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Abstract

In the context of fully-homomorphic-encryption, we consider the representation of
large integers by their decomposition over a product of rings (through the Chinese
Remainder Theorem) and introduce a new algorithm for the determination of the sign
solely through the knowledge of ring-components. We then prove that our algorithm
delivers a correct result with a very high probability.

1 Introduction

On top of the two elementary arithmetic operations (addition and multiplication) in-
cluded by design in all fully-homomorphic-encryption (FHE) systems, many real-world
applications require comparisons1. As a consequence, algorithms aimed at computing the
sign2 of a message have been developed for the most prominent classes of FHE crypto-
systems, that is to say FHEW/TFHE schemes for boolean circuits [22], Brakerski-Gentry-
Vaikuntanathan (BGV), Brakerski/Fan-Vercauten (BFV) schemes for messages in finite
fields [17, 25] and Cheon-Kim-Kim-Song (CKKS) scheme for real and complex messages
[9, 19, 20]. We refer to [22] for an evaluation of the comparative merits of these various
algorithms and for a description of what appears, up to our knowledge, as the most recent
technique for the large-precision evaluation of the sign. However, none of the literature
cited above is concerned with the sign evaluation of large-integers from its residues (en-
cryptions thereof). It is precisely the objective of this work to introduce a method for
determining the sign for a FHE crypto-system based on a residue number system (RNS).

Using the Chinese Remainder Theorem (CRT) in order to build a FHE library is
indeed a well-known theoretical alternative to the binary representation of large numbers
(say 32-bits or 64-bits) and their treatment by circuits (see for instance papers on the
TFHE [11] and FHEW [14] protocols). The advantage of the representation of numbers
of Z/pZ by their moduli in a product of rings of Z/p1Z× · · · ×Z/pκZ lies in the fact that
each ring can be handled separately as far as additions and multiplications are concerned.
In the companion paper [5] by the same authors, we indeed introduce a modification

1This is in particular the case for training neural networks [2, 18] –or more generally statistical learning
[10]– or requesting databases.

2The comparison of two messages a and b boils down to the determination of the sign of a− b.
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of the bootstrap procedure which aims at allowing (without extra computational cost)
larger values of the pairwise coprime integers pi’s and thus values of p =

∏κ
i=1 pi up to 264.

However, as aforementioned, one key aspect of the manipulation of large sets of data is the
necessity to order and sort them: at the core of all FHE-library, should lie the possibility
to determine the sign of a single number. Until now, this has prevented the use of the
CRT in the context of FHE as the homomorphic determination of the sign has long been
considered as a difficult question.

In this paper, we present a solution of this problem in the context of FHEW/TFHE
encryption protocols. The corresponding algorithm and associated devices have given rise
to the patent [6]. More precisely, we show how to compute with the help of homomorphic
operations and several functional bootstrappings, an encrypted value of the sign of any
element of Z/pZ from the FHEW-encryptions of its residues in the Z/piZ for i = 1, . . . , κ.
To this aim, we introduce a new algorithm which computes a series of scalings of the original
ciphertext, obtained in a standard way with the Bezout coefficients. We then show that
among the consecutive magnifications of this message (again, in encrypted version), one
allows to determine safely its sign. The result is then carried out through a cascade of
linear combinations whose aim is to preserve the relevant information. The trick used here
is to a large extent similar to the one used in [3, 4]. We prove rigorously the correctness of
the algorithm with very high probability for appropriate parameters and we explain how
to choose them.

2 Background

2.1 Notations and preliminaries on the Chinese remainder theorem

For all integer p ≥ 2, the main representative of µ ∈ R/pZ, denoted by [µ]p, will be taken
in the interval [−p/2, p/2[, and the norm of µ is |µ| = |[µ]p|. Throughout the paper, for
all interval I ⊂ R of length smaller than p, for any µ ∈ R/pZ, we shall say that µ ∈ I if
there exists k ∈ Z such that [µ]p − kp ∈ I.

Consider an integer p of the form

p =
k∏
i=1

pi

where the integers pi ≥ 3 are assumed to be odd and pairwise coprime, i.e.

∀ 1 ≤ i < j ≤ k, pi ∧ pj = 1.

Any element µ in the set Zp may be represented unambiguously (owing to the Chinese
Remainder Theorem) by its coordinates

(µ1, . . . , µk) ∈ Zp1 × · · · × Zpk

with
µi = µ mod pi, i = 1, . . . , k.

The Chinese Remainder Theorem states that the map

Φ : Zp → Zp1 × · · · × Zpk
µ 7→ (µ1, . . . , µk) = (µ mod p1, . . . , µ mod pk)
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is an isomorphism with inverse

Φ−1 : Zp1 × · · · × Zpk → Zp
(µ1, . . . , µk) 7→ µ =

∑k
i=1 p̂

−1
i p̂i µi mod p

where p̂i = p/pi and where p̂−1
i denotes the inverse of p̂i in Zpi , determined as a Bezout

coefficient by Euclide’s algorithm.

2.2 LWE encryption and Functional Bootstrapping

In this section we recall the definition of LWE ciphertexts [26], and the properties of the
functional bootstrapping procedure needed by our algorithm. The LWE cryptosystem is
parametrized by a plaintext modulus pi, a ciphertext modulus q and the secret dimension
n. As in the BFV, FHEW and TFHE schemes, we shall encrypt any message in Zpi in
the most significant digits of integers of Zq. The LWE encryption of a message µi ∈ Zpi
under (secret) key s ∈ Zn is a vector c = LWEn,q,pis (µi) = (a, b) ∈ Zn+1

q such that3

b = 〈a, s〉+ bqµi/pie+ e mod q

where e ∈ Zq is the so-called noise, which is picked from a centered Gaussian distribution
during secret-key encryption. For all ciphertext c = (a, b) = LWEn,q,pis (µi), the so-called
phase is the quantity

ϕs(c) := b− 〈a, s〉 ∈ Zq

and we shall denote the error term associated to c by

Err(c) = ϕs(c)− qµi/pi.

