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ABSTRACT
Threshold symmetric encryption (TSE), introduced by Agrawal et

al. [DiSE, CCS 2018], provides scalable and decentralized solution

for symmetric encryption by ensuring that the secret-key stays

distributed at all times. They avoid having a single point of attack

or failure, while achieving the necessary security requirements.

TSE was further improved by Christodorescu et al. [ATSE, CCS

2021] to support an amortization feature which enables a “more

privileged” client to encrypt records in bulk by interacting only

once with the key servers, while decryption must be performed

individually for each record, potentially by a “less privileged” client.

However, typical enterprises collect or generate data once and query

it several times over its lifecycle in various data processing pipelines;

i.e., enterprise workloads are often decryption heavy! ATSE does

not meet the bar for this setting because of linear interaction /

computation (in the number of records to be decrypted) – our

experiments show that ATSE provides a sub-par throughput of a

few hundred records / sec.

We observe that a large class of queries read a subsequence of

records (e.g. a time window) from the database. With this access

structure in mind, we build a new TSE scheme which allows for

both encryption and decryption with flexible granularity, in that a

client’s interactions with the key servers is at most logarithmic in

the number of records. Our idea is to employ a binary-tree access

structure over the data, where only one interaction is needed to

decrypt all ciphertexts within a sub-tree, and thus only log-many

for any arbitrary size sub-sequence. Our scheme incorporates ideas

from binary-tree encryption by Canetti et al. [Eurocrypt 2003]

and its variants, and carefully merges that with Merkle-tree com-

mitments to fit into the TSE setting. We formalize this notion as

hierarchical threshold symmetric-key encryption (HiSE), and argue

that our construction satisfies all essential TSE properties, such as

correctness, privacy and authenticity with respect to our definition.

Our analysis relies on a well-known XDH assumption and a new

assumption, that we call ℓ-masked BDDH, over asymmetric bilinear

pairing in the programmable random oracle model. We also show

that our new assumption does hold in generic group model.

We provide an open-source implementation of HiSE. For practi-

cal parameters, we see 65× improvement in latency and throughput

over ATSE. HiSE can decrypt over 6K records / sec on server-grade

hardware, but the logarithmic overhead in HiSE’s encryption (not

decryption) only lets us encrypt up to 3K records / sec (about 3-4.5×
slowdown) and incurs roughly 500 bytes of ciphertext expansion

per record – while reducing this penalty is an important future

work, we believe HiSE can offer an acceptable tradeoff in practice.
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1 INTRODUCTION
Consumer-facing applications, such as payments processing or ads,

collect many billions of events everyday, in order to perform a vari-

ety of downstream analytics on them. Since this data is business

sensitive and often containing personally-identifiable information,

these applications protect the data at rest using key management

systems (KMS) that are often backed by hardware security mod-

ules (HSMs), which are deployed on-premise or in the cloud (e.g.

AWS KMS). While HSMs are inexpensive to procure, they require

dedicated facilities with operational costs, have complex update pro-

cedures (e.g. with designated trusted personnel) and are susceptible

to hardware side-channels [30, 32].

Threshold Key Management System. To address these shortcom-

ings of HSMs, there is growing interest [31] in the use of threshold

cryptosystems, where the secret key material is distributed across

multiple (commodity) servers under a secret-sharing scheme, and

never reconstructed during use in encryption or decryption queries;

i.e., the security of the system rests on the assumption that the at-

tacker is unable to compromise a significant (configured threshold)

fraction of the servers. Since they use commodity machines, thresh-

old cryptosystems can allow the KMS to scale to enterprise-level

workloads at low costs. Due to these obvious benefits, threshold

cryptosystems have made their way into an increasing number of

commercial products – recent examples include Hashicorp Vault [3],

Coinbase Custody [1], and the HSM replacements by Unbound

Tech [2] – and is being standardized in an ongoing workstream by

the U.S. National Institute of Standards and Technology (NIST) [16].

Threshold Symmetric-Key Encryption. Targeting the use case of
enterprise data protection, we focus our attention on threshold

symmetric-key encryption (TSE). In the symmetric-key setting,

the application must interact with the KMS to encrypt or decrypt

any data
1
, which lets us ensure authenticity of the encrypted data

and also enforce fine-grained access control policies. In contrast,

public-key encryption schemes allow any actor to encrypt data,

1
the KMS authenticates the application prior to responding to encryption or decryption

queries, and can also maintain an audit trail of all queries.



which exposes the application to attacks such as data corruption or

poisoning. Existing TSE schemes [5, 7, 20] follow a basic schemata:

− A setup phase establishes a threshold secret-sharing of the

private key. This setup is either implemented as a ceremony

wherein a trusted admin or group of admins provision a share

to each KMS server, or as a distributed key generation protocol.

− To encrypt a record, the client application interacts with a

threshold number of KMS servers, who evaluate a (variant of)

distributed pseudo-random function (DPRF) using the above

shares to derive a specific key that is bound to that record.

− To decrypt any record, the client application must again inter-

act with a threshold number of KMS servers, using a compo-

nent of the ciphertext as input to the DPRF function to derive

the same key material (as in the encryption step above).

Limitations. The first TSE scheme in literature, DiSE [7], required

the application to interact with the KMS servers for encrypting or

decrypting each message, which posed a clear scaling bottleneck
2
.

Payment processors are expected to handle several thousands of

data records every second
3
, whereas (the maliciously secure vari-

ant of) DiSE can process at most a few hundred operations per

second, even when deployed in a LAN setting. Addressing this

shortcoming of DiSE, ATSE [20] allowed the client to perform bulk

encryption, where the client commits to a large chunk of records

that it is encrypting, and only interacts once with the KMS servers

based on that commitment – effectively, ATSE provides the same

authenticity guarantee as DiSE. Nevertheless, decryption in ATSE

still mandates interaction for each record. While this type of ac-

cess control suffices in certain settings, in many other settings it

becomes problematic: for example, enterprise workloads are of-

ten decryption-heavy, as data is created once but is queried and

analyzed several times over its lifetime. For a threshold KMS to

scale to enterprise workloads, this number of interactions is just

not affordable – the interaction is not only expensive in terms of

communication (specifically, bandwidth), but also the computation

on both the client and server (see Table 1 and Section 7).

Our Key Observation. Our exploration in efficient decryption

starts with an observation about a large class of queries in typi-

cal enterprise workloads, where a consumer-facing service stores

event-level data as it collects them from its users, in a time-ordered

sequence. We find that most large-data queries operate on a subset
of data within a time window. For instance, a payment processor

or ads platform may query for transactions in a specific one-hour

window for computing various aggregate statistics. We can lever-

age this inherent structure or partial ordering in the access pattern

structure to perform sub-linear number of interactions – ideally,

and as achieved in HiSE, we can decrypt an entire, contiguous (sub-)

sequence of records with only (at most) a logarithmic number of

2
As demonstrated in [20], even with optimizations such as batching requests to save

on roundtrip communication, and using high-bandwidth and low-latency network

links, DiSE provides orders-of-magnitude lower performance than what the workload

requires. This is because DiSE imposes a heavy compute requirement on both the KMS

servers (due to linear number of group operations for PRF and NIZK proofs) and the

client (due to linear number of DPRF reconstructions and NIZK verifications).

3
Visa processes 5K TPS on average, with a maximum capacity of 65K TPS [4].

server interactions (in the number of records),
4
each interaction

requiring constant work and bandwidth
5
.

Objectives. To summarize our requirement, we seek a TSE scheme

that has the following properties:

1. Bulk Encryption: when encrypting a large set of records, the

KMS interaction (in terms of bandwidth and server computa-

tion) does not depend on the number or size of the records;

i.e., the server performs constant (and concretely efficient)

work. In HiSE, the client sends to the KMS servers a short com-

mitment computed over the set of messages, and the servers

return a common commitment-specific key to encrypt and lo-

cally authenticate all messages together. This lets us attain the

same authenticity property as DiSE (and ATSE), but without

the need for interaction on each individual record.

2. Bulk Subsequence Decryption: when decrypting any con-

tiguous range of records from the entire dataset, the KMS

interaction (in terms of bandwidth and server computation) is

sub-linear, ideally logarithmic in the worst case, in the number

of records.

3. Authenticity and Access Control: Any valid ciphertext can

only be produced by interacting with a threshold number of

KMS servers – specifically, a valid ciphertext must encrypt a

message that is contained within the set of messages commit-

ted to by the encrypting client, within the interactive protocol.

This property implies that the key material given by the KMS

server(s) to the encrypting application is bound to the set of

messages represented by the commitment. We formalize this

property via a game-based definition in Section 5.
6
Dual to

authenticity is the requirement of fine-grained access control:

the decrypting client must only be able to decrypt messages

for which the KMS server(s) issue the key material in the

interactive protocol.

1.1 Contributions
Definition. We put forward and formalize the notion of hierar-

chical threshold symmetric-key encryption (HiSE), which enables

bulk encryption and subsequence decryption in a threshold man-

ner. We capture the various important properties using game-based

definitions in Section 5.

Construction. We provide an efficient HiSE construction based

on asymmetric bilinear pairing. We show that our construction

meets our definitions assuming standard XDH assumption and a

new assumption, called ℓ-masked BDDH, that we introduce here. In

Appendix G we show that this new assumption holds in the generic

4
Note that, in the best case, the number of interactions may be as little as constant.

For example, if all ciphertexts are exactly within a sub-access structure, then only one

interaction is needed.

5
A reader may observe that this requirement can be easily met by allowing the applica-

tion to use a long-term symmetric key that encrypts large portions of the dataset, and

protecting that key with the KMS, so a single KMS interaction will suffice. However,

in this design, any application that needs to decrypt any record in the dataset must be

given the long-term key, and there is no way for the KMS to enforce fine-grained access

control as the application can decrypt any number of records. Worse, the compromise

of any such application gives the attacker access to the entire dataset.

6
We note that, like prior works [7, 20] our formalization also considers a “one-more

type” definition – a malicious client may not produce more ciphertexts than what is

accounted for by the honest servers.
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group model. The concrete benefits of our HiSE scheme over prior

works is characterized in Table 1.

Implementation and Evaluation. We provide an open-source im-

plementation of our HiSE construction, made available at https:

//github.com/rsinha/hise. Our experiments indicate latency reduc-

tion between 15-65× and throughput improvement between 10-

70×, compared to the ATSE decryption, when interacting with 6-24

KMS servers and decrypting hundreds to thousands of records in

bulk. HiSE can decrypt over 6K records / sec on a single server-

grade machine. Moreover, as we scale to larger workloads which

decrypt a large number of records, both network latency and server

computation becomes an increasingly insignificant fraction of the

total decryption running time in HiSE, thus incentivizing threshold

KMS deployments that have more geo-distributed servers – this

is beneficial for increased availability and security. However, the

improvement in decryption efficiency comes with a caveat: the

logarithmic overhead in HiSE’s encryption only lets us encrypt

about 3K records / sec (about 3-4.5× slowdown compared to ATSE’s

encryption, yet 7 − 12× faster than “parallelized DiSE”, as bench-

marked as a baseline in ATSE [20]) and incurs roughly 500 bytes

of ciphertext expansion per record. Nevertheless, we believe HiSE

can offer an acceptable tradeoff in practice.

2 RELATEDWORKS
Threshold Symmetric Encryption (TSE). Previous works in TSE

by Agrawal et al. and Christodorescu et al. are closely related to our

work. Agrawal et al. provided the first formal treatment of a TSE

technique in DiSE [7] using a distributed pseudorandom function
based construction. For each encryption and decryption, the scheme

requires user interaction. In ATSE [20], the flexible key derivation
protocol allows for encryption of a group of messages with just a

single user interaction. In short, the user is required to commit to

a group of messages and interactively derive a partial/whole key

for the group. Individual encryption of each of the messages in the

group can then be carried out locally. The threshold key derivation

process uses a constrained PRF evaluation borrowing ideas from

the works of Boneh and Waters [14] and Naor-Pinkas-Reingold’s

DPRF construction [34]. However, the decryption process in ATSE

still requires the user to interact for each individual ciphertext.

In this paper, we propose a scheme which reduces the number of

interactions during decryption to logarithmic (in the number of

ciphertexts) on average (and constant in the best case).

Recently Duc et al. (DiAE [24]) extended DiSE [7] using en-
cryptment [23] instead of commit-then-encrypt technique. This

facilitates computation of ciphertexts before interaction, and there-

fore requires lesser online memory. Using similar techniques to

optimize on-line memory requirement for HiSE (and ATSE) is an

interesting future direction.

HiBE, ABE etc. Our construction borrows idea from identity-

based encryption (IBE) and its variants, like attribute-based encryp-

tion (ABE). In particular, our construction uses an encryption for

binary-tree access structure. The primary idea comes from binary-

tree encryption [18]. However, our construction is more similar to

the recent work iTire [10], which gets rid of "key-delegation" prop-

erty as well, though for a different purpose. Similar constructions

are used for different HIBE [9, 12, 13, 26] and ABE schemes [11,

27, 35] in the literature. In particular, the work [9] constructed a

multi-receiver IBE where ciphertexts are tagged to different parties,

whereas our scheme uses a binary-tree node as a tag. Combining

the Boneh et al. [12] HIBE and Baek et al.’s IBE [9], Chang et al [19]

proposed a hierarchical designated decryption scheme that pre-

vents ancestors from having access to all the messages intended

for their descendants. Encryption can be performed under different

choices so that decryption is allowed by a set of permitted ancestors.

However, all of these constructions constructed public-key prim-

itives and therefore do not offer important features such as authen-

ticity. From another perspective, our scheme can be thought of

as a (threshold) symmetric version of ABE scheme for a specific

binary-tree access structure.

For more related work on threshold cryptography [6, 17, 17, 22,

28, 33] and multi-party computation [29] we refer to ATSE [20] and

DiSE [7].

3 TECHNICAL OVERVIEW
HiSE leverages the inherent hierarchy or partial ordering in the ac-

cess pattern structure to perform sub-linear number of interactions.

That is, we decrypt an entire range of records with at most a loga-

rithmic number of server interactions (in the number of records),

each interaction requiring constant work and bandwidth. In this

paper, we do not attempt to optimize for random access patterns or

point queries. Let us first elaborate on the motivation.

3.1 A motivating use case
We start from a similar use case as the one in ATSE [20], but we fo-

cus on the largely unexplored part of the data lifecycle: decryption.

Our performance goals (and parameter settings, later in our experi-

mental evaluation) are influenced by our observations in the data

analytics pipelines of a payments processor, such as Visa [4]; that

said, the following description applies generally to any modern en-

terprise serving a consumer-facing application (e.g., ads, payments,

social network, etc.).

Our enterprise collects events at the source containing sensitive

user data – these can be payment transactions or ads conversions, as

examples. These event records will be later processed via a diverse

set of data processing (ETL) pipelines, but first, the source applica-

tion must store them with data-at-rest protections, by encrypting

them with the assistance of a KMS.

We find the following architecture to be quite typical. At the

source of data ingress, a designated application is responsible for

one task: encrypting records as they arrive and forwarding it to

a storage service. As it accepts all user data in the clear, we will

refer to this application as a privileged client or encryptor – it is

developed with simplicity and hardened with common security

measures. The encrypted data is later accessed by different analyt-

ics workloads. In practice, as a large variety of teams within the

enterprise are responsible for developing downstream analytics,

security, regulatory, and compliance concerns typically require us

to limit the amount of data they can access and also maintain an

audit trail describing which records each query has accessed. Both

access control and audit trail are implemented at the KMS layer.

3
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Scheme Operations

Encryption

(client)

Encryption

(server)

Decryption

(client)

Decryption

(server)

𝐻 𝑚𝑡 2𝑚 2𝑚 2𝑚

DiSE [7] G 6𝑚𝑡 exp, 4𝑚𝑡 add 4𝑚 exp,𝑚 add 6𝑚𝑡 exp, 4𝑚𝑡 add 4𝑚 exp,𝑚 add

𝑃 0 0 0 0

𝐻 3𝑚 + 𝑡 3 3𝑚 3𝑚

ATSE [20] G 6𝑡 exp, 4𝑡 add 4 G1 exp, 1 G1 add 6𝑚𝑡 G𝑇 exp, 4𝑚𝑡 G𝑇 add 4𝑚 G𝑇 exp,𝑚 G𝑇 add

𝑃 𝑚 0 0 𝑚

𝐻 𝑚 log𝑚 + 2𝑚 + 𝑡 2 3𝑚 + 𝑡 3

HiSE G 𝑚 log𝑚 + 6𝑡 G1 exp, 4𝑡 G1 add 4 G1 exp, 1 G1 add 10𝑡 G1 exp, 7𝑡 G1 add,𝑚 G𝑇 add 6 G1 exp, 3 G1 add

𝑃 𝑚 0 2𝑚 0

Table 1: Computation for encrypting or decrypting𝑚messages in a threshold 𝑡 setting (with themaliciously-secure construction):
𝐻 denotes hash operations (either hash to group or bitstring e.g. SHA256); G denotes group operations, and since ATSE and
HiSE use pairing-based groups, we denote the specific group operations by G1, G2, and G𝑇 ; 𝑃 denote pairing operations.

Recall that the encryptor produces a continuous stream of records.

A typical analytics query will request for access to some subsequence
of this data; as an example, a metrics application will periodically

compute aggregate statistics on, say, one minute interval of records.

Such a query is implemented by issuing a decryption query to the

KMS, which replies with sufficient key material to decrypt that

subsequence, but no other record beyond that. Our goal in this

paper is to make this interaction with the KMS – both bandwidth

and compute – sublinear in the number and size of the records.

Observe that, by arranging data in a binary tree, any subsequence

can be described by at most logarithmic number of descriptors,

with each descriptor denoting a sub-tree. In the remainder of this

paper, we consider the problem of efficient decryption (in constant

time) of a sub-tree of records, with the idea that an algorithm for

this problem then lets us efficiently decrypt subsequences with

logarithmic complexity.

While having efficient decryption, we would like to preserve the

property of efficient encryption from ATSE. That is, we want the

encryptors to encrypt a large chunk of messages efficiently and pri-

vately with fine-grained decryption, but we also want authenticity:

the encryptor must only produce legitimate ciphertexts, where the

temporary key derived by encryptor through interaction is bound

to the set of messages (the key servers hold a long-term key in a

threshold fashion which is never reconstructed explicitly).

3.2 Our Construction: An Overview
DiSE Framework. In the overview, for ease of exposition we con-

sider a toy example, in that only fourmessages𝒎 = (𝑚1,𝑚2,𝑚3,𝑚4)
are considered. Let us start by recalling the basic framework of (a

simplifed variant of) DDH-based DiSE [7] construction that uses

a (DDH-based) DPRF by Naor, Pinkas and Reingold [34]. Both en-

cryption and decryption use the same interaction pattern to derive

a message-specific key (to be used for masking) 𝑘𝑖 for each message

𝑚𝑖 , such that 𝑘𝑖 = H(𝛾𝑖 )𝑠𝑘 where 𝛾𝑖 is the commitment to message

𝑚𝑖 (andH is the hash function, modeled as random oracle). Then 𝑘𝑖
is used to “mask”𝑚𝑖 . Clearly, here both encryption and decryption

require to derive the 𝑘𝑖 by interacting with the key servers who

holds the DPRF key 𝑠𝑘 (possibly in a 𝑡 out of 𝑛 threshold structure).

