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Abstract. In some linear key recovery attacks, the function which de-
termines the value of the linear approximation from the plaintext, ci-
phertext and key is replaced by a similar map in order to improve the
time or memory complexity at the cost of a data complexity increase. We
propose a general framework for key recovery map substitution, and in-
troduce Walsh spectrum puncturing, which consists of removing carefully-
chosen coefficients from the Walsh spectrum of this map. The capabili-
ties of this technique are illustrated by describing improved attacks on
reduced-round Serpent (including the first 12-round attack on the 192-bit
key variant), GIFT-128 and Noekeon, as well as the full DES.
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1 Introduction

Linear cryptanalysis [37] is one of the most popular techniques in the analysis of
symmetric cryptographic primitives such as block ciphers. It exploits the statis-
tical bias or correlation of one or more linear approximations, which are linear
combinations of bits of the input and output of the cipher. These linear approx-
imations can be extended over additional rounds by guessing all possible values
of a segment of the key and computing the experimental value of the correlation
for each one, as we expect the correct guess to exhibit a larger bias.

Algorithm 2. The linear key recovery attack was introduced by Matsui as Algo-
rithm 2 [37]. There have been multiple improvements, such as the introduction
of a distillation phase [38] and the fast Walsh transform or FFT technique [24].
Recently, the Walsh transform pruning approach was introduced [30]. The map
describing the value of the linear approximation as a function of the plaintext,
ciphertext and key is the key recovery map. In [30], the complexity of the attack
is highly-dependant on the structure of the non-zero values of this map.

Modifying the key recovery map. There are several examples of substitution of
the key recovery map for an approximation which lowers the attack complexity,
which can be another Boolean function which is highly correlated to the origi-
nal [2, 11, 5], or a function which rejects some plaintext-ciphertext pairs [39, 11,
30]. This substitution is compensated by increasing the data complexity.
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Our contribution. We propose a statistical model for key recovery map approx-
imation which generalises the aforementioned situations and which can be used
to compute the required data complexity increase. We introduce a third type of
key recovery map approximation, which we call Walsh spectrum puncturing. It
consists of removing nonzero coefficients of the Walsh spectrum to reduce the
cost of the pruned Walsh transform-based attack of [30] and other key recov-
ery algorithms. We find that removing a fraction of ε of the squared 2-norm
of the Walsh spectrum (that is, deleting Walsh coefficients so that the sum of
their squares is a proportion ε of the total sum), the data complexity must be
increased by a factor of 1

1−ε . We also describe some puncturing strategies which
can be used in common block cipher cryptanalysis scenarios.

As applications, we present improved attacks against Serpent [7, 8], GIFT-
128 [4], Noekeon [27], and DES [1], as summarized in Table 1. Of particular
siginificance is, to the best of our knowledge, the first key recovery attack on 12-
round Serpent-192. We also improve the best linear attack against GIFT-128,
although the best attacks on GIFT-128 are differential rather than linear [47].
Nevertheless, unlike differential cryptanalysis, linear cryptanalysis is still appli-
cable when GIFT-128 is used in COFB mode. The attack on this setting is
improved from 16 to 17 rounds. We reduce the memory complexity of the best
attack on DES [30] from 3.3TB to 186.1 GB. We also provide the best attack
against 12-round Noekeon in terms of data and time complexities.

Paper layout. Section 2 includes preliminary notions on pseudoboolean func-
tions and their spectra, as well as linear cryptanalysis. Section 3 introduces the
statistical model for key recovery map approximation, applies it to spectrum
puncturing, and shows some validation experiments. Section 4 discusses some
puncturing strategies for common cipher constructions. Sections 5, 6, 7 and 8
briefly describe the applications to Serpent, GIFT-128, the DES, and Noekeon,
respectively. These attacks are explained in more detail in the Appendices.

2 Preliminaries

This section covers notions used in the paper, including some definitions and
notations about Boolean functions and their Walsh spectra as covered in books
like [20, 43], and some essential concepts on linear cryptanalysis.