Introducing the rounding error

δi := bqµi/pie − qµi/pi,

we have Err(c) = e+ δi ∈ Q with |δi| ≤ 1
2 . The message µi is recovered by first computing

the approximate decryption function

ϕs(c) = bqµi/pie+ e = qµi/pi + Err(c) mod q

and then rounding its main representative to the closest multiple of q/pi. Decryption is
correct if |Err(c)| < q

2pi
. Now, if p =

∏k
i=1 pi is as in the previous section, the encryption

of any (possibly large) integer µ ∈ Zp will be the set of encryptions LWEn,q,pis (µi) of its
components µi for 1 ≤ i ≤ k.

Homomorphic arithmetic operations intrinsically increase the level of noise up to a
point where the message can not decrypted. The bootstrapping procedure introduced by
Gentry [16] and its generalisations to the evaluation of functions have been designed to re-
encrypt a message with a lower noise without having to decrypt it beforehand. Ducas and
Micciancio [14], and later on in a faster version, Chillotti et al. [11, 12], have introduced
a very efficient bootstrapping based on the polynomial rings (see also [23, 21] for further

3When pi = q, the message µi ∈ Zq is not rescaled and the corresponding LWEn,q,qs (µi) ciphertext will
be denoted shortly as LWEn,qs (µi).
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improvements), whose details we shall not give here4. In the rest of this section, we
nevertheless present its main properties for later use in the paper.

The FHEW/TFHE functional bootstrapping algorithm uses the polynomial ring

RN,p′ = Zp′ [X]/(XN + 1)

where N is a power-of-two, so that XN + 1 is the 2N -th cyclotomic polynomial. The
underlying idea of this method consists in the homomorphic implementation of a function

fv : µ ∈ Z2N 7→ fv(µ) = coeff0

(
Xµv(X) mod (XN + 1)

)
∈ Zp′ (2.1)

where coeff0 selects the constant term of a polynomial and where v ∈ RN,p′ is the so-called
test-polynomial, whose choice determines the characteristics of the functional bootstrap-
ping. Note that this function fv defined on Z2N satisfies the negacyclic constraint

fv(µ+N) = −fv(µ). (2.2)

Proposition 2.1 Let c be a LWEn,qs ciphertext. For a given test-polynomial v ∈ RN,p′,
there exists an homomorphic evaluation of the fonction fv (a so-called ”blind rotation”)
that provides a ciphertext

c′ = LWEn,q
′,p′

s (fv(2Nϕs(c)/q + δ(c))) ,

where the term δ(c) comes from specific rounding approximations on the ciphertext c after
a rescaling. In the special case where q|2N , we have δ(c) = 0. Moreover, the variance of
the refreshed error associated to the ciphertext c′ is constrained by security requirements
only and does not depend on the error of the original ciphertext c.

Owing to this result, the key feature of the functional bootstrapping is that, if pi is odd
and small enough, then for any target function F : Zpi 7→ Zp′ , it is possible to choose the
test polynomial v(X) such that

∀µ ∈ Zpi , fv (b2Nµ/pie+ ε) = F (µ)

as soon as ε is small enough. This enables to obtain a LWEn,q
′,p′

s (F (µ)) ciphertext from a
LWEn,q,pis (µ) ciphertext, with a refreshed error. In the special case where p′ = pi, q

′ = q
and F is the identity function, this operation is a bootstrapping in the usual sense.

3 Setting of the problem

We define the sign of an element µ ∈ Zp as the sign of its main representative. When p is
odd, we have

sign(µ) =


−1 if [µ]p ∈

{
−p− 1

2
, . . . ,−1

}
,

0 if [µ]p = 0,

+1 if [µ]p ∈
{

1, . . . ,
p− 1

2

}
.

4For a thorough description of the technique in the RNS context, we refer the reader to [5].
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Now, the sign of µ ∈ Zp can not be determined from the signs of its components
(µ1, . . . , µk). This can be easily seen on the following example with k = 2, p1 = 3
and p2 = 5: both 2 ∈ Z15 and 7 ∈ Z15 have positive signs, while their components
are respectively (−1, 2) ∈ Z3 × Z5 and (1, 2) ∈ Z3 × Z5 with signs (−1, 1) and (1, 1)
respectively. This shows that the value of µ has to some extent to be computed through
Φ−1 in order to evaluate its sign. In the context of homomorphic encryption, the purpose
of this paper is to reach the following

Objective: Find the encrypted value of the sign of an element of Zp from the
encrypted values of its components. More precisely, given the k values

ci = LWEn,q,pis (µi) ∈ Zn+1
q , i = 1, . . . , k,

we aim at obtaining
LWEn,q,3s

(
sign ◦ Φ−1 (µ1, . . . , µk)

)
,

where the sign ∈ {−1, 0, 1} has been identified with an element of Z3.
We first note that, by linearity of LWE encryption, the ciphertext

c =

k∑
i=1

[p̂−1
i ]pici

is an encrypted value of µ = Φ−1(µ1, . . . , µk), i.e. c = LWEn,q,ps (µ). As a matter of fact,
denoting ci = (ai, bi) and c = (a, b), we have

b− 〈a, s〉 =

k∑
i=1

[p̂−1
i ]pibi −

k∑
i=1

〈
[p̂−1
i ]piai, s

〉
=

k∑
i=1

[p̂−1
i ]pi (bi − 〈ai, s〉)

=
k∑
i=1

[p̂−1
i ]pi ((q/pi)µi + Err(ci)) mod q

= (q/p)
k∑
i=1

p̂−1
i p̂i µi +

k∑
i=1

[p̂−1
i ]piErr(ci) mod q

= (q/p)µ+ Err(c) mod q,

with

Err(c) =
k∑
i=1

[p̂−1
i ]piErr(ci).

