setup(1λ);

(u,w, rand)← A(srs);
tr← (P ⇌ V)(srs, u, w)


=Pr

 (srs, u, w) ∈ R
∧D(srs, u; tr∗; rand) = TRUE

∣∣∣∣∣∣∣
srs← Setup(1λ);

(u,w, rand)← A(srs);
tr∗ ← S(srs, u, rand)

 ,

where rand is the public-coin randomness used by the verifier.
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Definition 9 (Fully Succinct zk-SNARK [Gabizon et al.(2019)]). A non-
interactive zero-knowledge argument of knowledge is fully succinct if:

– The SRS generation time is quasilinear relative to the witness size;
– The prover time is quasilinear relative to the witness size;
– The transcript size is logarithmic relative to the witness size;
– The verifier time is polylogarithmic relative to the witness size.

B.4 Fiat-Shamir Heuristics

Definition 10 (Public-Coin). A (2µ + 1)−move public-coin interactive pro-
tocol is an argument of knowledge (Setup,P,V) where in the (2j)th move, V
sends the jth challenge xj

$←− Xj. All challenges x1, · · · , xµ sent from the veri-
fier to the prover are public information and chosen uniformly at random and
independently of the prover’s messages.

The Fiat-Shamir heuristic replaces the public-coin challenge sent by the ver-
ifier with a hash function, thereby turning an interactive protocol into a non-
interactive one [Attema et al.(2022)].

Definition 11 (Adaptive Fiat-Shamir Transformation). The adaptive Fiat-
Shamir transformation on an interactive argument of knowledge FS(Setup,P,V) 7→
(Setup,PFS,VFS) is a two-round argument of knowledge where PFS(srs, u, w) runs
P(srs, u, w) but instead of asking the verifier for the challenge xi on message ai,
the challenges are computed as:

xi = Hashi(u, a1, · · · , ai−1, ai);

the output is then the transcript tr = (a1, · · · , ai, ai+1). On input of a statement
u and a proof tr = (a1, · · · , ai, ai+1), VFS(srs, u, w) accepts if, for xi as above, V
accepts the transcript tr = (a1, · · · , ai, ai+1) on input u.

C Adaptation to Floating-Point Matrix Multiplication

In floating-point arithmetic, the mantissa of the product of two floating-point
numbers is obtained by multiplying their mantissas and rounding to the specified
precision. According to the IEEE 754 standard, a double-precision floating-point
number consists of 64 bits: 1 bit for the sign, 11 bits for the exponent, and 52
bits for the mantissa. In the context of floating-point matrices, the floating-point
numbers within a matrix can share a common exponent.

Consider a matrix a = {aij = a
(m)
ij · 2.0eij} ∈ Rm×n with elements a

(m)
ij ·

2.0eij ∈ R, where a(m)
ij ∈ Z and eij ∈ Z are the signed mantissa and exponent,

respectively. Let ηa := emin represent the smallest and emax the largest exponents.
Each element can then be expressed as:

aij = a
(m)
ij · 2.0

eij = (2eij−ηa · a(m)
ij ) · 2.0ηa ,
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where powers of 2.0 are computed in the real field and powers of 2 in the integer

field. The new mantissa 2eij−ηa · a(m)
ij is a signed integer with at most (emax −

emin + 52) bits. If the ratio between the largest and smallest non-zero elements
of the matrix does not exceed 2.032, the new mantissa is at most 32 + 52 = 84
bits. Therefore, committing to the floating-point matrix a ∈ Rm×n is equivalent

to committing to a(m) := {2eij−ηa · a(m)
ij } ∈ Zm×n

p and ηa ∈ Zp.
Consider three floating-point matrices a, b, and c satisfying:

c = c(m) · 2.0−ηc , a = a(m) · 2.0−ηa , b = b(m) · 2.0−ηb ,

where c(m),a(m), b(m) are the signed mantissa matrices, and ηc, ηa, and ηb are
the common exponents. We assert:

c = ab ⇐⇒ {∃c(m)′ ∈ Zm×n
p , η ∈ Zp, s.t. c

(m)′ = a(m)b(m)∧

η = ηa + ηb − ηc ∧ −284 · 1 < c(m)′ · 284−η − c(m) · 284 < 284 · 1},

where 1 ∈ Zm×n
p represents the matrix with all elements being 1. If a has at

most 286 columns, then the elements of c(m)′ in the equation each have at most
84+84+86 = 254bits. Therefore, the matrix multiplication in Zp is identical to
that in Z. This relation can be verified using the zkMatrix protocol and range
proofs for committed matrices, with further details to be discussed in subsequent
work.


