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Abstract. This paper focuses on equivalences between Generalised Feistel Networks
(GFN) of type-II. We introduce a new definition of equivalence which captures the
concept that two GFNs are identical up to re-labelling of the inputs/outputs, and
give a procedure to test this equivalence relation. Such two GFNs are therefore
cryptographically equivalent for several classes of attacks. It induces a reduction of
the space of possible GFNs: the set of the (k!)2 possible even-odd GFNs with 2k
branches can be partitioned into k! different classes.
This result can be very useful when looking for an optimal GFN regarding specific
computationally intensive properties, such as the minimal number of active S-boxes
in a differential trail. We also show that in several previous papers, many GFN
candidates are redundant as they belong to only a few classes. Because of this
reduction of candidates, we are also able to suggest better permutations than the
one of WARP: they reach 64 active S-boxes in one round less and still have the same
diffusion round that WARP. Finally, we also point out a new family of permutations
with good diffusion properties.
Keywords: GFN · WARP · TWINE · LBlock

1 Introduction
A Feistel network is a widely spread structure for symmetric cryptography primitives.
Invented by Feistel and Coppersmith in 1973 for IBM’s Lucifer cipher, it was later
standardised in the block cipher DES in 1976 [S+77]. In a Feistel network, the internal
state is divided into two parts of the same size: the left branch x and the right branch y.
The round function of the i-th round of the Feistel network is the involutive operation
Fi := (x, y) 7→ (x, y⊕ fi(x)), where fi is a keyed function, followed by the swap of x and y
as depicted in Figure 1a. The advantage of such a construction is that one does not need
the inverse of the function fi to inverse the function Fi, and thus non-invertible (or complex
to inverse) functions can be used in the cipher, which can be useful in some applications
(e.g. constrained environments, FHE). Furthermore, Luby and Rackoff proved in [LR88]
that if the fi’s are independent pseudorandom functions then a 3-round Feistel network is
indistinguishable from a random permutation in the context of Chosen Plaintexts Attacks
(CPA) while a 4-round Feistel network provides resistance against Chosen Ciphertexts
Attacks (CCA). Hence, it is not surprising that many designers followed this strategy to
build both efficient and secure ciphers.

Later, Zheng et al. [ZMI90] generalised the original construction so that the state is now
divided into 2k same-size parts (x0, x1, . . . , x2k−1). These parts are also called branches.
Several generalisations – named type-I, type-II and type-III – were suggested, but in this
paper we will focus on type-II, which seems to be the design favoured by the community.
The round function of the i-th round of a type-II generalised Feistel network is

F k
i := (x0, x1, . . . , x2k−1) 7→ (x0, x1 ⊕ fi(x0), . . . , x2k−2, x2k−1 ⊕ fi(x2k−2)),
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followed by a circular shift of the 2k parts of the state, sending each branch to the next
one:

(x0, x1, . . . , x2k−1) 7→ (x2k−1, x0, x1, . . . , x2k−2).

At Asiacrypt ’96, Nyberg proposed to replace the circular shift by another specific
permutation [Nyb96]. Then, in [SM10], Suzaki and Minematsu proposed the Generalised
Feistel Network (GFN) by replacing the circular shift by a general permutation P (see Fig-
ure 1b), aiming to identify the permutation that would provide the best diffusion. Among
others, two type-II GFN with 16 branches (LBlock [WZ11], TWINE [SMMK13]) and one
with 32 branches (WARP [BBI+20]) were later proposed.

⊕

⊕

f

f

(a) A Feistel
Network.

⊕ ⊕ ⊕

P

⊕ ⊕ ⊕

P

f

f

f

f

f

f

(b) A type-II Generalised Feistel
Network with 6 branches.
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(c) A GFN with an even-odd
permutation.

Figure 1: 2 rounds of some types of (Generalised) Feistel Networks.

The main problem one would face to find the best permutations for a certain property
(diffusion, resistance against differential or linear attacks, etc.) comes from the huge search
space: there are (2k)! different permutations for a 2k-branch GFN. In [CGT19], Cauchois
et al. consider the so-called natural equivalence classes based on conjugacy: two Feistel
networks relying on 2k-permutations P and Q respectively are equivalent if and only if
there exists a permutation of pairs A such that P = AQA−1, where a permutation of
pairs is a permutation A such that A(2i+ 1) = A(2i) + 1 for all i between 0 and k − 1.
In other words, up to re-labelling of the inputs/outputs, the two Feistel schemes are
identical. This property allowed them to describe a more efficient generation of even-odd
Feistel permutations (i.e. permutations that map branches with an even index to branches
with an odd index and reciprocally), based on the cycle structures of the left-branches
permutation. Moreover, the authors of [CGT19] also recall that, since F is involutive, the
decryption through the Feistel scheme associated with P are, up to re-labelling of the
inputs and outputs, identical to the encryption through the Feistel scheme associated with
P−1. Therefore, they coined the expression “extended equivalence” to describe the fact
that P and Q or P and Q−1 are equivalent as we most often want the decryption function
to be as resistant as the encryption function.

Note that the cryptographic properties covered by these notions of equivalence are the
ones associated with propagation or trails: we may think for example of the diffusion round,
truncated differential/linear trails (including both the minimal number of active S-boxes
and impossible differentials) and integral characteristics. However, some cryptographic
properties are not preserved as for instance the ones involving the key schedule such as
related-key attacks require further analysis.

Our contribution In this paper, we present a wider definition of equivalence of the
underlying permutations of GFNs: we say that two permutations P and Q are expanded-
equivalent if and only if there exists a permutation of pairs A such that for all positive
integer i, QiAP−i is a permutation of pairs. Compared to the conjugacy-based equivalence,
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this definition takes into account several rounds of the GFN and therefore captures multiple-
round equivalence even if it is not visible on one round. Our motivation comes from the
observation that equivalence notions introduced in previous works do not cover all the
cases. For example, both the Feistel networks depicted in Figure 2 share the exact same
properties while the inner permutations are not isomorphic.
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(a) With A being the identity map.
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(b) With A mapping i to (i + 1) mod 3.

Figure 2: Trivial example of isomorphic GFNs whose permutations are not conjugates.
Both figure depict three rounds of a 6-branches GFN associated to ΠA,A: the i-th left-
branch is mapped to the A(i)-th right-branch and similarly for right branches.

Our new equivalence relation comes with two different characterisations. The first
one highlights the fact that this equivalence of GFNs can be seen as a cyclic behaviour
on a finite number of rounds. It also brings a new way to test whether two GFNs are
equivalent. The second one, only valid for even-odd permutations, captures the structure of
the equivalence classes and leads to the computation of the size of the equivalence classes.
It also brings out new class invariants. In particular, we show that the k!2 GFNs associated
with even-odd permutations on 2k branches can be grouped in exactly k! equivalence
classes, each of them containing k! GFNs.

Moreover, we also describe some improvements on the previously known algorithm
regarding the enumeration of conjugacy-based equivalence classes ([CGT19]): we show how
to optimise the enumeration when dealing with extended equivalence and how to enumerate
only one element per conjugacy-based equivalence class or per expanded equivalence class.
This led us to a new family of permutations for which the associated GFNs have good
diffusion.

Finally, we also exhaust interesting GFN permutations from the literature for various
properties and regroup them into a few classes. In particular, regarding the case of
32-branch GFNs such as WARP, we study the cryptographic properties of more candidates
than the designers did and thus find a permutation with the same diffusion round that in
WARP but better differential and linear properties. Similarly, we study the diffusion round
and differential properties of all even-odd permutations of 16 branches with finite diffusion
and as a consequence prove the optimality of the permutations used in both TWINE and
LBlock.

Our source code is available at https://gitlab.inria.fr/meuler1/equivalence-o
f-generalized-feistel-network.

Organisation of the paper Section 2 is dedicated to notations, definitions, and properties
useful for the following parts. Then in Section 3, we introduce the new definition of
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equivalence of GFNs, its characterisations, and equivalence testing. Section 4 focuses on
the enumeration of the classes and provides a new family of GFNs offering good diffusion.
Finally, Section 5, Section 6 and Section 7 apply this new notion of equivalence to some
articles suggesting good permutations for GFNs.

2 Notations, definitions and previous works
Let us first introduce a few notations, definitions, and properties about permutations and
how to use them in Generalised Feistel Networks.

2.1 Permutations
We will denote Sk the symmetric group acting on a set with k elements. Any permutation
will be described by its value table: for instance, writing P = [0, 1, 3, 4, 2] indicates that
P is the permutation P (0) = 0, P (1) = 1, P (2) = 3, P (3) = 4, P (4) = 2. We denote by
Id the identity permutation. The order of a permutation P ∈ Sk, noted order(P ), is the
smallest natural number i such that P i is the identity permutation. Moreover, Sk may be
partitioned in equivalence classes according to the conjugacy relation: two permutations
P and Q in Sk are in the same equivalence class if and only if P and Q are conjugates i.e.
there exists a permutation A ∈ Sk such that Q = A ◦ P ◦A−1. These equivalence classes
are called conjugacy classes.

A disjoint cycle decomposition is associated with any permutation: for the previous
example, a valid disjoint cycle decomposition is P = (0)(1)(2, 3, 4). This decomposition
is not unique, but the associated cycle type TP is unique. TP [i] indicates the number
of cycles of length i in any disjoint cycle decomposition of P . Here, we would have
TP = {1 : 2, 3 : 1}.

In Section 4, we will introduce efficient techniques to enumerate equivalence classes.
They all use the property that the cycle type entirely determines the conjugacy classes of
Sk. In order to quantify the complexity of these algorithms, we will need to know the size
of the conjugacy classes, i.e. the number γk,T of permutations of Sk which have a cycle
type T . For a cycle type T with nℓ cycles of length ℓ, we have

γk,T = k!∏
ℓ nℓ!ℓnℓ

.

In particular, we have
∑

T γk,T = k!.

In Section 3, we will show that expanded equivalence is intrinsically linked with the set
of permutations that commute with some derived permutations. That is why we also need
to define the centraliser of a permutation P ∈ Sk, which is the set of permutations that
commute with P :

Centr(P ) := {Q ∈ Sk, QP = PQ}.