A crude upper-bound of this error is obtained, by considering that |Err(ci)| < q
2pi

for
i = 1, . . . , k, as

|Err(c)| ≤ 1

2

k∑
i=1

pi|Err(ci)| <
kq

4
,

which is obviously far too large to hope for a correct decryption of µ in Zp. Note that
the condition |Err(ci)| < 1

2pi
is not coincidental: it ensures that µi is correctly decrypted

from ci in Zpi . Now, in practice, the errors Err(ci), for i = 1, . . . , k, are the sum of a fixed
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rational (the rounding error) and of a sub-gaussian random variable ei with parameter
σ(ei), that is to say such that

E(eλei) ≤ e
1
2
σ2(ei)λ

2
.

As a consequence, Err(c) is also composed of the sum of a fixed term δ bounded by
∑

i pi/4
and of a sub-gaussian variable e with parameter

σ(e) =
√

[p̂−1
1 ]2p1σ

2(e1) + . . .+ ([p̂−1
k ]2pkσ

2(ek)

and from Markov’s inequality

P(|e| ≥ λ) ≤ 2e−λ
2/(2σ2(e)).

In particular, if all the errors ei, i = 1, . . . , k, are independent and Gaussian with param-
eters σ(ei), then we have

P(|e| ≤ λ) = erf

(
λ√

2σ(e)

)
.

If we assume for simplicity that the contribution of the rounding errors δ is negligible, the
decryption of c in Zp coincides with µ with probability

erf

(
q

2
√

2σ(e)p

)
.

Assuming, for instance, that the parameters σ(ei) = q

2
√

2piθ
have all been adjusted so as

to ensure a correct decryption in Zpi with a given probability erf(θ), we then have

σ(e) =
q

2
√

2θ

√√√√ k∑
i=1

(
[p̂−1
i ]pi
pi

)2

and we can obtain from the following inequalities, valid for for x ≥ 0,

erf(x) =
2√
π

∫ x

0
e−t

2
dt ≥ 1− 1√

π

e−x
2

x
and erf(x) ≤ 1−

√
e

2π
e−2x2 ,

the estimates

erf(θ) ≥ 1− 1√
π

e−θ
2

θ
and erf

(
q

2
√

2σp

)
≤ 1−

√
e

2π
e
− q2

4σ2p2 .

Hence, the probability that the decryption of µ fails can be bounded from below by

1− erf

(
q

2
√

2σp

)
≥
√

e

2π
exp

(
− 2θ2

p2
∑k

i=1

(
[p̂−1
i ]pi/pi

)2
)
≥
√

e

2π
exp

(
−2θ2p2

max

kp2

)
,

where pmax = maxi=1,...,k pi. Taking k = 8 with (p1, p2, p3, p4, p5, p6, p7, p8) =
(7, 11, 13, 17, 19, 23, 25, 27) for instance (which yields p ≈ 232.225), and erf(θ) = 1 − 10−10

(that is to say θ = 4.572824967), this means that a failed decryption of µ in Zp occurs
with a probability larger than 0.657 (note that the assumption that δ is negligible does
not invalidate this estimate as a non-zero δ would lead to an even more pessimistic prob-
ability). This renders the determination of µ intractable as such and one should look for
an algorithm to determine the sign of µ without knowing µ exactly.
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4 The sign algorithm for plaintexts

To introduce our method, let us examine a toy problem where we want to determine the
sign of an integer µ ∈ Zp, but instead of knowing its components µi, we only have in hand
some noisy values µ̃i ∈ R satisfying µ̃i = µi + ei. We assume having an estimate on the
error terms, more precisely |ei| ≤ ε/k, for some 0 < ε ≤ 1/(2p̄+ 2), and where p̄ ≥ 3 is an
odd rescaling parameter whose role will be made precise further. Trying to reconstruct µ
from the noisy values yields the approximate value

µ̃[0] := Φ−1(µ̃1, . . . , µ̃k) =
k∑
i=1

[p̂−1
i ]pi p̂i µ̃i = µ+ e[0] mod p, with e[0] =

k∑
i=1

[p̂−1
i ]pi p̂i ei.

We have the estimate

|µ̃[0] − µ| = |e[0]| ≤ p

2

k∑
i=1

|ei| ≤
ε

2
p. (4.1)

If ε
2 p ≥ 1, the signs of µ̃[0] and µ may be different and it is clear that knowing µ̃[0] may

not be sufficient to determine the sign of µ.
The following function will be useful (the scaling by 2N , unnatural here, prepares its

use with ciphertexts in next section).

Definition 4.1 Let 0 ≤ ε ≤ 1 and N ≥ 1 an integer. We introduce the function gε on
R/(2NZ) by

gε(µ) =


+1 if µ ∈ ]εN,N − εN [ ,

−1 if µ ∈ ]−N + εN,−εN [ ,

0 otherwise.

