
Revisiting the Slot-to-Coefficient
Transformation for BGV and BFV

Robin Geelen

COSIC, KU Leuven, Leuven, Belgium

Abstract. Numerous algorithms in homomorphic encryption require an operation
that moves the slots of a ciphertext to the coefficients of a different ciphertext. We
describe an FFT-like method for decomposing this slot-to-coefficient transformation
(and its inverse) for BGV and BFV. The proposed method is specific to power-of-two
cyclotomic rings and can handle both fully and sparsely packed slots. Previously,
such a method was only known for non-power-of-two cyclotomic rings.
Our algorithm admits more freedom in the complexity-depth trade-off than prior
works. Moreover, it brings down the computational complexity of the slot-to-coefficient
transformation from a linear to a logarithmic number of FHE operations in the best
case, which is shown via a detailed complexity analysis. We also provide a proof-of-
concept implementation in the Magma bootstrapping library.
Keywords: Homomorphic encryption · Linear transformations · BGV · BFV

1 Introduction
Several fully homomorphic encryption (FHE) schemes offer the capability of encoding
multiple numbers in a ciphertext. This functionality of “packing” multiple numbers together
is referred to as batching, and each entry in the packed vector is called a plaintext slot.
For example, the closely related BGV [BGV14] and BFV [Bra12, FV12] schemes encode a
vector of numbers defined modulo a power of a prime. Similarly, the CKKS [CKKS17]
scheme encodes a vector of complex numbers approximated up to a limited precision. A
recent attempt was made to introduce batching in third generation schemes as well [LW23a].
However, those techniques remain currently only of theoretical interest and will not be
considered in the rest of this paper.

A very common operation in both BGV/BFV and CKKS is converting between slot and
coefficient representation. Informally, the slot-to-coefficient transformation is defined as
follows: given one or multiple ciphertexts encoding m0, m1, . . . , mN−1 in the plaintext slots,
compute a ciphertext that encrypts the polynomial m0 + m1 · X + . . . + mN−1 · XN−1. The
most important applications of the slot-to-coefficient transformation include (amortized)
bootstrapping [GHS12a, AP13, HS21, CH18, GV23, GIKV23, OPP23, CHK+18, LW23b],
scheme conversion [BGGJ20, LHH+21, BCK+23] and transciphering [CHK+21]. The
inverse operation (coefficient-to-slot transformation) also appears in these applications.

The slot-to-coefficient transformation and its inverse are linear operations. Several
methods exist to compute it homomorphically, each of which is useful in a particular
setting. For the CKKS scheme, one typically takes the number of messages N as a power
of two, and efficient algorithms have been proposed to compute the slot-to-coefficient
transformation in that setting [CCS19, HHC19]. For the BGV and BFV schemes, there
are two common options: one can take the number of messages N different from a power
of two, which is the direction taken by HElib. In that case, an efficient method exists to

E-mail: robin.geelen@esat.kuleuven.be (Robin Geelen)

https://orcid.org/0000-0003-4684-3532
mailto:robin.geelen@esat.kuleuven.be

2 Revisiting the Slot-to-Coefficient Transformation for BGV and BFV

compute the slot-to-coefficient transformation [HS18, HS21]. Alternatively, one can take
the number of messages as a power of two, in which case no efficient algorithm for the
slot-to-coefficient transformation has been proposed to the best of our knowledge.

The main focus of this paper is studying the slot-to-coefficient transformation for BGV
and BFV in the power-of-two setting. Similarly to the CKKS case, we propose an FFT-like
algorithm to decompose the transformation in multiple stages, which scales well even for
a large number of plaintext slots. The algorithm is added to the open source Magma
bootstrapping library [GV23]. An operation count is provided at the end of the paper to
show that the proposed method has an advantage over prior work.

1.1 Related Work
Research in the slot-to-coefficient transformation can be divided into two categories: on
the one hand, several works bring down the computational complexity of generic linear
transformations. Many of the techniques on this front are shared between the BGV/BFV
and CKKS case. On the other hand, there also exist algorithms to decompose the slot-to-
coefficient map into smaller linear transformations, each of which can then be evaluated
with the generic approach. Below we give an extensive overview of the existing literature
for BGV/BFV and CKKS.

1.1.1 Linear Transformations in BGV and BFV

Generic linear transformations. HElib contains several algorithms to evaluate generic
homomorphic linear transformations [HS18, CCLS19]. The following two techniques are
used: a linear transformation, which is a sum of D weighted “rotations”, can be rewritten
as a double summation. By taking O(

√
D) terms in both the inner and outer sum, one can

reduce the number of rotations to O(
√

D). This algorithm is called a baby-step/giant-step
implementation. Moreover, the so-called hoisting technique can be used to simultaneously
compute all inner-sum rotations, which is more efficient than computing each of them
separately. Technical details about both techniques are given in Section 2.4.

FFT-like decomposition. As mentioned earlier, the slot-to-coefficient transformation in
HElib (also called the evaluation map) employs non-power-of-two message packing [HS21].
More specifically, one chooses a cyclotomic index m and then packs N = φ(m) messages
where φ(·) denotes Euler’s totient function. The parameter m is typically chosen as a
product of smaller prime powers for two reasons: it gives reasonably high packing capacity
of Zpe -vectors and allows FFT-like decomposition of the slot-to-coefficient transformation.
However, this parameter setting also has significant disadvantages compared to the power-
of-two case, including less efficient implementations and a larger noise variance of the
input ciphertext during bootstrapping (the exact noise variance depends on the number of
distinct prime factors in m, following the heuristic analysis of Halevi and Shoup [HS21]).

From the theoretical side, it is known that the slot-to-coefficient transformation can
be evaluated in quasilinear time [AP13]. Note that this early work employed a “ring
switching” technique to convert between different values of the cyclotomic index m, which
was necessary to reach an efficient decomposition of the linear transformation. However,
subsequent implementations of bootstrapping (including the one in HElib) do not use
ring switching anymore, because it is hypothesized that ring switching would not give a
substantial performance benefit in practice [HS21].

Finally, we note that no FFT-like algorithm has yet been proposed for the slot-to-
coefficient transformation in the case of power-of-two cyclotomics. To the best of our
knowledge, the only approach is the one from SEAL [CH18], but it does not use an efficient
decomposition into smaller-dimensional matrices.

Robin Geelen 3

1.1.2 Linear Transformations in CKKS

Generic linear transformations. As mentioned earlier, the strategy to evaluate generic
linear transformations in CKKS is very similar to BGV/BFV (including optimizations
such as baby-step/giant-step implementations and hoisting). Moreover, a double-hoisting
method was proposed to accelerate the computation of the inner-sum rotations even
more [BMTH21]. Notably, the double-hoisting technique carries over to BGV/BFV when
hybrid key switching [KPZ21] is used.

FFT-like decomposition. The CKKS scheme is only used in combination with a power-
of-two cyclotomic index m, which implies that N = φ(m) = m/2. Very similar FFT-like
algorithms to decompose the slot-to-coefficient transformation were proposed by Chen et
al. [CCS19] and by Han et al. [HHC19]. Compared to the BGV/BFV case, the CKKS
transformations resemble much more a classical FFT algorithm due to exclusive use of
power-of-two packing. Technical details about those algorithms are discussed in Section 2.3,
where we approach the problem from the same point of view as Han et al.

1.1.3 Recent Progress in Bootstrapping

An important application of the slot-to-coefficient transformation is bootstrapping, and
we expect that our methods will improve bootstrapping as well. More specifically, this
section discusses the applicability of our methods to two very recent papers that extend
the functionality of BGV and BFV bootstrapping:

• Kim et al. [KSS24] proposed a novel technique to reduce the noise of a BFV ciphertext
by using CKKS bootstrapping as a subroutine. Unlike all prior works, their method
is not restricted to small prime-power plaintext moduli. However, the amount of
reduced noise in their algorithm depends heavily on the number of iterations in the
META-BTS [BCC+22] high-precision bootstrapping technique. Our new algorithm
is not applicable to the work of Kim et al. because it relies on CKKS.