Its size depends only on the cycle type of P : |Centr(P )| = k!
γk,TP

=
∏
nℓ!ℓnℓ if Tp = {ℓ : nℓ}.

More generally, we will use the centraliser of a set of permutations E ⊂ Sk:

Centr(E) :=
⋂

P ∈E

Centr(P ).

2.2 Permutations used in Feistel networks
A 2k-branch GFN is defined by its permutation of branches P ∈ S2k. We write FP

to describe the GFN whose i-th round function is P ◦ F k
i (for the Feistel step F k

i :=
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(x0, x1, . . . , x2k−1) 7→ (x0, x1 ⊕ fi(x0), . . . , x2k−2, x2k−1 ⊕ fi(x2k−2)) and we will use the
shorter product notation PF for this round function. This abstraction is due to the fact
that we are only studying the formal structure of the GFN, a study which can be done in a
preliminary phase, before instantiating this structure with specific functions fi. Branches
with an odd (resp. even) index are called left (resp. right) branches. Let us denote Υ ∈ S2k

the permutation swapping left and right branches: for all 0 ≤ i < k, Υ(2i) = 2i+ 1 and
Υ(2i+ 1) = 2i.

In the introduction, we have defined the even-odd permutations as the permutations of
S2k which map even numbers to odd numbers and reciprocally. We can describe such a
permutation P by two smaller permutations L,R in Sk as follows:

For all i such that 0 ≤ i < k, L(i) := (P (2i) − 1)/2 and R(i) := P (2i+ 1)/2.

We call L the left-branches permutation and R the right-branches permutation. Conversely,
for any L,R in Sk, we denote as ΠL,R the even-odd permutation constructed from L and
R in the following way:

ΠL,R(2i) := 2L(i) + 1 and ΠL,R(2i+ 1) := 2R(i).

The GFN literature uses abundantly this type of permutation as they are usually simpler
to implement and study. Moreover, for up to 32 branches, no non-even-odd permutation
performs better than the optimal even-odd ones from a diffusion perspective [DDGP22].

Let us define as well the even permutations as the permutations which map even numbers
to even numbers and odd numbers to odd numbers. Similarly, any even permutation P of
S2k can be described by two smaller permutations L,R ∈ Sk: L(i) := P (2i)/2 and R(i) :=
(P (2i+ 1) − 1)/2. In that case, we denote P as ΦL,R.

Finally, we consider the group of permutations of pairs:

Sp
k = {ΦA,A, A ∈ Sk} ⊂ S2k.

Any permutation of pairs commutes with the Feistel step F , a property which will be very
useful for the GFN isomorphism.

All along the paper, we will use the following properties.

Property 1. Let A,B,C,D ∈ Sk. Then, we have:

• ΠA,BΠC,D = ΦBC,AD.

• ΠA,BΦC,D = ΠAC,BD and ΦC,DΠA,B = ΠDA,CB .

• ΥΦA,B = ΦB,AΥ.

• ΦA,B ∈ Sp
k ⇔ A = B.

Given L and R in Sk, we call the permutation ΠR,L the dual of the even-odd permutation
ΠL,R. These permutations are not always equivalent, but an interesting property links them:
due to the symmetric roles of branching and XOR in differential and linear characteristics
of GFNs, any differential (resp. linear) characteristic of the GFN associated to ΠL,R can
be written as a linear (resp. differential) characteristic of the GFN associated to the dual of
ΠL,R. Hence, the minimum number of active S-boxes in a differential characteristic of the
GFN associated to ΠL,R is the minimum number of active S-boxes in a linear characteristic
of the GFN associated with ΠR,L. Such duality was already described in [Mat95] for DES
and later on in [SM10] for CLEFIA and HIGHT.

Another important property of a GFN is its diffusion: how fast do the input values
impact all the output values? One way to measure this is by computing the diffusion round
which is the minimal number of rounds needed for all output branches to depend on all the
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input branches. This can be computed by considering the power matrices of the truncated
linear layer [BMT14]. More precisely, we consider the maximum of the diffusion round
for encryption and decryption. This property highly depends on the permutation used in
the GFNs. The historical candidates (such as the 4-branch GFN CLEFIA [SSA+07] and
the 8-branch GFN HIGHT [HSH+06]), which used a circular shift as permutation, had a
diffusion round of the same order as the number of branches while the generalisation of
GFN to any permutation [SM10] led to much better diffusion properties. Moreover, there
exists a lower bound of the diffusion round for even-odd GFNs based on the Fibonacci
sequence (ϕi): if ϕi ≥ k > ϕi−1, then the diffusion round of any even-odd GFN with 2k
branches is at least i+ 1.

2.3 A first approach to GFN equivalence
Let us begin with a natural definition of equivalence of generalised Feistel networks: two
GFNs are equivalent if, for any number of rounds, one is equal to the other up to a
re-labelling of the inputs and outputs. More formally, this can be defined as follows:

Definition 1. Let P and Q be two 2k-permutations associated with two generalised
Feistel networks FP and FQ. FP and FQ are equivalent if and only if for all positive
integer i, there exist two permutations Ai and Bi such that (QF )i = Bi(PF )iA−1

i .

This definition is interesting for cryptographers because it implies that both Feistel net-
works share some cryptographic properties: not only linear and differential characteristics
but also diffusion, impossible differentials, etc. More details will be given in Subsection 3.2.

However, it is more convenient to have a property that directly links the underlying
permutations. Hence [CGT19] suggested the following natural equivalence relations:

Definition 2. Let P and Q be two 2k-permutations.

• P and Q are pair-equivalent if and only if there exists A ∈ Sp
k such that Q = APA−1.

• P and Q are extended pair-equivalent if and only if P and Q are pair-equivalent or
P and Q−1 are pair-equivalent.

Indeed, in the first case, A commutes with F thus for all i, (QF )i = A(PF )iA−1 and FP

and FQ are equivalent. The second equivalence comes from the fact that FP −1 corresponds
to the decryption of FP

1 and thus both permutations are typically evaluated together.
In the following, we will denote these equivalences as the (extended-)conjugacy-based
equivalence.

3 Expanded Feistel Equivalence
In this section, we present the core of our work: a larger equivalence relation between
the permutations used in GFNs. We also highlight some useful properties regarding this
equivalence.

3.1 New definition
We propose the following widened equivalence relation of permutations, which, as we will
show, also implies the equivalence of associated GFNs.

1More precisely, F −1 = F and thus for any number of rounds r, (P F )−r = (F P −1)r = P (P −1F )rP −1

that is r rounds of decryption of FP correspond up to relabelling the input and outputs to r rounds of
encryption of FP .
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Definition 3. Two 2k-permutations P and Q are called expanded-equivalent if and only
if there exists A ∈ Sp

k such that for all i, QiAP−i ∈ Sp
k .

The name has been chosen to highlight that the associated equivalence classes are larger
than what was known before, without using once more the words extended or generalised.
Since Sp

k is the set of permutations of pairs, this relation is trivially reflexive, symmetric,
and transitive, and thus defines an equivalence relation. Moreover, for all i ≥ 0, let us
denote QiAP−i by Ai. Then we obtain that Ai+1P = Qi+1AP−i = QAi and thus

Ai+1P = A1PA
−1Ai.

This relation permits us to prove by induction that (QF )i = Ai(PF )iA−1. First, the
equality trivially holds for i = 0. Now, let us assume it holds for i ≥ 0. Then (QF )i+1 =
QF (QF )i = A1(PF )A−1Ai(PF )iA−1 by induction hypothesis. Furthermore, F commutes
with both A and Ai since they both are permutations of pairs. Therefore (QF )i+1 =
A1PA

−1AiF (PF )iA−1 = Ai+1(PF )i+1A−1 and as a consequence, both FP and FQ are
equivalent.

Note that P and Q are expanded-equivalent if and only if P−1 and Q−1 are expanded-
equivalent. Indeed, for any pair of permutations P and Q, there exists an integer n > 0
such that Pn = Qn = Id, and then for any integer i, (Q−1)iA(P−1)−i = Q−iAP i =
QniQ−iAP−niP i = Qni−iAP−(ni−i) which is a permutation of pairs if P and Q are
expanded-equivalent (since ni− i ≥ 0). Furthermore, as for conjugacy-based equivalence,
expanded equivalence can be extended to deal with the inverse permutations.

Definition 4. Let P and Q be two 2k-permutations. P and Q are extended-expanded-
equivalent if and only if P and Q are expanded-equivalent or P and Q−1 are expanded-
equivalent.

We have the following trivial inclusions: for any permutation, its conjugacy-based
equivalence class is a subset of its expanded equivalence class and its extended-conjugacy-
based equivalence class is a subset of its extended-expanded equivalence class.

First example of a class Let us denote Cl(ΠL,R) the class of expanded equivalence of ΠL,R.
The easiest class to compute is Cl(ΠId,Id) = {ΠP,P , P ∈ Sk}. Indeed, if Q ∈ Cl(ΠId,Id),
then there exist A = Φa,a, B = Φb,b ∈ Sp

k such that QAΠ−1
Id,Id = B i.e. Q = Πba−1,ba−1 ∈

{ΠP,P , P ∈ Sk}. Conversely, if Q = ΠP,P then QiΠ−i
Id,Id = ΥiΦP i,P iΥiΦId,Id = ΦP i,P i ∈ Sp

k .
As Π−1

Id,Id = ΠId,Id, the extended-expanded equivalence class of ΠId,Id and the expanded
equivalence class are the same. Note that Cl(ΠId,Id) is significantly larger than the
conjugacy-based equivalence class of ΠId,Id: the former has k! elements while the latter is
reduced to one element.

3.2 Invariant cryptographic properties
We formerly stated that some cryptographic properties are invariant in the equivalence
classes. We formalise here in which cases this is applicable.