Message privacy is guaranteed by the pseudorandomness of 𝑘𝑖 plus

hiding of the commitment scheme, whereas authenticity (which

guarantees that an encryption is only possible through a legitimate

interaction with the key servers, and not otherwise) follows from

the binding property of the commitment and the fact that the key

𝑘𝑖 is bound to the message𝑚𝑖 as well via the DPRF (which works

effectively as a distributed message authentication code).

ATSE: Asymmetry in Encryption and Decryption. In ATSE [20],

instead of a DPRF, another primitive, called a flexible threshold key-

derivation function (FTKD) is used – this enables themasking key𝑘𝑖

to be derived through a bilinear pairing as 𝑘𝑖 = 𝑒 (H1 (𝛿),H2 (𝛾𝑖 ))𝑠𝑘 ,
where the commitment to𝑚𝑖 now consists of two parts 𝛿 and 𝛾𝑖 ,

among them 𝛿 is common among all messages in 𝒎 – this is imple-

mented by computing a Merkle-tree on 𝒎 where 𝛿 is the root hash,

and 𝛾𝑖 is the hash values corresponding to the unique path from

root to the 𝑖-th leaf (each message𝑚𝑖 corresponds to leaf-𝑖). Now,

exploiting the bilinear property we note that the same masking key

can be derived in multiple ways; in particular we are interested in

two different ways: (i) during bulk encryption a common partial

key H1 (𝛿)𝑠𝑘 is derived interactively, and then each 𝑘𝑖 is locally

computed as 𝑘𝑖 = 𝑒 (H1 (𝛿)𝑠𝑘 ,H2 (𝛾𝑖 )); (ii) during decryption 𝑘𝑖 is

derived directly as 𝑒 (H1 (𝛿),H2 (𝛾𝑖 ))𝑠𝑘 . The key point is: during

decryption, deriving masking key 𝑘𝑖 for message𝑚𝑖 does not allow

derivation of another masking key 𝑘 𝑗 for another message𝑚 𝑗 . So,

in contrast to DiSE, ATSE provides support for a more fine-grained

encryption and decryption. However, the decryption always has to
happen individually. For example, if one needs to decrypt both𝑚1

and𝑚2, it must interact twice to derive both 𝑘1 and 𝑘2 – this scales

up quickly when one needs to decrypt a large sub-sequence.

A näive extension of ATSE. Onemay think about a potential näive

extension of ATSE to incorporate hierarchy in the decryption: for

example, by allowing one to also derive partial keysH1 (𝛿)𝑠𝑘 during

decryption. This, however, allows one to decrypt all four messages

that are committed to Merkle-root 𝛿 . This idea manifests that while

it is possible to enable a hierarchy in the decryption using ATSE, the

hierarchy does not go beyond a single level and therefore does not

provide any additional utility beyond “all-or-nothing”. In particular,

it is not clear how to extend the core idea from ATSE to support

multiple levels of decryption efficiently.

Our scheme: HiSE. Our main idea is to construct a binary-tree

such that decryption can be done at any node. For our toy example,

we consider a binary tree of depth log(4) = 2 for 4 messages. In

particular, we construct a Merkle-tree where each label at leaf-𝑖 is a

commitment to message𝑚𝑖 using hashHmt
; for example, 𝑋01 is a

4



commitment of𝑚2, and so on. Each node of the tree is indexed by a

binary-string 𝜔 that encodes the path from root (indexed by empty

string Y) to that node, plus each node-𝜔 is labeled with a hash value

𝑋𝜔 of the binary-tree. This is depicted in Figure 1 below.

𝑋Y

𝑋1

𝑋11𝑋10

𝑋0

𝑋01𝑋00

Figure 1: Each node 𝜔 is labeled with Merkle-hash 𝑋𝜔 . The
leaves are commitments to messages: 𝑋00 is commitment to
message𝑚1 and so on.

Now, our encryption follows an idea similar to BTE [18] and

its variant iTire [10]. However, since both of them are public-key

schemes, we made a number of crucial changes to ensure that our

encryption stays symmetric and satisfies ciphertext authenticity.

The first major change is: we now use two field elements as the

long-term secret key 𝑠𝑘 = (𝛼, 𝛽) – they are secret shared together

as 𝑡 out of 𝑛. Also 𝑝𝑝 = 𝑔
𝛽

1
is made public.

Now, for each message𝑚𝑖 , the message-specific key 𝑘𝑖 (or mask-
ing key) is computed, first by interacting with the (threshold) key-

servers to derive 𝑧 = H(𝑋Y )𝛼 , and then locally computing 𝑘𝑖 =

𝑒 (𝑔𝑟𝑖
1
, 𝑧) (where 𝑔1 is generator of G1 in pairing G1 × G2 → G𝑇 )

which is unique to the𝑚𝑖 , as the randomness 𝑟𝑖 is sampled uniquely

for each message𝑚𝑖 . The ciphertext 𝑐𝑖 contains log-many group

elements:

(𝑅𝑖 = 𝑔
𝑟𝑖
1
, 𝑆𝜔 |1 , 𝑆𝜔 |2 , . . . , 𝑆𝜔 , 𝐸𝑖 )

where 𝐸𝑖 is the masked plaintext (𝑚𝑖 masked using 𝑘𝑖 ), and each

𝑆𝜔 | 𝑗 is computed asH(𝑋𝜔 | 𝑗 )𝑟𝑖 .7 Here 𝜔 is the binary expression

of 𝑖 − 1 and the notation 𝜔 | 𝑗 refers to the first 𝑗 bits of the string 𝜔 .

For example, in our toy example, for𝑚1,𝑚2,𝑚3,𝑚4 the ciphertexts

𝑐1, 𝑐2, 𝑐3, 𝑐4 would look like:

(𝑅1 = 𝑔
𝑟1
1
, 𝑆1,0 = H(𝑋0)𝑟1 , 𝑆1,00 = H(𝑋00)𝑟1 , 𝐸1)

(𝑅2 = 𝑔
𝑟2
1
, 𝑆2,0 = H(𝑋0)𝑟2 , 𝑆2,01 = H(𝑋01)𝑟2 , 𝐸2)

(𝑅3 = 𝑔
𝑟3
1
, 𝑆3,1 = H(𝑋1)𝑟3 , 𝑆3,10 = H(𝑋10)𝑟3 , 𝐸3)

(𝑅4 = 𝑔
𝑟4
1
, 𝑆4,1 = H(𝑋1)𝑟4 , 𝑆4,11 = H(𝑋11)𝑟4 , 𝐸4)

Now, let us see how decryption works. Suppose that we want to

decrypt𝑚1 and𝑚2, both of which are exactly covered under the sub-
tree rooted at node-0with label𝑋0 – so it is possible to decrypt them

with a single interaction. In particular, the decryption interaction

derives 𝑧 = H(𝑋Y )𝛼H(𝑋0)𝛽 in a threshold manner. Then it locally
computes the masking keys for 𝑐1, 𝑐2 respectively as:

𝑘1 = 𝑒 (𝑅1, 𝑧) · 𝑒 (𝑝𝑝, 𝑆1,0)−1 and 𝑘2 = 𝑒 (𝑅2, 𝑧) · 𝑒 (𝑝𝑝, 𝑆2,0)−1

A little calculation shows that these computations basically cancels

out the components dependent on 𝛽 , and leaves with the keys

𝑘1 = 𝑒 (𝑅1,H(𝑋Y )𝛼 ) and 𝑘2 = 𝑒 (𝑅2,H(𝑋Y )𝛼 ). Also, we note that, if
7
We defer the exact description of how exactly 𝐸𝑖 is computed until later in this section.

we want to decrypt only 𝑐1, but not 𝑐2, that would also be possible

by deriving 𝑧′ = H(𝑋Y )𝛼H(𝑋00)𝛽 and then computing only

𝑘1 = 𝑒 (𝑅1, 𝑧′) · 𝑒 (𝑝𝑝, 𝑆1,00)−1

Thereby a multi-leveled hierarchical decryption is possible. Now,

let us argue about the security of the scheme next.

Privacy of HiSE. First note that, the valueH(𝑋Y )𝛼 is just like a

DPRF computation on the root commitment – this is very similar

to ATSE’s masking key and hence provides privacy. However, to

argue that the masking key is indeed private we need to argue that

from the decryption with respect to a specific node-𝜔 , it should not

be possible compute the masking key for any other ciphertexts that

are not covered by the sub-tree rooted at that node-𝜔 . Elaborating

more through our example, the above decryption at node-0 (labeled

𝑋0) should not allow computation of masking keys for 𝑐3 or 𝑐4.

Intuitively, this can be seen from the fact that: to compute the

masking key it seems essential to computeH(𝑋Y )𝛼 ; and since the

value H(𝑋Y )𝛼 is multiplied with H(𝑋0)𝛽 in 𝑧, 8 it should not be

possible to “extract” H(𝑋Y )𝛼 from that – in fact, the decryption

never has H(𝑋Y )𝛼 in the clear, instead it uses the 𝑆-values from

the ciphertext to directly compute the message specific masking

keys 𝑒 (𝑅𝑖 ,H(𝑋Y ))𝛼 . So, for 𝑐3 or 𝑐4, the 𝑆-values, included in the

ciphertexts, are outside the path from root to that node: for example,

𝑐3 has only H(𝑋1)𝑟3 and H(𝑋10)𝑟3 , but not, e.g. H(𝑋0)𝑟3 – this

ensures that the decryption is not possible for 𝑐3. In fact, trying to

use 𝑝𝑝 = 𝑔
𝛽

1
with the available 𝑆 values in 𝑐3, 𝑐4 yields, for example:

𝑒 (𝑝𝑝, 𝑆3,1) = 𝑒 (𝑅3,H(𝑋1)𝛽 )

and attempting to divide 𝑧 with this leads to

𝑒

(
𝑅3,H(𝑋Y )𝛼 ·

(
H(𝑋0)
H (𝑋1)

)𝛽 )
which is not independent of (an unknown) 𝛽 . Formalizing this, how-

ever, turns out to be trickier, and require using our new assumption,

ℓ-masked BDDH along with XDH (see Section 4.1).

Authenticity of HiSE. The broad authenticity argument follows

from ATSE. However, there are some crucial differences. First note

that, in contrast to ATSE, DiSE our encryption is randomized. This

would let the encryptor use the derived masking key multiple times

to generate many ciphertexts for the same message. So, though

we would obtain a property similar to plaintext integrity, we still

would not have a stronger property akin to ciphertext integrity, in

that the encryptor can produce only a fixed number (determined

by the size of the Merkle-tree) of ciphertexts via one interaction.
9

8
This also showswhywe need two components𝛼 and 𝛽 . Giving𝑔𝛼

1
in𝑝𝑝 like iTire/BTE

would immediately break the privacy. Instead, we give out 𝑔
𝛽

1
and use 𝛽-dependent

elements to “mask” H(𝑋Y )𝛼 .
9
Ciphertext integrity prevents a corrupt encryptor to produce any legitimate ciphertext

locally that are unaccounted for – honest servers know exactly how many legitimate

ciphertexts are being produced by one interaction. With only plaintext integrity one

could locally produce arbitrary many legitimate ciphertexts encrypting the same

messages without further interaction. In the enterprise KMS application ciphertext

integrity helps in reducing the possibility of data duplication. See Remark 7.14 of

ATSE [21] for more discussion.
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To remedy this, we also commit to 𝑅𝑖 = 𝑔
𝑟𝑖
1
for each message𝑚𝑖 .

10

So for𝑚𝑖 , the masked value would look like

𝐸𝑖 = H ′ (𝑘𝑖 ) ⊕ (𝑚𝑖 , 𝜌𝑖 ,H ′′ (𝑅𝑖 )) .
WhereH ′maps to bit-string. During decryption one obtains (𝑚𝑖 , 𝜌𝑖 , ℎ𝑖 )
after demasking and then checks whether 𝑋𝜔 = Hmt (𝑚𝑖 , 𝜌𝑖 , ℎ𝑖 )
andH ′′ (𝑅𝑖 ) = ℎ𝑖 , where 𝜔 is a binary expression of (𝑖 − 1).

Another issue, similar to ATSE, is that the root of the Merkle-tree

𝑋Y does not contain information about the number 𝑁 of messages

committed to it. This can be exploited by a malicious encryptor

by pretending to encrypt 𝑁 ′ < 𝑁 , such that the server would

undercount the number of valid ciphertext that can be produced

– in our definition (cf. Definition 5.5) this would constitute a valid

forgery. To prevent this we instead compute 𝑧 as H(𝑁,𝑋Y )𝛼 . So,
such behavior would be caught during the decryption, in that an

honest decryptor, who has now access to the Merkle-tree uses a

correct 𝑁 , and hence results in a different 𝑧′ ≠ 𝑧.

We do not discuss a few other issues here, which are common

to all TSE schemes (DiSE, ATSE) in the literature, for example,

need for a authenticated channel and inclusion of identity ( 𝑗 ) of

the encryptor in computing the masking key, which changes the

scheme as 𝑘 = H( 𝑗, 𝑁 , 𝑋Y ). To illustrate we provide a simple flow

for our toy HiSE scheme in Figure 2.

4 NOTATION AND PRELIMINARIES
We use N to denote the set of positive integers, and [𝑛] to denote

the set {1, 2, . . . , 𝑛} (for 𝑛 ∈ N). We denote the security parameter

by ^ . We assume that, every algorithm takes ^ as an implicit input

and all definitions work for any sufficiently large choice of ^ ∈ N.
We will omit mentioning the security parameter explicitly except a

few places. Throughout the paper we use the symbol ⊥ to denote

invalidity; in particular, if any algorithm returns ⊥ that means the

algorithm failed or detected an error in the process.

We use negl to denote a negligible function; a function 𝑓 : N→
N is considered negligible is for every polynomial 𝑝 , it holds that

𝑓 (𝑛) < 1/𝑝 (𝑛) for all large enough values of 𝑛. We use D(𝑥) =: 𝑦
or 𝑦 := D(𝑥) to denote the evaluation of a deterministic algorithm

D on input 𝑥 to produce output 𝑦. Often we use 𝑥 := var to denote

the assignment of a value var to the variable 𝑥 . We write R(𝑥) → 𝑦

or 𝑦 ← R(𝑥) to denote evaluation of a randomized algorithm R on

input 𝑥 to produce output 𝑦. R can be determinized as R(𝑥 ; 𝑟 ) =: 𝑦,
where 𝑟 is the explicit randomness used by R.

We model computationally bounded adversaries by probabilistic

polynomial time (PPT) algorithms. Sometimes we say a particular

problem is computationally hard to imply that for any PPT adversary,

the probability of solving a random instance of that problem is

bounded by negl(^).
We denote a sequence of values or a tuple (𝑥1, 𝑥2, . . .) by a stan-

dard vector notation 𝒙 , and its 𝑖-th element is denoted by 𝒙 [𝑖] or
𝑥𝑖 . |𝒙 | denotes the number of elements in the vector 𝑥 . For a tuple

𝒙 = (𝑥1, . . . , 𝑥ℓ ), we write 𝒙∗ = (𝑥∗
1
, . . . , 𝑥∗

ℓ
) to denote another tuple

for which 𝑥∗
𝑖
∈ {𝑥𝑖 ,⊥} for 𝑖 ∈ [ℓ]. A list can be thought of as an

ordered set; the 𝑖-th element of a list 𝐿 is denoted by 𝐿[𝑖]. Lists and
10
One may wonder we do not commit to 𝑟𝑖 instead of 𝑔

𝑟𝑖
1
. We remark that it using 𝑟𝑖

in the clear would cause a technical issue in the privacy proof, in that the reduction to

ℓ-masked BDDH needs to implicitly set an unknown secret to 𝑟𝑖 . For more details we

refer to Appendix E.2

vectors can be used interchangeably. Concatenation of two strings

𝑎 and 𝑏 is denoted by (𝑎, 𝑏), or (𝑎, 𝑏).
We denote 𝜔 ∈ {0, 1}≤ℓ to denote that 𝜔 is a bitstring with

maximum length ℓ . For any integer 𝑘 ∈ N we define its ℓ-digit

binary expression as Bin(𝑘, ℓ) ∈ {0, 1}ℓ . For a binary string 𝜔 ∈
{0, 1}ℓ for some integer ℓ , the truncated string with the first 𝑘 bits

of 𝜔 is denoted by 𝜔 |𝑘 . Also, for 𝜔 , the corresponding bit-string

with most significant ℓ − 1 bits are the same as 𝜔 and the last bit

flipped is denoted by LBF(𝜔).
We write [ 𝑗 : 𝑥] to denote that the value 𝑥 is private to party 𝑗 .

This is natirally extended to a set [𝑆 : 𝑥] which means all parties

𝑖 ∈ 𝑆 has 𝑥 . For a protocol 𝜋 , we write [ 𝑗 : 𝑧′] ← 𝜋 ( [𝑖 : (𝑥,𝑦)], [ 𝑗 :
𝑧], 𝑐) to denote that party 𝑖 has two private inputs 𝑥 and 𝑦; party 𝑗

has one private input 𝑧; all the other parties have no private input;

𝑐 is a common public input; and, after the execution, only 𝑗 re-

ceives a private output 𝑧′. We write [𝑖 : 𝑥𝑖 ]∀𝑖∈𝑆 or more compactly

J𝒙K𝑆 to denote that each party 𝑖 ∈ 𝑆 has a private value 𝑥𝑖 . For a

description on our communication model and protocol structure

see Appendix A. For notations of security games and oracles we

refer to Appendix B. For definition of Shamir’s secret sharing see

Appendix C.

4.1 Bilinear Pairing and our Assumptions
Our construction uses an asymmetric bilinear pairing. We consider

three groups G1,G2,G𝑇 all are of prime order 𝑞. A bilinear pairing

𝑒 : G1×G2 → G𝑇 is an efficiently computable map which is bilinear
and non-degenerate. We prove the security of our scheme under

XDH and a new assumption, which we call ℓ-masked BDDH.

− External Diffie-Hellman (XDH): Given uniform random gener-

ators 𝑔1 ∈ G1, 𝑔2 ∈ G2 and values 𝑔𝑎
2
, 𝑔𝑏

2
for uniform random

𝑎, 𝑏 ∈ Z𝑞 , it is computationally hard to distinguish between

𝑔𝑎𝑏
2

and a uniform random ℎ ∈ G2.
− ℓ-masked BDDH.Given uniform randomgenerators𝑔1 ∈ G1, 𝑔2 ∈
G2, 𝑔𝑇 ∈ G𝑇 and elements 𝑔𝑎

1
, 𝑔𝑏

1
, {𝑔𝑑𝑖

2
, 𝑔

𝑐+𝑏𝑑𝑖
2

}𝑖∈[ℓ ] for uni-
form random 𝑎, 𝑏, 𝑐, 𝑑𝑖←$

Z𝑞 it is computationally hard to dis-

tinguish 𝑔𝑎𝑐
𝑇

from a uniform random element in G𝑇 . While ℓ

is a parameter which is always bounded by a polynomial in ^ .

Note that, breaking this is easier than breaking BCDH, because

one can always compute 𝑒 (𝑔𝑎
1
, 𝑔

𝑐+𝑏𝑑𝑖
2
) = 𝑔

𝑎𝑐+𝑎𝑏𝑑𝑖
𝑇

, and break-

ing BCDH, compute 𝑔
𝑎𝑏𝑑𝑖
𝑇

. However, the other direction is not

clear. Nevertheless, we show in Appendix G this assumption

holds in the generic group model.