2.1 Binary Vector Spaces

We denote the field with two elements as F2 = {0, 1}. For clarity, we use the
typeface x, y, u, v to denote vectors of binary vector spaces Fl

2, and the typeface
x,y,u,v to denote (column) vectors of real vector spaces Rl. We use xi and
x[i] to denote the ith coordinates of a binary vector x and a real vector x,
respectively. The rightmost, least significant bit of x is x0. The top coordinate
of x is x[0]. The sum in Fl

2 is denoted by + and by ⊕ when confusion is possible
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Table 1: Comparison of attacks on the application target ciphers.

Complexity
Target Attack Rds. Data Time Memory PSPSPS Source

Serpent
(192-bit)

Linear 11 2121.23 KP 2121.23 2108 79% [24, 40]
Diff-lin 11 2125.7 CC 2125.7 299.00 85% [36]
Linear† 12 2127.5 KP 2189.74 2133.00 80% Sect. 5
Linear 12 2127.5 KP 2189.74 2182.00 80% Sect. 5

Serpent
(256-bit)

Multdim-lin 12 2125.8 KP 2253.8 2125.8 79% [41, 40, 18]
Multdim-lin 12 2125.8 KP 2242 2236 79% [41, 40, 18]
Diff-lin 12 2127 CC 2251 2127 77% [36, 18]
Diff-lin† 12 2127.92 CP 2233.55 2127.92 10% [18]
Diff-lin† 12 2125.74 CP 2236.91 2125.74 10% [18]
Diff-lin† 12 2118.40 CP 2242.93 2118.40 10% [18]
Linear 12 2125.16 KP 2214.362214.362214.36 2125.16 81% Sect. 5
Linear 12 2126.30 KP 2210.362210.362210.36 2125.16 80% Sect. 5

GIFT-128
(General)

Differential 27 2123.53 CP 2124.83 280.00 - [47]
Linear 25 2124.75 KP 2126.77 296.00 50% [46]
Linear 25 2125.75 KP 2127.77 296.00 75% [46]
Linear 25 2123.022123.022123.02 KP 2124.612124.612124.61 2112.00 80%80%80% Sect. 6

GIFT-128
(COFB)

Linear⋆ 16 262.10 KP 2122.80 262.10 80% [46]
Linear 17 262.10 KP 2125.09 262.10 80% Sect. 6

DES‡

Differential Full 247.00 CP 237.00 O (1) 58% [12]
Linear Full 243.00 KP 239.00 226.00 50% [38]
Multiple-lin Full 242.78 KP 238.86 230.00 85% [16]
Conditional-lin Full 242.00 KP 242.00 228.00 90% [11]
Linear Full 241.62 KP 241.76 234.54234.54234.54 70% Sect. 7
Linear Full 241.50 KP 242.13 238.75 70% [30]

Noekeon
Linear 12 2122.35 KP 2123.82 2121.00 80% [19]
Linear 12 2119.552119.552119.55 KP 2120.632120.632120.63 2115.002115.002115.00 80% Sect. 8

† The attack assumes that a-bit advantage of the subkey implies a-bit advantage of the
master key without any extra cost. ‡ For the DES application, the data collection cost
is excluded from the time complexity for historical reasons. For other applications, the
time includes the data collection. ⋆ We have corrected the memory complexity for the
sake of comparison. The authors of [46] insisted that the memory complexity is 247.
However, the attack accesses each plaintext-ciphertext pair multiple times. Therefore,
storing the data is necessary. We contacted the authors and confirmed that they did
not consider the cost of storing the data.
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and in cipher specifications. The inner product of binary vectors is

⟨x, y⟩ =
l−1∑
i=0

xi · yi.

The inner product is linear: ⟨x+ y, z⟩ = ⟨x, z⟩⟨y, z⟩ and ⟨x, y+ z⟩ = ⟨x, y⟩⟨x, z⟩.
If ⟨x, y⟩ = 0, we say that x and y are orthogonal and write x ⊥ y.