We first start with a few remarks which hold for both conjugacy-based equivalence
and expanded equivalence. The main property needed to convert the equivalence of
permutations to an equivalence of GFNs is that any permutation of pairs commutes with
the function F . This implies that in each round, all the underlying Feistel functions (fi at
round i) are identical or can be considered as such. Many cryptanalysis techniques do not
rely on the exact specification of either the S-boxes or the key schedule. This is the case
for truncated cryptanalysis such as, for example, the minimal number of active S-boxes in
a differential or a linear trail, the diffusion round and word-oriented Meet-in-the-Middle
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(MITM) distinguishers. However, if the Feistel functions are not all identical (e.g. LBlock),
instantiated differential/linear trails can no longer be transposed from one GFN to another
equivalent one. Similarly, related-key attacks are not invariant as the role of the round
keys changes from one branch to another. More generally, key-recovery attacks are not
invariant, as the behaviour of the key in the key-recovery rounds changes from one GFN
to another. Hence, we believe that, when designing a new primitive based on a GFN,
the underlying permutation should be selected before defining the key schedule and the
S-boxes in order to provide the best structural resistance and to make the other choices
less critical regarding security.

Let us now introduce the main difference between conjugacy-based equivalence and
expanded equivalence: invariant subspaces. An invariant subspace is a set S invariant by
the round operation of the cipher. For a GFN FP , it means PF (S) = S. This property is
preserved by conjugacy-based equivalence. Indeed, let A ∈ Sp

k and Q = APA−1 equivalent
to P . Then A(S) is invariant by the round operation of FQ (omitting that round constants
may take different values for different branches in the same round). However, for expanded
equivalence, some invariant spaces are no longer preserved. Indeed, let us consider the
example of Figure 2 depicting two expanded-equivalent GFNs. In Figure 2a, one can see
that the subspace where only the first pair of branches is active is mapped to itself for
one round of the first GFN and thus is an invariant of the GFN. In Figure 2b, let us
observe that this space is mapped by one round of the second GFN to the subspace where
only the second pair of branches is active. It is therefore not an invariant subspace for
this GFN. Of course, it will be vulnerable to a subspace trail attack but it is easier to
search for invariant subspaces than subspace trails. We thus see two interesting properties
offered by the expanded equivalence. First, instead of searching for subspace trails on a
given GFN, one could search for invariant subspaces for all equivalent GFNs. It would
be interesting to understand to which extent this approach would overcome the first one
and how exhaustive it is. This also links with an idea from [LMR15]: invariant subspace
trails can be found by looking for linear applications which commute with the linear layer.
Second, we wonder whether it would be possible to hide a subspace trail (of low dimension)
by first designing a GFN with a small invariant subspace and then releasing an equivalent
GFN. It is indeed well-known that finding subspace trails involving small subspaces is
quite hard and if the number of branches is high enough it might be impossible to exhaust
the equivalent GFN to retrieve the invariant subspace.

3.3 Characterisation on a finite number of rounds
In practice, the former definition seems difficult to apply, as it relies on a property for
all positive integers i. Fortunately, as we only study permutations of a finite set, we can
reduce the definition to a property verifiable on a finite number of i. This comes from the
following smaller equivalence relation.2

Definition 5 (r-cyclic equivalence). Let P and Q be two 2k-permutations. P and Q are
called r-cyclic equivalent if and only if for all i ≤ r, there exists a permutation of pairs Ai

such that Qi = AiP
iA−1

0 and Ar = A0.

This definition naturally leads to the following characterisation of expanded equivalence.

Property 2 (First characterisation). Let P and Q be two 2k-permutations. P and Q
are expanded-equivalent if and only if there exists a positive integer r such that they are
r-cyclic equivalent.

2This definition is somehow close to the permutational equivalence from [BS13] which was applied to a
wider definition of 4-branch GFNs. Yet, in their article, the equivalence is defined at the GFN level and
not at the permutation level.
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Proof. The direct implication is trivial with r = lcm(order(Q), order(P )). The converse
comes from the fact that we can apply the Euclidean division on any exponent i = rk + j:

Qi = QjQrk = Qj(Qr)k = AjP
jA−1

0 A0P
rA−1

0 = AjP
rk+jA−1

0 .

Let us detail a few simple cases of r-cyclic equivalence (summarised in Table 1). In
all cases, we consider two permutations P and Q in Sk and a permutation A in Sp

k . Let
us first notice that if Q = A−1PA, then Q and P are 1-cyclic-equivalent, i.e. conjugacy-
based equivalence boils down to 1-cyclic equivalence. Moreover, if Q = AP = PA, then
Qr = ArP r i.e. Q and P are order(A)-cyclic-equivalent. This is for instance the case of the
example in the introduction (Figure 2), where the rotation of pairs of branches commutes
with the identity. Furthermore, if Q = AP = PA−1, then Q2 = APAP = PA−1AP = P 2

i.e. Q and P are 2-cyclic-equivalent. More generally, if Q = AαP = PA, then Qr =
(AP )r = A1+α+···+αr−1

P r. Let r be such that order(A) divides 1 + α+ · · · + αr−1. Then
Q and P are r-cyclic-equivalent.

Table 1: Few examples of r-cyclic equivalence (for A ∈ Sp
k).

r-cyclic equivalence Example of P and Q which produces such equivalence
1-cyclic equivalence Q = A−1PA
2-cyclic equivalence Q = AP = PA−1

Order(A)-cyclic equivalence Q = AP = PA

r-cyclic equivalence Q = AP = PAα (such that A1+α+···+αr−1 = Id)

We now suggest a procedure to test the r-cyclic equivalence between two permutations.
We present here only the version for even-odd permutations. Nonetheless, it can also be
adapted to deal with more generic permutations by imposing a different colouring on edges
from EP (corresponding to the shuffling of branches) and from EF (corresponding to the
Feistel horizontal wiring) and considering an isomorphism preserving the colouring. A
version based on linear algebra over integers should also work but seems more laborious to
work with.

Definition 6 (Cyclic Feistel graph of length r). Let P be an even-odd permutation of
2k elements. We call cyclic Feistel graph of length r associated to P the directed graph
Gc

F (P, r) such that its set of vertices is

V = {0, . . . , 2k − 1} × {0, . . . , r − 1}

and its edges are E = EP

⋃
EF with EP = {((i, j) → (P (i), (j + 1) mod r)) , (i, j) ∈ V }

and EF = {((2i, j) → (P (2i+ 1), (j + 1) mod r)) , (2i, j) ∈ V }.

An example of a cyclic Feistel Graph is drawn in Figure 3. Let us consider an r-round
Feistel network. Each vertex of the graph corresponds to a branch at the beginning of a
round. There exists an edge between (i, r0) and (j, r0 + 1) if and only if the i-th branch of
round r0 propagates to the j-th branch of the next round. After r rounds, for an r-cyclic
Feistel, the edges loop back to the first round, modelling the conjugacy behaviour of the
permutation.

These graphs are interesting because we can reduce the equivalence of permutations to
an instance of graph isomorphism.

Property 3. Two even-odd permutations P and Q are r-cyclic-equivalent if and only if
Gc

F (P, r) and Gc
F (Q, r) are isomorphic.

Proof. This result is rather intuitive as soon as the graphs are drawn. Indeed, one can
group all the vertices of the same round by only looking at edges3. These sets are preserved

3This is only true when the graph is connected i.e. the diffusion of the permutation is finite. Otherwise,
one can look at the connected components of the graph separately and repeat the argument.
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(a) Three rounds of the
GFN associated with P (b) The graph Gc

F (P, 3)

Figure 3: An exemple of a GFN and its associated graph for 3 rounds (P = [1, 2, 3, 0])

by any isomorphism (up to a cyclic renumbering of the rounds, but it has no importance
because of the cyclic construction of the graph). So we can decompose the re-labelling of
vertices of the isomorphism in r sub-permutations Πi, each dealing with vertices of one
round. It remains to show that these permutations are permutations of pairs of vertices
and this is done in Subsection A.1.

3.4 Fundamental characterisation for even-odd permutations
The previous characterisation helps to understand what it means for two permutations
to be equivalent. However, there can be three permutations P,Q,R in a same expanded
equivalence class, such that P and Q are r-cyclic-equivalent and Q and R are r′-cyclic-
equivalent with r ≠ r′. That is why we need a more fundamental characterisation, to
capture the structure of the whole equivalence class.

One element of such a structure could be for example an invariant of the class. With
conjugacy-based equivalence classes, we know that all the even-odd permutations from
the same class had conjugated left-branches permutations and conjugated right-branch
permutations. However, the example of Cl(ΠId,Id) in Section 3.1 shows that the cyclic
structure of the left and right permutations are no more class invariants for expanded
equivalence. However, all the permutations ΠP,P of this class share the same quotient
R−1L = P−1P = Id value. More generally, we observe that the cycle structure of the
quotient R−1L of the left-branches permutation L by the right-branches permutation R is
now a class invariant. Indeed, let P = ΠL,R and Q = ΠL′,R′ be two expanded-equivalent
even-odd permutations. Then there exist A = Φa,a, B = Φb,b ∈ Sp

k , such that QAP−1 = B
and thus Q = BPA−1 = ΠbLa−1,bRa−1 . Then R′−1L′−1 = (bRa−1)−1bLa−1 = aR−1La−1:
it is a conjugate of R−1L. Moreover, an even-odd permutation ΠL,R can be uniquely
defined by the two permutations R and α := R−1L. We denote this representation
Ψα

R := ΠRα,R = ΠL,R and it permits us to give the following characterisation of expanded
equivalence.

Property 4 (Second characterisation). Two even-odd permutations P = Ψα
R and Q

are expanded-equivalent if and only there exist two permutations of pairs A = Φa,a and
B = Φb,b such that Q = ABPA−1 and b ∈ Centr(

{
R−iαRi

}
i≥0).

The proof, which relies on showing that for all i, P iBP−i is a permutation of pairs and
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thus α commutes with RibR−i, is given in Subsection A.2. This characterisation induces
that expanded equivalence classes are the union of several conjugacy-based equivalence
classes for some multiple Φb,bP of P with b being in Centr(

{
R−iαRi

}
i≥0), i.e. b commutes

with R−iαRi for all i ≥ 0. Actually, Centr(
{
R−iαRi

}
i≥0) is the centraliser of the

permutations associated with i repetitions of L in one direction and i repetitions of R in
the other direction.