4.2 Message and Cipher trees
We consider a new data structure for accessing a tuple of plain-

texts and ciphertexts with a labeled binary tree. We assume that

the nodes of the binary-tree are indexed by a binary string with

prefix-ordering. Assuming the root has depth 0, and the leaves have

depth 𝑑 , any node at depth 𝑑′ ∈ {0, . . . , 𝑑} is indexed by a binary

string 𝜔 ∈ {0, 1}𝑑 ′ . For each node with index 𝜔 , its left-child is

indexed by 𝜔, 0 and right child is indexed by 𝜔, 1, and this is done

recursively starting from the root which is indexed by empty-string

Y. Furthermore, each node is additionally labeled by a ^-bit string

6



Storage

Client-1

𝑘1

Client-7

𝑘7

Server-2

𝑘2

Server-3

𝑘3

Server-4

𝑘4

Server-5

𝑘5

Server-6

𝑘6

(4, 𝑋Y )

H (1, 4, 𝑋Y )𝛼2

(4, 𝑋Y ) H (1, 4, 𝑋Y )𝛼3

(4, 𝑋Y )

H (1, 4, 𝑋Y )𝛼4 (1, 4, 𝑋Y , 𝑋0)

H(1, 4, 𝑋Y )𝛼4H(𝑋0 )𝛽4
(1, 4, 𝑋Y , 𝑋0) H(1, 4, 𝑋Y )𝛼5H(𝑋0 )𝛽5

(1, 4, 𝑋Y , 𝑋0)
H(1, 4, 𝑋Y )𝛼6H(𝑋0 )𝛽6

̂𝑪

̂𝑪0

Group Encryption of (𝑚1,𝑚2,𝑚3,𝑚4) by encryptor Client-1

− Sample random values 𝜌1, 𝜌2, 𝜌3, 𝜌4←$
Z𝑞 and 𝑟1, 𝑟2, 𝑟3, 𝑟4←$

Z𝑞 .

Compute Merkle-tree 𝑿 using hash Hmt
on the set

((𝑚1, 𝜌1,H′′ (𝑔𝑟1
1
) ), . . . , (𝑚4, 𝜌4,H′′ (𝑔𝑟4

1
) )) and compute the

commitment 𝑋Y to 𝑀𝑇 . (cf. Fig. 1).

− Send (4, 𝑋Y ) to servers {2, 3, 4}. Each server returns

𝑧𝑖 := H(1, 4, 𝑋Y )𝛼𝑖 .
− Compute 𝑧 :=

∏
𝑖 𝑧

_𝑖
𝑖

by Lagrange using partial values.

− For (𝑚1, . . . ,𝑚4), locally compute the ciphertexts as:

𝑐1 := (𝑔𝑟1
1
,H(𝑋0 )𝑟1 ,H(𝑋00 )𝑟1 , (𝑚1, 𝜌1,H′′ (𝑔𝑟1

1
) ) ⊕ H′ (𝑒 (𝑔𝑟1

1
, 𝑧 ) ) ) ,

𝑐2 := (𝑔𝑟2
1
,H(𝑋0 )𝑟2 ,H(𝑋01 )𝑟2 , (𝑚2, 𝜌2,H′′ (𝑔𝑟2

1
) ) ⊕ H′ (𝑒 (𝑔𝑟2

1
, 𝑧 ) ) ) ,

𝑐3 := (𝑔𝑟3
1
,H(𝑋1 )𝑟3 ,H(𝑋10 )𝑟3 , (𝑚3, 𝜌3,H′′ (𝑔𝑟3

1
) ) ⊕ H′ (𝑒 (𝑔𝑟3

1
, 𝑧 ) ) ) ,

𝑐4 := (𝑔𝑟4
1
,H(𝑋1 )𝑟4 ,H(𝑋11 )𝑟4 , (𝑚4, 𝜌4,H′′ (𝑔𝑟4

1
) ) ⊕ H′ (𝑒 (𝑔𝑟4

1
, 𝑧 ) ) )

− store ̂𝑪 := (1,𝑿 , Y, (00, 𝑐1 ), (01, 𝑐2 ), (10, 𝑐3 ), (11, 𝑐4 ) ) .

Group Decryption of ̂𝑪0 by decryptor Client-7

− Parse ̂𝑪0 as (1,𝑿 , 0, (00, 𝑐1 ), (01, 𝑐2 ) ) . Let 𝑁 denote the no.

of leaves of 𝑿 . Here 𝑁 = 4.

− Send (1, 4, 𝑋Y ) and the value 𝑋0 at node-0 to servers

{4, 5, 6}. Each server 𝑖 computes and returns

𝑧𝑖 = H(1, 4, 𝑋Y )𝛼𝑖H(𝑋0 )𝛽𝑖
− Compute 𝑧 =

∏
𝑖 𝑧

_𝑖
𝑖

by Lagrange using partial values.

− Decrypt ciphertexts 𝑐1 and 𝑐2 locally as follows:

− Parse 𝑐1 as (𝑅1, 𝑆1,0, 𝑆1,00, 𝐸1 ) .
− Compute 𝐷 := 𝑒 (𝑅1, 𝑧 ) · 𝑒 (𝑔𝛽

1
, 𝑆1,0 )−1

− Compute (𝑚1, 𝜌1, ℎ1 ) := 𝐸1 ⊕ H′ (𝐷 ) .
− Verify if 𝑋00 = Hmt (𝑚1, 𝜌1, ℎ1 ) and if H′′ (𝑅1 ) = ℎ1. If

both succeed, then output 𝑚1; else output ⊥.
− Perform the above steps for 𝑐2.

Figure 2: Flow of HiSE protocol for 𝑛 = 7 and 𝑡 = 4. Encryptor client (id-1) encrypts messages (𝑚1,𝑚2,𝑚3,𝑚4 ) in group using 𝑡 − 1 servers 2, 3, 4,
and decryptor client (id-7) decrypts 𝑐 − 1, 𝑐2 in group ̂𝑪𝜔 for 𝜔 = 0 using servers 4, 5, 6 – both using a single interaction. Fig.1 illustrates the
corresponding Merkle-tree structure.

or tags.
11

The tag at node 𝜔 is denoted by 𝑋𝜔 . The tree is denoted

by 𝑿 = (𝑋Y , 𝑋0, 𝑋1, 𝑋01, . . . , 𝑋𝜔 , . . .) which contains a sequence of

tags starting from the root and is ordered according to increasing

order of magnitude of 𝜔 – we simply assume 𝜔 can be computed

efficiently from each tag 𝑋𝜔 .

Let 𝒎 = (𝑚1, . . . ,𝑚𝑁 ) be a tuple of messages. For simplicity

we assume 𝑁 = 2
𝑑
for some integer 𝑑 – this is without loss of

generality. Then consider an associated binary tree 𝑿 , such that

each leaf is associated with a message; therefore,𝑚𝑖 is associated

with node Bin(𝑖 − 1). With respect to this binary tree we say all

messages𝑚1, . . . ,𝑚𝑁 are covered by the root of the tree. For any

arbitrary node 𝜔 , let (𝑚′
1
, . . .𝑚′

ℓ
) ⊆ (𝑚1, . . . ,𝑚𝑁 ) be all messages

that are associated with the leaves within the sub-tree rooted at 𝜔 ,

and these are the only such messages. Then we say the messages

(𝑚′
1
, . . . ,𝑚′

ℓ
) are covered by node 𝜔 , and are denoted by 𝒎𝜔 . We

can naturally extend this such that the set is covered by multiple

nodes.

For any node𝜔 , we call the tuple (𝑿 , 𝜔, ((𝜔1,𝑚1), . . . , (𝜔ℓ ,𝑚ℓ )))
a message-tree, which is denoted by ̂𝑴𝜔 or just ̂𝑴 when the node

is not specified. Note that, here we have ℓ = 2
𝑑−𝑑 ′

, where 𝑑′ is the
depth of node 𝜔 ∈ {0, 1}𝑑 ′ . For each pair (𝜔𝑖 ,𝑚𝑖 ), 𝜔𝑖 denotes the

11
Looking ahead, these tags will be the hash outputs of a Merkle-tree constructed

based on the commitments of the messages.

index of the leaf-node, to which𝑚𝑖 corresponds to. For the same

tree 𝑿 , consider two message-trees ̂𝑴𝜔 and ̂𝑴𝜔 ′ such that 𝜔 is

a prefix of 𝜔 ′, and therefore appears in the sub-tree rooted at 𝜔 .

We then say ̂𝑴𝜔 ′ is a sub-message-tree of ̂𝑴𝜔 and denote by the

ordered relation ̂𝑴𝜔 ′ ≺ ̂𝑴𝜔 – this naturally extends to ̂𝑴𝜔 ′ ⪯ ̂𝑴𝜔

when 𝜔 ′ can possibly be the same as 𝜔 . If 𝜔 and 𝜔 ′ are such that

no string is prefix of the other, then we can define a message-forest
as ̂𝑴𝜔,𝜔 ′ := ̂𝑴𝜔 ∪ ̂𝑴𝜔 ′ .

Once encrypted, each message 𝑚𝑖 yields a corresponding ci-

phertext 𝑐𝑖 . The tuple (𝑿 , 𝜔, (𝑐1, . . . , 𝑐ℓ )) is called a cipher-tree

and is denoted by ̂𝑪𝜔 or ̂𝑪 . The message-tree notations described

above naturally extend to this setting. For a message-tree ̂𝑴𝜔 , the

messages that are associated with the leaves under the sub-tree

rooted at node 𝜔 are compactly denoted by 𝒎
̂𝑽𝜔

. Similarly the

ciphertext tuple under 𝜔 is compactly denoted by 𝒄
̂𝑽𝜔

. A mes-

sage/cipher tree can be extended to include auxiliary information

as, e.g. ̂𝑪 = (aux,𝑿 , 𝜔, (𝜔1, 𝑐1), . . .). Looking ahead, in our con-

structions we use identity of an encryptor as auxwithin a produced

cipher-tree.

For better understanding let us take a look at an example, pro-

vided in Figure 3. The entire message-tree is of depth 3, and has

8 associated messages (𝑚1, . . . ,𝑚8). Within this, the message-tree
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Y

1

11

111

𝑚8

110

𝑚7

10

101

𝑚6

100

𝑚5

0

01

011

𝑚4

010

𝑚3

00

001

𝑚2

000

𝑚1

Figure 3: A plaintext message tuple 𝒎 corresponds to a tree
of depth 3. A few sub-trees are marked for exposition. We
implicitly assume each node 𝜔 has a label 𝑋𝜔 .

rooted at node-01, for example, is written as (𝑿 , 01, (010,𝑚3), (011,𝑚4)).
Among these, the elements (𝑚1,𝑚2,𝑚5,𝑚6,𝑚7,𝑚8) are covered by
node-00 and node-1. So, ̂𝑴00,1 is a message forest (marked with

dotted blue). The message tree ̂𝑴00 is a sub-message-tree of ̂𝑴0

(marked with dotted red), and hence ̂𝑴00 ≺ ̂𝑴0.

4.3 Merkle Tree Commitments
We will be using a variant of Merkle-tree commitments in our

constructions. Below we directly present the construction along

with syntax. We also discuss the security properties offered by

Merkle-tree commitments, which we use to prove the security of

our construction.

LetH : {0, 1}∗ → {0, 1}^ be a hash function (to be modeled as

random oracles). Then for any integer 𝑁 = 2
𝑑
for an integer 𝑑 ,12 a

Merkle-tree commitment is defined as a triple of deterministic al-

gorithms (MTCom,MTOpen,MTVer) with following descriptions.

MTCom(𝑣1, . . . , 𝑣𝑁 ) → 𝑿 . On input 𝑁 values 𝑣1, . . . , 𝑣𝑁 do

as follows:

− set 𝑑 := log(𝑁 )
− set 𝐿 := 𝑁 and for 𝑖 ∈ [𝑁 ] set 𝑥𝑖,𝑑 := 𝑣𝑖 .

− for 𝑗 ∈ [𝑑] do :

− for 𝑖 ∈ [𝐿] :
− set 𝜔 := Bin(𝑖 − 1, 𝑑 − 𝑗 + 1)
− set 𝑋𝜔 := 𝑥𝑖,𝑑− 𝑗+1.
− set 𝑥𝑖,𝑑− 𝑗 := H(𝑥2𝑖−1,𝑑− 𝑗+1, 𝑥2𝑖,𝑑− 𝑗+1).
− set 𝐿 := 𝐿/2.

− return 𝑿 := (𝑋Y , . . . , 𝑋11...1).
MTOpen(𝑿 , 𝜔) → (𝑿𝜔 ,𝑿𝜔 ). On input a Merkle-tree 𝑿 and

any node 𝜔 do as follows:

− Let 𝑿𝜔 denotes the sub-tree rooted at 𝜔 .

− Define 𝑿𝜔 as follows:

− set 𝑿𝜔 := {𝑋Y , 𝑋𝜔 }.
− for 𝑗 ∈ [|𝜔 |] do :

− set 𝑿𝜔 := 𝑿𝜔 ∪ {𝑋LBF(𝜔 | 𝑗 ) }
− return (𝑿𝜔 ,𝑿𝜔 ).

12
For simplicity we assume 𝑁 to be power of 2. If not, we can simply use padding to

ensure this holds. So, this is without loss of generality.

MTVer(𝜔,𝑿𝜔 ,𝑿𝜔 ) → 1/0.
− Check the consistency of the sub-tree 𝑿𝜔 with respect

to the node 𝑋𝜔 as root.

− Check the consistency of root 𝑋Y of the full-tree using

𝑋𝜔 and the siblings contained within 𝑿𝜔 .

− If both checks pass, output 1, else output 0.

Correctness and Binding. The correctness property of MT com-

mitments can be seen straightforwardly – correctness requires that

if the commitment is done correctly then an opening would verify

correctly; we do not formalize this. The binding holds when for any

security parameter ^ ∈ N and any tuple 𝒗 := (𝑣1 . . . , 𝑣𝑁 ) ∈ {0, 1}∗,
any PPT adversary A can win the following security game with at

most negl(^) probability.
− Define a hash function H : {0, 1}∗ → {0, 1}^ to be modeled

as random oracles.

− run (𝜔,𝑿𝜔 ,𝑿𝜔 ) ← AH (𝒗).
− set 𝑿 := MTCom(𝒗).
− run (𝑿 ′𝜔 ,𝑿 ′𝜔 ) := MTOpen(𝑿 , 𝜔).
− if (MTVer(𝜔,𝑿𝜔 ,𝑿𝜔 ) = 1) and (MTVer(𝜔,𝑿 ′𝜔 ,𝑿 ′𝜔 ) = 1))

then return 1; else return 0.

5 OUR DEFINITION: HIERARCHICAL
THRESHOLD SYMMETRIC ENCRYPTION
(HiSE)

Definition 5.1 (HiSE). A HiSE scheme consists of a tuple of algo-

rithms/protocols (Setup,DistGrEnc,DistGrDec) with the follow-

ing description.

− Setup(1^ , 1𝑛, 1𝑡 ) → (𝑝𝑝, J𝒔𝒌K[𝑛] ) . This is a non-interactive

algorithm
13

which takes as input the security parameter ^,

the total number of parties 𝑛 and a threshold value 𝑡 ≤ 𝑛. It

generates the public parameters 𝑝𝑝 and shares of secret key

J𝒔𝒌K[𝑛] .
− DistGrEnc(𝑝𝑝, J𝒔𝒌K[𝑛] , [ 𝑗 : 𝒎, 𝑆]) → ([ 𝑗 : ̂𝑪/⊥], [𝑆 : 𝑁,𝑋Y ]).

This is an interactive protocol, in that the party 𝑗 has a tuple

𝒎 of messages and (identities of) a set of parties 𝑆 ⊆ [𝑛] as
input and every other party 𝑖 participates with her key share

𝑠𝑘𝑖 . At the end of the protocol party 𝑗 receives a cipher-tree ̂𝑪
(or ⊥ denoting failure) as the output, and every party in set 𝑆

receives the root 𝑋Y of a message-tree and size 𝑁 of 𝒎.

− DistGrDec(𝑝𝑝, J𝒔𝒌K[𝑛] , [ 𝑗 : ̂𝑪, 𝑆]) → ([ 𝑗 : 𝒎/⊥], [𝑆 : 𝑁,𝑋Y , 𝑋𝜔 ]).
This is an interactive protocol, in that the party 𝑗 has a cipher-

tree ̂𝑪 and (identities of) a set of parties 𝑆 ⊆ [𝑛] as input and
every other party 𝑖 participates with her key share 𝑠𝑘𝑖 . At

the end of the protocol party 𝑗 receives a tuple of decrypted

messages 𝒎 (or ⊥ denoting failure) as the output and every

party in the set 𝑆 receives the root 𝑋Y and the size of messages

𝑁 in the cipher tree ̂𝑪 .

They are required to satisfy the following consistency guarantee.

Consistency: For any^, 𝑛, 𝑡, 𝑁 ∈ N such that 𝑡 ≤ 𝑛, all (J𝒔𝒌K[𝑛] , 𝑝𝑝)
output by Setup(1^ , 1𝑛, 1𝑡 ), for any sequence of messages

𝒎 = 𝑚1 . . . ,𝑚𝑁 , any 𝜔 ∈ {0, 1}≤⌈log𝑁 ⌉ , two sets 𝑆, 𝑆 ′ ⊂
[𝑛] such that |𝑆 |, |𝑆 ′ | ≥ 𝑡 , and any two parties 𝑗 ∈ 𝑆, 𝑗 ′ ∈ 𝑆 ′,

13
However, in a full decentralized setting we can deploy a distributed key-generation

(DKG) protocol to realize it interactively,.
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if all the parties behave honestly, then there exists a negli-

gible function negl for which the following probability is

at least 1 − negl(^).

Pr

[
( [ 𝑗 : 𝒎𝜔/⊥], [𝑆 : 𝑁,𝑋Y , 𝑋𝜔 ]) ← DistGrDec(J𝒔𝒌K[𝑛] , [ 𝑗 ′ : ̂𝑪𝜔 , 𝑆′]) |

( [ 𝑗 : ̂𝑪/⊥], [𝑆 : 𝑁,𝑋Y ]) ← DistGrEnc(J𝒔𝒌K[𝑛] , [ 𝑗 : 𝒎, 𝑆])
]

where the probability is over the random coin tosses of the

parties involved in DistGrEnc and DistGrDec.

Let us now define the security of a HiSE scheme. Similar to prior

works [7, 20] the overall security requirement is captured by three

distinct properties: correctness, message-privacy and authenticity,
where correctness and authenticity supports stronger versions. We

defer the stronger definitions to Appendix D.1.

Definition 5.2 (Security of HiSE). A H iSE scheme is said to be

secure if it satisfies correctness (Def. 5.3), message-privacy (Def 5.4)
and authenticity (Def 5.5).

Correctness. Intuitively, a HiSE scheme is correct whenever a le-

gitimately produced ciphertext (by executing a DistGrEnc protocol,
possibly in presence of malicious parties), when decrypted (again,

potentially in presence of malicious parties) yield either the actual

message, or ⊥ – in particular, the malicious parties can not make it

successfully decrypt to something other than the actual message

without getting detected.

Definition 5.3 (Correctness). A HiSE scheme is correct, if for any

^, 𝑛, 𝑡 ∈ N and any PPT adversary A, there exists a negligible

function negl such that the game HiSE-CorA , defined in Fig. 4,

outputs 1 with probability at most negl(^).