2.2 Pseudoboolean Functions and their Walsh Spectra

A pseudoboolean function is a map f : Fl
2 −→ R. If f(x) ∈ {1,−1} for all x ∈ Fl

2,
it is a Boolean function. This is because we can identify 0 ∈ F2 with (−1)0 ∈ R
and 1 ∈ F2 with (−1)1 ∈ R so that addition in F2 is the same as multiplication
in R. Pseudoboolean functions form a real vector space of dimension 2l, which
is denoted RFl

2 and can be identified with R2l . Given a pair of pseudoboolean
functions f, g : Fl

2 −→ R, their inner product and 2-norm are:

⟨f, g⟩ = 1

2l

∑
x∈Fl

2

f(x)g(x), ∥f∥2 =
√
⟨f, f⟩.

If f, g are traditional Boolean functions, their inner product is often denoted
cor(f, g) and called correlation. The 2-norm of Boolean functions is always 1. If
⟨f, g⟩ = 0, we say that f and g are orthogonal and write f ⊥ g.

The Hadamard basis of RFl
2 consists of the parity functions hu : Fl

2 −→ F2,
where hu(x) = (−1)⟨u,x⟩. It satisfies hu ⊥ hv if u ̸= v, and ⟨hu,hv⟩ = 1 if u = v.
Given f : Fl

2 −→ R, its Walsh spectrum is the map f̂ : Fl
2 −→ R given by

f̂(u) =
1

2l

∑
x∈Fl

2

(−1)⟨u,x⟩f(x).

The Walsh spectrum f̂ is the representation of f in the Hadamard basis:

f =
∑
u∈Fl

2

f̂(u)hu

A pseudoboolean function is balanced if f̂(0) =
∑

x∈Fl
2
f(x) = 0.

The Walsh spectrum of a function defined in Fl
2 can be obtained with the

fast Walsh transform algorithm [25] in l2l additions and subtractions.
The Walsh spectrum follows several properties:

Involutivity: ˆ̂
f = 2−lf,

Linearity: ̂af + bg = af̂ + bĝ,

Parseval Identity: ∥f∥2 =
√
2l∥f̂∥2,

Plancherel identity: ⟨f, g⟩ = 2l⟨f̂ , ĝ⟩.
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Given f, g : Fl
2 −→ R, their convolution is a map (f ∗ g) : Fl

2 −→ R given by

(f ∗ g)(k) = 1

2l

∑
x∈Fl

2

f(k)g(x+ k).

The convolution theorem states that

f̂ ∗ g = f̂ ⊙ ĝ,

where ⊙ denotes the component-wise product of real vectors. Given g, we can
compute f ∗ g by applying the fast Walsh transform on g, multiplying by f̂
component-wise, and applying the fast Walsh transform again.

Given f : Fl
2 −→ R, if we assume that x ∈ Fl

2 is uniformly distributed, then
f(x) is a real random variable whose mean and variance are:

E[f(x)] =
1

2l

∑
x∈Fl

2

f(x) = f̂(0),

Var(f(x)) = E[f(x)2]− E[f(x)]2 =
1

2l

∑
x∈Fl

2

f(x)2 − f̂(0)2

=
∑

u∈Fl
2\{0}

f̂(u)2 = ∥f∥22 − f̂(0)2,

Cov(f(x), g(x)) = E[f(x)g(x)]− E[f(x)]E[g(x)] =
1

2l

∑
x∈Fl

2

f(x)g(x)− f̂(0)ĝ(0)

= ⟨f, g⟩ − f̂(0)ĝ(0) = 2l⟨f̂ , ĝ⟩ − f̂(0)ĝ(0)

If f is balanced, then E[f(x)] = f̂(0) = 0. For traditional balanced functions,
since ∥f∥2 = 1, we conclude that Var(f(x)) = 1 and Cov(f(x), g(x)) = cor(f, g).