Note that gε is odd and satisfies the negacyclic constraint (2.2).
Assume that gε(2Nµ̃

[0]/p) = +1. Then µ̃[0] ∈] ε2 p,
p
2 −

ε
2 p[ and, from (4.1), we deduce

that µ ∈]0, p2 [, i.e. sign(µ) = +1. Similarly, if gε(2Nµ̃
[0]/p) = −1, then we have sign(µ) =

−1. Consequently, gε(2Nµ̃
[0]/p) is an estimator of the sign of µ with no false positive (i.e.

if this estimator gives a non zero value, it is the correct sign).
Assume now that gε(2Nµ̃

[0]/p) = 0 and consider the rescaled value p̄µ. We first claim
that, under this assumption gε(2Nµ̃

[0]/p) = 0, necessarily p̄µ and µ have the same sign.
Of course, if µ = 0, then p̄µ = 0. Next, assume that µ > 0. Using again (4.1), we deduce
from gε(2Nµ̃

[0]/p) = 0 that µ ∈]0, εp] ∪ [p2 − εp,
p
2 [. In the case µ ∈]0, εp], we have

0 < p̄µ ≤ εp̄p ≤ p̄

2(p̄+ 1)
p ≤ p

2
− εp, (4.2)

and in the other case µ ∈ [p2 − εp,
p
2 [, we have p

2 − µ ∈]0, εp] and similarly we get

0 < p̄ (
p

2
− µ) ≤ p

2
− εp,

which is equivalent to

εp ≤ p̄µ− p̄− 1

2
p <

p

2
.
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We recall that p̄ is odd, so p̄−1
2 is an integer, which yields p̄µ ∈ [εp, p2 [. Consequently, in

both cases, we have sign(p̄µ) = +1 = sign(µ). If µ < 0, by considering −µ < 0 we get
that sign(p̄µ) = −1 = sign(µ). The claim is proved.

We now consider the following approximation of p̄µ:

µ̃[1] :=

k∑
i=1

[p̄p̂−1
i ]pi p̂i µ̃i = p̄µ+ e[1] mod p, with e[1] =

k∑
i=1

[p̄p̂−1
i ]pi p̂i ei.

Since we have the same estimate

|µ̃[1] − p̄µ| = |e[1]| ≤ p

2

k∑
i=1

|ei| ≤
ε

2
p, (4.3)

the same reasoning as above leads to the fact that if gε(2Nµ̃
[1]/p) = +1 (resp. = −1) then

sign(p̄µ) = sign(µ) = +1 (resp. = −1). In other words, in the case gε(2Nµ̃
[0]/p) = 0, the

quantity gε(2Nµ̃
[1]/p) is an estimator of the sign of µ with no false positive.

One can iterate on this method, considering all the rescalings

µ̃[r] :=

k∑
i=1

[p̄rp̂−1
i ]pi p̂i µ̃i = p̄rµ+ e[r] mod p, with e[r] =

k∑
i=1

[p̄rp̂−1
i ]pi p̂i ei, (4.4)

for r ∈ N. By an induction argument, one can easily generalize the above proof and show
that, if gε(2Nµ̃

[0]/p) = . . . = gε(2Nµ̃
[r−1]/p) = 0, then all the terms p̄rµ, p̄r−1µ, . . . ,

p̄µ and µ have the same sign and, moreover, if gε(2Nµ̃
[r]/p) = +1 (resp. = −1) then

sign(µ) = +1 (resp. = −1).
In fact, the list of rescalings can be taken finite. To see this point, we state a technical

Lemma.

Lemma 4.2 Let 3 ≤ p̄ < p be odd integers, let 0 < ε ≤ 1
2(p̄+1) and let µ ∈ [− (p−1)

2 , (p−1)
2 ],

an integer. Consider the sequence (p̄rµ)r≥0. The following statements hold true.

(i) If µ ∈]0, εp], then there exists r∗ ∈ N∗ such that for all 0 ≤ r < r∗, one has
p̄rµ ∈]0, εp] and p̄r

∗
µ ∈]εp, p2 − εp].

(ii) If µ ∈ [p2 − εp,
p
2 [, then there exists r∗ ∈ N∗ such that for all 0 ≤ r < r∗, one has

p̄rµ ∈ [p2 − εp,
p
2 [ and p̄r

∗
µ ∈ [εp, p2 − εp[.

(iii) If µ ∈ [−εp, 0[, then there exists r∗ ∈ N∗ such that for all 0 ≤ r < r∗, one has
p̄rµ ∈ [−εp, 0[ and p̄r

∗
µ ∈ [−p

2 + εp,−εp[.

(iv) If µ ∈]− p
2 ,−

p
2 + εp[, then there exists r∗ ∈ N∗ such that for all 0 ≤ r < r∗, one has

p̄rµ ∈]− p
2 ,−

p
2 + εp[ and p̄r

∗
µ ∈]− p

2 + εp,−εp].

Proof. Items (iii) and (iv) can be directly deduced from (i) and (ii) by µ→ p
2 + µ. Note

indeed that, p̄ being odd, we have p̄r p2 = p
2 mod p for all r ≥ 0.

Let us prove (i). We thus assume that µ ∈]0, εp]. Let r∗ ≥ 1 be the largest integer
such that p̄rµ ∈]0, εp] for all 0 ≤ r ≤ r∗ − 1 (such an integer exists given that p̄0µ ∈]0, εp]
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and that p̄rµ → +∞ when r → +∞). By construction, we have p̄r
∗−1µ ≤ εp < p̄r

∗
µ,

which yields

r∗ = 1 +

⌊
logp̄

(
εp

µ

)⌋
.

Moreover, replacing µ by p̄r
∗−1µ ∈]0, εp] in (4.2), we obtain p̄r

∗
µ ≤ p

2−εp. We have proved
(i).

In order to prove (ii), we now assume that µ ∈ [p2 −εp,
p
2 [. Then p

2 −µ ∈ ]0, εp] so Item

(i) can be applied to p
2 − µ. Setting r∗ = 1 +

⌊
logp̄

(
εp

p/2−µ

)⌋
, one has

∀0 < r ≤ r∗ − 1, p̄r
(p

2
− µ

)
∈ ]0, εp] and p̄r

∗
(p

2
− µ

)
∈
]
εp,

p

2
− εp

]
.

By substracting p/2, this yields

∀0 < r ≤ r∗− 1, p̄rµ− p̄
r − 1

2
p ∈

[p
2
− εp, p

2

[
and p̄r

∗
µ− p̄

r∗ − 1

2
p ∈

[
εp,

p

2
− εp

[
.