Property 5. Let L,R ∈ Sk and α := R−1L. Then,

Centr(
{
R−iαRi

}
i≥0) = Centr(

{
R−iLi

}
i≥0).

Proof. Let Ci = R−iαRi, Di = R−iLi. Then C0 = D1 and Di+1 = R−i−1Li+1 =
R−iαLi = R−iαRiR−iLi = CiDi

This set is also associated with the following property which brings about new class
invariants: for all i, the cycle structure of R−iLi is invariant in a class.

Property 6. Let L,R,L′, R′ ∈ Sk, α := R−1L and b ∈ Centr(
{
R−iαRi

}
i≥0). Let

i ≥ 0. We have (bR)iα(bR)−i = RiαR−i and (bR)−i(bL)i = R−iLi. Moreover, if ΠL,R is
expanded-equivalent to ΠL′,R′ , then R−iLi and R′−iL′i are conjugates.

Proof. Let us prove the first part by induction. It is trivial for i = 0, so let us suppose,
we have i such that (bR)iα(bR)−i = RiαR−i and (bR)−i(bL)i = R−iLi. Then, by the
induction hypothesis,

(bR)i+1α(bR)−(i+1) = bR(bR)iα(bR)−i(bR)−1 = bRRiαR−iR−1b−1

Moreover, b commutes with Ri+1αR−i−1 thus (bR)i+1α(bR)−(i+1) = Ri+1αR−(i+1). Sim-
ilarly, using that (bR)−i−1(bL)i+1 = R−1b−1R−iLibL and b commutes with R−iLi, we
show that (bR)−i−1(bL)i+1 = R−i−1Li+1.

If ΠL,R and ΠL′,R′ are expanded-equivalent, then there exist A = Φa,a ∈ Sp
k and B =

Φb,b with b ∈ Centr(
{
R−iαRi

}
i≥0) such that ΠL′,R′ = ABΠL,RA

−1 = ΠabLa−1,abRa−1 .
Then R′−iL′i = a(bR)−i(bL)ia−1 = aR−iLia−1.

Let us now discuss another easy example of equivalence classes: let us consider the case
of Centr(

{
R−iαRi

}
i≥0) = {Id}. In that case, by Property 4, P := Ψα

R is only equivalent
to its conjugates via a permutation of pairs. Moreover, two conjugates via a permutation
of pairs Φa,a are equal if and only if a commutes with α and with R. But Centr({R,α})
is a subset of Centr(

{
R−iαRi

}
i≥0) so there is no non-trivial element in this set. Thus,

all the k! conjugates of P are different. Hence, the expanded equivalence class of P has
exactly k! elements. Besides, it is true for all the expanded equivalence classes:

Theorem 1. There exist k! classes of expanded equivalence of even-odd GFNs with 2k
branches. Each of these classes contains exactly k! GFNs.

The proof of this theorem is provided in Subsection A.3. It works in two steps: first,
showing that the expanded equivalence class of Ψα

R can be partitioned in k!/|Centr(α)|
subsets and secondly, proving that all of these subsets are of size |Centr(α)|.

As a consequence, all the expanded equivalence classes contain k! even-odd permutations
with 2k branches. Since there are (k!)2 even-odd permutations with 2k branches, we obtain
that there are k! expanded equivalence classes of even-odd permutations with 2k-branches.
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4 Improvements on the exhaustive search of [CGT19]
In [CGT19], the authors suggested an algorithm to enumerate at least one element per
conjugacy-based equivalence class. We improve this algorithm for extended conjugacy-based
equivalence classes. We also suggest an algorithm to enumerate exactly one element per
equivalence class, both for conjugacy-based equivalence classes and expanded equivalence
classes.

4.1 Previous work
Let us create Ak a subset of Sk with a representative per conjugacy class, i.e. {TP , P ∈
Ak} = {TP , P ∈ Sk}. We denote by Nk the size of Ak (which is exactly the number of
decomposition into cycles of a permutation acting on k elements). The exhaustive search
for conjugacy-based equivalence classes of even-odd permutations of [CGT19] is based on
two properties:

1. For any permutation L, there exists τ ∈ Ak such that L and τ are conjugates.

2. For any permutation of pairs A, ΠALA−1,R and ΠL,A−1RA are equivalent.

Therefore, any permutation ΠL,R is equivalent to another permutation Πτ,R′ with
τ ∈ Ak and R′ ∈ Sk. Finally, considering the set Uk = {Πτ,R, τ ∈ Ak, R ∈ Sk} is enough
to cover all equivalence classes. This gives an enumeration of Nkk! elements.

4.2 Generalisation to extended conjugacy-based equivalence
The former argumentation can be adapted to extended conjugacy-based equivalence classes.
Let L and R be two permutations of k elements. Then ΠL,R and Π−1

L,R = ΠR−1,L−1 are in
the same extended conjugacy-based equivalence class. Let us notice that if L and R−1 do
not have the same cycle decomposition, this class will appear at least twice in the former
enumeration. In order to prevent this, let us label the Nk cycle types: T := [t0, . . . , tNk−1].
This enables us to filter out classes whose inverses have already been treated by imposing
that the cycle type of the left-branches permutation L has a greater or equal index in T
than the one of the right-branches permutation R, which we denote as “L ≥ R”.

More formally, it means that considering Ek = {Πτ,R, τ ∈ Ak, R ∈ Sk with τ ≥ R} is
enough to enumerate all the extended conjugacy-based equivalence classes.

Moreover,

|Ek| =
Nk−1∑

i=0

i∑
j=0

γk,tj
=

Nk−1∑
j=0

(j + 1)γk,tj
< Nk

Nk−1∑
j=0

γk,tj
= Nkk!.

It is worth noticing that the labels of the cycle types impact greatly the size of Ek. The
optimal choice is therefore to label the cycle types such that i ≤ j implies γk,ti

≤ γk,tj
.

This choice leads to a significant improvement of the former enumeration: for GFNs with
16 branches, this enumeration leads to 3.6 times fewer candidates, as reported in Table 2.
Moreover, this ratio improves with the size of the GFNs. For example, |U25|/|E25| ≃ 15
and |U50|/|E50| ≃ 83.

Furthermore, let us call ϕ(k) (resp. ψ(k)) the number of conjugacy-based equivalence
classes (resp. extended conjugacy-based equivalence classes). These numbers were formerly
given on an experimental basis by testing the equivalence relation among the outputs
of the enumeration of [CGT19] for small values of k. As a side note, we give here an
explicit formula for ϕ(k): One can notice that beyond GFN, ϕ(k) describes the number
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of equivalence classes of Sk × Sk acted on by Sk. Consequently, we can apply Burnside’s
lemma (as in [Ove]) which leads to

ϕ(k) =
∑

t∈Ak

|Sk|/γk,Tt =
∑

t∈Ak

|Centr(t)| =
∑

t∈Ak,Tt={ℓ:nℓ}

∏
nℓ!ℓnℓ .

Table 2: Enumeration sizes compared to the number of classes.

k 4 5 6 7 8 9
[SM10] (k!)2 576 14400 518400 25401600 1625702400 13 × 1010

[CGT19] |Uk| = Nkk! 120 840 7920 75600 887040 10886400
ϕ(k) 43 161 901 5579 43206 378360

Section 4 |Ek| 55 360 2720 24030 244370 2721517
Φ(k) 28 96 495 2919 22024 190585

Gain |Uk|/|Ek| 2.2 2.3 2.9 3.1 3.6 4.0

4.3 An algorithm exhausting conjugacy-based equivalence classes

The enumeration of [CGT19] gives multiple representatives for the same conjugacy-based
equivalence class. Indeed, Πt,R and Πt,R′ are equivalent by conjugacy if and only if
there is a permutation A such that t = AtA−1 and R = AR′A−1. Therefore, the set of
representatives of the conjugacy-based equivalence class of Πt,R returned by the algorithm
of [CGT19] is exactly the set {Πt,ARA−1 , A ∈ Centr(t)}.

Algorithm 1 Enumeration of conjugacy-based equivalence classes.
Initialise a set of representative of classes classes = {}.
for t ∈ Ak do

Initialise a set S = Sk.
while S is not empty do

Pick R in S.
Add Πt,R to classes.
Remove {ARA−1, A ∈ Centr(t)} from S.

end while
end for
Return classes.

To exhaust conjugacy classes without repetitions, one can use Algorithm 1. This
algorithm has a time complexity O(Nkk!) steps and memory complexity of O(k!) (to
store the values of S). Experimentally, our Python implementation shows that this
algorithm is 1.5 times slower than the enumeration from [CGT19]. The exact timings
of our implementations are given in Appendix B. However, when dealing with large
GFNs, the complexity of enumerating classes is negligible compared to the complexity of
evaluating the resistance to differential attacks (which may take hours for one permutation)
and thus avoiding redundancy is crucial for this step. We provide examples in Section 5 of
the differences of time between the steps.

This algorithm can also be combined with the ideas from Subsection 4.2 in order to
give one representative per extended-conjugacy-based class.
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4.4 Enumeration of expanded equivalence classes
Similarly, we can use the characterisation from Property 4 to define an algorithm giving
exactly one representative per expanded equivalence class. This algorithm is described in
Algorithm 2.

Algorithm 2 Enumeration of expanded equivalence classes for 2k-branch even-odd GFNs.
Initialise a set of representative of classes classes = {}.
for α ∈ Ak do

Initialise a set S = Sk.
while S is not empty do

Pick R in S.
Add ΨR

α to classes.
for B in Centr(

{
R−iαRi

}
i≥0) do

Remove {ABRA−1, A ∈ Centr(α)} from S.
end for

end while
end for
Return classes.