Message privacy. Message privacy is naturally defined as an ex-

tension of ATSE message-privacy [20]. In particular, the adversary

is given access to an “honest” decryption oracle Ohs-mp-dc
, in which

even the challenge cipher-tree ̂𝑪★ can be queried, but the decryp-

tion takes place at an honest party’s disposal, and the result is not

explicitly given to the adversary – this is similar to both DiSE [7]

and ATSE [20]. Finally, just like ATSE, the adversary is provided

a special decryption oracle Ohs-mp-ch-dc
which works specifically

on the challenge cipher-tree, but only the part which is common

to both the challenge message vectors – this captures the intuition

that if the attacker gets to decrypt part of the cipher-tree on a node,

the messages that are not covered by that node remains completely

hidden. The definition is formally presented next.

Definition 5.4 (Message privacy). A HiSE scheme satisfies mes-

sage privacy if for any integers ^, 𝑛, 𝑡 ∈ N such that 𝑛 ≥ 𝑡 and any

PPT adversary A, there exists a negligible function negl such that:��
Pr

[
HiSE-MsgPrivA (1^ , 1𝑛, 1𝑡 , 0) = 1

]
−

Pr

[
HiSE-MsgPrivA (1^ , 1𝑛, 1𝑡 , 1) = 1

] �� ≤ negl(^),
where the security game HiSE-MsgPriv is described in Fig. 5.

Authenticity. The authenticity definition is a natural extension

from DiSE and ATSE, but with an important difference. Here, it

captures that an encryptor may produce exactly 𝑁 valid cipher-

texts by either an encryption query or a decryption query, but it

has to be a “fresh” one with respect to the Merkle-tree root 𝑋Y

Game HiSE-CorA (1^ , 1𝑛, 1𝑡 ):
− run (J𝒔𝒌K𝑛, 𝑝𝑝) ← Setup(1^ , 𝑛, 𝑡).
− set CHAL,OUT := 0.

− run 𝐶 ← A(𝑝𝑝);
require 𝐶 ⊂ [𝑛] and |𝐶 | < 𝑡 .

− run AOhs-cor-en,Ohs-cor-dc,Ohs-cor-ch ({𝑠𝑘𝑖 }𝑖∈𝐶 ).
− return OUT.

Oracle Ohs-cor-en ( 𝑗,𝒎, 𝑆):
require 𝑗 ∈ 𝑆.

− run ( [ 𝑗 : op], . . .) ← DistGrEnc(𝑝𝑝, J𝒔𝒌K𝑆 , [ 𝑗 : 𝒎, 𝑆]).
− if 𝑗 ∉ 𝐶 then return op.

Oracle Ohs-cor-dc ( 𝑗, ̂𝑪, 𝑆):
require: 𝑗 ∈ 𝑆 .

− run ( [ 𝑗 : op], . . .) ← DistGrDec(𝑝𝑝, J𝒔𝒌K𝑆 , [ 𝑗 : ̂𝑪, 𝑆]).
− if 𝑗 ∉ 𝐶 then return op.

Oracle Ohs-cor-ch ( 𝑗, 𝑆, 𝑗 ′, 𝑆′,𝒎 = (𝑚1 . . . ,𝑚𝑁 ), 𝜔):
require 𝑗 ∈ 𝑆 \ 𝐶 and 𝑗 ′ ∈ 𝑆 ′ \ 𝐶 and 𝜔 ∈ {0, 1}⌈log𝑁 ⌉
and CHAL = 0 and OUT = 0.

− set CHAL := 1.

− run ( [ 𝑗 : op], . . .) ← DistGrEnc(𝑝𝑝, J𝒔𝑘K𝑆 , [ 𝑗 : 𝒎, 𝑆]).
− if op = ⊥ then set OUT := 0;

else set ̂𝑪 := op and do :

− run ( [ 𝑗 ′ : op′], . . .) ← DistGrDec(𝑝𝑝, J𝒔𝑘K𝑆 , [ 𝑗 ′ :

̂𝑪𝜔 , 𝑆′]).
− if op′ = 𝒎∗ then set OUT := 0; else set OUT := 1.

Figure 4: The correctness game for HiSE.

where the Merkle-tree has 𝑁 leaves (and hence commits to 𝑁 mes-

sages). Allowing decryption query is necessary here, because in

our construction, via a decryption query for any node, one obtains

sufficient information to encrypt all 𝑁 messages that are committed

through 𝑋Y . However, any other encryption/decryption query for

the same Merkle-tree with root 𝑋Y would not give any additional

information to produce more ciphertexts. This is captured by main-

taining the list 𝐿root which stores the roots of the Merkle-tree, and

it is only counted (𝑁 times) via the counter ct when it appears for

the first time in either Ohs-au-en or Ohs-au-dc. Also, we crucially rely
on the fact that in interactive protocols DistGrEnc and DistGrDec
all parties in the set 𝑆 receives 𝑋Y and 𝑁 (plus the node label 𝑋𝜔 in

DistGrDec, which is not used).

Definition 5.5 (Authenticity). An HiSE scheme satisfies authen-
ticity if for any integers ^, 𝑛, 𝑡 , and any PPT adversary A, the prob-

ability that the security game HiSE-Auth depicted at Fig. 6 outputs

1 is at most negl(^).

6 OUR HISE CONSTRUCTION
We present our base HiSE construction in Figure 7. The construc-

tion is based on asymmetric bilinear pairing of Type-3 (no easy

isomorphism). We show that our construction is secure (as per Defi-

nition D.1) from XDH and ℓ-masked BDDH over the bilinear group.

Formally we present the following theorem, a proof of which is

found in Appendix E.
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Game HiSE-MsgPrivA (1^ , 1𝑛, 1𝑡 , 𝑏):
− set CHAL := 0.

− set 𝒄★ := ∅.
− setM := ∅.
− run (J𝒔𝒌K𝑛, 𝑝𝑝) ← Setup(1^ , 𝑛, 𝑡).
− run 𝐶 ← A(𝑝𝑝);

require 𝐶 ⊂ [𝑛] and |𝐶 | < 𝑡 .

− run 𝑏′ ← AOhs-mp-en,Ohs-mp-dc,Ohs-mp-ch,Ohs-mp-ch-dc ({𝑠𝑘𝑖 }𝑖∈𝐶 )
− return 𝑏′.

Oracle Ohs-mp-en ( 𝑗,𝒎, 𝑆):
require 𝑗 ∈ 𝑆 .

− run ( [ 𝑗 : op], . . .) ← DistGrEnc(𝑝𝑝, J𝒔𝒌K[𝑛] , [ 𝑗 : 𝒎, 𝑆]).
− if 𝑗 ∉ 𝐶 then return op.

Oracle Ohs-mp-dc ( 𝑗, ̂𝑪, 𝑆):
require 𝑗 ∈ 𝑆 \𝐶 .

− run ( [ 𝑗 : op], . . .) ← DistGrDec(𝑝𝑝, J𝒔𝒌K[𝑛] , [ 𝑗 : ̂𝑪, 𝑆]).
Oracle Ohs-mp-ch ( 𝑗★,𝒎0,𝒎1, 𝑆

★):
require 𝑗★ ∈ 𝑆 \𝐶 and |𝒎0 | = |𝒎1 | and CHAL = 0.

− set CHAL := 1.

− for 𝑖 ∈ [𝑁 ] : if 𝒎0 [𝑖] = 𝒎1 [𝑖] setM :=M ∪ {𝒎0 [𝑖]}.
− run ( [ 𝑗★ : op], . . .) ← DistGrEnc(𝑝𝑝, J𝒔𝑘K𝑛, [ 𝑗★ :

𝒎𝑏 , 𝑆
★]).

− if op = ⊥ return ⊥; else do :

− set ̂𝑪★ := op
− return ̂𝑪★.

Oracle Ohs-mp-ch-dc ( 𝑗, ̂𝑪, 𝑆):
require 𝑗 ∈ 𝑆 and CHAL = 1 and ̂𝑪 ⪯ ̂𝑪★ and 𝒎

̂𝑪 ∈ M.

− run ( [ 𝑗 : op], . . .) ← DistGrDec(𝑝𝑝, J𝒔𝒌K[𝑛] , [ 𝑗 : 𝑐, 𝑆]).
− if 𝑗 ∉ 𝐶 return op.

Figure 5: The HiSE message-privacy game.

Theorem 6.1. Our construction (Fig. 7) is a secure HiSE scheme
assuming XDH and ℓ-masked BDDH over the underlying bilinear
pairing in the programmable random oracle model.

We defer the strong HiSE construction to Appendix D.2.

7 EXPERIMENTAL EVALUATION
In this section, we compare the strong versions

14
of HiSE with

ATSE [20] on a few dimensions – latency, throughput, communi-

cation (bandwidth), and ciphertext expansion – while varying the

number of servers𝑛, threshold 𝑡 , and the number of messages𝑁 in a

group (to manifest the benefits of bulk encryption and decryption).

Implementation. We implement theHiSE scheme in Rust (roughly

1K LOC), using the BLS12-381 pairing-based curve implemented

in [8]. For comparison, we also implement DiSE [7] and ATSE [20].

The code for all three schemes is open-sourced at https://github.

com/rsinha/hise.

14
As expalined in Remark 7.5 of ATSE [21], the stronger notion makes more sense in

our application to enterprise data encryption.

Game HiSE-AuthA (1^ , 1𝑛, 1𝑡 ):
− set ct := 0 and 𝐿ctxt := ∅ and 𝜏 := 0 and 𝐿root := ∅.
− set SUCC := 0 and CHAL := 0.

− run (J𝒔𝒌K𝑛, 𝑝𝑝) ← Setup(1^ , 𝑛, 𝑡).
− run 𝐶 ← A(𝑝𝑝);

require 𝐶 ⊂ [𝑛] and |𝐶 | < 𝑡 .

− run AOhs-au-en,Ohs-au-dc,Ohs-au-t-dc,Ohs-au-ch ({𝑠𝑘𝑖 }𝑖∈𝐶 ).
− return SUCC.

Oracle Ohs-au-en ( 𝑗,𝒎, 𝑆):
require 𝑗 ∈ 𝑆 .

− run ( [ 𝑗 : ̂𝑪/⊥], [𝑆 : 𝑋Y , 𝑁 ]) ← DistGrEnc(𝑝𝑝, J𝒔𝒌K[𝑛] ,
[ 𝑗 : 𝒎, 𝑆]).

− if 𝑗 ∉ 𝐶 then 𝜏 := 𝜏 + 1 and 𝐿ctxt [𝜏] := {op};
else if 𝑋Y ∉ 𝐿root then :

− set 𝐿root := 𝐿root ∪ 𝑋Y .

− set ct := ct + 𝑁 · |𝑆 \𝐶 |.
Oracle Ohs-au-dc ( 𝑗, ̂𝑪𝜔 , 𝑆):
require: 𝑗 ∈ 𝑆 .

− run ( [ 𝑗 : 𝒎/⊥], [𝑆 : 𝑋Y , 𝑋𝜔 , 𝑁 ]) ← DistGrDec(𝑝𝑝,
J𝒔𝒌K[𝑛] , [ 𝑗 : ̂𝑪𝜔 , 𝑆]).

− if 𝑗 ∈ 𝐶 and 𝑋Y ∉ 𝐿root then :

− set 𝐿root := 𝐿root ∪ 𝑋Y .

− set ct := ct + 𝑁 · |𝑆 \𝐶 |.
Oracle Ohs-au-t-dc ( 𝑗, 𝑖, 𝜔, 𝑆):
require: 𝑗 ∈ 𝑆 \𝐶 and 𝑖 ∈ [𝜏]

− set ̂𝑪 := 𝐿ctxt [𝑖].
− run ( [ 𝑗 : op], . . .) ← DistGrDec(𝑝𝑝, J𝒔𝒌K[𝑛] , [ 𝑗 : ̂𝑪𝜔 , 𝑆]).

Oracle Ohs-au-ch (𝐿forge):
− set ℓ := ⌊ct/𝑔⌋, where 𝑔 := 𝑡 − |𝐶 |.
− set

(
( 𝑗1, 𝑆1, ̂𝑪𝜔1

), ( 𝑗2, 𝑆2, ̂𝑪𝜔2
) . . .)

)
:= 𝐿forge;

require CHAL = 0 and SUCC = 0 and 𝑗1, 𝑗2, . . . ∉

𝐶 and ∀ 𝑖 ≠ 𝑖′ : ̂𝑪𝑖 ⪯̸ ̂𝑪𝑖′ .
− set CHAL := 1 and 𝐿succ := ∅ and set 𝛾 := |𝐿forge |.
− for ∀ 𝑖 ∈ [𝛾] :
− run op← DistGrDec† (𝑝𝑝, J𝒔𝑘K𝑛, [ 𝑗𝑖 : ̂𝑪𝑖 , 𝑆𝑖 ]).
− ∀ 𝑘 ∈ [|op|] : if op𝑘 ≠ ⊥ then set 𝐿succ := 𝐿succ ∪
{op𝑘 };

− if |𝐿succ | > ℓ then set SUCC := 1.

Figure 6: Description of the authenticity game.

Experimental Setup. While larger parameters for 𝑛 and 𝑡 only

lead to larger improvements for HiSE, we nevertheless pick practi-

cal values of 𝑛 between 2 and 24, modeling a reasonable enterprise

deployment of a threshold KMS system. Experiments are run using

two server-grademachines, each equippedwith a 16-core Intel Xeon

E5-2640 CPU @ 2.6 Ghz and 64 GB DDR4 RAM. We use the follow-

ing setup for latency and throughput measurements, which, to our

understanding, provides a fair comparison between the schemes.

For the latency measurement, we run both the client and server(s)

on the same machine to avoid including the network latency, thus

computing a more accurate relative speedup. We report the end-to-

end latency, which includes: 1) the server computation (all servers
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Ingredients and Parameters

Public parameters:
− The security parameter ^.

− An efficiently computable Type-3 bilinear pairing 𝑒 : G1 × G2 → G𝑇 , where the groups G1,G2,G𝑇 are multiplicative groups and

each of prime order 𝑞; 𝑔1 and 𝑔2 are randomly chosen generators of G1 and G2 respectively.

− Descriptions of hash functionsH1 : {0, 1}∗ → {0, 1}^ ;H2 : {0, 1}∗ → G2;H3 : G𝑇 → {0, 1}poly(^ ) ;H4 : G1 → {0, 1}poly(^ )

Merkle-Tree Commitment. Consists of algorithms (MTCom,MTOpen,MTVer)
Construction

Setup(1^ , 1𝑛, 1𝑡 ) → (𝑝𝑝, J𝒔𝒌K[𝑛] ) :

1. Choose 𝛼, 𝛽 ←$ Z𝑞 and set 𝑠𝑘 := (𝛼, 𝛽). Set 𝑝𝑝 := 𝑔
𝛽

1
.

2. Compute the secret shares {(𝛼𝑖 , 𝛽𝑖 )}𝑖∈[𝑛] of pair (𝛼, 𝛽) using (𝑞, 𝑛, 𝑡)-SSS; and set 𝑠𝑘𝑖 := (𝛼𝑖 , 𝛽𝑖 ).

DistGrEnc(𝑝𝑝, J𝒔𝒌K[𝑛] , [ 𝑗 : 𝒎, 𝑆]) → ([ 𝑗 : ̂𝑪/⊥], [𝑆 : 𝑁,𝑋Y ]) : This is a two-round distributed protocol, that works as follows:

– Pre-computation (local). Let (𝑚1 . . . ,𝑚𝑁 ) := 𝒎 ∈ {0, 1}∗ and 𝑁 = 2
𝑑
. Party- 𝑗 chooses a randomnesses 𝜌𝑘←$

Z𝑞 and 𝑟𝑘←$
Z𝑞

for all 𝑘 ∈ [𝑁 ] and then generates the Merkle-Tree commitment 𝑿 := MTCom(𝑦1, . . . , 𝑦𝑁 ) where 𝑦𝑘 = H1 (𝑚𝑘 , 𝜌𝑘 ,H4 (𝑔𝑟𝑘
1
)). Let

𝑋Y be the root of 𝑿 .

– Round 1. Party- 𝑗 sends (𝑁,𝑋Y ) to all parties in set 𝑆 .

– Round 2. Each party 𝑖 ∈ 𝑆 sends back 𝑧𝑖 := H2 ( 𝑗, 𝑁 , 𝑋Y )𝛼𝑖 to party- 𝑗 .

– Finalize (local). Party- 𝑗 , once receives at least 𝑡 − 1 responses 𝑧𝑖 , computes 𝑧 :=
∏

𝑖 𝑧
_𝑖
𝑖

for appropriately chosen _𝑖s. Then do as

follows for all 𝑘 ∈ [𝑁 ]:
− Let 𝜔 := Bin(𝑘 − 1, 𝑑) be the binary vector encoding (of length 𝑑 bits).

− Compute ciphertext 𝑐𝑘 := (𝑔𝑟𝑘
1
,H2 (𝑋𝜔 |1 )𝑟𝑘 ,H2 (𝑋𝜔 |2 )𝑟𝑘 , . . . ,H2 (𝑋𝜔 )𝑟𝑘 , (𝑚𝑘 , 𝜌𝑘 ,H4 (𝑔𝑟𝑘

1
)) ⊕ H3 (𝑒 (𝑔𝑟𝑘

1
, 𝑧)))

− Set 𝜔𝑘 := 𝜔 .

Output the cipher-tree ̂𝑪 := ( 𝑗,𝑿 , Y, (𝜔1, 𝑐1), . . . , (𝜔𝑁 , 𝑐𝑁 )).

DistGrDec(𝑝𝑝, J𝒔𝒌K[𝑛] , [ 𝑗 : ̂𝑪, 𝑆]) → ([ 𝑗 : 𝒎/⊥], [𝑆 : 𝑁,𝑋Y , 𝑋𝜔 ]). : Party 𝑗 parses ̂𝑪 as ( 𝑗 ′,𝑿 , 𝜔, (𝜔1, 𝑐1), . . . , (𝜔ℓ , 𝑐ℓ )), and let 𝑁 be

the number of leaves in 𝑿 . Then:

− Round 1. Party- 𝑗 sends ( 𝑗 ′, 𝑁 , 𝑋Y , 𝑋𝜔 ) to all parties 𝑖 ∈ 𝑆 .
− Round 2. Each party-𝑖 , on receiving ( 𝑗 ′, 𝑁 , 𝑋Y , 𝑋𝜔 ), computes 𝑧𝑖 = H2 ( 𝑗 ′, 𝑁 , 𝑋Y )𝛼𝑖H2 (𝑋𝜔 )𝛽𝑖 and sends that back to party 𝑗 .

− Finalize (local). On receiving 𝑧𝑖 from at least 𝑡 − 1 parties, it computes 𝑧 =
∏

𝑖 𝑧
_𝑖
𝑖

including its own locally computed value.

Then for each 𝑘 ∈ [ℓ] do as follows:

− Let 𝜔 ′ := 𝜔𝑘 .

− Parse 𝑐𝑘 as (𝑅, 𝑆𝜔 ′ |1 , 𝑆𝜔 ′ |2 , . . . , 𝐸).
− Compute 𝐷 := 𝑒 (𝑅, 𝑧) · 𝑒 (𝑝𝑝, 𝑆𝜔 )−1
− Compute (𝑚𝑘 , 𝜌𝑘 , ℎ𝑘 ) := 𝐸 ⊕ H3 (𝐷).
− Verify if 𝑋𝜔 ′ = H1 (𝑚𝑘 , 𝜌𝑘 , ℎ𝑘 ) and ifH4 (𝑅) = ℎ𝑘 . If either fails set𝑚𝑘 := ⊥.