Since p̄r−1
2 is an integer for all r > 0, the proof of (ii) is complete. �

Remark 4.3 By considering the smallest and largest positive values in Zp, that is to say
µ = 1 and µ = p−1

2 , with ε ≤ 1
2(p̄+1) , we can bound from above r∗ by

r∗ ≤ rmax = 1 +

⌊
logp̄

(
p

p̄+ 1

)⌋
.

In order to prepare the adaptation of this algorithm to ciphertexts, we summarize in
the following proposition the result that we have proved.

Proposition 4.4 Let 3 ≤ p̄ < p be odd integers and let 0 < ε ≤ 1
2(p̄+1) . Let µ ∈ Zp and

consider a sequence of real numbers µ[r] defined for r = 0, 1, . . . , rmax = 1 +
⌊
logp̄

(
p
p̄+1

)⌋
and satisfying

|µ[r] − 2Np̄rµ/p|| ≤ εN. (4.5)

Then, there exists r∗ ≥ 0 such that

1. if µ > 0 then gε(µ
[r∗]) = 1 and for all 0 ≤ r < r∗, gε(µ

[r]) = 0;

2. if µ < 0 then gε(µ
[r∗]) = −1 and for all 0 ≤ r < r∗, gε(µ

[r]) = 0;

3. if µ = 0 then gε(µ
[r]) = 0 for all r ≥ 0,

where the function gε was introduced in Definition 4.1.

As a direct application of this proposition, one can directly determine the sign of µ
by a lexicographic comparison of (gε(2Nµ̃

[0]/p), gε(2Nµ̃
[1]/p), . . . , gε(2Nµ̃

[rmax])/p) with
(0, 0, . . . , 0). Equivalently, we can state the
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Corollary 4.5 Let 3 ≤ p̄ < p be odd integers, let 0 < ε ≤ 1
2(p̄+1) and let µ ∈ Zp. Denote

µi = µ mod pi and let gε be the function given in Definition 4.1. If for 0 ≤ r ≤ rmax =

1 +
⌊
logp̄

(
p
p̄+1

)⌋
, we define µ̃[r] by (4.4), where the noisy values µ̃i ∈ R/piZ satisfy

|µ̃i − µi| ≤ ε/k, then we have

sign(µ) = sign

(
rmax∑
r=0

2rmax−r gε(2Nµ̃
[r]/p)

)
. (4.6)

As a matter of fact, either all values gε
(
2Nµ̃[r]/p)

)
remain null, and the sum accordingly,

or the first non-vanishing value (either 1 or −1) dominates the sum (owing to the scaling
factors 2rmax−r).

5 The homomorphic sign algorithm

With the notations introduced in Section 2, we consider a plaintext µ ∈ Zp encoded by its
CRT components µi, 1 ≤ i ≤ k, which are encrypted as ci = LWEn,q,pis (µi), with errors
Err(ci). Our aim is to obtain an encrypted value of sign(µ). Three steps are necessary to
adapt the above algorithm from plaintexts to ciphertexts.

5.1 Rescaling ciphertexts

The first step consists in rescaling the ciphertexts ci by factors p̄r. The following result is
an adaptation of Proposition 4.4.

Proposition 5.1 Let 3 ≤ p̄ < p be odd integers and let 0 < ε ≤ 1
2(p̄+1) . Consider the

sequence

c[r] =

k∑
i=1

[p̄rp̂−1
i ]pici, r = 0, . . . , rmax = 1 +

⌊
logp̄

(
p

p̄+ 1

)⌋
(5.1)

of encrypted values LWEn,q,ps (p̄rµ) and denote, for all LWEn,qs ciphertext c,

ϕ̃s(c) := 2Nϕs(c)/q + δ(c) ∈ Z2N , (5.2)

where δ(c) was defined in Proposition 2.1. Suppose that, for all r, we have the estimate∣∣∣2NErr(c[r])/q + δ(c[r])
∣∣∣ ≤ εN. (5.3)

Then, there exists r∗ ∈ {0, . . . , rmax} such that

1. if µ > 0 then gε(ϕ̃s(c
[r∗])) = 1 and for all 0 ≤ r < r∗, gε(ϕ̃s(c

[r])) = 0;

2. if µ < 0 then gε(ϕ̃s(c
[r∗])) = −1 and for all 0 ≤ r < r∗, gε(ϕ̃s(c

[r])) = 0;

3. if µ = 0 then gε(ϕ̃s(c
[r])) = 0 for all r ≥ 0,

where the function gε was defined in Definition 4.1.

Proof. This result if a direct application of Proposition 4.4, setting µ[r] = ϕ̃s(c
[r]). Indeed,

(5.3) yields, for all r,∣∣∣µ[r] − 2Np̄rµ/p
∣∣∣ =

∣∣∣ϕ̃s(c[r])− 2Np̄rµ/p
∣∣∣ ≤ εN,

which enables to apply this proposition. �
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Remark 5.2 Piecewise constant functions may also be obtained through an elaboration of
the same technique as for the sign. To this aim, it is sufficient to notice (i), that the
Heaviside function H(µ) can be emulated through the same procedure by attributing the
value 0 instead of −1 to all torus-elements in [−p

2 + ε
2p,−

ε
2p] in the definition of gε and (ii),

that all piecewise constant functions f on the discrete torus [−p
4 ,

p
4 ] are linear combinations

of translated Heaviside functions f(x) =
∑

i αiH(x − βi) where the αi’s are integers and
the βi’s elements of [−p

4 ,
p
4 ].