• Ma et al. [MHWW24] proposed a novel technique to bootstrap a BGV ciphertext
for large values of p more efficiently. Their idea is to optimize the digit extraction
polynomials via local null polynomials modulo pe, based on the observation that
the noise is much smaller than p. Since power-of-two cyclotomics only give a good
packing density for large values of p (see Section 3.1; up to complete splitting in
linear factors), we expect that our methods will be very useful in this scenario.

Although both works were implemented for only one scheme (BGV or BFV), they can
trivially bootstrap the other scheme as well, based on the very efficient BGV-to-BFV
and BFV-to-BGV conversion technique [AP13]. Moreover, both methods have different
advantages and disadvantages, so the best algorithm might depend on the exact setting.
Finding the best method for given parameters would be interesting future research.

1.2 Contributions and Outline
This work makes the following contributions:

• Section 3 describes new properties of the automorphism group and plaintext packing
for BGV/BFV. For a prime-power plaintext modulus pe, we make a crucial difference
between the situation p = 1 (mod 4) (where the rotation group of the plaintext slots
is two-dimensional) and p = 3 (mod 4) (where the rotation group of the plaintext
slots is one-dimensional). Sparsely packed slots are handled as a special case of fully
packed slots by encoding messages in a subring.

4 Revisiting the Slot-to-Coefficient Transformation for BGV and BFV

Table 1: List of commonly used symbols and their meaning

Symbol Meaning
m (or m′) Power-of-two cyclotomic index (m ≥ m′)
N (or N ′) Totient of cyclotomic index m (or m′)
R (or R′) Cyclotomic ring of index m (or m′)
E (or E′) Slot algebra for m (or m′) and pe

pe Plaintext modulus for BGV/BFV
q Ciphertext modulus for BGV/BFV
d Multiplicative order of p in Z∗

m

ℓ Number of slots (equals N/d)

• Section 4 describes a CKKS-like method to decompose the slot-to-coefficient trans-
formation in BGV and BFV, which scales well even for a large number of slots. We
provide a proof-of-concept implementation in the Magma bootstrapping library for
BGV and BFV [GV23].1 The implementation and results are discussed in Section 5.

2 Preliminaries

2.1 Notations
We will use power-of-two cyclotomic indices m and m′, where m′ divides m. Their totient
is written as N = φ(m) = m/2 and N ′ = φ(m′) = m′/2 respectively. The involved
homomorphic encryption schemes work over the ring R = Z[X]/(XN + 1) and its subring
R′ = Z[XN/N ′]/(XN + 1). For an integer n ≥ 2, we write the quotient ring of R modulo n
as Rn = R/nR and similarly for R′. All ring elements are shown in bold lower case letters
(e.g., a ∈ R) or explicitly as polynomials (e.g., a(X) ∈ R). The infinity norm of a ∈ R
(i.e., its largest coefficient) is denoted by ||a||∞. The unit group of integers modulo m
is written as Z∗

m (this is isomorphic to the automorphism group of R/Z). The subgroup
generated by g ∈ Z∗

m is denoted by ⟨g⟩. Finally, we summarize commonly used symbols in
Table 1 (some of these notations will be introduced in later sections).

2.2 BGV and BFV Encryption
BGV and BFV encrypt plaintexts from the ring Rpe for some odd prime p and positive
integer e. We will see the plaintext space Rpe as a subset of R where polynomials have
coefficients in (−pe/2, pe/2) ∩ Z. As mentioned above, we will only consider power-of-two-
dimensional rings R, although one can easily generalize encryption to arbitrary cyclotomic
rings. A ciphertext is a pair of ring elements, i.e., it lives in R2

q. For correctness, the
ciphertext modulus needs to be much greater than the plaintext modulus (q ≫ pe).

A BGV ciphertext (c0, c1) ∈ R2
q is said to encrypt the plaintext m ∈ Rpe under secret

key s ∈ R if
c0 + c1 · s = m + pee (mod q)

for some noise term e ∈ R that satisfies ||e||∞ ≤ (q/pe − 1)/2. Similarly, a valid BFV
ciphertext satisfies

c0 + c1 · s = ⌊(q/pe) · m⌉ + e (mod q),

where the bound on e is the same.
1See https://github.com/KULeuven-COSIC/Bootstrapping_BGV_BFV.

https://github.com/KULeuven-COSIC/Bootstrapping_BGV_BFV

Robin Geelen 5

2.2.1 Homomorphic Operations in BGV and BFV

BGV and BFV offer the same set of homomorphic operations over the plaintext space and
have the same asymptotic performance. Each homomorphic operation causes a certain
amount of noise growth (the term e will grow larger). The following operations are defined:

• Addition: given two ciphertexts that encrypt m1 and m2, compute a new ciphertext
that encrypts m1 + m2. The noise growth of addition is additive (the new noise
is roughly equal to the sum of the noise terms). Addition is generally considered a
cheap operation in terms of execution time.

• Multiplication: given two ciphertexts that encrypt m1 and m2, compute a new
ciphertext that encrypts m1 · m2. Roughly, one can bound the new noise after
multiplication by c · (||e1||∞ + ||e2||∞), where c is a constant that grows linearly
in pe and quadratically in N (so larger parameters result in more noise). In terms
of execution time, multiplication is much more expensive than addition, because it
requires an expensive post-processing step called key switching.

• Automorphism: given a ciphertext that encrypts a(X) and given a number j ∈ Z∗
m,

compute a new ciphertext that encrypts a(Xj) (note that reduction modulo XN + 1
is implicit here). The automorphism a(X) 7→ a(Xj) will be denoted by τj hereafter.
The noise growth of automorphism is additive (the new noise is equal to the old noise
plus some extra constant term). In terms of execution time, the cost of automorphism
is similar to multiplication as it also requires key switching.

Next to the ciphertext-ciphertext addition and multiplication as defined above, one can
also define addition and multiplication between a plaintext and a ciphertext. Plaintext-
ciphertext multiplication is much cheaper than ciphertext-ciphertext multiplication, because
no key switching is required. For more information about the practical performance of the
homomorphic operations, we refer to Kim et al. [KPZ21].

2.2.2 Plaintext Slots in BGV and BFV

Based on the Chinese remainder theorem, Smart and Vercauteren [SV14] proposed a
method to pack multiple numbers in a ciphertext, and perform “single instruction, multiple
data” operations on these numbers. The idea relies on the following lemma.

Lemma 1. Let p be an odd prime number and let e be a positive integer as above. Let
m ≥ 2 be a power-of-two cyclotomic index and N = m/2. Then the m-th cyclotomic
polynomial factors modulo pe as

XN + 1 = F1(X) · . . . · Fℓ(X) (mod pe). (1)

Each factor is of degree d, which is the multiplicative order of p modulo m, and the number
of factors is ℓ = N/d.

As such, using the Chinese remainder theorem, the plaintext ring is isomorphic to

Rpe ∼= Zpe [X]/(F1(X)) × . . . × Zpe [X]/(Fℓ(X)),

where addition and multiplication at the right-hand side correspond to component-wise
addition and multiplication. Since all rings Zpe [X]/(Fi(X)) are Galois rings of the same
parameters, they are isomorphic to each other. Therefore, we can see the plaintext space
as ℓ copies of Zpe [X]/(F1(X)), each of which is called a plaintext slot.

Slot permutations. Gentry et al. [GHS12b] noticed that one can homomorphically apply
permutations to the plaintext slots using the automorphisms from above. This is most
easily seen as follows: first, define the slot algebra as E = Zpe [ζm] with ζm a formal root

6 Revisiting the Slot-to-Coefficient Transformation for BGV and BFV

of F1(X), and let S ⊆ Z be a complete system of representatives for Z∗
m/⟨p⟩ (as done in

HElib [HS18]). In practice, we construct the set S as

S = {ge1
1 · . . . · get

t | 0 ≤ ei < ℓi}, (2)

where ℓ = ℓ1 · . . . · ℓt is the number of slots.2 The plaintext ring is now isomorphic to Eℓ,
which can be explicitly computed as

Rpe → Eℓ : a(X) 7→
{

a(ζh
m)

}
h∈S

. (3)

As such, each plaintext slot corresponds to one index h ∈ S or one tuple (e1, . . . , et). By
associating each plaintext slot with such a tuple, the full plaintext space corresponds to a
t-dimensional hypercube [HS20].