Finally verify the tree MTVer(𝑿 ) , if it fails then return ⊥, else output (𝑚1, . . . ,𝑚ℓ ).

Figure 7: Our HiSE construction

run in parallel) during which the client is waiting; 2) client’s verifi-

cation of responses from at 𝑡 servers (i.e., verifying the NIZK proofs),

and 3) client’s Lagrange interpolation to compute the group key,

and using the group key to encrypt all𝑚 messages in the group.

We use a single threaded implementation for latency measurement,

thus capturing the total amount of computation involved in pro-

cessing the𝑚 messages. For the throughput measurement, we run

all 𝑛 KMS server processes on one machine, and the client process

on the other machine – as both the ATSE and HiSE schemes are

embarrassingly parallel
15
, we let the client launch multiple concur-

rent threads for processing𝑚 messages in parallel, which uses all

available CPU cores. Moreover, we use an asynchronous RPC call

between the client and server, allowing both machines to operate

at peak compute, thus measuring the number of messages that can

be processed by all available CPU cores (with linear scaling).

Latency and Throughput Measurement. Tables 9 and 8 list the

latency and throughput measurements. In general, the experiments

support the expectations laid out when listing the algebraic opera-

tions in Table 1. A summary of our key findings are:

15
In both ATSE and HiSE, after interacting with the servers and deriving the group

key using Lagrange interpolation, the client can work on all𝑚 messages in parallel.
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𝑡 𝑛
Latency (sec) Throughput (messages / sec)

ATSE ATSE ATSE HiSE HiSE HiSE ATSE ATSE ATSE HiSE HiSE HiSE

1 msg 100 msg 10000 msg 1 msg 100 msg 10000 msg 1 msg 100 msg 10000 msg 1 msg 100 msg 10000 msg

𝑛/3
6 0.033 3.245 321.50 0.020 0.283 26.790 709.603 704.866 705.415 1304.25 5704.95 6010.98

12 0.055 5.515 546.11 0.023 0.289 26.978 351.567 355.763 352.807 853.25 5683.88 6007.55

18 0.078 7.859 774.79 0.028 0.290 26.631 236.889 235.753 234.892 639.98 5577.31 5996.60

24 0.101 10.092 1001.64 0.034 0.298 26.649 178.014 176.713 174.847 497.66 5451.92 5989.70

𝑛/2
6 0.043 4.382 435.76 0.018 0.281 26.689 447.499 469.188 453.500 1085.33 5753.81 5744.11

12 0.078 7.824 773.38 0.028 0.292 27.134 236.734 235.214 230.184 639.88 5506.14 5688.60

18 0.113 11.407 1111.68 0.038 0.304 27.048 154.294 153.583 154.677 440.40 5060.87 5471.84

24 0.147 14.674 1452.99 0.049 0.330 26.882 118.861 116.818 117.119 341.14 5222.01 6002.05

2𝑛/3
6 0.064 5.561 545.69 0.022 0.284 26.953 356.949 356.675 352.815 861.45 5710.81 5993.93

12 0.101 10.088 999.44 0.043 0.326 27.485 177.952 175.480 175.321 496.72 5456.26 5984.03

18 0.144 14.636 1454.70 0.048 0.314 27.115 118.463 117.505 117.843 350.42 5152.43 6005.81

24 0.189 19.243 1913.32 0.061 0.330 27.019 88.556 88.604 87.696 278.14 4996.83 6013.53

Figure 8: Decryption latency and throughput metrics with 32 byte messages.

𝑡 𝑛
Latency (sec) Throughput (messages / sec )

ATSE ATSE ATSE HiSE HiSE HiSE ATSE ATSE ATSE HiSE HiSE HiSE

1 msg 100 msg 10000 msg 1 msg 100 msg 10000 msg 1 msg 100 msg 10000 msg 1 msg 100 msg 10000 msg

𝑛/3
6 0.009 0.196 18.548 0.012 0.563 84.216 2120.57 8389.85 8700.05 1536.93 2895.89 1918.27

12 0.011 0.193 18.376 0.012 0.555 84.258 1628.12 8367.38 8646.25 1518.66 2934.35 1916.98

18 0.015 0.197 18.626 0.016 0.551 83.626 1142.36 8198.13 8658.69 1069.33 2893.78 1918.50

24 0.019 0.200 18.443 0.020 0.566 83.726 894.92 8037.85 8603.37 866.97 2886.77 1909.47

𝑛/2
6 0.009 0.195 18.496 0.010 0.555 84.018 2045.58 8462.63 8685.33 1900.68 2939.93 1914.85

12 0.015 0.197 18.484 0.016 0.554 84.181 1160.34 8192.47 8685.98 1108.65 2915.91 1898.08

18 0.021 0.207 18.574 0.022 0.567 84.263 807.37 7954.19 8697.87 783.65 2881.27 1912.41

24 0.027 0.209 18.511 0.028 0.572 84.192 620.32 7700.20 8669.60 598.19 2853.89 1913.25

2𝑛/3
6 0.011 0.196 18.586 0.012 0.555 84.180 1623.92 8360.25 8676.99 1448.37 2862.63 1924.12

12 0.019 0.204 18.492 0.021 0.557 84.212 895.71 8005.88 8629.22 868.31 2886.84 1927.32

18 0.027 0.208 18.578 0.028 0.568 84.686 620.95 7716.82 8622.98 602.49 2851.09 1927.92

24 0.036 0.220 18.600 0.038 0.673 84.230 420.36 7406.07 8704.37 464.60 2800.98 1927.25

Figure 9: Encryption latency and throughput metrics with 32 byte messages.

− Though the server interaction is slightly more expensive in

HiSE compared to ATSE, by amortizing it over𝑚 messages,

we see an order of magnitude improvement in latency and

throughput of the decryption procedure. Depending on the

parameter settings, we observe between 10-65× improvement

in throughput and 12-70× improvement in latency.

− The downside is that encryption has roughly 4.5× higher la-
tency and lower throughput, due to the logarithmic number

of additional group operations per message.

− We find an interesting tradeoff in the encryption procedure

of HiSE. While larger values of 𝑚 should further amortize

the one-time server interaction, the log(𝑚) overhead makes

encryption more inefficient with larger𝑚 – this is not the case

in decryption, which has constant number of operations for

each message. We find a sweet-spot roughly around𝑚 = 1000.

Ciphertext Expansion. In addition to the slower encryption, an-

other downside of HiSE is the ciphertext expansion due to the

logarithmic number of group elements; that said, both ATSE and

HiSE have log-size ciphertext already from the Merkle-tree opening

proof (root-to-leaf path). For a message of size 𝑥 bytes, the corre-

sponding ciphertext has 𝑥 + 64 + 48⌈𝑙𝑜𝑔2 (𝑚)⌉ bytes – we have 64

bytes from xor’d encoding of 𝜌𝑘 ,H4 (𝑔𝑟𝑘
1
), and 48-byte ⌈𝑙𝑜𝑔2 (𝑚)⌉

G1 elements. Concretely, for𝑚 = 100, we have 448 + 𝑥 bytes; for

𝑚=10000, we have 784 + 𝑥 bytes. In addition to the list of𝑚 cipher-

texts, each group has a merkle tree of size 2𝑚 − 1 hashes, where
each hash has size 32 bytes (if using SHA-256).

Communication. One other advantage of HiSE is the reduction

in bandwidth between the client and server(s). HiSE incurs constant

communication overhead in the number of messages𝑚; in contrast,

ATSE transmits linear number of elements. For each interaction

(i.e., for each invocation of DistGrEnc), ignoring the underlying

TLS channel’s overheads, the HiSE client receives 144*𝑡 bytes, com-

prising one 48-byte group element and three 32-byte scalar values.

In contrast, an ATSE client receives 480*𝑡*𝑚 bytes. For𝑚 = 10000,

that constitutes 4 orders of magnitude reduction in bandwidth.

8 CONCLUSION
Building on amortised threshold symmetric encryption (ATSE [20]),

we develop new ideas for binary-tree-based hierarchical (fine-grained)

decryption, while preserving the original security properties of

privacy and authenticity. While our encryption suffers a 3-4.5×
overhead, we observe between 10-65× improvement in latency and

throughput during decryption. This improvement is beneficial in

enterprise workloads, which are “read” (decryption) heavy.

12



REFERENCES
[1] Coinbase custody. https://www.coinbase.com/prime/custody.

[2] Dyadic Security. https://www.dyadicsec.com.

[3] Vault by HashiCorp. https://www.vaultproject.io/.

[4] Visa. https://usa.visa.com/.

[5] Shashank Agrawal, Wei Dai, Atul Luykx, Pratyay Mukherjee, and Peter Rindal.

Paradise: Efficient threshold authenticated encryption in fullymaliciousmodel. In

Takanori Isobe and Santanu Sarkar, editors, Progress in Cryptology - INDOCRYPT
2022 - 23rd International Conference on Cryptology in India, Kolkata, India, Decem-
ber 11-14, 2022, Proceedings, volume 13774 of Lecture Notes in Computer Science,
pages 26–51. Springer, 2022.

[6] Shashank Agrawal, Peihan Miao, Payman Mohassel, and Pratyay Mukherjee.

PASTA: PASsword-based threshold authentication. In David Lie, Mohammad

Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th
Conference on Computer and Communications Security, pages 2042–2059, Toronto,
ON, Canada, October 15–19, 2018. ACM Press.

[7] Shashank Agrawal, Payman Mohassel, Pratyay Mukherjee, and Peter Rindal.

DiSE: Distributed symmetric-key encryption. In David Lie, Mohammad Mannan,

Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference on
Computer and Communications Security, pages 1993–2010, Toronto, ON, Canada,
October 15–19, 2018. ACM Press.

[8] arkworks contributors. arkworks zksnark ecosystem. https://arkworks.rs, 2022.

[9] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Universal designated

verifier signature proof (or how to efficiently prove knowledge of a signature). In

Bimal K. Roy, editor, Advances in Cryptology – ASIACRYPT 2005, volume 3788 of

Lecture Notes in Computer Science, pages 644–661, Chennai, India, December 4–8,

2005. Springer, Heidelberg, Germany.

[10] Leemon Baird, Pratyay Mukherjee, and Rohit Sinha. i-TiRE: Incremental timed-

release encryption or how to use timed-release encryption on blockchains? In

Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022:
29th Conference on Computer and Communications Security, pages 235–248, Los
Angeles, CA, USA, November 7–11, 2022. ACM Press.

[11] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-

based encryption. In 2007 IEEE symposium on security and privacy (SP’07), pages
321–334. IEEE, 2007.

[12] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based en-

cryption with constant size ciphertext. In Ronald Cramer, editor, Advances in
Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Sci-
ence, pages 440–456, Aarhus, Denmark, May 22–26, 2005. Springer, Heidelberg,

Germany.

[13] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil

pairing. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume

2139 of Lecture Notes in Computer Science, pages 213–229, Santa Barbara, CA,
USA, August 19–23, 2001. Springer, Heidelberg, Germany.

[14] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their

applications. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology –
ASIACRYPT 2013, Part II, volume 8270 of Lecture Notes in Computer Science, pages
280–300, Bengalore, India, December 1–5, 2013. Springer, Heidelberg, Germany.

[15] Xavier Boyen. The uber-assumption family. In StevenD. Galbraith and Kenneth G.

Paterson, editors, Pairing-Based Cryptography – Pairing 2008, pages 39–56, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[16] Luís Brandão and Rene Peralta. NIST First Call for Multi-Party Threshold

Schemes. 2023. https://csrc.nist.gov/publications/detail/nistir/8214c/draft.

[17] Julian Brost, Christoph Egger, Russell W. F. Lai, Fritz Schmid, Dominique

Schröder, and Markus Zoppelt. Threshold password-hardened encryption ser-

vices. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,

ACM CCS 2020: 27th Conference on Computer and Communications Security, pages
409–424, Virtual Event, USA, November 9–13, 2020. ACM Press.

[18] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key en-

cryption scheme. In Eli Biham, editor,Advances in Cryptology – EUROCRYPT 2003,
volume 2656 of Lecture Notes in Computer Science, pages 255–271,Warsaw, Poland,

May 4–8, 2003. Springer, Heidelberg, Germany.

[19] Shu-Hui Chang, Chuan-Ming Li, and Tzonelih Hwang. Identity-based hierarchi-

cal designated decryption. J. Inf. Sci. Eng., 26(4):1243–1259, 2010.
[20] Mihai Christodorescu, Sivanarayana Gaddam, Pratyay Mukherjee, and Rohit

Sinha. Amortized threshold symmetric-key encryption. In Giovanni Vigna and

Elaine Shi, editors, ACM CCS 2021: 28th Conference on Computer and Commu-
nications Security, pages 2758–2779, Virtual Event, Republic of Korea, Novem-

ber 15–19, 2021. ACM Press.

[21] Mihai Christodorescu, Sivanarayana Gaddam, Pratyay Mukherjee, and Rohit

Sinha. Amortized threshold symmetric-key encryption. Cryptology ePrint

Archive, Report 2021/1176, 2021. https://eprint.iacr.org/2021/1176.

[22] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard,

editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in
Computer Science, pages 307–315, Santa Barbara, CA, USA, August 20–24, 1990.
Springer, Heidelberg, Germany.

[23] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and JoanneWoodage. Fast mes-

sage franking: From invisible salamanders to encryptment. In Hovav Shacham

and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part I,
volume 10991 of Lecture Notes in Computer Science, pages 155–186, Santa Barbara,
CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany.

[24] Alexandre Duc, Robin Müller, and Damian Vizár. Diae: Re-rolling the dise.

Cryptology ePrint Archive, Paper 2022/1275, 2022. https://eprint.iacr.org/2022/

1275.

[25] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Ven-

turi. On the non-malleability of the Fiat-Shamir transform. In Steven D. Galbraith

and Mridul Nandi, editors, Progress in Cryptology - INDOCRYPT 2012: 13th In-
ternational Conference in Cryptology in India, volume 7668 of Lecture Notes in
Computer Science, pages 60–79, Kolkata, India, December 9–12, 2012. Springer,

Heidelberg, Germany.

[26] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In

Yuliang Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501

of Lecture Notes in Computer Science, pages 548–566, Queenstown, New Zealand,

December 1–5, 2002. Springer, Heidelberg, Germany.

[27] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based

encryption for fine-grained access control of encrypted data. In Ari Juels, Re-

becca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006:
13th Conference on Computer and Communications Security, pages 89–98, Alexan-
dria, Virginia, USA, October 30 – November 3, 2006. ACM Press. Available as

Cryptology ePrint Archive Report 2006/309.

[28] Stanislaw Jarecki, Hugo Krawczyk, and Jason K. Resch. Updatable oblivious

key management for storage systems. In Lorenzo Cavallaro, Johannes Kinder,

XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019: 26th Conference on
Computer and Communications Security, pages 379–393, London, UK, Novem-

ber 11–15, 2019. ACM Press.

[29] Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl, Eduardo Soria-

Vazquez, and Srinivas Vivek. Faster secure multi-party computation of AES

and DES using lookup tables. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki

Kikuchi, editors, ACNS 17: 15th International Conference on Applied Cryptography
and Network Security, volume 10355 of Lecture Notes in Computer Science, pages
229–249, Kanazawa, Japan, July 10–12, 2017. Springer, Heidelberg, Germany.

[30] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner

Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael

Schwarz, and Yuval Yarom. Spectre attacks: exploiting speculative execution.

Commun. ACM, 63(7):93–101, 2020.

[31] Yehuda Lindell. The UNBOUND Nextgen vHSM. https://www.fintechfutures.

com/files/2020/09/vHSM-Whitepaper-v3.pdf.

[32] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, Mike

Hamburg, and Raoul Strackx. Meltdown: reading kernel memory from user

space. Commun. ACM, 63(6):46–56, 2020.

[33] Philip D. MacKenzie, Thomas Shrimpton, and Markus Jakobsson. Threshold

password-authenticated key exchange. In Moti Yung, editor, Advances in Cryp-
tology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages
385–400, Santa Barbara, CA, USA, August 18–22, 2002. Springer, Heidelberg,

Germany.

[34] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random

functions and KDCs. In Jacques Stern, editor, Advances in Cryptology – EURO-
CRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages 327–346,
Prague, Czech Republic, May 2–6, 1999. Springer, Heidelberg, Germany.

[35] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald

Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, pages 457–473,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[36] Victor Shoup. Lower bounds for discrete logarithms and related problems. In

Walter Fumy, editor, Advances in Cryptology — EUROCRYPT ’97, pages 256–266,
Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

13

https://www.coinbase.com/prime/custody
https://www.dyadicsec.com
https://www.vaultproject.io/
https://usa.visa.com/
https://arkworks.rs
https://csrc.nist.gov/publications/detail/nistir/8214c/draft
https://eprint.iacr.org/2021/1176
https://eprint.iacr.org/2022/1275
https://eprint.iacr.org/2022/1275
https://www.fintechfutures.com/files/2020/09/vHSM-Whitepaper-v3.pdf
https://www.fintechfutures.com/files/2020/09/vHSM-Whitepaper-v3.pdf


Appendix
A OUR COMMUNICATION MODEL

On our communication model and protocol structure. All our pro-
tocols are over secure and authenticated channel – they require two

rounds of communication, in that a initiator party (often referred to

as a client for this execution) sends messages to a number of other

parties (referred to as the servers for this execution); each server

computes on the message and then sends the responses back to the

client in the second round; the client then combine the responses

together to compute the final output. Importantly, the servers do

not interact among themselves in an execution. However, we stress

that our definitions and the protocol notations are flexible enough

to accommodate protocols with different structures.

B SECURITY GAMES AND ORACLES.
While our formalization uses intuitive security games, to handle

many cases, the descriptions often become cumbersome. Therefore,

we use simple pseudo-code notation introduced in ATSE [20]. The

exposition that follows is taken verbatim from ATSE.

Adversaries are formalized as probabilistic polynomial time (PPT)

stateful algorithms. Adversarial queries are formalized via interac-
tive oracles; they may run interactive protocols with the adversary.

In particular, when a protocol, say 𝜋 (· · · ) is being executed inside

an interactive oracle, the oracle computes and sends messages on

behalf of the honest parties following the protocol specifications;

the adversary controls the corrupted parties– such an execution

may need multiple rounds of interactions between the oracle and

the adversary. Occasionally, the oracle needs to execute an instance

of a protocol 𝜋 (· · · ) internally, in that the codes of everyone are ex-

ecuted honestly by the oracle– such special executions are denoted

by a dagger superscript, e.g. 𝜋† (· · · ) and it is then treated like a

non-interactive algorithm. We use standard if − then − else state-
ments for branching and for to denote a loop. A branching within

another is distinguished by indentations. The command set is used
for updating/assigning/parsing variables, whereas run is used for

executing an algorithm/protocol. The command uniform is used

to qualify a variable, 𝑣 (say) to denote a uniform random sample

in the domain of 𝑣 is drawn and assigned to 𝑣 . Finally, require is
used to impose conditions on a preceding set of variables; if the

condition is satisfied, then the next step is executed, otherwise the

experiment aborts at this step (for simplicity we keep the abortion

implicit in the descriptions, they can be made explicit by using

existing/new flags). All variables, including counters, flags and lists,

that are initialized in the security game, are considered global, such

that they can be accessed and modified by any oracle.

C BUILDING BLOCKS
In this section we present formal definitions of building blocks, such

as Shamir’s secret sharing trapdoor commitments and simulation

sound non-interactive zero-knowledge proofs – they are borrowed,

almost verbatim, from prior works [7, 20].