5.2 Emulating gε through bootstrapping

Having computed the rescaled ciphertexts c[r] for 0 ≤ r ≤ rmax by formula (5.1), the
second step of the sign algorithm consists in a functional bootstrapping of each c[r] in
order to compute an encrypted version of gε(ϕ̃s(c

[r])). To this aim, we have to define a
suitable test-polynomial v(x).

More precisely, we aim in this subsection at constructing a test-polynomial vκ(X) ∈
RN,2N such that the associated function defined by (2.1) satisfies

∀µ ∈ Z2N , fvκ(µ) = 2κgε(µ), (5.4)

where 0 ≤ κ ≤ logN is a scaling factor so as to emulate the function gε, rescaled, in an
encrypted form through a bootstrapping procedure (according to Proposition 2.1).

Let

ε =
1

2N
+
α

N
(5.5)

where α is an integer satisfying

0 ≤ α ≤
⌊

N

2(p̄+ 1)
− 1

2

⌋
. (5.6)

It is readily seen that the constraint

0 < ε ≤ 1

2(p̄+ 1)

is fulfilled.
A key feature of functional bootstrapping based on blind rotation is that for any

function F defined from Z2N to Z and such that

∀j ∈ Z2N , F (j +N) = −F (j),

there exists a unique polynomial v ∈ Z[X]/(XN + 1) such that the function fv defined by
(2.1) satisfies

∀j ∈ Z2N , fv(j) = F (j).

Its coefficients vj are given by vj = F (−j), j = 0, . . . , N − 1.
For a given α in (5.5), it is thus enough to define F on {0, . . . , N − 1} as follows:

∀ 0 ≤ j ≤ α, F (j) = 0,

∀α+ 1 ≤ j ≤ N − α− 1, F (j) = 2κ,

∀N − α ≤ j ≤ N − 1, F (j) = 0,

11



so that
vκj := F (−j), j = 0, . . . , N − 1,

that is to say

vκ0 = . . . = vκα = 0, vκα+1 = . . . = vκN−α−1 = −2κ, vκN−α = . . . = vκN−1 = 0. (5.7)

For these specific choices of ε and vκ, the equality (5.4) is satisfied.

5.3 Implementing the homomorphic lexicographic comparison

Arguing as for Corollary 4.5, it is clear from Proposition 5.1 that the sign of µ ∈ Zp can
be obtained from the expression

rmax∑
r=0

2rmax−rgε(ϕ̃s(c
[r])). (5.8)

Assuming for a while that 2rmax ≤ N and using that the addition is homomorphic, an
encryption of (5.8) is

rmax∑
r=0

LWEn,q,2Ns

(
2rmax−rgε(ϕ̃s(c

[r]))
)

=

rmax∑
r=0

LWEn,q,2Ns

(
fvrmax−r(ϕ̃s(c

[r]))
)
. (5.9)

According to Subsection 2.2, we can bootstrap directly c[r] onto the encryption of
fvrmax−r(ϕ̃s(c

[r])), by using the test-polynomial vrmax−r(X), and sum up homomorphi-
cally to obtained the desired ciphertext (5.9).

However, the noise in (5.9) is determined by the output noise of the boostrapping
procedure. This may render the decryption of (5.9) incorrect, as soon as the noise is non
zero (indeed, the smallest non zero value in (5.8) may be ±1). In order to overcome this
difficulty, we first decompose the sum (5.8) into sub-sums of m terms as follows, where
we have supposed, for the sake of simplicity, that rmax + 1 = m`, where by definition
` = logm(rmax + 1). We suppose also that 2m+1 ≤ N . Let ε̃ be defined by

ε̃ =
1

2N
+
α̃

N
, with α̃ =

N

2m+1
, (5.10)

and consider

gε̃

m−1∑
r0=0

2logN−r0−1gε̃

m−1∑
r1=0

2logN−r1−1gε̃

. . . m−1∑
r`−1=0

2logN−r`−1−1gε(ϕ̃s(c
[jr]))


(5.11)

with

jr =

`−1∑
i=0

rim
`−1−i, r = (r0, . . . , r`−1).

Now, the smallest non zero values in this new sum is larger than 2logN−m > 1, which
authorizes some noise in the encrypted form of (5.11). Note that the innermost loop
involves gε, while all other loops resort to gε̃. It is easy to check that, by Proposition 5.1
and as formula (5.8), this new expression also gives the sign of µ. Using once again the
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homomorphy of the addition and the bootstrapped version of gε, we obtain an encryption
of the sign of µ from the sequence of ciphertexts c[k] through the expression

F̂

m−1∑
r0=0

F̃r0

m−1∑
r1=0

F̃r1

. . . m−1∑
r`−1=0

Fr`−1

(
c[jr])

)
where we have denoted, for any LWE ciphertext c,

Fj(c) := LWEn,q,2Ns (fvlogN−j−1(ϕ̃s(c))) , F̃j(c) := LWEn,q,2Ns (fṽlogN−j−1(ϕ̃s(c)))

and
F̂ (c) := LWEn,q,3s (fv̂(ϕ̃s(c)))

with ṽκ and v̂ obtained from the following adaptations of Formula (5.7):

ṽκ0 = . . . = ṽκα̃ = 0, ṽκα̃+1 = . . . = ṽκN−α̃−1 = −2κ, ṽκN−α̃ = . . . = ṽκN−1 = 0, (5.12)

v̂0 = . . . = v̂α̃ = 0, v̂α̃+1 = . . . = v̂N−α̃−1 = −1, v̂N−α̃ = . . . = v̂N−1 = 0. (5.13)

The corresponding algorithm is the following Algorithm 1 and is illustrated in Figure 1,
in a special case.