To enable permutations on a plaintext m, we take 0 ≤ v < ℓi and compute

ρv
i (m) = µ · τj(m) + (1 − µ) · τk(m), (4)

where j = g−v
i (mod m) and k = gℓi−v

i (mod m), and µ is the “mask” obtained by
embedding ‘0’ in the plaintext slots with ei < v, and embedding ‘1’ in the other slots.
Letting m′ = ρv

i (m), it is easy to see that the value of m′ in slot (e1, . . . , e′
i, . . . , et) is

equal to the value of m in slot (e1, . . . , ei, . . . , et) with e′
i = ei + v (mod ℓi). Since the

permutation ρv
i only acts on a single index in the tuple (by mapping each slot v positions

forward), it is called a one-dimensional rotation.
In general, computing the rotation from Equation (4) requires two automorphisms.

However, if gℓi
i = 1 (mod m), then the equation simplifies to ρv

i (m) = τj(m), so we
need only one automorphism. For 1 ≤ i ≤ t, we call dimension i “good” if only one
automorphism is required and “bad” otherwise.

The Frobenius map. The rotations from Equation (4) use automorphisms τj and τk, where
j−1 (mod m) and k are in S (which represents the quotient group Z∗

m/⟨p⟩). However, the
full automorphism group of R/Z consists of τj with j ∈ Z∗

m. The remaining automorphisms
for j ∈ ⟨p⟩ induce automorphisms on E: they act on each plaintext slot individually as the
map a(ζm) 7→ a(ζj

m) for arbitrary a(X). This subgroup of automorphisms is generated by
σ = τp (the so-called Frobenius map), which acts on the slots as σE : a(ζm) 7→ a(ζp

m).

2.3 The Slot-to-Coefficient Transformation in CKKS
The slot-to-coefficient transformation is achieved by evaluating the decoding function
homomorphically, which is a linear transformation over the plaintext slots. Similarly, the
coefficient-to-slot transformation evaluates the encoding function, which corresponds to
the inverse linear transformation. In the CKKS scheme, this involves multiplication by an
m/4 × m/4-matrix defined as

Sm/4 =
(

ζ
5i·revm/4(j)
m

)
0≤i,j<m/4

, (5)

where ζm is a primitive m-th root of unity, and revm/4 denotes the standard bit-reversal
permutation of m/4 items (the definition of Sm/4 above specifies entries in row i and
column j). Although CKKS defines the matrix over the complex numbers, it trivially
extends to other rings that have an m-th root of unity ζm (such as the slot algebra E).

In order to efficiently evaluate multiplication by Sm/4, Han et al. [HHC19] show an
FFT-like method to decompose this matrix into a product of sparse matrices. More
specifically, they prove the following lemma.

2More information about the construction of S for power-of-two cyclotomics will be given in Section 3.

Robin Geelen 7

Lemma 2. Let Sm/4 be as above, and correspondingly, let Sm/8 be the m/8 × m/8-matrix
defined with respect to ζm/2 = ζ2

m. Then for m ≥ 8, we have

Sm/4 =
[
I Wm/8
I −Wm/8

]
·
[
Sm/8 0

0 Sm/8

]
,

where Wm/8 = diag(ζ5i

m)0≤i<m/8.

By applying the above lemma recursively on Sm/8, we can factor Sm/4 into a product
of log2(m/4) sparse matrices (each of which contains only m/2 non-zero elements). Finally,
note that it can be useful to exploit an “incomplete” factorization of Sm/4 in which multiple
factors are merged, as this leads to less noise growth in homomorphic encryption (additional
details will be given later).

2.4 Baby-Step/Giant-Step Algorithm
2.4.1 Linear Transformations on Rpe

To implement multiplication by the matrices from Section 2.3, one can use the baby-
step/giant-step algorithm [HS18]. This algorithm multiplies the vector of plaintext slots
(in one dimension of S) by a generic matrix. More specifically, one can express an E-linear
transformation on a plaintext m ∈ Rpe in dimension i as

L(m) =
ℓi−1∑
v=0

κ(v) · ρv
i (m),

where κ(v) ∈ Rpe are appropriate constants. Letting g = ⌈
√

ℓi⌉ and h = ⌈ℓi/g⌉, the idea
is to rewrite the linear transformation as

L(m) =
ℓi−1∑
v=0

κ(v) · (µ(v) · τv(m) + (1 − µ(v)) · τv−ℓi(m))

=
h−1∑
k=0

τgk

g−1∑
j=0

(κ′(j + gk) · τ j(m) + κ′′(j + gk) · τ j(τ−ℓi(m)))

 ,

(6)

where τ = τ−1
gi

and

κ′(j + gk) = τ−gk(µ(j + gk) · κ(j + gk)),
κ′′(j + gk) = τ−gk((1 − µ(j + gk)) · κ(j + gk)).

It is clear that Equation (6) can be computed using O(
√

ℓi) automorphisms and O(ℓi)
plaintext-ciphertext multiplications. Moreover, if key switching keys are available for all j,
then we can use well-known (double-)hoisting techniques [HS18, BMTH21] to speed up
the computation of τ j(m) and τ j(τ−ℓi(m)). This is possible because both are sequences
of automorphisms on the same input (respectively m and τ−ℓi(m)).

In a good dimension, Equation (6) collapses to

L(m) =
h−1∑
k=0

τgk

g−1∑
j=0

κ′(j + gk) · τ j(m)

 , (7)

where κ′(j + gk) = τ−gk(κ(j + gk)). This saves approximately 50% of the automorphisms
and plaintext-ciphertext multiplications in the inner-sum computation.

8 Revisiting the Slot-to-Coefficient Transformation for BGV and BFV

2.4.2 Linear Transformations on E

Similarly to above, one can express a Zpe-linear transformation on a ∈ E as a weighted
sum of σv

E(a). As such, for a plaintext m ∈ Rpe , the map

L(m) =
d−1∑
v=0

κ(v) · σv(m) (8)

acts on each slot individually as a Zpe-linear transformation. This functionality can be
implemented in the same manner as Equation (7) if we take τ = σ. The cost is dominated
by O(

√
d) automorphisms and O(d) plaintext-ciphertext multiplications.

2.4.3 Multidimensional Baby-Step/Giant-Step Algorithm

The baby-step/giant-step algorithm (for E-linear as well as Zpe-linear transformations)
can be generalized to a multidimensional version [CCLS19]. More specifically, the goal is
to compute weighted sums of automorphisms τi with i ∈ I ⊆ Z∗

m. We first split the index
set I in two components G, H ⊆ Z∗

m such that each i ∈ I can be written as i = jk with
j ∈ G and k ∈ H. For a plaintext m ∈ Rpe , we can now rearrange expressions of the form

L(m) =
∑
i∈I

κ(i) · τi(m) =
∑
k∈H

τk

∑
j∈G

κ′(jk) · τj(m)

 , (9)

where κ′(jk) = τ−1
k (κ(jk)). We note that arbitrary linear transformations can be expressed

in the form of Equation (9), so we are neither limited to slot-wise nor one-dimensional
linear transformations. Finally, when merging an E-linear and a Zpe -linear map, one can
sometimes evaluate a bad dimension with the same cost as a good dimension, using the
strategy of reassigning incomplete rotations [CCLS19].

3 A Different View on Plaintext Encoding
The goal of this section is to introduce useful properties of power-of-two cyclotomics.
We first discuss the algebraic structure of the automorphism group and construction of
the representative set S which was defined earlier. Then we derive properties about the
factorization of cyclotomic polynomials, which will naturally lead to a method for encoding
plaintext vectors in a subring of Rpe .

3.1 Structure of the Automorphism Group and Plaintext Slots
For m ≥ 4 a power of two, it is a well-known fact that Z∗

m = ⟨5⟩ × ⟨−1⟩, where 5 has
order m/4 and −1 has order 2 [Gau86]. Consequently, this group has two generators and
is thus not cyclic for m ≥ 8. Another useful property is that for 1 ≤ r ≤ m/4 with r a
power of two, the subgroup ⟨5r⟩ coincides with the set consisting of all numbers x such
that x = 1 (mod 4r). This is because both sets are subgroups of the cyclic group ⟨5⟩, and
both have the same order m/(4r).