C.1 Shamir’s Secret Sharing
We use Shamir’s secret sharing for sharing a secret. We use Shamir’s

secret sharing scheme for sharing a secret.

Definition C.1 (Shamir’s Secret Sharing). Let 𝑞 be a prime and

Z𝑞 be the group of integers modulo 𝑞. A (𝑛, 𝑡, 𝑞)-Shamir’s secret

sharing scheme is an efficient randomized algorithm SSS that on
input three integers 𝑛, 𝑡, 𝑞 and a secret 𝑠 , where 0 < 𝑡 ≤ 𝑛 < 𝑞 and

𝑠 ∈ Z𝑞 , outputs 𝑛 shares 𝑠1, . . . , 𝑠𝑛 ∈ Z𝑞 such that the following

two conditions hold for any set 𝑆 = {𝑖1, . . . , 𝑖ℓ }:
− if |𝑆 | ≥ 𝑡 , there exists fixed (i.e., independent of 𝑠) integers

_1, . . . , _ℓ ∈ Z𝑞 (a.k.a. Lagrange coefficients) such that

∑ℓ
𝑗=1 _ 𝑗𝑠𝑖 𝑗

= 𝑠 mod𝑞;
− if ℓ < 𝑡 , the distribution of (𝑠𝑖1 , . . . , 𝑠𝑖ℓ ) is uniformly random.

For sharing a secret 𝑠 = (𝑎, 𝑏) using Shamir’s secret sharing scheme,

choose (t-1) pairs (𝑎1, 𝑏1), . . ., (𝑎𝑡−1, 𝑏𝑡−1) uniformly at random

from Z𝑞 ×Z𝑞 . Let 𝑓 (𝑥) be the (𝑡 − 1) degree polynomial 𝑎 +𝑎1 · 𝑥 +
𝑎2 · 𝑥2 + . . . + 𝑎𝑡−1 · 𝑥𝑡−1 and 𝑔(𝑥) be the (𝑡 − 1) degree polynomial

𝑏 +𝑏1 · 𝑥 +𝑏2 · 𝑥2 + . . . +𝑏𝑡−1 · 𝑥𝑡−1. For all 𝑖 ∈ [𝑛], the 𝑖𝑡ℎ share is

generated as 𝑠𝑖 = (𝑓 (𝑖), 𝑔(𝑖)).

C.2 Commitment
Definition C.2. A (non-interactive) secure commitment scheme

Σ consists of two PPT algorithms (Setupcom,Com) which satisfy

hiding and binding properties:

− Setupcom (1^ ) → 𝑝𝑝com : It takes the security parameter as

input, and outputs some public parameters.

− Com(𝑚, 𝑝𝑝com; 𝑟 ) =: 𝛼 : It takes a message𝑚, public param-

eters 𝑝𝑝com and randomness 𝑟 as inputs, and outputs a com-

mitment 𝛼 .

Hiding. A commitment scheme Σ = (Setupcom,Com) is hiding
if for all PPT adversaries A, all messages 𝑚0, 𝑚1, there exists a

negligible function negl such that for 𝑝𝑝com ← Setupcom (1^ ),

|Pr[A(𝑝𝑝com,Com(𝑚0, 𝑝𝑝com; 𝑟0)) = 1]−
Pr[A(𝑝𝑝com,Com(𝑚1, 𝑝𝑝com; 𝑟1)) = 1] | ≤ negl(^),

where the probability is over the randomness of Setupcom, random
choice of 𝑟0 and 𝑟1, and the coin tosses of A.

Binding. A commitment scheme Σ = (Setupcom,Com) is bind-
ing if for all PPT adversaries A, if A outputs 𝑚0, 𝑚1, 𝑟0 and 𝑟1
((𝑚0, 𝑟0) ≠ (𝑚1, 𝑟1)) given 𝑝𝑝com ← Setupcom (1^ ), then there

exists a negligible function negl such that

Pr[Com(𝑚0, 𝑝𝑝com; 𝑟0) = Com(𝑚1, 𝑝𝑝com; 𝑟1)] ≤ negl(^),

where the probability is over the randomness of Setupcom and the

coin tosses of A.

Definition C.3 (Trapdoor (Non-interactive) Commitments.). Let
Σ = (Setupcom,Com) be a (non-interactive) commitment scheme.

A trapdoor commitment scheme has two more PPT algorithms

SimSetup and SimOpen:

− SimSetup(1^ ) → (𝑝𝑝com, 𝜏com) : It takes the security param-

eter as input, and outputs public parameters 𝑝𝑝com and a trap-

door 𝜏com.

− SimOpen(𝑝𝑝com, 𝜏com,𝑚′, (𝑚, 𝑟 )) =: 𝑟 ′ : It takes the public

parameters 𝑝𝑝com, the trapdoor 𝜏com, a message 𝑚′ and a

message-randomness pair (𝑚, 𝑟 ), and outputs a randomness

𝑟 ′.
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For every (𝑚, 𝑟 ) and 𝑚′, there exists a negligible function negl
such that 𝑝𝑝com ≈𝑠𝑡𝑎𝑡 𝑝𝑝′com, where 𝑝𝑝com ← Setupcom (1^ ) and
(𝑝𝑝′com, 𝜏com) ← SimSetup(1^ ); and

Pr

[
Com(𝑚, 𝑝𝑝′com; 𝑟 ) = Com(𝑚′, 𝑝𝑝′com; 𝑟 ′)

]
≥ 1 − negl(^),

where 𝑟 ′ := SimOpen(𝑝𝑝′com, 𝜏com,𝑚′, (𝑚, 𝑟 )) and (𝑝𝑝′com, 𝜏com) ←
SimSetup(1^ ).

Remark C.4. Clearly, a trapdoor commitment can be binding
against PPT adversaries only.

C.2.1 Concrete instantiations. Practical commitment schemes can

be instantiated under various settings. Here we specicially use

Pederson’s commitment.

Pedersen commitment. A popular commitment scheme secure

under DLOG is Pedersen commitment. Here, Setupcom (1^ ) outputs
the description of a (multiplicative) group 𝐺 of prime order 𝑝 =

Θ(^) (in which DLOG holds) and two randomly and independently

chosen generators 𝑔, ℎ. IfH : {0, 1}∗ → Z𝑝 is a collision-resistant

hash function, then a commitment to a message 𝑚 is given by

𝑔H(𝑚) · ℎ𝑟 , where 𝑟 ←
$
Z𝑝 . A trapdoor is simply the discrete log

of ℎ with respect to 𝑔. In other words, SimSetup picks a random

generator 𝑔, a random integer 𝑎 in Z★𝑝 and sets ℎ to be 𝑔𝑎 . Given

(𝑚, 𝑟 ),𝑚′ and 𝑎, SimOpen outputs [(H (𝑚) − H (𝑚′))/𝑎] + 𝑟 . It is
easy to check that commitment to𝑚 with randomness 𝑟 is equal to

the commitment to𝑚′ with randomness 𝑟 ′.

C.3 Non-interactive Zero-knowledge
Letℜ be an efficiently computable binary relation. For pairs (𝑠,𝑤) ∈
ℜ, we refer to 𝑠 as the instance and𝑤 as the witness. If it is com-

putationally hard to determine witness from a statement, then the

relation is called a hard relation. For hard relations we define non-

interactive zero-knowledge arguments of knowledge in the random

oracle model based on the work of Faust et al. [25].

Definition C.5 (Non-interactive Zero-knowledge Argument of Knowl-
edge). LetH : {0, 1}∗ → {0, 1}poly(^ ) be a hash function modeled

as a random oracle. A secure NIZK for a binary hard relation ℜ

consists of two PPT algorithms Prove and Verify with oracle access

toH defined as follows:

− ProveH
ℜ
(𝑠,𝑤) takes as input a instance 𝑠 and a witness𝑤 , and

outputs a proof 𝜋 if (𝑠,𝑤) ∈ 𝑅 and ⊥ otherwise.

− VerifyH
ℜ
(𝑠, 𝜋) takes as input a instance 𝑠 and a candidate proof

𝜋 , and outputs a bit𝑏 ∈ {0, 1} denoting acceptance or rejection.
These algorithms are required to satisfy the following properties:

− Perfect completeness: For any (𝑠,𝑤) ∈ 𝑅,

Pr

[
VerifyH

ℜ
(𝑠, 𝜋) = 1 | 𝜋 ← ProveH

ℜ
(𝑠,𝑤)

]
= 1.

− Zero-knowledge: There must exist a pair of PPT simulators

(S1,S2) such that for all PPT adversary A,���Pr[AH,ProveH
ℜ (1^ ) = 1] − Pr[AS1 ( ·),S

′
2
( ·,· ) (1^ ) = 1]

��� ≤ negl(^)

for some negligible function negl, where
− S1 simulates the random oracleH ;

− S′
2
returns a simulated proof 𝜋 ← S2 (𝑠) on input (𝑠,𝑤)

if (𝑠,𝑤) ∈ 𝑅 and ⊥ otherwise;

− S1 and S2 share states.

− Argument of knowledge: There must exist a PPT simula-

tor S1 such that for all PPT adversary A, there exists a PPT

extractor EA such that

Pr

[
(𝑠,𝑤) ∉ 𝑅 and VerifyH

ℜ
(𝑠, 𝜋) = 1 |

(𝑠, 𝜋) ← AS1 ( ·) (1^ );𝑤 ← EA (𝑠, 𝜋,𝑄)
]
≤ negl(^)

for some negligible function negl, where
− S1 is like above;
− 𝑄 is the list of (query, response) pairs obtained from S1.

Fiat-Shamir transform. Let (Prove,Verify) be a three-round public-
coin honest-verifier zero-knowledge interactive proof system (a

sigma protocol) with unique responses. LetH be a function with

range equal to the space of the verifier’s coins. In the random

oracle model, the proof system (ProveH,VerifyH) derived from

(Prove,Verify) by applying the Fiat-Shamir transform satisfies the

zero-knowledge and argument of knowledge properties defined

above. See Definition 1, 2 and Theorem 1, 3 in Faust et al. [25] for

more details. (They actually show that these properties hold even

when adversary can ask for proofs of false instances.)

Specific Instances. NIZK proofs are only needed for our strongly

secure construction (Fig. 12). In particular, we need Sigma NIZK

proofs two different relations ℜ𝑎 and ℜ𝑎,𝑏 as described in the con-

struction. We describe the specific constructions in Appendix F

D STRONGLY SECURE HISE
D.1 Definitions
We provide the definitions for strongly secure HiSE.

Definition D.1 (Strong Security of HiSE). A H iSE scheme is said to

be strongly-secure if it satisfies strong correctness, message-privacy
(Def 5.4) and strong authenticity. Strong-correctness is the same as

correctness (Def. 5.3), except that the challenge oracle is replaced

by Ohs-str-cor-ch, described in Figure 10. Strong authenticity is the

same as authenticity (Def. 5.5), except that the challenge oracle is

replaced by Ohs-st-au-ch, described in Figure 11.

Intuitively, a HiSE scheme is strongly-correct whenever a legit-

imately produced ciphertext (by executing a DistGrEnc protocol,
possibly in presence of malicious parties), when decrypted honestly,
it must output the actual message (even ≠ ⊥).

For strong authenticity, instead of an honestDistGrDec†,DistGrDec
is run within the for loop – this is the only difference. This captures

that even if the adversary takes part in a decryption procedure

(albeit initiated by an honest party), it can not produce more cipher-

texts, than are accounted for, that decrypt successfully (in presence

of the adversary within that procedure).

D.2 Strongly secure HiSE construction
In this section we provide our strongly secure HiSE construction,

which is achieved by extending the basic HiSE construction (Fig. 7

by adding a trapdoor commitment and a non-interactive zero-

knowledge proof of knowledge similar to DiSE and ATSE. However,

due to difference in the encryption and decryption (unlike DiSE

or ATSE), we need to deploy two slightly different non-interactive

sigma protocols (see Appendix C and for definitions and Appendix F
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Oracle Ohs-str-cor-ch ( 𝑗, 𝑆, 𝑗 ′, 𝑆′,𝒎 = (𝑚1 . . . ,𝑚𝑁 ), 𝜔):
require 𝑗 ∈ 𝑆 \ 𝐶 and 𝑗 ′ ∈ 𝑆 ′ \ 𝐶 and 𝜔 ∈ {0, 1}⌈log𝑁 ⌉
and CHAL = 0 and OUT = 0.

− set CHAL := 1.

− run ( [ 𝑗 : op], . . .) ← DistGrEnc(𝑝𝑝, J𝒔𝑘K𝑆 , [ 𝑗 : 𝒎, 𝑆]).
− if op = ⊥ then set OUT := 0;

else set ̂𝑪 := op and do :

− run ( [ 𝑗 ′ : op′], . . .) ← DistGrDec† (𝑝𝑝, J𝒔𝑘K𝑆 , [ 𝑗 ′ :

̂𝑪𝜔 , 𝑆′]).
− if op′ = 𝒎 then set OUT := 0; else set OUT := 1.

Figure 10: The challenge oracle for the game strong-
HiSE-Cor. The differences are marked by blue.

Oracle Ohs-st-au-ch (𝐿forge):
− set ℓ := ⌊ct/𝑔⌋, where 𝑔 := 𝑡 − |𝐶 |.
− set

(
( 𝑗1, 𝑆1, ̂𝑪𝜔1

), ( 𝑗2, 𝑆2, ̂𝑪𝜔2
) . . .)

)
:= 𝐿forge;

require CHAL = 0 and SUCC = 0 and 𝑗1, 𝑗2, . . . ∉

𝐶 and ∀ 𝑖 ≠ 𝑖′ : ̂𝑪𝑖 ⪯̸ ̂𝑪𝑖′ .
− set CHAL := 1 and 𝐿succ := ∅ and set 𝛾 := |𝐿forge |.
− for ∀ 𝑖 ∈ [𝛾] :
− run op← DistGrDec(𝑝𝑝, J𝒔𝑘K𝑛, [ 𝑗𝑖 : ̂𝑪𝑖 , 𝑆𝑖 ]).
− ∀ 𝑘 ∈ [|op|] : if op𝑘 ≠ ⊥ then set 𝐿succ := 𝐿succ ∪
{op𝑘 };

− if |𝐿succ | > ℓ then set SUCC := 1.

Figure 11: Challenge/forgery oracle for strong-HiSE-Auth.

for concrete constructions). We present the construction in Fig. 12

and highlight the changes from Fig. 7 using blue. We formalize the

security in the following theorem. We show how the proof of the

base construction can be extended in Appendix E.

Theorem D.2. Our extended construction (Fig. 12) is a strongly
secure HiSE scheme assuming XDH and ℓ-masked BDDH assumptions
on the underlying bilinear pairing in the random oracle model plus
the security of the underlying trapdoor commitment scheme and the
NIZK proof systems.

E MISSING PROOFS
We provide the proofs that are missing from main body here. We

mainly focus on the analysis for our base construction (Theo-

rem 6.1), and discuss extension to the strongly secure construction

(Theorem D.2) within each separate proof. The proofs follow the

overall structures of ATSE and DiSE, but differs significantly in

some key aspects. We mostly focus on the key ideas here.

Consistency. For both the constructions consistency is straight-

forward to observe due to the properties of Shamir secret sharing.

We omit the formal details.

E.1 Proof of (Strong)-Correctness
A HiSE scheme is said to be correct if whenever an honest party

𝑗 initiates the encryption protocol DistGrEnc on an input (𝒎 :=

𝑚1, . . . ,𝑚𝑁 , 𝑆) to generate a ciphertreê𝑪 := ( 𝑗, 𝑋, Y, (𝜔1, 𝑐1), . . . , 𝜔𝑁 , 𝑐𝑁 )),
then any other honest party 𝑗 ′ on running the decryption protocol

DistGrDec for any 𝜔 ∈ {0, 1}≤𝑑 on ̂𝑪𝜔 ⪯ ̂𝑪 either recovers 𝒎 or

𝒎∗ with high probability, where 𝒎∗ contains the set of plaintext
messages from𝒎 where some or all can be⊥ . In particular, even if a

PPT adversary is involved in the execution via corrupting any fixed

set of (up to) 𝑡 − 1 parties during the procedure, it is not feasible for
the adversary to enforce 𝑗 ′ to output another𝒎′∗ where𝒎′ ≠ 𝒎 as

a result of decrypting ̂𝑪𝜔 . This property is achieved by our construc-
tion due to the binding of the underlying merkle tree commitment

scheme. Recall that during decryption the initiating party interac-

tively derives the value 𝑧. If instead an incorrect value 𝑧′ is derived,
the decryption yields messages in some 𝒎′ ≠ 𝒎. 𝒎′∗ is output as
the correct plaintext message only ifH1 (𝑚𝑘 , 𝑟𝑘 ) = H1 (𝑚′𝑘 , 𝑟

′
𝑘
) for

all 𝑘 for which ⊥ ≠𝑚′
𝑘
∈ 𝒎′∗, i.e., two different messages open to

some commitments part of the subtree rooted at𝜔 . This contradicts

the binding nature of the Merkle tree commitment scheme. Further-

more, strong-correctness is ensured since an honest execution of

the decryption protocol results in a correct computation of the
maskH( 𝑗, 𝑁 , 𝑋Y )𝛼 – a proof for which is analogous to the DPRF

correctness in DiSE and thus always outputs exactly 𝒎 and never

outputs 𝒎∗ where decryption of some or all of the ciphertexts may

result in ⊥.

E.2 Proof for Message Privacy
The message-privacy proof relies on (i) XDH and (ii) ℓ-masked

BDDH over the bilinear group in the random oracle model. Now,

from Def. 5.4, we note that the objective is to show that, for any

^, 𝑛, 𝑡 ∈ N, the security games HiSE-MsgPriv(1^ , 1𝑛, 1𝑡 , 0) (in short

HiSE-MsgPriv(0)) andHiSE-MsgPriv(1^ , 1𝑛, 1𝑡 , 1) are computation-

ally indistinguishable. Similar to ATSE [20] we can show this via a

number of computationally indistinguishable hybrids starting from

HiSE-MsgPriv(1^ , 1𝑛, 1𝑡 , 0) and eventually reachingHiSE-MsgPriv(1^ ,
1
𝑛, 1𝑡 , 1) and use these computational assumptions to show that

the consecutive hybrids are computationally indistinguishable –

this requires constructing a reduction to the corresponding assump-

tion, while simulating the oracles correctly. We briefly describe the

key ideas here. The detailed proof can be extended following the

footsteps of ATSE and DiSE.

First we use XDH to move to a hybrid Hyb
1
from game

HiSE-MsgPriv(0) where the challenge oracle is simulated using 𝑔a
2

for a uniform random a ∈ Z𝑞 in place ofH2 ( 𝑗, 𝑋Y )𝛼 . For simplicity

we just assume that exactly 𝑡−1 parties are corrupt (similar to ATSE

proofs) – this can be extended to a general case following DiSE [7].