Applying some fine-tuning allowed us to reduce the complexity of the critical steps.
Indeed, the time needed to remove elements from s can be reduced by keeping S sorted or
at least by grouping conjugated permutations inside S. Moreover, Centr(

{
R−iαRi

}
i≥0)

may be a large set and thus it should be constructed if and only if the corresponding
elements have not yet been removed from S. A solution is to test for each B whether BR
still belongs to S, and thus whether its conjugacy class has already been removed. Finally,
the case α = Id takes a particularly long time, as the Nk conjugacy-based equivalence
classes are grouped in a single expanded equivalence class. Since we already know that it
corresponds to only one class, we can treat this case apart and only add ΠId,Id to the set
classes.

The complexity of the algorithm depends on the complexity of computing the centraliser
of a set of permutations, which itself depends on the complexity of computing a base and
a strong generating set4 of a permutation group. These algorithms are well studied in the
computational group theory [Sim70] but go far beyond this article.

We were able to run this algorithm in less than half an hour on a laptop for k up to
9. For k up to 8, we give the lists of representatives of the k! classes of equivalence of
even-odd 2k-branch GFNs with their associated security properties in Appendix C. We
recall that we only used a Python implementation. Without doubt, an implementation
using optimized libraries (e.g. GAP) would allow to go further.

4.5 A new family of GFNs with good diffusion properties
When generating all the optimal permutations (regarding diffusion of the associated GFNs)
for a small number of branches, we observe that some of them has a strong property: both
α and the group generated by the RiαR−i are of the same order that the number of pairs
of branches k of the GFNs. For instance, this is the case for

Ψ[1,0]
[0,1],Ψ

[1,2,0]
[0,2,1],Ψ

[1,2,3,0]
[1,0,3,2],Ψ

[1,2,3,4,0]
[4,3,2,1,0],Ψ

[1,2,3,4,5,0]
[0,5,4,3,2,1] and Ψ[1,2,3,4,5,6,0]

[1,3,5,0,2,4,6].

Let us generalise these examples to a wider family of permutations. We first focus on
prime k. Indeed, in that case, the group generated by any permutation α of order k is of

4A set permitting to efficiently go through a group of permutations [HEO05].
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order k. Therefore, the group generated by the RiαR−i is of order k if and only all the
RiαR−i are powers of α, i.e. cyclic permutations or the identity. If α is merely a rotation
(that is α : x 7→ x + 1 mod k), it implies that there exist j and b smaller than k, such
that for all x,R(x) = jx+ b mod k. Conversely, if R is of this shape, then for all positive
integer i, for all x, RiαR−i(x) ≡ x + ji ≡ αji(x) mod k. Furthermore if j > 1, we can
consider ℓ = b(j − 1)−1 mod k and notice that αℓRα−ℓ(x) = jx+ b+ ℓ− jℓ ≡ jx mod k
and thus Ψx 7→jx

α and ΨR
α are conjugacy-based equivalent. If j = 1, then α commutes with

R = αb and thus Ψx 7→jx
α = Φα−b,α−bΨR

α and ΨR
α are expanded equivalent. In both cases,

we conclude that there is no need to consider b.
If k is not prime, positive integers j are not always invertible modulo k, and thus

defining R : x 7→ jx does not always lead to a permutation. Therefore, to ensure that R is
a permutation, we generalise the previous structure in the following way:
Definition 7 (Pseudo-cyclic permutations). Let k be a positive integer and j be a positive
integer smaller than k. Let i = k/ gcd(j, k). Let α be the cyclic permutation of order k
defined as α : x 7→ x+ 1 mod k.

We call pseudo-cyclic permutation the permutation Ψα
Rj

with Rj the permutation of
Sk such that Rj(x) = jx+

⌊x
i

⌋
mod k.

There are k−1 pseudo-cyclic permutations with 2k elements. Hence, it is easy to evaluate
the diffusion round of all the pseudo-cyclic permutations for k relatively large. We reported
the minimal diffusion round of pseudo-cyclic permutations for k up to 150 in Figure 4. In
this figure, we distinguished the case where k is prime, since in this case, the diffusion round
is really close to its lower bound: experimentally, we observe that it is never more than 2
rounds distant from the Fibonacci lower bound. For k ∈ {11, 14, 29, 59, 61, 101, 145, 149},
the Fibonacci lower bound is even reached, which is a surprising result as this lower bound
is not tight for smaller values of k: From [SM10, CGT19, DFLM19, DDGP22], we know
that this lower bound cannot be reached for k ∈ {5, 6, 7, 8, 10, 12, 13}.

Figure 4: Comparison between the Fibonacci lower bound and the two known families
of GFNs with good diffusion properties. Experimental results about random even-odd
permutations are also given for comparison.

In the Figure 4, we compare the pseudo-cyclic permutations with permutations obtained
from De Bruijn graphs. Indeed in [SM10, CGT19], the authors showed that for k a power
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Figure 5: 2 representations of the GFN used in WARP.

of 2, permutations obtained from colouring of De Bruijn graphs are good GFN candidates
regarding diffusion. One can notice that by construction, such permutations have α
corresponding to the rotation of k/2 elements (which have order 2). Moreover, for all
such good permutations exhibited by [CGT19], we computed the group generated by the
RiαR−i for all the positive i and observed it was always of order k.

These two families are therefore complementary: Even if one deals with smooth k
(powers of 2) while the other behaves better with prime k, both have good diffusion
properties and more surprisingly both have the group generated by the RiαR−i of the
same order as the number of pairs of branches. One may wonder whether there is something
deeper behind this property.

As a side note, let us observe that the α permutation of pseudo-cyclic permutations
is the same as the α permutation from the original type-II GFNs with a circular shift.
However, in the latter case, the diffusion round was approximately the number of branches.
The same α leads therefore to GFNs with slow or fast diffusion.

5 Application to WARP

WARP [BBI+20] is a 128-bit block cipher designed with the goal of having a minimalist
hardware footprint. It is based on a GFN with 32 branches. Its designers used the following
strategy to search for a good 32-branch permutation:

“We searched all permutations of LBlock-like structure that consists of one
16-branch permutation composed of two identical 8-branch permutations, and
one rotation on 16 branches with an amount of rotation from 0 to 15 nibbles
as shown in Fig. 3. The resulting search space has size 8! × 16 ≃ 219.3. The
search over this space found 152 candidates of diffusion round 10.
We conducted MILP-based differential AS-box counting for them. This evalu-
ation requires about 2 days on computer equipped with 44 cores and 64 GB
RAM. Among them, 21 candidates achieved AS-box of ≥ 64 (which is needed
for security) at 19 rounds (and no candidates achieved it at 18 rounds), and 8
out of 21 achieved AS-box of 66, which was the largest among them. These
8 permutations are not isomorphic; however, as far as we investigated, the
attack characteristics for other attacks (linear AS-box, impossible differential
characteristics, etc.) are identical for all of them.”

This paragraph led us to a few questions: the fact that the last eight candidates have
exactly the same cryptographic properties seems to indicate a relation between them.
However, they are not isomorphic, so they are maybe r-equivalent with r ≥ 2. Moreover,
as it took two days to evaluate the minimal number of active S-boxes of 152 candidates,
maybe it is worth grouping the candidates by equivalence classes before it.
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(c) More generic candidates.

Figure 6: Spaces explored by our program.

We reproduced the process and generated the 152 candidates of diffusion round 10. We
noticed that they could be regrouped in 7 classes of extended-expanded equivalence: one
class has 96 elements in it, one has 16 elements, two have 12 elements, one has 8 elements
and two have 4 elements. Note that these classes are small subsets of the equivalence
classes of even-odd 32-branch permutations. Indeed, the complete equivalence classes
contain more than 16! permutations but only a few of them are LBlock-like permutations
with one 16-branch sub-permutation being the concatenation of two identical 8-branch
permutations. That is why they are not all of the same size.

It took 50 minutes on a 12-core laptop to compute the differential AS-box for these
7 candidates (and even less if we add a callback to remove candidates with strictly less
than 64 active S-boxes). Exactly one class, which effectively has 8 elements, has 66 active
S-boxes after 19 rounds.

Since our search for good candidates was significantly faster, we explored other spaces
of 32-branch permutations in the hope of finding one permutation with minimal AS of
at least 64 after only 18 rounds. We only studied permutations with diffusion round less
than 10 and explored the following spaces:

• Figure 6a: Rotation on the left branches, 2 identical 8-branch permutations on the
right branches.
There are 8 such permutations with diffusion round 10 that are all in the same
extended-expanded equivalence class. The minimal number of active S-boxes of this
class is less than 63 in 18 rounds and reaches 66 in 19 rounds.

• Figure 6b: 2 identical 8-branch permutations on the left branches, rotation on
the right branches. It is exactly the dual permutations of the previous space, and
the result is similar: all the permutations with diffusion round 10 are in the same
extended-expanded equivalence class. It reaches a minimal number of active S-boxes
of 66 in 19 rounds.

• Figure 6c: 2 identical 8-branch permutations P followed by a rotation of an amount
r1 on the left branches, 2 identical 8-branch on the right branches Q followed by a
rotation of an amount r2 of the right branches. When r1 = r2 = 0 or r1 = r2 = 8,
the GFN does not achieve full diffusion.
Notice that when r1 mod 8 = 0 and r2 mod 8 = 0, the rotations are merely swaps
of the two sub-parts. In that case, the expanded equivalence classes of ΠP,Q lead to
equivalence classes of the whole 32-branch Feistel. Therefore, we only enumerated
with the (P ,Q) generated by Algorithm 2. We extrapolated this search for the others
ri as well. Keeping only candidates with diffusion round less than or equal to 10, it
gives us 184 candidates belonging to 68 extended-expanded classes. 7 classes reach a



Patrick Derbez and Marie Euler 17

minimal number of differentially active S-boxes of 64 or more in 18 rounds (i.e. one
round less than the permutation of WARP).
The 7 classes are presented in Table 3. 5 classes have a good resistance both to
differential and linear attacks, while the last two have good performance against
differential attacks but worse performance against linear attacks. We recall that
differential and linear properties can be swapped by using dual permutations.