Lemma 3. Let m ≥ 4 be a power of two and consider a prime p. If p = 4r · k + 1 with r
a power of two and k odd, then the number of slots is ℓ = min(2r, m/2). If p = 4r · k − 1
with r a power of two and k odd, then the number of slots is ℓ = min(2r, m/4).

Proof. First note that the proof is trivial if r ≥ m/4, because p = ±1 (mod m) in that
case. Therefore, the order of p will be equal to 1 or 2, giving m/2 or m/4 slots respectively.
We will therefore assume that 1 ≤ r < m/4 in the rest of the proof.

Robin Geelen 9

We now prove the case p = 4r · k + 1. Using the property from above, we know that
p ∈ ⟨5r⟩. On the other hand, we know that p /∈

〈
52r

〉
since k is odd, so p is not in any

strict subgroup of ⟨5r⟩. It follows that p generates ⟨5r⟩ and the order of p is equal to
d = m/(4r). The number of slots is ℓ = m/(2d) = 2r ≤ m/2.

We now prove the case p = 4r · k − 1. Using a similar reasoning as above, we obtain
that the order of −p is equal to m/(4r). Since this order is at least 2, it follows that the
order of p is also d = m/(4r) and the number of slots is ℓ = m/(2d) = 2r ≤ m/4.

A noteworthy corollary is that the number of slots is at most (p + 1)/2. Hence one can
only have a good packing density if p is large. The maximum number of N = m/2 slots is
reached when p = 1 (mod m).

3.1.1 Construction of the Representative Set

The set S from Equation (2) forms a complete system of representatives for Z∗
m/⟨p⟩ and

can therefore be constructed with one or two generators. If p = 1 (mod 4), then p ∈ ⟨5⟩
and the group Z∗

m/⟨p⟩ is not cyclic in general. Therefore, we use generators g1 = 5 (of
order ℓ1 = ℓ/2) and g2 = −1 (of order ℓ2 = 2). On the other hand, if p = 3 (mod 4), then
p ∈ − ⟨5⟩ and Z∗

m/⟨p⟩ is cyclic. Therefore, we use generator g1 = 5 (of order ℓ1 = ℓ).
Note that we can also reinterpret the set S as having log2(ℓ) dimensions each of size 2.

This is done by prepending the generators 5n, 5n/2, . . . , 52, where n = ℓ/4 if p = 1 (mod 4)
and n = ℓ/2 if p = 3 (mod 4). This interpretation is useful for decomposing the slot-
to-coefficient transformation in multiple stages. Intermediate interpretations with fewer
dimensions of larger size are also possible.

3.2 Factorization of Cyclotomic Polynomials
The following lemma can be obtained by merging the results from Lyubashevsky and
Seiler [LS18] and Okada et al. [OPP23]. We also provide a unified and simplified proof for
comprehensiveness below.

Lemma 4. Let m ≥ 4 be a power of two, then each factor in Equation (1) is of the shape
Fi(X) = Xd + ai · Xd/2 + bi, where ai = 0 if p = 1 (mod 4).

Proof. We first prove the case p = 1 (mod 4). Using the result from Lemma 3, we know
that p = 4r · k + 1 where ℓ divides 2r. Let m′ = m/d, then substituting 2r by ℓ in the
previous equation gives p = 2ℓ · k′ + 1 = m′ · k′ + 1, so p = 1 (mod m′). Using Lemma 1,
the m′-th cyclotomic polynomial splits modulo pe into linear factors:

XN ′
+ 1 = F ′

1(X) · . . . · F ′
ℓ(X) (mod pe).

Then we explicitly obtain the factors of XN + 1 as Fi(X) = F ′
i (XN/N ′) = F ′

i (Xd).
We now prove the case p = 3 (mod 4). Using the result from Lemma 3, we know that

p = 4r · k − 1 where ℓ divides 2r. Let m′ = 2m/d, then substituting 2r by ℓ in the previous
equation gives p = 2ℓ · k′ − 1 = (m′/2) · k′ − 1, so p2 = 1 (mod m′) while p ̸= 1 (mod m′).
Using Lemma 1, the m′-th cyclotomic polynomial splits modulo pe into quadratic factors:

XN ′
+ 1 = F ′

1(X) · . . . · F ′
ℓ(X) (mod pe).

Then we explicitly obtain the factors of XN + 1 as Fi(X) = F ′
i (XN/N ′) = F ′

i (Xd/2).

3.2.1 Encoding Plaintext Vectors in a Subring

One does not have to use the full packing capacity of Rpe , but can also encode plaintext
vectors in a subring R′

pe . Since the algebraic structure of R′
pe now depends on m′ rather

10 Revisiting the Slot-to-Coefficient Transformation for BGV and BFV

than m, this will result in fewer plaintext slots (smaller ℓ) or a lower extension degree of
the slot algebra (smaller d) or both. Packing in a subring is useful in applications where a
small number of messages suffices.

To take a plaintext from Rpe to R′
pe , we can homomorphically evaluate the trace of

R/R′. This operation is commonly called coefficient selection [CH18] or subsum [CCS19]
in bootstrapping. It is defined over the plaintext space by the map

N−1∑
i=0

mi · Xi 7→ (N/N ′) ·

N ′−1∑
i=0

mi·N/N ′ · Xi·N/N ′

 .

It can be computed efficiently using only log2(N/N ′) automorphisms by going through all
intermediate cyclotomic rings between R and R′, and then iteratively evaluating the trace
for all subrings [AP13]. The factor N/N ′ can be removed by folding (N/N ′)−1 (mod pe)
in any subsequent linear transformation. We omit further details.

Example 1. We say that a plaintext is sparsely packed if each slot contains only an
element from Zpe ⊆ E. According to the Chinese remainder theorem, such a plaintext is
constructed as

m =
ℓ∑

i=1
mi · Gi(X), where Gi(X) = XN + 1

Fi(X) ·

[(
XN + 1
Fi(X)

)−1

(mod Fi(X))
]

.

Here the polynomials Fi(X) denote the factors from Equation (1) and mi ∈ Zpe . Reduction
modulo pe is implicit in the equation above. Following Lemma 4, it is easy to see that
Fi(X) ∈ Zpe [Xc] and therefore Gi(X) ∈ Zpe [Xc], where c = d if p = 1 (mod 4) and
c = d/2 if p = 3 (mod 4). It follows directly that m ∈ R′

pe with respect to m′ = m/c.

4 The New Transformation for BGV and BFV
This section describes the new version of the slot-to-coefficient and coefficient-to-slot
transformations. We offer a complete treatment of all situations, where we distinguish the
case p = 1 (mod 4) (treated in Section 4.1) from p = 3 (mod 4) (treated in Section 4.2).
The linear transformations are fundamentally different in both cases, because the first case
gives a non-cyclic and the second case gives a cyclic permutation group.

Notably, our algorithm has several advantages over earlier approaches. In summary, it
is based on the following design principles:

• Our method is fully parameterizable (the only restriction we have is a power-of-two
cyclotomic index) and can handle both fully and sparsely packed slots.

• The linear transformations can be decomposed in multiple stages, which gives rise to
a complexity-depth trade-off. Earlier approaches for power-of-two cyclotomics can
only evaluate the transformation directly in one stage [HS21, CH18].

• We propose a simpler variant of the “slot unpacking” procedure, which requires only
O(d) instead of O(d2) FHE operations, and which uses no multiplicative levels.

A more detailed comparison to the state-of-the-art is given in Section 5.2.

4.1 New Method for p = 1 (mod 4)
We will identify the slots of a plaintext with a vector in Eℓ. This is done by “flattening”
the representative set as S = {1, 5, . . . , 5ℓ1−1, −1, −5, . . . , −5ℓ1−1} and filling the plaintext
in Equation (3). We also use the notation ζm,i = ζhi

m , where hi is the i-th element of S.