Furthermore, we assume that the adversary does not make any

query to oracles Ohs-mp-en
or Ohs-mp-dc

. It is again straightforward

to extend the proof to handle that, by 𝑞-many hybrids to go toHyb
1

using 𝑋𝐷𝐻 at each step instead of only one hybrid, when 𝑞 is the

total number of queries to those oracles, where in Hyb
1
all such

queries would be handled by encrypting with a uniform random

element from G𝑇 . In this simplified case the XDH reduction works

as follows:

− receive the XDH challenge 𝑔1, 𝑔2, 𝑔
𝑎
2
, 𝑔𝑏

2
, 𝑔𝑐

2
where 𝑐 is either

𝑎𝑏 or uniform random in Z𝑞 ;

− program the RO queryH2 (𝑋Y ) = 𝑔𝑏
2
, and implicitly let 𝑎 = 𝛼 ,

thenH2 ( 𝑗, 𝑋Y )𝛼 = 𝑔𝑎𝑏
2
;
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Ingredients and Parameters

Public parameters:
− The security parameter ^ .

− An efficiently computable Type-3 bilinear pairing 𝑒 : G1 × G2 → G𝑇 , where the groups G1,G2,G𝑇 are multiplicative groups and each of prime

order 𝑞; 𝑔1 and 𝑔2 are randomly chosen generators of G1 and G2 respectively.

− Descriptions of hash functions H1 : {0, 1}∗ → {0, 1}^ ; H2 : {0, 1}∗ → G2; H3 : G𝑇 → {0, 1}poly(^ ) ; H4 : G1 → {0, 1}poly(^ ) ;
H′ : {0, 1}∗ → {0, 1}poly(^ ) .

Merkle-Tree Commitment. Consists of algorithms (MTCom,MTOpen,MTVer)
Trapdoor Commitments. Consists of algorithms (Setupcom,Com) .
Hard Relations.
− ℜ𝑎 which consists of public parameters (𝑝𝑝com,H2 ) , instance (𝛾, 𝑧, 𝑥 ) , witness (𝑎, a ) such that: 𝛾 = Com(𝑎, 𝑝𝑝com; a ) ∧ 𝑧 = H2 (𝑥 )𝑎 .
− ℜ𝑎,𝑏 which consists of public parameters (𝑝𝑝com,H2 ) , instance (𝛾𝑎, 𝛾𝑏 , 𝑧, 𝑥, 𝑦) , witness (𝑎,𝑏, a𝑎, a𝑏 ) such that: 𝛾𝑎 = Com(𝑎, 𝑝𝑝com; a𝑎 ) ∧ 𝛾𝑏 =

Com(𝑏, 𝑝𝑝com; a𝑏 ) ∧ 𝑧 = H2 (𝑥 )𝑎H2 (𝑦)𝑏 .
Non-interactive argument of knowledge (Def. C.5). Consists of algorithms (ProveH′

ℜ
,VerifyH

′
ℜ
) .

Construction

Setup(1^ , 1𝑛, 1𝑡 ) → (𝑝𝑝, J𝒔𝒌K[𝑛] ) :
1. Choose 𝛼, 𝛽 ←$ Z𝑞 .

2. Compute the secret shares { (𝛼𝑖 , 𝛽𝑖 ) }𝑖∈ [𝑛] of pair (𝛼, 𝛽 ) using (𝑞,𝑛, 𝑡 )-SSS.
3. Run Setupcom (1^ ) to get 𝑝𝑝com. For all 𝑖 ∈ [𝑛]: compute 𝛾𝛼,𝑖 := Com(𝛼𝑖 , 𝑝𝑝com; a𝛼,𝑖 ) and 𝛾𝛽,𝑖 := Com(𝛽𝑖 , 𝑝𝑝com; a𝛽,𝑖 ) by picking random a𝛼,𝑖

and a𝛽,𝑖 .

4. Set 𝑠𝑘𝑖 := (𝛼𝑖 , 𝛽𝑖 , a𝛼,𝑖 , a𝛽,𝑖 )
5. Set 𝑝𝑝 := (𝑔𝛽

1
, 𝛾𝛼,1, . . . , 𝛾𝛼,𝑛, 𝛾𝛽,1, . . . , 𝛾𝛽,𝑛, 𝑝𝑝com ) .

DistGrEnc(𝑝𝑝, J𝒔𝒌K[𝑛] , [ 𝑗 : 𝒎, 𝑆 ] ) → ([ 𝑗 : ̂𝑪/⊥], [𝑆 : 𝑁,𝑋Y ] ) : This is a two-round distributed protocol, that works as follows:

– Pre-computation (local). Let (𝑚1 . . . ,𝑚𝑁 ) := 𝒎 ∈ {0, 1}∗ and 𝑁 = 2
𝑑
. Party 𝑗 chooses a randomnesses 𝜌𝑘←$

Z𝑞 and 𝑟𝑘←$
Z𝑞 for all 𝑘 ∈ [𝑁 ]

and then generates the Merkle-Tree commitment 𝑿 := MTCom(𝑦1, . . . , 𝑦𝑁 ) where 𝑦𝑘 = H1 (𝑚𝑘 , 𝜌𝑘 ,H4 (𝑔𝑟𝑘
1
) ) . Let 𝑋Y be the root of 𝑿 .

– Round 1. Party-𝑗 sends (𝑁,𝑋Y ) to all parties in set 𝑆 .

– Round 2. Each party 𝑖 ∈ 𝑆 sends back to party-𝑗 : (𝑧𝑖 , 𝜋𝑖 ) where 𝑧𝑖 := H2 ( 𝑗, 𝑁 ,𝑋Y )𝛼𝑖 and 𝜋𝑖 ← ProveH
′

ℜ𝛼
( (𝛾𝛼,𝑖 , 𝑧𝑖 , ( 𝑗, 𝑁 ,𝑋Y ) ), (𝛼𝑖 , a𝛼,𝑖 ) )

– Finalize (local). Party-𝑗 , once receives at least 𝑡 − 1 responses (𝑧𝑖 , 𝜋𝑖 ) such that VerifyH
′

ℜ𝛼
( (𝛾𝛼,𝑖 , 𝑧𝑖 , ( 𝑗, 𝑁 ,𝑋Y ) ), 𝜋𝑖 ) returns 1, then computes

𝑧 :=
∏

𝑖 𝑧
_𝑖
𝑖

for appropriately chosen _𝑖 s (otherwise output ⊥). Then do as follows for all 𝑘 ∈ [𝑁 ]:
− Let 𝜔 := Bin(𝑘 − 1, 𝑑 ) be the binary vector encoding (of length 𝑑 bits).

− Compute ciphertext 𝑐𝑘 := (𝑔𝑟𝑘
1
,H2 (𝑋𝜔 |1 )

𝑟𝑘 ,H2 (𝑋𝜔 |2 )
𝑟𝑘 , . . . ,H2 (𝑋𝜔 )𝑟𝑘 ), (𝑚𝑘 , 𝜌𝑘 ,H4 (𝑔𝑟𝑘

1
) ) ⊕ H3 (𝑒 (𝑔𝑟𝑘

1
, 𝑧 ) ) )

− Set 𝜔𝑘 := 𝜔 .

Output the cipher-tree ̂𝑪 := ( 𝑗,𝑿 , Y, (𝜔1, 𝑐1 ), . . . , (𝜔𝑁 , 𝑐𝑁 ) ) .

DistGrDec(𝑝𝑝, J𝒔𝒌K𝑆 , [ 𝑗 : ̂𝑪, 𝑆 ] ) → ([ 𝑗 : 𝒎/⊥], [𝑆 : 𝑁,𝑋Y , 𝑋𝜔 ] ) : Parse ̂𝑪 as ( 𝑗,𝑿 , 𝜔, (𝜔1, 𝑐1 ), . . . , (𝜔ℓ , 𝑐ℓ ) ) and let 𝑁 be the number of leaves in

𝑿 , then do as follows:

− Round 1. Party-𝑗 sends ( 𝑗, 𝑁 ,𝑋Y , 𝑋𝜔 ) to all parties 𝑖 ∈ 𝑆 .
− Round 2. Each party-𝑖 , on receiving ( 𝑗, 𝑁 ,𝑋Y , 𝑋𝜔 ) , computes 𝑧𝑖 = H2 ( 𝑗, 𝑁 ,𝑋Y )𝛼𝑖H2 (𝑋𝜔 )𝛽𝑖 and �̃�𝑖 ← ProveH

′
ℜ𝛼,𝛽

( (𝛾𝛼,𝑖 , 𝛾𝛽,𝑖 , 𝑧𝑖 ), ( 𝑗, 𝑁 ,𝑋Y ), 𝑋𝜔 ), (𝛼𝑖 , 𝛽𝑖 , a𝛼,𝑖 , a𝛽,𝑖 ) and sends (𝑧𝑖 , �̃�𝑖 ) back to party 𝑗 .

− Finalize (local). On receiving 𝑧𝑖 from at least 𝑡 − 1 parties, such that VerifyH
′

ℜ𝛼,𝛽
( (𝛾𝛼,𝑖 , 𝛾𝛽,𝑖 , 𝑧𝑖 ), ( 𝑗, 𝑁 ,𝑋Y ), 𝑋𝜔 ), 𝜋𝑖 ) returns 1 it computes

𝑧 =
∏

𝑖 𝑧
_𝑖
𝑖

(otherwise output 1) including its own locally computed value. Then for each 𝑘 ∈ [ℓ ] do as follows:

− Let 𝜔 ′ := 𝜔𝑘 .

− Parse 𝑐𝑘 as (𝑅, 𝑆𝜔′ |1 , 𝑆𝜔′ |2 , . . . , 𝐸 ) .
− Compute 𝐷 := 𝑒 (𝑅, 𝑧 ) · 𝑒 (𝑝𝑝, 𝑆𝜔 )−1
− Compute (𝑚𝑘 , 𝜌𝑘 , ℎ𝑘 ) := 𝐸 ⊕ H3 (𝐷 ) .
− Verify if 𝑋𝜔′ = H1 (𝑚𝑘 , 𝜌𝑘 , ℎ𝑘 ) and if H4 (𝑅) = ℎ𝑘 . If either fails set𝑚𝑘 := ⊥.

Finally verify the treeMTVer(𝑿 ) , if it fails then return ⊥, else output (𝑚1, . . . ,𝑚ℓ ) .

Figure 12: Our strongly secure HiSE construction

− clearly for a random 𝑐 , the hybrid Hyb
1
is simulated, and if

𝑐 = 𝑎𝑏 HiSE-MsgPriv(0) is simulated;

In the next hybrid Hyb
2
, we use a 𝑧 = 𝑔a

′
2

for uniform random

a ′ instead of 𝑧 = 𝑔a
2
H2 (𝑋𝜔 )𝛽 for each challenge-decryption oracle

query (cf. Fig. 5). We show a reduction to argue that hybrids Hyb
1

and Hyb
2
are computationally indistinguishable. The reduction, on

receiving 𝑔𝑎
1
, 𝑔𝑏

1
, {𝑔𝑑𝑖

2
, 𝑔

𝑐+𝑏𝑑𝑖
2

}𝑖∈[ℓ ] for and a challenge ℎ ∈ G𝑇 from

the challenger works as follows:
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− Set 𝑔
𝛽

1
:= 𝑔𝑏

1
and send 𝑔𝑏

1
to the adversary as 𝑝𝑝 .

− Compute𝑔𝑐
𝑇
:= 𝑒 (𝑔1, 𝑔𝑐+𝑏𝑑𝑖

2
)/𝑒 (𝑔𝑏

1
, 𝑔

𝑑𝑖
2
) and set 𝑒 (𝑔𝛼

1
,H( 𝑗, 𝑋Y )) :=

𝑔𝑐
𝑇
. Random oracle query onH2 ( 𝑗, 𝑋𝜔 ) is programmed as 𝑔

𝑟𝛼
2

for a uniform random 𝑟𝛼 . Note that, this does not require

knowledge of 𝑔𝛼
1
.

− In the challenge oracle, on receiving two message vectors 𝒎1

and𝒎2, create the listM by appending messages𝑚𝑖 such that

𝒎0 [𝑖] = 𝒎1 [𝑖] =𝑚𝑖 .

− Now create the challenge ciphertree ̂𝑪★ as follows:

− For every node 𝜔 such that ̂𝑴𝜔 ⊂ M, and the parent 𝜔 ′

of 𝜔 such that ̂𝑴𝜔 ′ ⊄M then each message𝑚𝑖 within

that message tree is encrypted as:

𝑅𝑖 := 𝑔
𝑟𝑖
1
, . . . , 𝑆𝑖,𝜔 | 𝑗 := 𝑔

𝑑𝜔 | 𝑗 𝑟𝑖
2

, . . . , 𝐸𝑖 =

H3 (𝑔𝑐𝑟𝑖𝑇
) ⊕ (𝑚𝑖 , 𝜌𝑖 ,H4 (𝑅𝑖 )) where 𝑟𝑖 , 𝜌𝑖 are sampled uni-

formly and random oracles are programmedH2 (𝑋𝜔 | 𝑗 ) =

𝑔
𝑑𝜔 | 𝑗
2

. Here we assume 𝑑𝜔 | 𝑗 is re-indexed from the given

𝑑𝑖s.

− For all other messages, encrypt as:

𝑅𝑖 := 𝑔
𝑟𝑖
1
, . . . , 𝑆𝑖,𝜔 | 𝑗 := 𝑔

𝛿𝜔,𝑗𝑟𝑖
2

, . . . , 𝐸𝑖 := ℎ𝛿𝑖⊕(𝑚𝑖 , 𝜌𝑖 ,H4 (𝑅𝑖 ))
where 𝑔

𝑟𝑖
1
:= 𝑔

𝛿𝑖𝑎
1

for uniform random 𝛿𝑖 , 𝛿𝜔,𝑗 are chosen

uniformly at random (note from above that the random

oracle is programmed asH2 (𝑋𝜔 | 𝑗 ) = 𝑔
𝛿𝜔,𝑗

2
).

− The queries to Ohs-mp-ch-dc
for ̂𝑪𝜔 are simulated by respond-

ing 𝑔
𝑐+𝑏𝑑𝑖
2

= 𝑔
𝛼+𝛽𝑑𝜔 | 𝑗
2

; where the random oracle queries are

programmed asH2 (𝑋𝜔 ) = 𝑔
𝑑𝜔 | 𝑗
2

. Here it is important to note

that, this a legitimate query must have a𝜔 for which ̂𝑴𝜔 ⊆ M.

Hence the given 𝑔
𝑑𝜔 | 𝑗
2

values can be used as Step E.2.

Now, observe that if ℎ = 𝑔𝑎𝑐
𝑇
, then the reduction simulates Hyb

1

because for any message𝑚𝑖 ∈ ̂𝑴𝜔 such that ̂𝑴𝜔 ⊆ M and for the

parent 𝜔 ′ of 𝜔 , ̂𝑴𝜔 ′ ⊈ M: 𝑔
𝑎𝑐𝛿𝑖
𝑇

= 𝑒 (𝑔𝑟𝑖
1
,H2 ( 𝑗, 𝑋Y )𝛼 ) is used to

mask the messages, whereas whenℎ is uniform random the element

ℎ𝛿𝑖 is just another uniform random element in G𝑇 , so in that case

reduction simulates Hyb
2
.

Now, in Hyb
2
, all messages that are distinct in𝒎1 and𝒎2 are in-

formation theoretically hidden. Same steps follow fromHiSE-MsgPriv(1).
This concludes the proof.

In the strong HiSE construction, the zero-knowledge proofs

have to be replaced by simulated proofs. The rest of the proof stays

virtually the same.

E.3 Proof for (Strong)-Authenticity.
We note that, an adversary A breaks authenticity if it produces at

least one more ciphertext than ℓ in oracle Ohs-au-ch. We discuss the

following “bad”events

− E1. This happens whenA wins by sending a ( 𝑗, 𝑁 ′, 𝑋Y ) within
Ohs-au-en while𝑋Y is root of a message-tree with 𝑁 > 𝑁 ′ mes-

sages. This happens only with negligible probability as, to

win the game the corresponding cipher-tree ̂𝑪 must decrypt

correctly. Since, in the decryption algorithm, 𝑁 is chosen hon-

estly from inspecting the ciphertree, this would lead to wrong

decryption.

− E2. This happens when A is able to create more than one

ciphertexts, 𝑐1, 𝑐2 for a single message𝑚 using from a single

interaction, but using two different randomnesses 𝑟1, 𝑟2. This

also happens with negligible probability, because the value 𝑅 =

𝑔𝑟
1
is committed viaH4 (𝑅) to construct the message-tree and

hence 𝑋Y . In other words, except with negligible probability

(when collision happens for hash functionH4), 𝑋Y uniquely

fixes 𝑅 = 𝑔𝑟
1
.

Now, note that, in our construction each time the adversary

becomes able to compute a freshH2 ( 𝑗, 𝑁 , 𝑋Y )𝛼 (that is for a fresh

( 𝑗, 𝑁 , 𝑋Y ) triple), 𝑁 is added to ℓ – this is irrespective of the fact

that whether the components of 𝑧 are learned through encryption

or decryption. Now, when E1 ∨ E2 does not happen, that together
implies that the only way to break the one-more security is to

computeH2 ( 𝑗, 𝑁 , 𝑋Y )𝛼 for a triple ( 𝑗, 𝑁 , 𝑋Y ) such that adversary

has < 𝑡 partial valuesH2 ( 𝑗, 𝑁 , 𝑋Y )𝛼𝑖 . We can show that as long as

XDH holds inG2, this holds. Let us outline a reduction for a simpler

case when |𝐶 | = 𝑡 − 1:
− Receive from the XDH challenger: 𝑔𝑎

2
, 𝑔𝑏

2
, 𝑔1, ℎ ∈ G2. Choose

𝛽 and give 𝑝𝑝 = 𝑔
𝛽

1
to the adversary.

− Guess a randomoracle query on ( 𝑗, 𝑁 , 𝑋Y ) and programH2 ( 𝑗, 𝑁 ,

𝑋Y ) = 𝑔𝑎
2
.

− For all other RO queries on ( 𝑗 ′, 𝑁 ′, 𝑋 ′Y ) ≠ ( 𝑗, 𝑁 , 𝑋Y ), choose
random 𝑟 ′ to programH2 ( 𝑗, 𝑁 , 𝑋Y ) = 𝑔𝑟

′
2
.

− Implicitly assume 𝛼 = 𝑏 and simulate encryption/decryption

queries on ( 𝑗 ′, 𝑁 ′, 𝑋 ′Y ) ≠ ( 𝑗, 𝑁 , 𝑋Y ) using 𝑔𝑏
2
with known 𝑟 ′.

− Finally, when adversary responds with > ℓ valid ciphertexts,

then look for the unique ciphertreê𝑪 corresponding to ( 𝑗, 𝑁 , 𝑋Y ).
If not found, then abort. Otherwise, useH3 (𝑒 (𝑅,ℎ)) to decrypt
any ciphertext within ̂𝑪 . If that succeeds, then conclude ℎ as

𝑔𝑎𝑏
2

= H(𝑋Y )𝛼 , else conclude ℎ to be uniform in G2.

Now, if the hash functions used are collision resistant, then the

probability of the reduction breaking 𝑋𝐷𝐻 is 1/𝑄H2
-th the prob-

ability of A’s winning the authenticity game, where 𝑄H2
is the

number of RO queries made toH2.

The case for < 𝑡 corruption and strong authenticity can be argued

similar to [7, 20].