2.3 Vectorial Boolean Functions

Given a vectorial Boolean function f : Fl
2 −→ Fm

2 , its correlation matrix or Walsh
spectrum is a 2l × 2m matrix containing the spectra of all of its components
fv : Fl

2 −→ F2, fv(x) = ⟨v, f(x)⟩:

f̂(u, v) = f̂v(u) =
1

2l

∑
x∈Fl

2

(−1)⟨u,x⟩⊕⟨v,f(x)⟩.

The spectrum of a composition f = fr ◦ · · · ◦f1 is matrix product of the spectra:

f̂ = f̂r × · · · × f̂1, f̂(u, v) =
∑
u1

· · ·
∑
ur−1

f̂1(u, u1) · · · f̂r(ur−1, v).

The correlation matrix of a map f consisting of the parallel application of
several functions f1, . . . , fr is the Kronecker product of the correlation matrices:

f̂ = f̂1 ⊗ · · · ⊗ f̂r, f̂(u1| . . . |ur, v1| . . . |vr) = f̂1(u1, v1) · · · f̂r(ur, vr).
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2.4 Linear Appproximations

Let EK : Fn
2 −→ Fn

2 be a block cipher with key K. A linear approximation ν
is a pair of masks α, β ∈ Fn

2 . The evaluation of the linear approximation is the
XOR of the inner product of the input and output masks by the plaintext and
ciphertext, respectively: ν(p, c) = ⟨α, p⟩ ⊕ ⟨β, c⟩. Its correlation is:

corK(α, β) =
1

2n

∑
p∈Fn

2

(−1)⟨α,p⟩⊕⟨β,EK(p)⟩ = ÊK(α, β).

The correlation is key-dependent, and thus follows some statistical distribution
over the keyspace. The average is usually zero due to positive and negative
correlations cancelling each other, so we use the expected linear potential [42]:

ELP(α, β) = E
[
corK(α, β)2

]
= Var (corK(α, β)) + E [corK(α, β)]

2
.

Computing the ELP of a given approximation is generally a difficult problem.
For key-alternating block ciphers, which feature multiple rounds which consist of
a round subkey addition and a round function F , a linear trail [26] is defined
as a particular sequence of linear approximations of the round function (α =
α0, α1, . . . , αr = β). The correlation of the approximation for a given key is the
sum of the correlation contributions of all its linear trails.

corK(α, β) = (−1)⟨α0,K0⟩⊕···⊕⟨αr,Kr⟩
r∏

i=1

F̂ (αi−1, αi).

For some keys, the signs of these contributions cancel each other, and for others
they add up to a larger value. Under some key schedule assumptions [42],

ELP(α, β) =
∑

α1∈Fn
2

· · ·
∑

αr−1∈Fn
2

r∏
i=1

F̂ (αi−1, αi)
2.

We note that finding a collection of high-correlation trails is often enough to
obtain an accurate lower bound for the ELP. A noise component 2−n which
accounts for any unknown trails [14] is often included too.

2.5 Key Recovery Linear Attack Scenario

Since this work focuses on the key recovery step of linear attacks, we focus on
the functions which relate the plaintext, the ciphertext, the key guess, and the
value of a linear approximation through the following abstraction:

Definition 1 (Attack scenario) Consider that as part of a linear key recov-
ery attack, the adversary has to compute the experimental correlation of a linear
approximation for a given number of key guesses. Let x ∈ Fl

2 denote the concate-
nation of the segments of the plaintext and ciphertext which influence the value
of this linear approximation. We also consider that there is an external key guess
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kext ∈ Fl
2 which is xored to this text segment, and an internal key guess kint which

is not. Let f0(x) be a separate plaintext-and-ciphertext-only term which is not
influenced by the key. The linear approximation can be written as

ν(p, c, kext, kint) = f0(p, c) · f(x⊕ kext, kint). (1)

This function is called the key recovery map. The attacker is given a list D of N
plaintext-ciphertext pairs (p, c = EK(p)) which are generated with a secret key
K. By examining the key schedule, the attacker can construct a list K of L valid
key guesses (kint, kext), and a list Kint of size Lint with the permitted values of
kint. The aim of the attacker is to compute the experimental correlations

c̃or(kext, kint) =
1

N

∑
(p,c)∈D

f0(p, c) · f(x(p, c)⊕ kext, kint) (2)

for all (kext, kint) ∈ K, which can either be used directly or processed further.