Robin Geelen 11

4.1.1 Fully Packed Slots

In the slot-to-coefficient transformation, we start from a plaintext m that encodes

−→m =

d−1∑
j=0

mi,j · ζj
m,i


0≤i<ℓ

in the slots. Note that the encoding is done with respect to ζj
m,i instead of ζj

m to simplify
unpacking and repacking later. The goal is to map the elements mi,j to the coefficients of
a new plaintext m′′′. This can be done in three steps:

1. Perform a slot-wise linear transformation M that maps ζj
m,i 7→ ζj

m for 0 ≤ j < d in
slot i and extends by Zpe -linearity. Note that this transformation depends on i and
is thus different for each slot. After this step, the plaintext encodes the slot-vector

−→m′ =

d−1∑
j=0

mi,j · ζj
m


0≤i<ℓ

.

2. Multiply the slot-vector by (a column-permuted version of) the decoding matrix

Uℓ =
(

ζd·j
m,i

)
0≤i,j<ℓ

,

where the matrix above is specified by the entries in its i-th row and j-th column.
Observe that ζd

m ∈ Zpe , which implies Uℓ ∈ Zℓ×ℓ
pe . After this step, the plaintext

encodes the slot-vector

−→m′′ =

ℓ−1∑
k=0

d−1∑
j=0

mk,j · ζj
m · ζd·k

m,i


0≤i<ℓ

.

A column-permuted version of Uℓ will simply map the elements mi,j to a different
order of the coefficients.

3. Perform the linear transformation M−1 that maps ζj
m 7→ ζj

m,i for 0 ≤ j < d in slot i.
After this step, the plaintext encodes the slot-vector

−→m′′′ =

ℓ−1∑
k=0

d−1∑
j=0

mk,j · ζj+d·k
m,i


0≤i<ℓ

,

which corresponds to the plaintext

m′′′ =
ℓ−1∑
k=0

d−1∑
j=0

mk,j · Xj+d·k.

Here we used the observation that M−1 does not act on the entries of Uℓ (i.e., powers
of ζd

m) due to Zpe -linearity.

We emphasize that the slot-to-coefficient transformation is only Zpe -linear and not E-linear
in general, which is why step 1 and step 3 are required. Step 2 on its own is an E-linear
transformation over the plaintext slots. The inverse map (coefficient-to-slot transformation)
is given by M−1U−1

ℓ M instead of M−1UℓM .

12 Revisiting the Slot-to-Coefficient Transformation for BGV and BFV

Matrix decomposition. The matrix from step 2 can be decomposed into a product of
sparse matrices. To do this, we use the column-permuted version

Uℓ =
[
Sℓ/2 ζ4 · Sℓ/2
S′

ℓ/2 −ζ4 · S′
ℓ/2

]
=

[
Sℓ/2 0

0 S′
ℓ/2

]
·
[
I ζ4 · I
I −ζ4 · I

]
,

where ζ4 = ζ
m/4
m . The submatrices Sℓ/2 and S′

ℓ/2 are defined in Equation (5) and generated
by the roots of unity ζd

m and ζ−d
m respectively. Observe that Sℓ/2 and S′

ℓ/2 can be further
decomposed using Lemma 2. As a result, we can write Uℓ as a product of log2(ℓ) sparse
matrices, each of which acts on only one dimension of S (in the alternative interpretation
where each dimension has size 2). The leftmost factor of this product will act on the first
dimension and the rightmost factor on the last dimension.

Unpacking the slots. After the coefficient-to-slot operation, bootstrapping needs to split
the ciphertext that encrypts m in d sparsely packed ciphertexts. This can be done as
follows: first, we homomorphically split the plaintext in two parts m1 = m + σd/2(m) and
m2 = X−1 · (m − σd/2(m)). The automorphism σd/2 will simply map X 7→ −X and thus
acts on the slots as ζm 7→ −ζm (note that this is indeed an automorphism of E due to the
special shape of Fi(X) in Lemma 4). Therefore, the plaintexts will encode the slot-vectors

−→m1 =

2 ·
d/2−1∑

j=0
mi,2j · ζ2j

m,i


0≤i<ℓ

and −→m2 =

2 ·
d/2−1∑

j=0
mi,2j+1 · ζ2j

m,i


0≤i<ℓ

.

We emphasize that multiplication by powers of X does not increase the noise as it just
permutes coefficients negacyclicly. To obtain d sparse ciphertexts, we apply this procedure
iteratively on the plaintexts m1 and m2: in level i = 1, . . . , log2(d) of the iteration, we
compute m1 = m + σd/2i(m) and m2 = X−2i−1 · (m − σd/2i(m)), where m loops over
all outputs of the previous iteration. At the end of the unpacking procedure, the undesired
factors of 2 in −→m1 and −→m2 will accumulate to a factor of d. It can be removed by folding a
factor of d−1 (mod pe) in the preceding linear transformation.

Repacking the slots. Before the slot-to-coefficient transformation, bootstrapping needs
to recombine d sparsely packed ciphertexts into one fully packed ciphertext. This is the
inverse of unpacking and can be computed as m = m1/2 + X2i−1 · m2/2, where we loop
over i in reverse order than during unpacking. Note that the input of repacking is indeed
given by m1/2 and m2/2 rather than m1 and m2, assuming that the factor of d was
removed appropriately before unpacking.

4.1.2 Sparsely Packed Slots

According to Example 1, sparsely packed plaintexts (where the slots contain an element
from Zpe) live in the subring R′

pe with respect to m′ = m/d. Conversely, it is easy to
see that elements from the subring R′

pe are sparsely packed. As such, both the slot-
encoded plaintext m and the coefficient-encoded plaintext m′′′ are sparsely packed. Step 1
and step 3 of the slot-to-coefficient transformation can now be omitted, because they
have no effect on Zpe . Therefore, the slot-to-coefficient transformation is Uℓ and the
coefficient-to-slot transformation is U−1

ℓ .
In some situations (such as “thin” bootstrapping [CH18]), the input plaintext of the

coefficient-to-slot transformation is an element of Rpe rather than R′
pe . Consequently, we

first need to map the plaintext to R′
pe , which is done by removing redundant coefficients.

This can be easily achieved with the trace method from Section 3.2.1 if we fold an additional
factor of d−1 (mod pe) in U−1

ℓ . In summary, the transformation has two steps: (1) evaluate
the trace of R/R′ and (2) multiplication by (d · Uℓ)−1.

Robin Geelen 13

4.2 New Method for p = 3 (mod 4)
We will identify the slots of a plaintext with a vector in Eℓ. This is done by “flattening”
the representative set as S = {1, 5, . . . , 5ℓ1−1} and filling the plaintext in Equation (3).
Similarly to above, we use the notation ζm,i = ζhi

m , where hi is the i-th element of S. We
also define ζ4 = ζ

m/4
m and E′ = Zpe [ζ4].

4.2.1 Fully Packed Slots

In the slot-to-coefficient transformation, we start from a plaintext m that encodes

−→m =

d/2−1∑
j=0

(mi,j + ni,j · ζ4) · ζj
m,i


0≤i<ℓ

in the slots. Note that the encoding is done with respect to ζj
m,i instead of ζj

m to simplify
unpacking and repacking later. The goal is to map the elements mi,j and ni,j to the
coefficients of a new plaintext m′′′. This can be done in three steps:

1. Perform a slot-wise linear transformation M that maps ζj
m,i 7→ ζj

m for 0 ≤ j < d/2
in slot i and extends by E′-linearity. Note that this transformation depends on i and
is thus different for each slot. After this step, the plaintext encodes the slot-vector

−→m′ =

d/2−1∑
j=0

(mi,j + ni,j · ζ4) · ζj
m


0≤i<ℓ

.

2. Multiply the slot-vector by (a column-permuted version of) the decoding matrix

Uℓ =
(

ζ
d·j/2
m,i

)
0≤i,j<ℓ

,

where the matrix above is specified by the entries in its i-th row and j-th column.
Observe that ζ

d/2
m ∈ E′, which implies Uℓ ∈ (E′)ℓ×ℓ. After this step, the plaintext

encodes the slot-vector

−→m′′ =

ℓ−1∑
k=0

d/2−1∑
j=0

(mk,j + nk,j · ζ4) · ζj
m · ζ

d·k/2
m,i


0≤i<ℓ

.

A column-permuted version of Uℓ will simply map the elements mi,j and ni,j to a
different order of the coefficients.