F SPECIFIC SIGMA NIZK PROOF SYSTEMS
Consider a group G = ⟨𝑔⟩ of prime order 𝑝 where the discrete

logarithm problem is hard. Let 𝛾𝑚 = Com(𝑚, 𝑝𝑝com;a𝑚) = 𝑔𝑚ℎa𝑚

denotes the Pedersen commitment of any𝑚 ∈ Z𝑝 using the random

string a𝑚←$
Z𝑝 . We provide the details of non-interactive sigma

protocol for the following hard relation:

ℜ𝑎,𝑏 = {((𝛾𝑎, 𝛾𝑏 , 𝑧𝑎𝑏 , 𝑥,𝑦), (𝑎, 𝑏, a𝑎, a𝑏 )) :

𝛾𝑎 = 𝑔𝑎ℎa𝑎 ∧ 𝛾𝑏 = 𝑔𝑏ℎa𝑏 ∧ 𝑧𝑎𝑏 = H(𝑥)𝑎H(𝑦)𝑏 }
Where (𝛾𝑎, 𝛾𝑏 , 𝑧𝑎𝑏 , 𝑥,𝑦) is the instance and (𝑎, 𝑏, a𝑎, a𝑏 ) is the wit-
ness.

The non-interactive sigma protocol (with Fiat-Shamir), which

is equipped with a hash functionH ′ : {0, 1}∗ → Z𝑝 (modeled as a

andom oracle in the Fiat-Shamir heuristic) works as follows:

− The prover samples uniform random 𝛼𝑎, 𝛼a𝑎 , 𝛼𝑏 , 𝛼a𝑏 from Z𝑝
and compute:

𝑢𝛾𝑎 := 𝑔𝛼𝑎ℎ𝛼a𝑎 ;
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𝑢𝛾𝑏 := 𝑔𝛼𝑏ℎ
𝛼a𝑏 ;

𝑢𝑧𝑎𝑏 := H(𝑥)𝛼𝑎H(𝑦)𝛼𝑏
− Then it computes 𝛽 := H ′ (𝑢𝛾𝑎 , 𝑢𝛾𝑏 , 𝑢𝑧𝑎𝑏 )
− Finally it computes:

𝛿𝑎 := 𝛼𝑎 + 𝑎𝛽 ;
𝛿a𝑎 := 𝛼a𝑎 + a𝑎𝛽 ;
𝛿𝑏 := 𝛼𝑏 + 𝑏𝛽 ;
𝛿a𝑏 := 𝛼a𝑏 + a𝑏𝛽 ;

− It then sends all of these computed values to the verifier.

− The verifier checkes the following equations:

𝑔𝛿𝑎ℎ𝛿a𝑎 = 𝛾
𝛽
𝑎𝑢𝛾𝑎 ;

𝑔𝛿𝑏ℎ
𝛿a𝑏 = 𝛾

𝛽

𝑏
𝑢𝛾𝑏 ;

H(𝑥)𝛿𝑎H(𝑦)𝛿𝑏 = 𝑧
𝛽

𝑎𝑏
𝑢𝑧𝑎𝑏 .

− It outputs 1 if and only if all of these equations satisfy,

else outputs 0.

Next we outline how the sigma protocol satisfies completeness,

knowledge soundness and zero-knowledge, and thereby a non-
interactive argument of knowledge as per Definition C.5 in the ran-

dom oracle model. We omit the details, which follow from the

standard sigma protocol arguments.

Completeness. For an honest prover, the verification (by an hon-

est verifier) always succeeds and the verifier accepts the proof with

probability 1. Thus, the protocol satisfies completeness.

Knowledge Soundness. To prove knowledge soundness we con-

struct an extractor E, which rewinds the prover and provides two

responses 𝛽 and 𝛽′, both uniform at random in Z𝑝 for the same

set of first round messages 𝑢𝛾𝑎 , 𝑢𝛾𝑏 , 𝑢𝑧𝑎𝑏 . It obtains two sets of

responses in the third round from the prover: 𝛿𝑎, 𝛿a𝑎 , 𝛿𝑏 , 𝛿a𝑏 and

𝛿 ′𝑎, 𝛿
′
a𝑎
, 𝛿 ′
𝑏
, 𝛿 ′a𝑏 It extracts the witnesses as follows:

− 𝑎 := (𝛿𝑎 − 𝛿 ′𝑎) (𝛽 − 𝛽′)−1.
− 𝑏 := (𝛿𝑏 − 𝛿 ′𝑏 ) (𝛽 − 𝛽

′)−1.
− a𝑎 := (𝛿a𝑎 − 𝛿 ′a𝑎 ) (𝛽 − 𝛽

′)−1.
− a𝑏 := (𝛿a𝑏 − 𝛿 ′a𝑏 ) (𝛽 − 𝛽

′)−1.

Zero-knowledge. For an honest verifier, which chooses 𝛽 uni-

formly at random from Z𝑝 , we construct a simulator as follows:

− Choose 𝛿𝑎, 𝛿𝑏 , 𝛿a𝑎 , 𝛿a𝑏 𝛽 uniformly at random fromZ𝑝 and then

compute 𝑢𝛾𝑎 , 𝑢𝛾𝑏 , 𝑢𝑧𝑎𝑏 from the four verification equations.

− Finally program the random oracleH ′ (𝑢𝛾𝑎 , 𝑢𝛾𝑏 , 𝑢𝑧𝑎𝑏 ) = 𝛽 .

Similarly one can construct a sigma protocol for the relation:

ℜ𝑎 = {((𝛾𝑎, 𝑧𝑎, 𝑥), (𝑎, a𝑎)) : 𝛾𝑎 = 𝑔𝑎ℎa𝑎 ∧ 𝑧𝑎 = H(𝑥)𝑎}

G PROOF OF ℓ-MASKED BDDH IN THE
GENERIC GROUP MODEL

Boneh, Boyen and Goh extend the Generic Group Model defined by

Shoup [36] to include the class of assumptions in pairs of groups

having an efficiently computable bilinear pairing. They define the

Generalized Diffie-Hellman problem in [12] and give a proof of its

security for generic bilinear groups.

Let G1 = ⟨𝑔1⟩, G2 = ⟨𝑔2⟩ and G𝑇 = ⟨𝑔𝑇 ⟩ be cyclic groups of

order 𝑝 and let 𝑒 : G1 × G2 −→ G𝑇 be an efficiently computable

bilinear map. We state below a slight variant of the generalized

decisional Diffie Hellman Problem [12], as defined by Boyen in [15]

to account for groups equipped with an asymmetric bilinear pairing.

Definition G.1 ( (P,Q,R,f) - Decisional Diffie-Hellman Problem).
Let 𝑃 = (𝑃1, . . . , 𝑃𝑠1 ) ∈ F𝑝 [𝑋1, 𝑋2, . . . , 𝑋𝑛]𝑠1 , 𝑄 = (𝑄1, . . . , 𝑄𝑠2 ) ∈
F𝑝 [𝑋1, 𝑋2, . . . , 𝑋𝑛]𝑠2 and 𝑅 = (𝑅1, . . . , 𝑅𝑠3 ) ∈ F𝑝 [𝑋1, 𝑋2, . . . , 𝑋𝑛]𝑠3
be tuples of n-variate polynomials over F𝑝 . For a polynomial 𝑓 ∈
F𝑝 [𝑋1, 𝑋2, . . . , 𝑋𝑛] and a random vector (𝑥1, . . . , 𝑥𝑛) ∈ F𝑛𝑝 define

the vector

𝐻 (𝑥1, . . . , 𝑥𝑛) = (𝑔𝑃 (𝑥1,...,𝑥𝑛 )
1

, 𝑔
𝑄 (𝑥1,...,𝑥𝑛 )
2

, 𝑔
𝑅 (𝑥1,...,𝑥𝑛 )
𝑇

) ∈ G𝑠1
1
×G𝑠2

2
×G𝑠3

𝑇
(G.1)

The (𝑃,𝑄, 𝑅, 𝑓 )- Decisional Diffie Hellman problem for the groups

G1,G2,G𝑇 is defined as:

Given the vector𝐻 (𝑥1, . . . , 𝑥𝑛) = (𝑔𝑃 (𝑥1,...,𝑥𝑛 )
1

, 𝑔
𝑄 (𝑥1,...,𝑥𝑛 )
2

, 𝑔
𝑅 (𝑥1,...,𝑥𝑛 )
𝑇

),
distinguish 𝑔

𝑓 (𝑥1,...,𝑥𝑛 )
𝑇

from a random element of G𝑇 .

The advantage of an algorithm A in solving the the above deci-

sional problem is given by

𝐴𝑑𝑣
(𝑃,𝑄,𝑅,𝑓 )-𝐷𝐷𝐻

A =

��� Pr [
A(𝐻 (𝑥1, . . . , 𝑥𝑛), 𝑔𝑓 (𝑥1,...,𝑥𝑛 )𝑇

) = 1

]
−

Pr

[
A(𝐻 (𝑥1, . . . , 𝑥𝑛), 𝑔a𝑇 ) = 1 : a←

$
F𝑝

] ���
(G.2)

We now state the notion of independence given in [12] for a set of

polynomials (𝑃,𝑄, 𝑅, 𝑓 ).

Definition G.2. Let 𝑃 ∈ F𝑝 [𝑋1, 𝑋2, . . . , 𝑋𝑛]𝑠1 ,𝑄 ∈ F𝑝 [𝑋1, 𝑋2, . . . , 𝑋𝑛]𝑠2
and 𝑅 ∈ F𝑝 [𝑋1, 𝑋2, . . . , 𝑋𝑛]𝑠3 be three tuples of 𝑛-variate poly-

nomials over F𝑝 having 𝑃1 = 𝑄1 = 𝑅1 = 1. A polynomial 𝑓 ∈
𝐹𝑝 [𝑋1, 𝑋2, . . . , 𝑋𝑛] is said to be dependent on the sets (𝑃,𝑄, 𝑅) if
there exist constants {𝑢𝑖, 𝑗 }𝑖, 𝑗 , {𝑣𝑖, 𝑗 }𝑖, 𝑗 , {𝑤𝑖, 𝑗 }𝑖, 𝑗 , {𝑡𝑘 }𝑘 ∈ F𝑝 such

that

𝑓 =
∑︁
𝑖

∑︁
𝑗

𝑢𝑖, 𝑗𝑃𝑖𝑄 𝑗 +
∑︁
𝑖

∑︁
𝑗

𝑣𝑖, 𝑗𝑄𝑖𝑄 𝑗 +
∑︁
𝑖

∑︁
𝑗

𝑤𝑖, 𝑗𝑃𝑖𝑃 𝑗 +
∑︁
𝑘

𝑡𝑘𝑅𝑘

(G.3)

𝑓 is independent of (𝑃,𝑄, 𝑅) if it is not dependent on the sets

(𝑃,𝑄, 𝑅).

The coefficients {𝑣𝑖, 𝑗 }𝑖, 𝑗 , {𝑤𝑖, 𝑗 }𝑖, 𝑗 will be zero if efficiently com-

putable isomorphisms 𝜓 : G2 −→ G1 and 𝜓−1 : G1 −→ G2 are not
known.

An adversary, in the Generic Group Model(GGM), is provided with

only random encodings of some group elements. For group oper-

ations and pairing computations, the adversary is given access to

oracles. This limits the adversary from exploiting any structural

property of the actual group representation. The security proof of

an assumption in the GGM is structured as follows:

An algorithm B simulates the interaction of the adversary A
with the group operation oracles. That is, B answers the queries

made by A without the knowledge of the encodings, the actual

assignment (𝑥1, . . . , 𝑥𝑛) and the bit 𝑏 that were used to generate

the random (𝑃,𝑄, 𝑅, 𝑓 )−DDH instance. Information about the bit

𝑏 could be leaked to A in case it is not provided with a correct

simulation. The simulation fails if the algorithm B while simulating

the oracles ends up assigning different encodings to the same group
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element. The advantage of the adversary is then bounded using

the probability of the simulation failing. The details of this can be

found in [12, 15, 36].

Let 𝜎1, 𝜎2, 𝜎𝑇 : F𝑝 −→ {0, 1}∗ be three random encodings (injec-

tive maps) corresponding to the groups G1,G2 and G𝑇 respectively.

Then we have the following theorem from [12, 15]:

TheoremG.3. Let 𝑃 ∈ F𝑝 [𝑋1, 𝑋2, . . . , 𝑋𝑛]𝑠1 ,𝑄 ∈ F𝑝 [𝑋1, 𝑋2, . . . , 𝑋𝑛]𝑠2
and 𝑅 ∈ F𝑝 [𝑋1, 𝑋2, . . . , 𝑋𝑛]𝑠3 be three tuples of 𝑛-variate polynomi-
als over F𝑝 having 𝑃1 = 𝑄1 = 𝑅1 = 1. Let 𝑓 ∈ 𝐹𝑝 [𝑋1, 𝑋2, . . . , 𝑋𝑛] be
independent of (𝑃,𝑄, 𝑅). Then for any algorithm A that makes at
most 𝑞 oracle queries in total, we have:

𝐴𝑑𝑣
(𝑃,𝑄,𝑅,𝑓 ) -𝐷𝐷𝐻

A =

����� Pr

A(𝜎1 (𝑃 (𝑥1, . . . , 𝑥𝑛 ) ),
𝜎2 (𝑄 (𝑥1, . . . , 𝑥𝑛 ) ),
𝜎𝑇 (𝑅 (𝑥1, . . . , 𝑥𝑛 ) ),
𝜎𝑇 (a0 ), 𝜎𝑇 (a1 ) ) = 𝑏

���������
(𝑥1, . . . , 𝑥𝑛 )←$

F𝑝 ,

𝑏←
$
{0, 1},

a𝑏 ← 𝑓 (𝑥1, . . . , 𝑥𝑛 ),
a
1−𝑏←$

F𝑝


− 1

2

�����
≤ (𝑞 + 2𝑛 + 2)

2𝑑

2𝑝
(G.4)

where 𝑑 =𝑚𝑎𝑥 (𝑑𝑃𝑄 = 𝑑𝑃 + 𝑑𝑄 , 𝑑𝑅, 𝑑𝑓 ). 𝑑𝑆 denoting the maximum
of the total degrees of the polynomials in the set 𝑆 .

Following the framework of BBG, for our assumption we have:

𝑛 = 𝑙 + 3, 𝑑 = 3 and 𝑃,𝑄, 𝑅, 𝑓 ∈ F𝑝 [𝑎, 𝑏, 𝑐, 𝑑1, . . . , 𝑑𝑙 ] where

− 𝑃 = (𝑃1, 𝑃2, 𝑃3) = (1, 𝑎, 𝑏)
− 𝑄 = (𝑄1, . . . 𝑄2𝑙+1) = (1, 𝑑1, . . . , 𝑑ℓ , 𝑐 + 𝑏𝑑1, . . . 𝑐 + 𝑏𝑑ℓ )
− 𝑅 = (𝑅1) = (1)
− 𝑓 = 𝑎𝑐

So 𝑃𝑄 = (1, 𝑎, 𝑏, {𝑑𝑖 }ℓ𝑖=1, {𝑎𝑑𝑖 }
ℓ
𝑖=1

, {𝑏𝑑𝑖 }ℓ𝑖=1, {𝑐+𝑏𝑑𝑖 }
ℓ
𝑖=1

, {𝑎𝑐+𝑎𝑏𝑑𝑖 }ℓ𝑖=1, {𝑏𝑐+
𝑏2𝑑𝑖 }ℓ𝑖=1).
We now state and prove the following lemma to be able to use

theorem G.3.

Lemma G.4. 𝑓 = 𝑎𝑐 is independent of the sets (𝑃,𝑄, 𝑅).

Proof. Suppose, to the contrary, that 𝑓 is dependent on (𝑃,𝑄, 𝑅)
in the sense of definitionG.2. Then 𝑓 can bewritten as 𝑓 =

∑
𝑖

∑
𝑗 𝑢𝑖, 𝑗𝑃𝑖𝑄 𝑗+∑

𝑘 𝑡𝑘𝑅𝑘
In other words:

𝑎𝑐 = 𝑢0,0 +
𝑙∑︁

𝑖=1

𝑢0,𝑖𝑑𝑖 +
𝑙∑︁

𝑖=1

𝑢
0,𝑙+𝑖 (𝑐 + 𝑏𝑑𝑖 ) + 𝑢1,0𝑎

+
𝑙∑︁

𝑖=1

𝑢1,𝑖𝑎𝑑𝑖 +
𝑙∑︁

𝑖=1

𝑢
1,𝑙+𝑖 (𝑎𝑐 + 𝑎𝑏𝑑𝑖 ) + 𝑢2,0𝑏

+
𝑙∑︁

𝑖=1

𝑢2,𝑖𝑏𝑑𝑖 +
𝑙∑︁

𝑖=1

𝑢
2,𝑙+𝑖 (𝑏𝑐 + 𝑏2𝑑𝑖 ) + 𝑡0

Equivalently:

0 = 𝑎𝑐 (
𝑙∑︁

𝑖=1

𝑢
1,𝑙+𝑖 − 1) + (𝑢0,0 + 𝑡0) +

𝑙∑︁
𝑖=1

𝑢0,𝑖𝑑𝑖

+
𝑙∑︁

𝑖=1

𝑢
0,𝑙+𝑖 (𝑐 + 𝑏𝑑𝑖 ) + 𝑢1,0𝑎 +

𝑙∑︁
𝑖=1

𝑢1,𝑖𝑎𝑑𝑖 +
𝑙∑︁

𝑖=1

𝑢
1,𝑙+𝑖𝑎𝑏𝑑𝑖

+ 𝑢2,0𝑏 +
𝑙∑︁

𝑖=1

𝑢2,𝑖𝑏𝑑𝑖 +
𝑙∑︁

𝑖=1

𝑢
2,𝑙+𝑖 (𝑏𝑐 + 𝑏2𝑑𝑖 )

On equating the coefficients to 0, we arrive at a contradiction of

the form

∑𝑙
𝑖=1 𝑢1,𝑙+𝑖 = 1 and 𝑢

1,𝑙+𝑖 = 0 for all 𝑖 ∈ [𝑙], from the

coefficients of the monomials 𝑎𝑐 , 𝑎𝑏𝑑1, . . . , 𝑎𝑏𝑑𝑙 .

So our assumption is wrong and 𝑓 must be independent of (𝑃,𝑄, 𝑅).
□

Having proven 𝑓 independent of (𝑃,𝑄, 𝑅), our assumption fits

the (𝑃,𝑄, 𝑅, 𝑓 ) Decisional Diffie-Hellman framework G.1 given by

BBG and thus can be proven secure in GGM by directly invoking

the above theorem.

From theorem G.3 we have,

𝐴𝑑𝑣ℓ−𝑚𝑎𝑠𝑘𝑒𝑑 𝐵𝐷𝐷𝐻
A ≤ 3(𝑞 + 2𝑙 + 8)2

2𝑝
(G.5)

20


	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Works
	3 Technical Overview
	3.1 A motivating use case
	3.2 Our Construction: An Overview

	4 Notation and Preliminaries
	4.1 Bilinear Pairing and our Assumptions
	4.2 Message and Cipher trees
	4.3 Merkle Tree Commitments

	5 Our Definition: Hierarchical Threshold Symmetric Encryption (HiSE)
	6 Our HiSE construction
	7 Experimental Evaluation
	8 Conclusion
	References
	A Our communication Model
	B Security games and oracles.
	C Building Blocks
	C.1 Shamir's Secret Sharing
	C.2 Commitment
	C.3 Non-interactive Zero-knowledge

	D Strongly Secure HiSE
	D.1 Definitions
	D.2 Strongly secure HiSE construction

	E Missing Proofs
	E.1 Proof of (Strong)-Correctness
	E.2 Proof for Message Privacy
	E.3 Proof for (Strong)-Authenticity.

	F Specific Sigma NIZK Proof Systems
	G Proof of -masked BDDH in the Generic Group Model