There are several algorithms which compute the experimental correlations.

Matsui’s Algorithm 2 [37]. Initialise an array which will store c̃or to zero. Then,
for each plaintext-ciphertext pair, each of the entries is either incremented or
decremented individually. The total time complexity is thus O (NL).

Algorithm 2 with distillation [38]. Algorithm 2 evaluates f multiple times for
the same input. Matsui proposed an improved version with two stages:

1. Distillation phase: A table a of size 2l is initialised to zero. For each
plaintext-ciphertext pair, we increment or decrement one position to obtain

a[x] =
∑

(p,c)∈D
x(p,c)=x

f0(p, c).

The distillation table contains all the relevant information about the data
sample, and can be constructed in O (N) time.

2. Analysis phase: For each key guess (kext, kint) ∈ K, we have:

c̃or(kext, kint) =
1

N

∑
x∈Fl

2

f(x+ kext, kint) · a[x].

Each key guess takes 2l operations, so the total cost is O
(
2lL

)
.

The total time complexity is O (N) +O
(
2lL

)
.
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Fast Walsh transform attack [24]. A further attack algorithm was introduced by
Collard et al.. We first note that the array a can be interpreted as a function
a : Fl

2 −→ R. We momentarily fix the value of kint, and define c̃orkint
: Fl

2 −→ R
as c̃orkint

(kext) = c̃or(kext, kint) and fkint
: Fl

2 −→ R as fkint
(x) = f(x, kint).

Under this notation, c̃orkint is the convolution of fkint and a:

c̃orkint
(kext) =

1

N

∑
x∈Fl

2

fkint(x+ kext) · a[x] =
1

N
(fkint ∗ a) (kext).

This suggests that it can be evaluated efficiently using the convolution theorem:

1. Construct the distillation table a as in the previous attack algorithm.
2. Evaluate f̂kint and â using the fast Walsh transform algorithm [25].
3. Multiply the previous vectors component-wise.
4. Apply the fast Walsh transform again to obtain N2−lc̃orkint

.

Except for the computation of â, each of the steps 2 to 4 has to be repeated
for each of the Lint guesses of kint. The cost of each fast Walsh transform is l2l

additions. The time complexity of the attack is thus O (N) +O
(
Lintl2

l
)
.

Pruning-based attacks. Several improvements to this algorithm make use of prun-
ing techniques on the fast Walsh transform [31, 30], that is, of optimised Walsh
transform algorithms which can be used when the nonzero inputs or the desired
outputs are restricted. A brief description of the attack algorithm of [30] can
be found in Appendix A. In summary, it was shown that when the support of
the Walsh spectrum f̂kint

is covered by an affine subspace of dimension d, the
complexity can be reduced to O (N)+O

(
Lintd2

d
)
. By using the linearity of the

convolution, this technique can also be applied when the Walsh spectrum lies on
the union of T such subspaces, at a cost of O (TN)+O

(∑
i Lint,idi2

di
)
+O (TL).

Since the pruned fast Walsh transform can accommodate restrictions in both the
input and the output, this complexity can be enhanced further by also account-
ing for the structure of the plaintext material and the key guesses.

2.6 Distribution of the Experimental Correlation

The probability of success of a linear key recovery attack depends on the statis-
tical distribution of the key recovery statistic for both correct and incorrect key
guesses. This paper follows the framework which is described in [15]. A sampling
correction coefficient B is considered, which is 1 in the classical known plaintext
scenario and 2n−N

2n−1 if the plaintexts are assumed to be distinct.
The wrong key recovery statistic is normally distributed (Theorem 2 in [15]):

c̃orW ∼ N
(
0,

B

N
+ 2−n

)
. (3)

We assume that these are statistically independent for different wrong key guesses.
For the right key recovery statistic, we consider two possibilities:



Linear Attacks using Walsh Spectrum Puncturing 9

– If the approximation has no dominant linear trails, its correlation follows a
normal distribution (usually with mean c = 0). Per Theorem 5 in [15]:

c̃orR ∼ N
(
c,

B

N
+ ELP− c2

)
. (4)

– If there is a single dominant trail, the keyspace can be separated into two
disjoint parts of equal size so that (Theorem 4 in [15]):

c̃orR ∼ N
(
±c, B

N
+ ELP− c2

)
, (5)

in each of the subsets (+c in one and −c in the other). The overall distribu-
tion of the statistic is thus a bimodal distribution with two peaks.