3. Perform the linear transformation M−1 that maps ζj
m 7→ ζj

m,i for 0 ≤ j < d/2 in
slot i. After this step, the plaintext encodes the slot-vector

−→m′′′ =

ℓ−1∑
k=0

d/2−1∑
j=0

(mk,j + nk,j · ζ4) · ζ
j+d·k/2
m,i


0≤i<ℓ

,

which corresponds to the plaintext

m′′′ =
ℓ−1∑
k=0

d/2−1∑
j=0

(mk,j + nk,j · Xm/4) · Xj+d·k/2.

Here we used the observation that M−1 does not act on the entries of Uℓ (i.e., powers
of ζ

d/2
m) due to E′-linearity.

We emphasize that the slot-to-coefficient transformation is only E′-linear and not E-linear
in general, which is why step 1 and step 3 are required (step 2 alone is E-linear). The inverse
map (coefficient-to-slot transformation) is given by M−1U−1

ℓ M instead of M−1UℓM .

14 Revisiting the Slot-to-Coefficient Transformation for BGV and BFV

Matrix decomposition. The matrix from step 2 can be decomposed into a product of
sparse matrices. To do this, we use the column-permuted version Uℓ = Sℓ, which is defined
in Equation (5) and generated by the root of unity ζ

d/2
m . Observe that Sℓ can be further

decomposed using Lemma 2. As a result, we can write it as a product of log2(ℓ) sparse
matrices, each of which acts on only one dimension of S (in the alternative interpretation
where each dimension has size 2). The leftmost factor of this product will act on the first
dimension and the rightmost factor on the last dimension.

Unpacking the slots. The unpacking procedure is similar to the case p = 1 (mod 4).
First, we iteratively split the ciphertext in d/2 ciphertexts, each one encoding elements
from E′ in the slots. This is done by homomorphically computing m1 = m + σd/2i(m)
and m2 = X−2i−1 · (m − σd/2i(m)) in level i = 1, . . . , log2(d/2) of the iteration, where m
loops over all outputs of the previous iteration. Note that multiplication by powers of X
does not increase the noise.

After obtaining d/2 ciphertexts that encode elements from E′, we split each one in two
ciphertexts that encode elements from Zpe . This is done by homomorphically computing
m1 = m + σ(m) and m2 = X−m/4 · (m − σ(m)), where m loops over all outputs of the
previous step. Again, we can remove the undesired factor of d by merging d−1 (mod pe)
in the preceding linear transformation.

Repacking the slots. This operation is the inverse of unpacking and can be computed
iteratively as m = m1/2 + X2i−1 · m2/2, where i = log2(m/2), log2(d/2), . . . , 1. Note
that the input of repacking is indeed given by m1/2 and m2/2 rather than m1 and m2,
assuming that the factor of d was removed appropriately before unpacking.

4.2.2 Sparsely Packed Slots

According to Example 1, sparsely packed plaintexts (where the slots contain an element
from Zpe) live in the subring R′

pe with respect to m′ = 2m/d. This result can even be
extended to slots encoding values in E′. Conversely, it is easy to see that the subring R′

pe

packs elements from E′. As such, both the slot-encoded plaintext m and the coefficient-
encoded plaintext m′′′ pack elements from E′. Step 1 and step 3 of the slot-to-coefficient
transformation can now be omitted, because they have no effect on E′. Therefore, the
slot-to-coefficient transformation is Uℓ and the coefficient-to-slot transformation is U−1

ℓ .
In some situations (such as “thin” bootstrapping [CH18]), the input plaintext of the

coefficient-to-slot transformation is an element of Rpe rather than R′
pe . Consequently, we

first need to map the plaintext to R′
pe , which is done by removing redundant coefficients.

This can be easily achieved with the trace method from Section 3.2.1. However, using
the trace is not sufficient in this case, because the slots can still encode elements from E′

rather than Zpe after multiplication by U−1
ℓ (the trace cannot remove all coefficients ni,j).

Therefore, we need to post-process the output of the coefficient-to-slot transformation by
computing the trace of E′/Zpe in each slot (which is done as m 7→ m + σ(m)). Again, we
fold an additional factor of d−1 (mod pe) in U−1

ℓ to remove undesired factors of 2, which
were introduced during pre-processing and post-processing with the trace. In summary,
the transformation has three steps: (1) evaluate the trace of R/R′, (2) multiplication by
(d · Uℓ)−1 and (3) evaluate the trace of E′/Zpe slot-wise.

5 Implementation and Results
This section discusses the implementation aspects of our method. We provide a complexity
analysis assuming a baby-step/giant-step implementation, and we also compare operation
counts for two common parameter sets to prior work.

Robin Geelen 15

5.1 Complexity Analysis
5.1.1 Fully Packed Slots

We first analyze the cost of evaluating the fully packed slot-to-coefficient transformation
(the cost of the inverse map is identical). We break it down in two components:

• Baby-step/giant-step evaluations of size n in good dimensions. This needs roughly
2
√

n automorphisms (
√

n can be hoisted) and n plaintext-ciphertext multiplications.
• Baby-step/giant-step evaluations of size n in bad dimensions. This needs roughly 3

√
n

automorphisms (2
√

n can be hoisted) and 2n plaintext-ciphertext multiplications.

First, we consider the maps M and M−1, which can be expressed as a sum of d terms
using Equation (8). In the case p = 3 (mod 4), both maps are E′-linear and we only need
the automorphisms for even v (those correspond to the automorphism group of E/E′),
so we have d/2 non-zero terms in Equation (8). To simplify notation, we define c = d if
p = 1 (mod 4) and c = d/2 if p = 3 (mod 4). Direct implementation of M or M−1 then
requires one baby-step/giant-step evaluation of size c in a good dimension. In terms of
noise growth, it uses one level of plaintext-ciphertext multiplications.

For small values of c, one may want to merge the maps M and M−1 with a factor of Uℓ

in order not to waste a multiplicative level. Suppose we have Uℓ = Uℓ,1 · . . . · Uℓ,T , where
each factor Uℓ,i contains Li non-zero entries in every row/column (such a factorization
can be obtained by merging multiple factors of the matrix decomposition). This means
that ℓ = L1 · . . . · LT . The slot-to-coefficient transformation is now given by

(M−1Uℓ,1) · Uℓ,2 · . . . · Uℓ,T −1 · (Uℓ,T M).

Each factor can be implemented with the multidimensional baby-step/giant-step algorithm:
the rightmost factor Uℓ,T M corresponds to a baby-step/giant-step evaluation of size c · LT

in a bad dimension; the intermediate factors Uℓ,i correspond to a baby-step/giant-step
evaluation of size Li in a bad dimension; and the leftmost factor M−1Uℓ,1 corresponds
to a baby-step/giant-step evaluation of size c · L1 in a good dimension. In terms of noise
growth, it uses T levels of plaintext-ciphertext multiplications. Since larger T reduces
the size of each factor Li, there is a convenient trade-off between computational cost and
multiplicative levels.

Unpacking and repacking. The cost of unpacking is dominated by d − 1 automorphisms;
it also requires d−1 plaintext-ciphertext multiplications and 2(d−1) additions. The cost of
repacking is given by d − 1 plaintext-ciphertext multiplications and equally many additions.
Repacking requires no key switching and is therefore much cheaper than unpacking. Finally,
note that unpacking and repacking use no multiplicative levels, because all constants are
powers of X.

5.1.2 Sparsely Packed Slots

The maps M and M−1 can be omitted for sparsely packed slots, so we only need to evaluate
Uℓ = Uℓ,1 · . . . · Uℓ,T . Each factor can again be implemented with the multidimensional
baby-step/giant-step algorithm: the factors Uℓ,i for i ≥ 2 correspond to a baby-step/giant-
step evaluation of size Li in a bad dimension; and the leftmost factor Uℓ,1 corresponds to a
baby-step/giant-step evaluation of size L1 in a good dimension. In terms of noise growth,
it uses T levels of plaintext-ciphertext multiplications, which gives the same trade-off
between computational cost and multiplicative levels as before. Finally, evaluating the
trace(s) for the coefficient-to-slot transformation can be done with log2(d) automorphisms
and no multiplicative levels.