To conclude, we found 5 extended-expanded equivalence classes of permutations which
perform better than WARP in the truncated differential/linear cryptanalysis setting. Indeed,
they need 18 rounds (when WARP needs 19 rounds) to have the guarantee that at least
64 S-Boxes are active in any differential/linear trail. They also have the same diffusion
round as WARP which enables to keep the security arguments against Impossible Differential
cryptanalysis and Meet-in-the-Middle attacks. Nevertheless, we did not evaluate the
hardware footprints of our suggested permutation but we hope that among the 5 × 16!
equivalent permutations, there are some with a low footprint.

Table 3: Performances of good 32-branch even-odd permutations. The 7 first permutations
are based on the structure of Figure 6c so the explicit values of P,Q, r1 and r2 are given.
The value of each 32-branch even-odd permutation is also given and denoted as P. The
last permutation is the WARP permutation, presented here for the sake of comparison. Diff.
and Lin. stand for the minimal number of differential and linear actives S-boxes across 18
rounds. DR is the diffusion round.

Type Representative of the equivalence class Diff. Lin. DR
P =[23, 28, 27, 0, 17, 4, 25, 26, 15, 2, 21, 24, 29, 30, 19,
6, 7, 12, 11, 16, 1, 20, 9, 10, 31, 18, 5, 8, 13, 14, 3, 22]

Figure 6c P =[4, 6, 1, 5, 0, 3, 7, 2] r1 = 7 66 64 10
Q =[2, 4, 6, 1, 5, 0, 3, 7] r2 = 12
P =[25, 6, 27, 4, 29, 0, 15, 8, 19, 26, 17, 30, 23, 28, 21,
2, 9, 22, 11, 20, 13, 16, 31, 24, 3, 10, 1, 14, 7, 12, 5, 18]

Figure 6c P =[5, 6, 7, 0, 2, 1, 4, 3] r1 = 7 65 64 10
Q =[6, 5, 3, 7, 0, 2, 1, 4] r2 = 13
P =[9, 20, 5, 24, 11, 22, 7, 26, 15, 16, 1, 30, 3, 28, 13,
18, 25, 4, 21, 8, 27, 6, 23, 10, 31, 0, 17, 14, 19, 12, 29, 2]

Figure 6c P =[4, 2, 5, 3, 7, 0, 1, 6] r1 = 0 64 64 10
Q =[2, 4, 3, 5, 0, 7, 6, 1] r2 = 8
P =[9, 16, 15, 8, 21, 14, 17, 20, 11, 18, 7, 10, 13, 6, 19,
12, 25, 0, 31, 24, 5, 30, 1, 4, 27, 2, 23, 26, 29, 22, 3, 28]

Figure 6c P =[6, 3, 7, 5, 1, 0, 2, 4] r1 = 1 64 64 10
Q =[3, 6, 4, 7, 5, 1, 0, 2] r2 = 1
P =[15, 8, 9, 14, 17, 10, 13, 16, 5, 12, 3, 4, 7, 2, 11, 6,
31, 24, 25, 30, 1, 26, 29, 0, 21, 28, 19, 20, 23, 18, 27, 22]

Figure 6c P =[1, 4, 7, 5, 2, 0, 3, 6] r1 = 3 64 64 10
Q =[5, 1, 4, 7, 6, 2, 0, 3] r2 = 3
P =[13, 30, 11, 0, 19, 28, 23, 4, 21, 8, 25, 6, 17, 10, 15,
2, 29, 14, 27, 16, 3, 12, 7, 20, 5, 24, 9, 22, 1, 26, 31, 18]

Figure 6c P =[1, 0, 4, 6, 5, 7, 3, 2] r1 = 5 66 <60 10
Q =[1, 2, 0, 4, 6, 5, 7, 3] r2 = 14
P =[7, 22, 9, 16, 1, 24, 11, 20, 5, 26, 13, 30, 3, 28, 15,
18, 23, 6, 25, 0, 17, 8, 27, 4, 21, 10, 29, 14, 19, 12, 31, 2]

Figure 6c P =[3, 4, 0, 5, 2, 6, 1, 7] r1 = 0 64 <60 10
Q =[3, 0, 4, 2, 5, 7, 6, 1] r2 = 8
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Type Representative of the equivalence class Diff. Lin. DR

WARP
P = [31, 6, 29, 14, 1, 12, 21, 8, 27, 2, 3, 0, 25, 4, 23, 10,
15, 22, 13, 30, 17, 28, 5, 24, 11, 18, 19, 16, 9, 20, 7, 26] 61 61 10

6 TWINE and LBlock

6.1 Extended equivalence of the permutations
LBlock [WZ11] and TWINE [SMMK13] are two block-ciphers using a 16-branch Generalised
Feistel network. TWINE is designed directly as a type II GFN, while LBlock can be rewritten
as one (similarly to the representation in Figure 5). Since the publication of TWINE, it is
known that their linear layers are equivalent to each other (for a definition that is not made
explicit) and that they are both optimal in the sense that they have both minimal diffusion
(8) and that among the permutations with 8-round diffusion, they have the highest possible
minimal number of differential and linear active S-Boxes (achieving 32 active S-boxes for
15 rounds).

The permutation of TWINE is T = [5, 0, 1, 4, 7, 12, 3, 8, 13, 6, 9, 2, 15, 10, 11, 14]. The
rewritten permutation of LBlock is L = [15, 2, 11, 6, 5, 0, 1, 4, 7, 10, 3, 14, 13, 8, 9, 12]. With
our test, we prove once again that L and T are not 1-cyclic equivalent but L and T−1 are.

6.2 Optimality of the permutations of TWINE and LBlock
The impact of relaxing the diffusion constraint on the minimal number of active S-boxes
on a differential/linear path is still an open question. That is why, we decided to exhaust
all the even-odd 16-branch permutations (according to Algorithm 2) and compute the
minimal number of active S-boxes on 15 rounds of all the extended-expanded equivalence
classes of permutation with diffusion round less than 12. None of them achieves 32 active
S-boxes in 14 rounds, which justifies the optimality of TWINE and LBlock.

More precisely, among the 12 classes of permutations with a diffusion round of 8, there
are 4 classes which achieve 32 active S-boxes in differential and linear trails in 15 rounds.
These 4 classes are extended-expanded equivalent to their dual. Representatives of these
classes are

[7, 0, 11, 4, 15, 2, 3, 8, 13, 10, 5, 12, 9, 14, 1, 6],
[13, 0, 9, 2, 15, 6, 11, 4, 5, 10, 1, 12, 7, 14, 3, 8],
[11, 2, 7, 0, 3, 6, 13, 8, 9, 4, 5, 12, 1, 14, 15, 10],
[9, 0, 7, 4, 13, 6, 11, 2, 5, 10, 3, 12, 1, 14, 15, 8].

Among the 950 classes of permutations with a diffusion round of 9, there are 2 classes
which achieve 34 active S-boxes in differential trails in 15 rounds. The first (resp. second)
one achieves 33 (resp. 30) active S-boxes in linear trails in 15 rounds. Representatives of
these classes are

[13, 2, 9, 0, 15, 6, 11, 4, 7, 10, 1, 12, 5, 14, 3, 8],
[7, 0, 15, 4, 5, 6, 9, 2, 1, 10, 11, 12, 3, 14, 13, 8].

Among permutations with diffusion round 10 and 11, all the permutations achieve at
most a minimal number of 33 active S-Boxes, so they are less interesting than the previous
ones.

7 Application to previous results
The literature on GFNs is full of long lists of good permutation candidates. Thus, we
wanted to check whether these lists could be shortened by only considering one element
per equivalence class.
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7.1 Optimal permutations from [SM10]

In [SM10], the authors introduced type-II GFN with generic permutations and give in
the appendix optimal permutations for GFNs with 6,8,10,12,14 or 16 branches regarding
diffusion. They claim to have removed isomorphic shuffles, without defining this notion.
We verified it with our criterion and indeed all but two are in different classes for the
extended-expanded equivalence.

The two remaining permutations are 2-cyclic-equivalent:

P = [5, 2, 11, 6, 13, 8, 15, 0, 3, 4, 9, 12, 1, 14, 7, 10],
Q = [1, 2, 11, 4, 9, 6, 7, 8, 15, 12, 5, 10, 3, 0, 13, 14].

Indeed Q = A−1
1 PA0 and Q2 = A−1

0 P 2A0 with:

A0 = [6, 7, 10, 11, 2, 3, 14, 15, 0, 1, 4, 5, 12, 13, 8, 9] = Φ[3,5,1,7,0,2,6,4],[3,5,1,7,0,2,6,4],
A1 = [14, 15, 0, 1, 12, 13, 6, 7, 10, 11, 8, 9, 2, 3, 4, 5] = Φ[7,0,6,3,5,4,1,2],[7,0,6,3,5,4,1,2].

The associated GFNs are drawn in appendix in Figure 7.

7.2 Regrouping the permutations from [CGT19]

In [CGT19], the authors listed best-known permutations5 up to 128 branches according to
diffusion. They are claimed to be regrouped by “extended pair-equivalence classes” which
we have called extended conjugacy-based equivalence in this article.

Indeed, permutations with less than 16 branches which are listed in that article are all
in different extended conjugacy-based equivalence classes. However, this is not the case for
permutations with more branches. We summarise the number of equivalence classes of
permutations with more than 16 branches in Table 4.