These distributions can be used to deduce the probability of success of the
attack (see Section 2 of [15]). For the purposes of this paper, we instead focus
on how to compensate the data complexity of a modified linear attack so that
the resulting probability distributions match those of the original attack.

3 Approximating the Key Recovery Map

There are several examples in the literature in which the key recovery map f
is substituted for another map g which “approximates” it in such a way that
the impact on the data complexity can be predicted. For example, f may be
substituted for another Boolean function g which is highly correlated with f (as
in [2, 11, 5] and others), and the correlation is incorporated into the correlation
of the distinguisher and used to determine the new data complexity. We can also
consider that g is a copy of f which rejects some specific inputs (as in [39, 30,
18]), which amounts to sieving the plaintexts for each key guess. Assuming the
correlation of the linear approximation is the same within the remaining pairs,
the data complexity is compensated by the inverse of the proportion of rejected
plaintexts. In all of these applications, g is chosen so that the key recovery
becomes less costly, for example by having a smaller effective input space.

In [30], the rejected inputs are chosen specifically with the aim of reducing
the dimension of the support of the Walsh spectrum. However, in order to nullify
one coefficient of the Walsh spectrum, the whole spectrum has to be modified.
In particular, forcing several Walsh coefficients to be zero often means rejecting
all the inputs. This is the motivation for the question of whether it is possible
to modify the Walsh spectrum directly, even if the resulting key recovery map
is not a Boolean function in the traditional sense.

We introduce a generalisation of these existing techniques in which f is re-
placed by an arbitrary approximation g, as well as a statistical analysis of the
effect on the attack’s data complexity. One specific instance is Walsh spectrum
puncturing, which consists of removing “inconvenient” coefficients from the Walsh
spectrum of f to obtain g. This is motivated by the fact that the attack com-
plexity of [30] is highly dependant on the structure of the support of f̂ .
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3.1 Effect on the Data Complexity

Let f : Fl
2 −→ F2 be the key recovery map of a linear attack for a specific

internal key guess (more generally, f can be real-valued). We also consider the
approximating pseudoboolean function g : Fl

2 −→ R. For simplicity, we assume
that both f and g are balanced, that is, E[f(x)] = f̂(0) = E[g(x)] = ĝ(0) = 0.
By projecting g orthogonally onto f , we obtain the following decomposition:

g =
⟨f, g⟩
∥f∥22

f + g⊥, (6)

where g⊥ is orthogonal to f , that is, both components are uncorrelated as ran-
dom variables. We note that the orthogonality of both components also means
that

∥g∥22 =
⟨f, g⟩2

∥f∥22
+ ∥g⊥∥22,

from which we deduce that the variance of g⊥ is ∥g⊥∥22 = ∥g∥22 − ⟨f, g⟩2/∥f∥22.
We denote the alternative key recovery statistic which uses g instead of f by

c̃or
g
(k). This statistic can also be separated into two orthogonal components,

one of which is a scaled copy of the original key recovery statistic:

c̃or
g
(k) =

1

N

∑
(p,c)∈D

g(x(p, c)⊕ k) =
⟨f, g⟩
∥f∥22

c̃or
f
(k) + c̃or

g⊥
(k).