16 Revisiting the Slot-to-Coefficient Transformation for BGV and BFV

5.2 Comparison to the State-of-the-Art
Earlier approaches for the slot-to-coefficient transformation using power-of-two cyclotomic
rings [HS21, CH18] involve homomorphic multiplication by a full N × N -matrix (in the
fully packed case) or an ℓ × ℓ-matrix (in the sparsely packed case). This results in a
linear number of FHE operations. On the other hand, full matrix decomposition with
our method requires only a logarithmic number of FHE operations (for fully packed slots,
this is assuming that d is constant or logarithmic, because the number of FHE operations
scales linearly in d).

Furthermore, our procedure for slot unpacking is also asymptotically cheaper than the
one from Halevi and Shoup [HS21]. Our method requires only O(d) automorphisms and
multiplications, whereas Halevi and Shoup require O(d2) multiplications. Moreover, our
method requires no multiplicative levels, compared to one level for Halevi and Shoup.

Our cheaper version of the slot unpacking procedure does not come completely for free.
It necessitates the extra maps M in the slot-to-coefficient transformation and M−1 in
the coefficient-to-slot transformation, which are not present in the method of Halevi and
Shoup. However, these maps can be implemented with O(d) FHE multiplications, which
is cheaper than O(d2) FHE multiplications in Halevi and Shoup’s unpacking procedure.
Moreover, our method allows for more freedom in parameter selection: for small d, one can
merge the maps M and M−1 with a factor of Uℓ or U−1

ℓ in order to save a multiplicative
level. This is not possible with the approach of Halevi and Shoup.

5.2.1 Concrete Example of Speedup

Table 2 and Table 3 break down the homomorphic algorithms (fully packed slot-to-
coefficient transformation, sparsely packed slot-to-coefficient transformation, unpacking,
repacking) into basic operations (plaintext-ciphertext multiplications, automorphisms,
multiplicative levels) for two different parameter sets. To show that our method uses
fewer operations than the state-of-the-art, the tables also compare to the number of
operations using the algorithms from HElib [HS21]. For the fully packed slot-to-coefficient
transformation in Table 2, it is assumed that the maps M and M−1 are merged with Uℓ,3
and Uℓ,1 respectively. In Table 3, the fully packed and sparsely packed slot-to-coefficient
transformations coincide, because the cyclotomic polynomial splits completely into linear
factors. As a result, unpacking and repacking are not required in this table. We conclude
from the tables that our method typically uses more multiplicative levels, but the number
of basic operations is always lower than in HElib.

Table 2: Operation count for N = 216, p = 5 · 212 − 1 and L1 · L2 · L3 = 23 · 25 · 23

Previous methods Our method
mult # auto # levels # mult # auto # levels

Full SlotToCoeff 65536 510 1 448 71 3
Sparse SlotToCoeff 2048 89 1 88 27 3

Unpacking 1024 31 1 31 31 0
Repacking 32 0 1 31 0 0

Table 3: Operation count for N = 215, p = 216 + 1 and L1 · L2 = 28 · 27

Previous methods Our method
mult # auto # levels # mult # auto # levels

SlotToCoeff 32768 361 1 512 63 2

Robin Geelen 17

Acknowledgements
This work was supported by CyberSecurity Research Flanders with reference number
VR20192203. In addition, this work is supported in part by the European Commission
through the Horizon 2020 research and innovation program Belfort ERC Advanced Grant
101020005 and by the Defence Advanced Research Projects Agency (DARPA) under
contract No. HR0011-21-C-0034 DARPA DPRIVE BASALISC. Robin Geelen is funded
by Research Foundation – Flanders (FWO) under a PhD Fellowship fundamental research
(project number 1162123N). Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views
of the ERC, DARPA, the U.S. Government, the European Union, CyberSecurity Research
Flanders or the FWO. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation therein. The
author would also like to thank Jiayi Kang and Frederik Vercauteren for useful discussions.

References
[AP13] Jacob Alperin-Sheriff and Chris Peikert. Practical bootstrapping in quasi-

linear time. In Ran Canetti and Juan A. Garay, editors, Advances in
Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, volume
8042 of Lecture Notes in Computer Science, pages 1–20. Springer, 2013.
doi:10.1007/978-3-642-40041-4_1.

[BCC+22] Youngjin Bae, Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Taekyung
Kim. META-BTS: bootstrapping precision beyond the limit. In Heng Yin,
Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pages 223–234.
ACM, 2022. doi:10.1145/3548606.3560696.

[BCK+23] Youngjin Bae, Jung Hee Cheon, Jaehyung Kim, Jai Hyun Park, and Damien
Stehlé. HERMES: efficient ring packing using MLWE ciphertexts and applica-
tion to transciphering. In Helena Handschuh and Anna Lysyanskaya, editors,
Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryp-
tology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24,
2023, Proceedings, Part IV, volume 14084 of Lecture Notes in Computer Sci-
ence, pages 37–69. Springer, 2023. doi:10.1007/978-3-031-38551-3_2.

[BGGJ20] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev.
CHIMERA: combining ring-lwe-based fully homomorphic encryption schemes.
J. Math. Cryptol., 14(1):316–338, 2020. URL: https://doi.org/10.1515/
jmc-2019-0026, doi:10.1515/JMC-2019-0026.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. ACM Trans. Comput.
Theory, 6(3):13:1–13:36, 2014. doi:10.1145/2633600.

[BMTH21] Jean-Philippe Bossuat, Christian Mouchet, Juan Ramón Troncoso-Pastoriza,
and Jean-Pierre Hubaux. Efficient bootstrapping for approximate homomor-
phic encryption with non-sparse keys. In Anne Canteaut and François-Xavier
Standaert, editors, Advances in Cryptology - EUROCRYPT 2021 - 40th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings,

https://doi.org/10.1007/978-3-642-40041-4_1
https://doi.org/10.1145/3548606.3560696
https://doi.org/10.1007/978-3-031-38551-3_2
https://doi.org/10.1515/jmc-2019-0026
https://doi.org/10.1515/jmc-2019-0026
https://doi.org/10.1515/JMC-2019-0026
https://doi.org/10.1145/2633600

18 Revisiting the Slot-to-Coefficient Transformation for BGV and BFV

Part I, volume 12696 of Lecture Notes in Computer Science, pages 587–617.
Springer, 2021. doi:10.1007/978-3-030-77870-5_21.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical gapsvp. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, volume
7417 of Lecture Notes in Computer Science, pages 868–886. Springer, 2012.
doi:10.1007/978-3-642-32009-5_50.

[CCLS19] Jung Hee Cheon, Hyeongmin Choe, Donghwan Lee, and Yongha Son. Faster
linear transformations in helib, revisited. IEEE Access, 7:50595–50604, 2019.
doi:10.1109/ACCESS.2019.2911300.

[CCS19] Hao Chen, Ilaria Chillotti, and Yongsoo Song. Improved bootstrapping
for approximate homomorphic encryption. In Yuval Ishai and Vincent Rij-
men, editors, Advances in Cryptology - EUROCRYPT 2019 - 38th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II,
volume 11477 of Lecture Notes in Computer Science, pages 34–54. Springer,
2019. doi:10.1007/978-3-030-17656-3_2.

[CH18] Hao Chen and Kyoohyung Han. Homomorphic lower digits removal and
improved FHE bootstrapping. In Jesper Buus Nielsen and Vincent Rij-
men, editors, Advances in Cryptology - EUROCRYPT 2018 - 37th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I,
volume 10820 of Lecture Notes in Computer Science, pages 315–337. Springer,
2018. doi:10.1007/978-3-319-78381-9_12.

[CHK+18] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo
Song. Bootstrapping for approximate homomorphic encryption. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology - EU-
ROCRYPT 2018 - 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3,
2018 Proceedings, Part I, volume 10820 of Lecture Notes in Computer Science,
pages 360–384. Springer, 2018. doi:10.1007/978-3-319-78381-9_14.