Table 4: Equivalence classes of the permutations given in [CGT19].
Permutations with ...
branches

16 20 22 24 32 64 128

Number of even-odd per-
mutations listed

13 74 2 31 10 4 18

Number of (extended)
conjugacy-based equiva-
lence classes

13(13) 74(74) 2(2) 31(31) 7(4) 2(1) 16(9)

Number of (extended)
expanded equivalence
classes

12(12) 73(72) 2(2) 31(31) 5(3) 2(1) 9(6)

Most of the expanded equivalent permutations are 2-cyclic equivalent. Nonetheless, the
cyclic behaviour takes up to 8 rounds to appear. For example, the following permutations
are 8-cyclic equivalent (and not equivalent for fewer rounds):

5As a side note, we noticed a probable typo in [CGT19]. Indeed, among the 12 32-branch permutations
denoted as even-odds, only 10 are actually even-odds
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P = [1, 2, 7, 4, 11, 8, 13, 14, 17, 18, 23, 20, 27, 24, 29, 30, 35, 32, 37, 38, 41, 42, 47, 44, 51,
48, 53, 54, 57, 58, 63, 60, 67, 64, 69, 70, 73, 74, 79, 76, 83, 80, 85, 86, 89, 90, 95, 92, 97,
98, 103, 100, 107, 104, 109, 110, 113, 114, 119, 116, 123, 120, 125, 126, 3, 0, 5, 6, 9, 10,
15, 12, 19, 16, 21, 22, 25, 26, 31, 28, 33, 34, 39, 36, 43, 40, 45, 46, 49, 50, 55, 52, 59, 56,
61, 62, 65, 66, 71, 68, 75, 72, 77, 78, 81, 82, 87, 84, 91, 88, 93, 94, 99, 96, 101, 102, 105,
106, 111, 108, 115, 112, 117, 118, 121, 122, 127, 124],

Q = [3, 0, 5, 6, 9, 10, 15, 12, 19, 16, 21, 22, 25, 26, 31, 28, 33, 34, 39, 36, 43, 40, 45, 46, 49,
50, 55, 52, 59, 56, 61, 62, 65, 66, 71, 68, 75, 72, 77, 78, 81, 82, 87, 84, 91, 88, 93, 94, 99,
96, 101, 102, 105, 106, 111, 108, 115, 112, 117, 118, 121, 122, 127, 124, 1, 2, 7, 4, 11, 8,
13, 14, 17, 18, 23, 20, 27, 24, 29, 30, 35, 32, 37, 38, 41, 42, 47, 44, 51, 48, 53, 54, 57, 58,
63, 60, 67, 64, 69, 70, 73, 74, 79, 76, 83, 80, 85, 86, 89, 90, 95, 92, 97, 98, 103, 100, 107,
104, 109, 110, 113, 114, 119, 116, 123, 120, 125, 126].

7.3 Regrouping the permutations from [DFLM19]
In [DFLM19], the authors suggested some other permutations with better diffusion prop-
erties. This time, the permutations are claimed to be regrouped by conjugacy-based
equivalence classes (i.e. 1-cylic equivalence classes), which matches our observations. How-
ever, they may be further regrouped considering extended and/or expanded equivalence.

Table 5: Equivalence classes of the permutations given in [DFLM19].
Permutations with ... branches 28 30 32 34
Number of even-odd permutations listed 9 2 4 4
Number of (extended)-1-cyclic equivalence classes 9(5) 2(2) 4(2) 4(2)
Number of (extended)-expanded equivalence classes 5(3) 2(2) 3(2) 2(2)

One can notice that, in this example, the extended-expanded equivalences classes are
uniquely determined by their security evaluation listed in the paper: two permutations are
equivalent as soon as they have the same value for the number of rounds for the longest
Impossible Differential distinguisher, the same value for the minimal number of rounds
to get a certain amount of differentially active S-boxes and the same minimal number of
active S-boxes over 20 rounds.

7.4 Regrouping the permutations from [SSD+18]
In [SSD+18], alternative permutations are suggested to improve the resistance of LBlock
and TWINE against Demirci-Selçuk Meet-in-the-Middle Attack.

For LBlock, the security against this attack of 40320 different GFN permutations
is estimated and the 64 permutations giving optimal results are proposed as variants
of LBlock. We noticed that these permutations belong to only four conjugacy-based
equivalence classes and two expanded equivalence classes.

For TWINE, they tested all the 887040 even-odd 16-branch permutations given by the
enumeration of [CGT19] and suggested 12 optimal variants of TWINE. We observe that
they are all in the same conjugacy-based equivalence class.

These drastic reductions can be seen as an indicator that Demirci-Selçuk Meet-in-the-
Middle distinguishers are preserved by expanded equivalence classes.

Moreover, in the case of TWINE, they could have used the enumeration of Algorithm 2.
In that case, they would have had only to test 8! = 40320 candidates and the computation
would have been 22 times faster, going from two hours to a few minutes. It would have even
been approximately twice faster if the candidates were regrouped by extended expanded
equivalence.
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8 Conclusion and perspectives
This paper brings new perspectives on GFNs and their permutations by considering bigger
equivalence classes: many GFNs which were previously considered as different are actually
cryptographically equivalent for a set of classical attacks. From a designer perspective, it
reduces the space of GFN candidates and thus shrinks drastically the amount of time to
compare their properties.

Finally, many open questions remain: Is there another representation of the permuta-
tions for which the expanded equivalence is an easy construction? Is there a more efficient
way to compute the conjugacy classes? Can we characterise the classes which lead to good
cryptographic properties? What is the size of the classes if we consider also non even-odd
permutations? It may also have some implications for a cryptanalyst: for a given GFN, is
there any equivalent GFN which is vulnerable to the attacks not taken into account here?
For instance, invariant attacks rely on symmetries of the state, which may vary in the
same class. One may then try to find an equivalent representation of the GFN such that
an invariant attack succeeds.
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A Proofs
A.1 Proof of Property 3
To complete the proof given in Section 3 we still have to show that the permutations
obtained are permutations of pairs of vertices. Since P is an even-odd permutation, we
can distinguish between nodes associated with left branches and those associated with
right branches. Indeed, left branches have two input edges and two output edges, while
right branches have one input edge and one output edge. Hence, one may recognise on
the graphs the edges of EP as their extremities are of different parities from edges of EF

which go from even vertices to even vertices.
Two graphs are isomorphic if and only if they are identical up to a re-labelling of the

vertices. This implies that the re-labelling keeps the arity of the vertices. Thus, even (resp.
odd) vertices are re-indexed as even (resp. odd) vertices. Therefore, the role of the edges
is maintained by the re-labelling. Moreover, even vertices have two antecedents which by
construction are consecutive (and can be distinguished between left antecedent and right
antecedent) so the Πi (easily linked with the Ai of the definition) are merely permutations
of pairs of vertices.

A.2 Proof of Property 4
We give here the proof of Property 4: P = Ψα

R and Q are expanded-equivalent if and
only there exist two permutations of pairs A and B = Φb,b such that Q = ABPA−1 and
b ∈ Centr(

{
R−iαRi

}
i≥0). The proof is based on the following observation with directly

comes from the fact that PBP−1 = ΦRαbα−1R−1,R−1bR.

Lemma 1. Let P = ΨR
α be an even-odd permutation and B = Φb,b a permutation of pair.

Then PBP−1 ∈ Sp
k if and only if α and b commute. In this case, PBP−1 = ΦRbR−1,RbR−1

We can now prove the direct implication of Property 4. P = Ψα
R and Q are expanded-

equivalent, so there exists A ∈ Sp
k such that QAP−1 ∈ Sp

k . Then B := A−1QAP−1 ∈ Sp
k

verifies Q = ABPA−1. Moreover, for all i,

Qi+1AP−i−1︸ ︷︷ ︸
∈Sp

k

= QiQAP−1P−i = QiABP−i = QiAP−i︸ ︷︷ ︸
∈Sp

k

P iBP−i

and thus for all i, Bi := P iBP−i ∈ Sp
k .

Then, one can use the lemma to prove by induction that for all i, Bi = ΦRibR−i,RibR−i

and that α commutes with RibR−i ie that b commutes with RiαR−i.
Conversely, if b ∈ Centr(

{
R−iαRi

}
i≥0) then for all i, α commutes with RibR−i and

thus applying the lemma, one can show by induction that P iBP−i ∈ Sp
k and finally that

QiAP−i ∈ Sp
k .

A.3 Proof of Theorem 1
We need two preliminary lemmas to prove this theorem.

Lemma 2. Let α,R ∈ Sk. Let G := Sk/Centr(α). Then {gαg−1, g ∈ G} is the set of
conjugates of α without repetition.

Moreover, Cl(Ψα
R) can be partitioned in the following way:

Cl(Ψα
R) =

⋃
g∈G

{
Ψgαg−1

gABRA−1g−1 , A ∈ Centr(α), B ∈ Centr(
{
R−iαRi

}
i≥0)

}
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All of these subsets are of the same size, denoted Nα,R, and thus |Cl(Ψα
R)| = |G|Nα,R, with

Nα,R :=
∣∣∣{ABRA−1, A ∈ Centr(α), B ∈ Centr(

{
R−iαRi

}
i≥0)

}∣∣∣ .
Proof. From the characterisation of expanded classes, we have,

Cl(Ψα
R) =

{
ΨAαA−1

ABRA−1 , A ∈ Sk, B ∈ Centr(
{
R−iαRi

}
i≥0)

}
which can be partitioned according to the value of AαA−1.

Lemma 3. Let α,R ∈ Sk, then Nα,R = |Centr(α)|.

Proof. The idea of the proof is to show that for any permutation B in Centr(
{
R−iαRi

}
i≥0)

and any permutation A in Centr(α), there exists a permutation B′ ∈ Centr(
{
R−iαRi

}
i≥0)

such that ABRA−1 and B′R are equal if and only if A ∈ Centr(
{
R−iαRi

}
i≥0). To

do this, we will prove that ABRA−1R−1 ∈ Centr(
{
R−iαRi

}
i≥0) if and only if A ∈

Centr(
{
R−iαRi

}
i≥0). The result then comes directly from the partition of the space on

conjugacy classes of cosets.
Let us first prove the direct implication. We have B,B′ ∈ Centr(

{
R−iαRi

}
i≥0) such

that ABRA−1 = B′R. Let us prove by induction that A commutes with RiαR−i. The
base case i = 0 is trivial, since by definition A commutes with α. Moreover, the induction
works as follows: let us suppose that A commutes with RiαR−i. Then, by Property 6,
ARi+1αR−i−1A−1 = A(BR)i+1α(BR)−i−1A−1 which is also equal to

ABRA−1︸ ︷︷ ︸
(1)

A(BR)iα(BR)−iA−1︸ ︷︷ ︸
(2)

A(BR)−1A−1︸ ︷︷ ︸
(3)

.