Assuming the statistical distribution of g⊥ under the attack sample is the
same as for a uniformly-distributed input, we can prove the following:

Theorem 2 the distributions of the right-key and wrong-key key recovery statis-
tics using the approximation g of the key recovery map f (both assumed balanced)
can be approximated by the normal distributions

c̃or
g
R ∼ N

(
⟨f, g⟩
∥f∥22

c, ∥g∥22
B

N
+
⟨f, g⟩2

∥f∥22
(ELP− c2)

)
, (7)

c̃or
g
W ∼ N

(
0, ∥g∥22

B

N
+
⟨f, g⟩2

∥f∥22
2−n

)
. (8)

Proof. Since the experimental correlation statistic is a (scaled) sum of equally-
distributed independent random variables, we can assume that it is normally
distributed, and we only have to determine its expected value and variance:

ED,K [c̃or
g
R] = ED,K

[
⟨f, g⟩
∥f∥22

c̃or
f
R

]
+ ED,K

[
c̃or

g⊥

R

]
≃ ⟨f, g⟩
∥f∥22

c+ EK

[
ED

[
c̃or

g⊥

R

]]
=
⟨f, g⟩
∥f∥22

c,

assuming that ED

[
c̃or

g⊥

R

]
= E

[
g⊥(x)

]
= 0.
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VarD,K (c̃or
g
R) = VarD,K

(
⟨f, g⟩
∥f∥22

c̃or
f
R

)
+VarK

(
ED

[
c̃or

g⊥

R

])
+ EK

[
VarD

(
c̃or

g⊥

R

)]
− 2CovD,K

(
⟨f, g⟩
∥f∥22

c̃or
f
R, c̃or

g⊥

R

)
≃ ⟨f, g⟩

2

∥f∥22

(
B

N
+ ELP− c2

)
+ ∥g⊥∥22

B

N

= ∥g∥22
B

N
+
⟨f, g⟩2

∥f∥22
(ELP− c2),

assuming CovD,K

(
c̃or

f
R, c̃or

g⊥

R

)
= Cov

(
f(x), g⊥(x)

)
= 0. To deduce VarD,K

(
c̃or

f
R

)
=

∥f∥22
(
B/N + ELP− c2

)
and VarD

(
c̃or

g⊥

R

)
= ∥g⊥∥22 B

N , we require a similar as-
sumption and the central limit theorem (in the distinct known plaintext case, we
need to use a variant of the central limit theorem which accounts for sampling
without replacement in finite populations, which is discussed in Appendix B).

The wrong key case can be treated similarly:

ED,K [c̃or
g
W ] ≃ ⟨f, g⟩

∥f∥22
ED,K [c̃orW ] + EK

[
ED

[
c̃or

g⊥

W

]]
= 0.

VarD,K (c̃or
g
W ) ≃ ⟨f, g⟩

2

∥f∥22

(
B

N
+ 2−n

)
+ ∥g⊥∥22

B

N
= ∥g∥22

B

N
+
⟨f, g⟩2

∥f∥22
2−n. ⊓⊔

We believe the assumption that ĉor
g⊥

behaves the same in the data as for a
uniform input sample is reasonable because in a realistic attack scenario, as the
odds of a random balanced Boolean function being biased in the data are low, the
only exception being the key recovery maps of linear approximations. However,
we could theoretically find g which approximates the key recovery maps of more
than one approximation. Describing this scenario and how it may be exploited
in cryptanalysis remains an open problem.

This result can be applied directly in the formulas in Section 2 of [15]. How-
ever, there is a handy way of compensating the data complexity:

Corollary 3 The success probability of a linear attack which substitutes the bal-
anced key recovery map f for the balanced approximation g remains the same as
long as the corrected data sample size N/B is increased by a factor 1/ρ2, where

ρ =
|⟨f, g⟩|
∥f∥2 · ∥g∥2

=
|Cov(f(x), g(x))|√

Var(f(x))
√

Var(g(x))
, (9)

which is the Pearson correlation coefficient of f(x) and g(x).