Algorithm 1 Homomorphic determination of the sign

For r = 0, . . . ,m` − 1 do
c[r] =

∑k
i=1[p̄rp̂−1

i ]pici with ci ∈ Zn+1
2N

End
S0 = 0
For r0 = 0, . . . ,m− 1 do

S1 = 0
For r1 = 0, . . . ,m− 1 do
· · ·
S`−2 = 0
For r`−2 = 0, . . . ,m− 1 do
S`−1 = 0
For r`−1 = 0, . . . ,m− 1 do

r = r`−1 +mr`−2 + . . .+m`−2r1 +m`−1r0

S`−1 = S`−1 + Fr`−1
(c[r])

End
S`−2 = S`−2 + F̃r`−2

(S`−1)
· · ·
S1 = S1 + F̃r1(S2)

End
S0 = S0 + F̃r0(S1)

End
Return F̂ (S0)
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Remark 5.3 Note that the factors 2j used here could be replaced by other choices. This
one is optimal in the context of the sign but is not compatible with some other piecewise
constant functions.

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
F0(c[0]) + F1(c[1]) F0(c[2]) + F1(c[3]) F0(c[4]) + F1(c[5]) F0(c[6]) + F1(c[7])

= = = =

S
(0)
2 S

(1)
2 S

(2)
2 S

(3)
2

↓ ↓ ↓ ↓
F̃0(S

(0)
2 ) + F̃1(S

(1)
2 ) F̃0(S

(2)
2 ) + F̃1(S

(3)
2 )

= =

S
(0)
1 S

(1)
1

↓ ↓
F̃0(S

(0)
1 ) + F̃1(S

(1)
1 )

=
S0

↓
F̂ (S0)

Figure 1: Computation of the sign function for m = 2 and ` = 3: each arrow represents a
bootstrap.

The following proposition states the conditions under which our algorithm works.

Proposition 5.4 Let 3 ≤ p̄ < p be odd integers and let ε be given by (5.5), where the
integer α satisfies (5.6). Let µ ∈ Zp and consider encryptions of its CRT components

ci = LWEn,q,pis (µi). Consider the sequence c[r], for r = 0, . . . , rmax = 1 +
⌊
logp̄

(
p
p̄+1

)⌋
defined by (5.1). Assume that (5.3) is satisfied for all r and that each LWE ciphertext Si
defined in Algorithm 1 as an argument of a function F̃j or of F̂ satisfies the estimate

|2NErr(Si)/q + δ(Si)| ≤ N/2m+1 − 1. (5.14)

Then Algorithm 1 provides an LWEn,q,3s (sign(µ)) ciphertext with an error bounded inde-
pendently of the ci’s.

Proof. Thanks to Propositions 2.1 and 5.1, and by (5.4), we already know that the inner-
most loop, the only one that involves gε, is correct. Moreover, each Si to be bootstrapped
in the next steps with the function gε̃ is an LWEn,q,2Ns (Σi) ciphertext, where Σi is under
the form

Σi =

m−1∑
j=0

2logN−j−1ξj with ξj ∈ {−1, 0, 1}.
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These values belong to the set

N

2m
Z2m+1−1 = {0,±N/2m,±2N/2m,±3N/2m, . . . ,±(2m − 1)N/2m} .

Hence, owing to the formulae (5.12) or (5.13) of the test-polynomials v(X) used in this
bootstrap, only three cases have to be examined:

– if Σi = 0, then F̃j(Sj) is a correct bootstrap if |ϕ̃s(Si)| ≤ α̃;

– if Σi > 0, then F̃j(Sj) is a correct bootstrap if α̃+ 1 ≤ ϕ̃s(Si) ≤ N − α̃− 1;

– if Σi < 0, then F̃j(Sj) is a correct bootstrap if −N + α̃+ 1 ≤ ϕ̃s(Si) ≤ −α̃− 1.

Since α̃ = N/2m+1, it can be observed that each of these three conditions is satisfied when
(5.14) is fulfilled. �

5.4 Correctness of the associated sign function for a specific implementation of
bootstrap

In this subsection, we show that our method is of practical interest by estimating its prob-
ability of success in a typical implementation. We shall consider the TFHE bootstrapping
introduced in [11, 12], extended to messages in the discrete tori Tpi = 1

p i
Zpi . In order to

make our Proposition 2.1 more precise, let us make a few assumptions. We refer to [12]
(see e.g. Algorithm 1 in this paper) for the definition of the parameters Bg and `g involved
in the gadget decomposition (and, also, we only consider the case where the associated
kg = 1). Moreover, the keys are binary and, for simplicity we only consider the case where
no keyswitch is used in the bootstrap (although this restriction is far from optimal). If B
denotes the set {0, 1}, the vectorial secret keys for LWE ciphertexts belong to BN and the
polynomial secret keys for RLWE ciphertexts belong to B[X]/(XN + 1), where we recall
that N is a power-of-two.

First, the deviation term δ(c) in Proposition 2.1 comes from rounding the mask
(ai)i=1,...,N of the LWEN,qs ciphertext c = (a, b) at the beginning of the blind rotate process.
More precisely, an instanciation of blind rotation leads to5

2Nϕs(c)/q + δ(c) =

⌊
2Nb/q − 1

2

N∑
i=1

δi

⌉
−

N∑
i=1

b2Nai/qe si,

where we have denoted δi = 2Nai/q − b2Nai/qc. Since b =
∑

i aisi + ϕs(c), we compute

δ(c) =

⌊
N∑
i=1

(si − 1/2)δi + 2Nϕs(c)/q

⌉
− 2Nϕs(c)/q,

and denoting γ = −
∑N

i=1(si − 1/2)δi − 2Nϕs(c)/q, this yields

δ(c) =

N∑
i=1

(si − 1/2)δi + γ − bγe.