[CHK+21] Jihoon Cho, Jincheol Ha, Seongkwang Kim, ByeongHak Lee, Joohee Lee,
Jooyoung Lee, Dukjae Moon, and Hyojin Yoon. Transciphering framework
for approximate homomorphic encryption. In Mehdi Tibouchi and Huax-
iong Wang, editors, Advances in Cryptology - ASIACRYPT 2021 - 27th
International Conference on the Theory and Application of Cryptology and
Information Security, Singapore, December 6-10, 2021, Proceedings, Part III,
volume 13092 of Lecture Notes in Computer Science, pages 640–669. Springer,
2021. doi:10.1007/978-3-030-92078-4_22.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic
encryption for arithmetic of approximate numbers. In Tsuyoshi Takagi and
Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd
International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part I, volume 10624 of Lecture Notes in Computer Science, pages 409–437.
Springer, 2017. doi:10.1007/978-3-319-70694-8_15.

https://doi.org/10.1007/978-3-030-77870-5_21
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1109/ACCESS.2019.2911300
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-030-92078-4_22
https://doi.org/10.1007/978-3-319-70694-8_15

Robin Geelen 19

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. IACR Cryptol. ePrint Arch., page 144, 2012. URL:
http://eprint.iacr.org/2012/144.

[Gau86] Carl Friedrich. Gauss. Disquisitiones arithmeticae. Springer, Berlin, 1986.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Better bootstrapping in
fully homomorphic encryption. In Marc Fischlin, Johannes Buchmann,
and Mark Manulis, editors, Public Key Cryptography - PKC 2012 - 15th
International Conference on Practice and Theory in Public Key Cryptography,
Darmstadt, Germany, May 21-23, 2012. Proceedings, volume 7293 of Lecture
Notes in Computer Science, pages 1–16. Springer, 2012. doi:10.1007/
978-3-642-30057-8_1.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption
with polylog overhead. In David Pointcheval and Thomas Johansson, editors,
Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237 of Lecture
Notes in Computer Science, pages 465–482. Springer, 2012. doi:10.1007/
978-3-642-29011-4_28.

[GIKV23] Robin Geelen, Ilia Iliashenko, Jiayi Kang, and Frederik Vercauteren. On
polynomial functions modulo pe and faster bootstrapping for homomorphic en-
cryption. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology
- EUROCRYPT 2023 - 42nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Lyon, France, April 23-27,
2023, Proceedings, Part III, volume 14006 of Lecture Notes in Computer Sci-
ence, pages 257–286. Springer, 2023. doi:10.1007/978-3-031-30620-4_9.

[GV23] Robin Geelen and Frederik Vercauteren. Bootstrapping for BGV and BFV
revisited. J. Cryptol., 36(2):12, 2023. URL: https://doi.org/10.1007/
s00145-023-09454-6, doi:10.1007/S00145-023-09454-6.

[HHC19] Kyoohyung Han, Minki Hhan, and Jung Hee Cheon. Improved homomorphic
discrete fourier transforms and FHE bootstrapping. IEEE Access, 7:57361–
57370, 2019. doi:10.1109/ACCESS.2019.2913850.

[HS18] Shai Halevi and Victor Shoup. Faster homomorphic linear transformations
in helib. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in
Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I,
volume 10991 of Lecture Notes in Computer Science, pages 93–120. Springer,
2018. doi:10.1007/978-3-319-96884-1_4.

[HS20] Shai Halevi and Victor Shoup. Design and implementation of helib: a
homomorphic encryption library. IACR Cryptol. ePrint Arch., page 1481,
2020. URL: https://eprint.iacr.org/2020/1481.

[HS21] Shai Halevi and Victor Shoup. Bootstrapping for helib. J. Cryptol.,
34(1):7, 2021. URL: https://doi.org/10.1007/s00145-020-09368-7,
doi:10.1007/S00145-020-09368-7.

[KPZ21] Andrey Kim, Yuriy Polyakov, and Vincent Zucca. Revisiting homomorphic
encryption schemes for finite fields. In Mehdi Tibouchi and Huaxiong Wang,
editors, Advances in Cryptology - ASIACRYPT 2021 - 27th International

http://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-031-30620-4_9
https://doi.org/10.1007/s00145-023-09454-6
https://doi.org/10.1007/s00145-023-09454-6
https://doi.org/10.1007/S00145-023-09454-6
https://doi.org/10.1109/ACCESS.2019.2913850
https://doi.org/10.1007/978-3-319-96884-1_4
https://eprint.iacr.org/2020/1481
https://doi.org/10.1007/s00145-020-09368-7
https://doi.org/10.1007/S00145-020-09368-7

20 Revisiting the Slot-to-Coefficient Transformation for BGV and BFV

Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 6-10, 2021, Proceedings, Part III, volume
13092 of Lecture Notes in Computer Science, pages 608–639. Springer, 2021.
doi:10.1007/978-3-030-92078-4_21.

[KSS24] Jaehyung Kim, Jinyeong Seo, and Yongsoo Song. Simpler and faster bfv
bootstrapping for arbitrary plaintext modulus from ckks. Cryptology ePrint
Archive, Paper 2024/109, 2024. https://eprint.iacr.org/2024/109. URL:
https://eprint.iacr.org/2024/109.

[LHH+21] Wen-jie Lu, Zhicong Huang, Cheng Hong, Yiping Ma, and Hunter Qu. PEGA-
SUS: bridging polynomial and non-polynomial evaluations in homomorphic
encryption. In 42nd IEEE Symposium on Security and Privacy, SP 2021,
San Francisco, CA, USA, 24-27 May 2021, pages 1057–1073. IEEE, 2021.
doi:10.1109/SP40001.2021.00043.

[LS18] Vadim Lyubashevsky and Gregor Seiler. Short, invertible elements in partially
splitting cyclotomic rings and applications to lattice-based zero-knowledge
proofs. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances
in Cryptology - EUROCRYPT 2018 - 37th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Tel
Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I, volume 10820
of Lecture Notes in Computer Science, pages 204–224. Springer, 2018.
doi:10.1007/978-3-319-78381-9_8.

[LW23a] Feng-Hao Liu and Han Wang. Batch bootstrapping I: - A new framework for
SIMD bootstrapping in polynomial modulus. In Carmit Hazay and Martijn
Stam, editors, Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part III, volume
14006 of Lecture Notes in Computer Science, pages 321–352. Springer, 2023.
doi:10.1007/978-3-031-30620-4_11.

[LW23b] Zeyu Liu and Yunhao Wang. Amortized functional bootstrapping in less
than 7ms, with õ(1) polynomial multiplications. In Jian Guo and Ron
Steinfeld, editors, Advances in Cryptology – ASIACRYPT 2023, pages 101–
132, Singapore, 2023. Springer Nature Singapore.

[MHWW24] Shihe Ma, Tairong Huang, Anyu Wang, and Xiaoyun Wang. Accelerating bgv
bootstrapping for large p using null polynomials over Zpe . Cryptology ePrint
Archive, Paper 2024/115, 2024. https://eprint.iacr.org/2024/115. URL:
https://eprint.iacr.org/2024/115.

[OPP23] Hiroki Okada, Rachel Player, and Simon Pohmann. Homomorphic polynomial
evaluation using galois structure and applications to bfv bootstrapping. In
Jian Guo and Ron Steinfeld, editors, Advances in Cryptology – ASIACRYPT
2023, pages 69–100, Singapore, 2023. Springer Nature Singapore.

[SV14] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD opera-
tions. Des. Codes Cryptogr., 71(1):57–81, 2014. URL: https://doi.org/10.
1007/s10623-012-9720-4, doi:10.1007/S10623-012-9720-4.

https://doi.org/10.1007/978-3-030-92078-4_21
https://eprint.iacr.org/2024/109
https://eprint.iacr.org/2024/109
https://doi.org/10.1109/SP40001.2021.00043
https://doi.org/10.1007/978-3-319-78381-9_8
https://doi.org/10.1007/978-3-031-30620-4_11
https://eprint.iacr.org/2024/115
https://eprint.iacr.org/2024/115
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/S10623-012-9720-4

	Introduction
	Related Work
	Contributions and Outline

	Preliminaries
	Notations
	BGV and BFV Encryption
	The Slot-to-Coefficient Transformation in CKKS
	Baby-Step/Giant-Step Algorithm

	A Different View on Plaintext Encoding
	Structure of the Automorphism Group and Plaintext Slots
	Factorization of Cyclotomic Polynomials

	The New Transformation for BGV and BFV
	New Method for p = 1 (mod 4)
	New Method for p = 3 (mod 4)

	Implementation and Results
	Complexity Analysis
	Comparison to the State-of-the-Art