(1) and (3): By hypothesis, ABRA−1 = B′R and A(BR)−1A−1 = (B′R)−1

(2): By Property 6, A(BR)iα(BR)−iA−1 = ARiαR−iA−1. By induction hypothesis,
it is also equal to RiαR−i.

Finally, ARi+1αR−i−1A−1 = B′RRiαR−i(B′R)−1 = B′Ri+1αR−i−1B′−1 which con-
cludes since B ∈ Centr(

{
R−iαRi

}
i≥0).

Let us now prove the converse part: we have A and B in Centr(
{
R−iαRi

}
i≥0) and

we want to prove that ABRA−1R−1 ∈ Centr(
{
R−iαRi

}
i≥0) so it remains to prove

that RA−1R−1 ∈ Centr(
{
R−iαRi

}
i≥0). Yet, the equation (RA−1R−1)(R−iαRi) =

(R−iαRi)(RA−1R−1) is equivalent to the equation AR−i−1αRi+1 = R−i−1αRi+1A i.e. to
A ∈ Centr(Ri+1αR−i−1). So we easily have RA−1R−1 ∈ Centr(

{
R−iαRi

}
i≥0).

Let us finally prove Theorem 1:
Let ΠL,R an even-odd permutation with 2k-branches.
Let α := R−1L in order to have ΠL,R = Ψα

R. Let G := Sk/Centr(α).
From Lemma 2 and 3, we have that |Cl(ΠL,R)| = |Cl(Ψα

R)| = |G||Centr(α)|.
Therefore, |Cl(ΠL,R)| = k!

|Centr(α)| |Centr(α)| = k!.

B Comparison of the timings of the different algorithms of
Section 4

In Section 4, three algorithms are described to enumerate even-odd permutations with
2k branches. The first one provides at least one representative per conjugacy-based
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equivalence class while the second one provides exactly one representative per conjugacy-
based equivalence class. The last one provides one representative per expanded equivalence
class.

Table 6: Timings of our Python implementations of the 3 algorithms described in Section 4
k Enumeration from [CGT19] Algorithm 1 Algorithm 2
5 0.04s 0.03s 0.10s
6 0.15s 0.22s 0.92s
7 1.54s 2.31s 9.12s
8 20.3 s 29.05s 104.77s
9 262.81s 388.77s 1306.89s

C Expanded equivalence classes for small GFNs
We give here one representative permutation P per expanded equivalence class for even-odd
GFNs. DR stands for the maximum of the diffusion round of P and P−1. Diff. and Lin.
stand for the differential and linear minimal number of active S-boxes on 20 rounds. We
also give the index of the class of the dual permutation and of the inverse permutation.

C.1 k = 2

No. of the
class P DR Diff. Lin. No. of the

dual class
No. of the

inverse class
0 [1,2,3,0] 4 19 19 0 0
1 [3,2,1,0] 100 13 13 1 1

C.2 k = 3

No. of the
class P DR Diff. Lin. No. of the

dual class
No. of the

inverse class
0 [3,4,1,2,5,0] 5 25 25 0 0
1 [1,4,3,0,5,2] 6 25 25 1 1
2 [5,4,3,0,1,2] 8 21 21 3 3
3 [5,4,1,2,3,0] 8 21 21 2 2
4 [1,0,5,2,3,4] 100 13 13 4 4
5 [5,4,1,0,3,2] 100 13 13 5 5

C.3 k = 4

No. of the
class P DR Diff. Lin. No. of the

dual class
No. of the

inverse class
0 [3,4,1,2,7,0,5,6] 6 30 30 0 0
1 [7,2,3,6,1,4,5,0] 6 26 26 1 1
2 [7,2,5,6,1,4,3,0] 7 28 28 3 3
3 [7,2,1,6,5,0,3,4] 7 28 28 2 2
4 [5,0,3,4,7,2,1,6] 7 28 28 5 5
5 [1,4,3,0,7,2,5,6] 7 28 28 4 4
6 [1,6,7,0,5,2,3,4] 7 25 25 6 6
7 [1,6,3,0,5,2,7,4] 8 27 27 7 7
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No. of the
class P DR Diff. Lin. No. of the

dual class
No. of the

inverse class
8 [3,2,5,6,1,4,7,0] 8 24 24 8 8
9 [3,2,1,4,7,0,5,6] 8 24 24 10 10
10 [7,6,3,4,1,2,5,0] 8 24 24 9 9
11 [7,6,3,0,5,2,1,4] 10 19 19 12 12
12 [5,4,1,2,7,0,3,6] 10 19 19 11 11
13 [7,6,1,4,3,0,5,2] 10 13 13 13 13
14 [7,6,1,0,5,2,3,4] 10 13 13 15 15
15 [3,2,7,6,1,4,5,0] 10 13 13 14 14
16 [1,0,7,4,3,6,5,2] 100 13 13 16 16
17 [1,0,3,4,7,2,5,6] 100 13 13 17 17
18 [5,4,3,2,7,0,1,6] 100 13 13 19 19
19 [1,0,5,4,3,6,7,2] 100 13 13 18 18
20 [7,6,5,4,1,2,3,0] 100 18 18 20 20
21 [3,2,1,0,5,6,7,4] 100 13 13 21 21
22 [7,6,1,0,3,2,5,4] 100 13 13 22 22
23 [5,6,7,4,1,2,3,0] 100 19 19 23 23

C.4 k = 5
In order to keep the list reasonably short, we only print permutations with diffusion round
less than 8. Full versions for k up to 8 are available in supplementary materials.

No. of the
class P DR Diff. Lin. No. of the

dual class
No. of the

inverse class
0 [9,0,7,8,5,6,3,4,1,2] 7 33 33 0 0
1 [7,2,1,6,5,0,9,4,3,8] 7 35 35 1 2
2 [7,0,3,6,9,2,5,8,1,4] 7 35 35 2 1
3 [7,0,1,6,9,4,3,8,5,2] 7 34 34 4 4
4 [9,2,3,8,5,6,1,4,7,0] 7 34 34 3 3
5 [5,8,1,4,3,0,7,2,9,6] 8 29 29 6 6
6 [3,0,7,2,9,6,5,8,1,4] 8 29 29 5 5
7 [3,4,9,2,1,8,7,0,5,6] 8 21 21 7 7
8 [1,2,5,0,9,4,7,8,3,6] 8 32 32 9 9
9 [9,0,3,8,7,2,5,6,1,4] 8 32 32 8 8
10 [7,0,5,6,9,4,3,8,1,2] 8 34 34 11 11
11 [9,4,3,8,1,2,7,0,5,6] 8 34 34 10 10
12 [5,8,3,4,1,2,7,0,9,6] 8 32 32 13 13
13 [7,0,5,6,3,4,9,2,1,8] 8 32 32 12 12
14 [7,2,1,6,9,0,5,8,3,4] 8 26 26 14 14
15 [7,0,3,6,5,2,9,4,1,8] 8 31 31 15 15
16 [9,8,1,4,3,0,7,2,5,6] 8 13 26 17 21
17 [7,6,1,4,3,0,9,2,5,8] 8 26 13 16 20
18 [9,8,3,4,1,2,7,0,5,6] 8 25 25 19 19
19 [5,4,9,2,7,8,1,6,3,0] 8 25 25 18 18
20 [9,8,1,6,5,0,3,4,7,2] 8 26 13 21 17
21 [3,2,9,4,7,8,1,6,5,0] 8 13 26 20 16
22 [5,4,9,2,3,8,7,0,1,6] 8 19 13 23 22
23 [7,6,5,0,1,4,3,8,9,2] 8 13 19 22 23
24 [3,4,5,2,1,8,7,0,9,6] 8 30 30 25 25
25 [5,2,3,4,7,0,9,6,1,8] 8 30 30 24 24
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No. of the
class P DR Diff. Lin. No. of the

dual class
No. of the

inverse class
26 [7,8,9,6,3,0,5,2,1,4] 8 29 29 27 27
27 [5,6,7,4,9,0,3,8,1,2] 8 29 29 26 26
28 [9,0,1,8,5,6,3,4,7,2] 8 32 32 29 29
29 [1,6,7,0,9,4,3,8,5,2] 8 32 32 28 28
30 [7,2,3,6,9,0,5,8,1,4] 8 31 31 31 31
31 [9,0,1,8,3,6,5,2,7,4] 8 31 31 30 30
33 [7,2,3,6,5,0,9,4,1,8] 8 32 32 33 33
34 [7,0,1,6,5,2,9,4,3,8] 8 32 32 32 32

D Isomorphism between two 16-branch permutations
Figure 7 is a graphical representation of the 2-cyclic equivalence of

P = [5, 2, 11, 6, 13, 8, 15, 0, 3, 4, 9, 12, 1, 14, 7, 10]
and Q = [1, 2, 11, 4, 9, 6, 7, 8, 15, 12, 5, 10, 3, 0, 13, 14].

They are linked by the relations Q = A−1
1 PA0 and Q2 = A−1

0 P 2A0 with:

A0 = Φ[3,5,1,7,0,2,6,4],[3,5,1,7,0,2,6,4] and A1 = Φ[7,0,6,3,5,4,1,2],[7,0,6,3,5,4,1,2]
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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0 1
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2 3
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6 7

f ⊕
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f ⊕

10 11

f ⊕

12 13

f ⊕

14 15

f
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(a) 2 rounds of the Feistel associated to P : (P F )2.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

⊕f ⊕f ⊕f ⊕f ⊕f ⊕f ⊕f ⊕f

⊕

0 1

f ⊕

2 3

f ⊕

4 5

f ⊕

6 7

f ⊕

8 9

f ⊕

10 11

f ⊕

12 13

f ⊕

14 15

f
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(b) 2 rounds of the Feistel associated to Q : (QF )2.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

⊕S ⊕S ⊕S ⊕S ⊕S ⊕S ⊕S ⊕S

⊕S ⊕S ⊕S ⊕S ⊕S ⊕S ⊕S ⊕S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(PF )2

(c) 2-rounds of the Feistel associated to Q written as A−1
0 (P F )2A0.

Figure 7: Isomorphism between P and Q from [SM10].
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