5The trick of substracting the term 1
2

∑N
i=1 δi to 2Nb/q before rounding improves the total rounding

error.
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Since we have assumed that si ∈ {0, 1} for all i, we finally get the estimate

|δ(c)| ≤ 1

2

(
1 +

N∑
i=1

|2Nai/q − b2Nai/qe|

)
. (5.15)

Moreover, following [5], the variance of the refreshed error of the output c′ = LWEN,q,p
′

s

(we take q′ = q) can be computed as6

σ2
out := Var(Err(c′)) = N

(
1 +

N

2

)
q2B

−2`g
g

12
+ 2N2`g

B2
g + 2

12
σ2

BK,

where σBK is the standard deviation for the noise sampled to generate the RGSW bootstrap
keys. Finally, we shall make the standard assumption [24, 13] that the Central Limit
Theorem applies and that the output error Err(c′) can be well approximated by a gaussian
random variable.

A very conservative estimate of the correctness of the sign function can be obtained
by computing the probability that all the bootstraps involved in Algorithm 1 are correct.
Assuming that all the ei = Err(ci) associated to the ci’s involved in formula (5.1) are
independent sub-gaussian random variables with parameters σ(ei), and that the terms in
the sum in the right-hand side of (5.15) are uniformly distributed independent random
variables and as such sub-gaussian with parameter 1/(2

√
3), we may obtain the following

upper bound of the probability of getting an incorrect sign by computing the probability
that at least one condition on the errors in Proposition 5.4 is not satisfied. In other terms,
we have

Pfail ≤ Pfr + Por (5.16)

where Pfr is the probability that one of the bootstrap of the innermost loop of Algorithm
1 fails and Por is the probability that one of the bootstrap of the outer loops of Algorithm
1 fails.

Lemma 5.5 Assuming that all the ei = Err(ci), i = 1, . . . , k are independent sub-gaussian
random variables with parameters σ(ei), and that each rounding error term in (5.15) is
sub-gaussian with parameter 1/(2

√
3), we have

Pfr ≤ 2

rmax∑
r=0

exp
(
−(ε− 1/(2N))2/(8σ2

r )
)

(5.17)

where

σ2
r =

k∑
i=1

[p̄rp̂−1
i ]2pi (σ(ei)/q)

2 + 1/(192N), r = 0, . . . , rmax. (5.18)

Moreover, assuming that the sums obtained in the outer loops of Algorithm 1 and used as
input of further bootstraps are LWE ciphertext whoses errors are independent sub-gaussian
variables with common parameter

√
mσout, we have

Por ≤
2rmax

m− 1
exp

(
−(1/2m − 1/N)2/(32σ̃2

r )
)

(5.19)

where
σ̃2
r = mσ2

out/q
2 + 1/(192N).

6We assume here that Bg is even.
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Proof. The first statement (5.17) follows from the upper-bound

Pfr ≤
rmax∑
r=0

P
(
|Err(c[r])/q + δ(c[r])/(2N)| ≥ ε/2

)
and from Markov’s inequality. For the second statement, we have to estimate from above
the probability Pincbo that one bootstrap F̃ri(Si), ri ∈ {0, . . . ,m−1}, of a sum Si involved
in the outer loops of Algorithm 1 is incorrect. Recall that each Si is of the form Si =
e+

∑m−1
j=0 2logN−j−1ξj , where the ξj ’s take their values in {±1, 0} and e is a sub-gaussian

variable with parameter
√
mσout. According to Proposition 5.4, we have

Pincbo ≤ P
(
|e/q + δ(Si)/(2N)| ≥ 1/2m+2

)
and using again Markov’s inequality yields (5.19). Note that the number of such bootstraps
is

m`−1 +m`−2 + . . .+m1 +m0 =
rmax

m− 1
.

�

An example

For instance, consider the situation where

p = 7× 11× 13× 17× 19× 23× 25× 27 = 5019589575 > 232

and p̄ = 13. We take m = 3, ` = 2 and compute rmax = 8. Maximizing (5.6), we obtain
α = 36.

We compute successively the Bezout coefficients associated with (pi, p/pi) for i =
1, . . . , 8 and the growth factors in (5.18). We have the following table:

pj 7 11 13 17 19 23 25 27 (
∑

j [p̄
rp̂−1
j ]pj )

2

[p̂−1
j ]pj 2 3 -2 1 4 6 -3 5 104

[13p̂−1
j ]pj -2 -5 0 -4 -5 9 11 11 393

[132p̂−1
j ]pj 2 1 0 -1 -8 2 -7 8 187

[133p̂−1
j ]pj -2 2 0 4 -9 3 9 -4 211

[134p̂−1
j ]pj 2 4 0 1 -3 -7 -8 2 147

[135p̂−1
j ]pj -2 -3 0 -4 -1 1 -4 -1 48

[136p̂−1
j ]pj 2 5 0 -1 6 -10 -2 -13 339

[137p̂−1
j ]pj -2 -1 0 4 2 8 -1 -7 139

[138p̂−1
j ]pj 2 -2 0 1 7 -11 12 -10 423

As cryptographic parameters, let us take the following values, corresponding to a security7

of λ = 80 bits.

N q σBK Bg `g
1024 264 1.3× 107 213 2

7According to the lattice estimator https://github.com/malb/lattice-estimator
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We assume moreover that the ciphertexts ci have been obtained by a bootstrap with the
same parameters, i.e. for i = 1, . . . , k, we take σ(ei) = σout. This set of parameters yields

σ2
out/q

2 = 2.14× 10−11, σ̃r = 5.09× 10−6, Pfr ≤ 1.19× 10−12 Por ≤ 7.25× 10−41

so, finally,
Pfail ≤ 1.2× 10−12.

This proves the efficiency of our method. Note that the number of bootstraps involved in
one homomorphic evaluation of the sign is rmax + 1 + rmax

m−1 = 13 here, which is less than
an homomorphic multiplication (which can be done with 2k = 16 bootstraps).
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