Proof. We first consider the case in which the correlation of the linear ap-
proximation is normally distributed over the keyspace. Let N/B be the cor-
rected sample size for the base attack. The expected value of c̃or

f is c, and
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its variance is ∥f∥22(B/N + ELP − c2) for the right key case. For the wrong
key case the mean is 0 and the variance is ∥f∥22(B/N + 2−n). Let N∗/B∗

be the corrected sample for the attack using g. The expected value and vari-
ance of c̃or

g are ⟨f,g⟩
∥f∥2

2
c and ∥g∥22 B∗

N∗ + ⟨f,g⟩2
∥f∥2

2
(ELP − c2) for the right key case

and 0 and ∥g∥22 B∗

N∗ + ⟨f,g⟩2
∥f∥2

2
2−n in the wrong key case. If we take N∗/B∗ =

(N/B)/ρ2, this variance is ⟨f,g⟩2
∥f∥2

2

(
B/N + ELP− c2

)
for the right key case and

⟨f,g⟩2
∥f∥2

2
(B/N + 2−n) for the wrong key. This means c̃or

g has the same distribu-

tion as ⟨f,g⟩
∥f∥2

2
c̃or

f in both the right and wrong key cases. Since substituting the
key recovery statistic for a multiple has no effect on the success probability, we
conclude that it is the same for both attacks.

The case in which a single dominant trail exists and the correlation distri-
bution is bimodal remains. The keyspace consists of two disjoint parts, and the
right key experimental correlation statistic is normally distributed in both. By
swapping the sign in one of the parts, both distributions become identical. The
squared statistic is thus distributed as if both parts were identical, and the pre-
vious reasoning still applies. We note that the case in which a small number of
dominant trails exists is not covered by these arguments. ⊓⊔

In the known plaintext scenario, the data complexity N just increases by
1/ρ2. In the distinct known plaintext scenario, we must consider that B decreases
with N . In order to compensate by increasing the data complexity, the original
data complexity N must be increased to N∗ so that

(2n −N∗)N

(2n −N)N∗ = ρ2.

We can confirm that Corollary 3 generalises existing techniques:

Boolean function substitution. If g is also a Boolean function, then ∥f∥2 =
∥g∥2 = 1, which means that ρ2 = ⟨f, g⟩2 = cor(f, g)2, and the data complexity
must be increased by a factor equal to the square of the correlation of f and g.

Plaintext rejection. If g is a copy of f which rejects some of the inputs (that
is, g(x) ∈ {f(x), 0} for all x), then ⟨f, g⟩ = ∥g∥22 = 1

2l

∣∣x ∈ Fl
2 : g(x) ̸= 0

∣∣, and
the increase in data complexity 1/ρ2 is the inverse of the fraction of inputs of f
which are not rejected by g.

We now provide a brief additional justification for the result using the gen-
eralised linear cryptanalysis framework of [6]. The functions f and g define one-
dimensional subspaces U = span {f} , V = span {g} of Fn

2 . They define a linear
approximation map over the identity ⟨V,U⟩id, whose principal correlation is ρ.
When this map is appended to the original approximation using the piling-up
lemma, a new approximation for the full cipher is obtained whose correlation is
multiplied by ρ, and the data complexity has to be increased by 1/ρ2.



Linear Attacks using Walsh Spectrum Puncturing 13

3.2 Walsh Spectrum Puncturing

In [30], it is shown that the structure of the support the Walsh spectrum of the
key recovery map plays a key role in the time complexity. This suggests a simple
way to construct an approximation g of f : take some nonzero Walsh coefficients
of f , corresponding to a subset P ⊆ Fn

2 , and set them to zero to obtain g:

Definition 4 (Walsh spectrum puncturing) Let f : Fl
2 −→ F2 be a boolean

function and f̂ its Walsh spectrum. A puncture set is any subset P ⊆ Fl
2. To

simplify the analysis, we assume that f is balanced (f̂(0) = 0), and 0 ̸∈P. We
define the punctured function of f according to P as the pseudoboolean function
g = f −

∑
u∈P f̂(u)hu. The puncture coefficient ε is defined as

ε = Var(f − g) = ∥f − g∥22 =
∑
u∈P

f̂(u)2. (10)

The proportion of f which remains, 1− ε, is called puncturing correlation:

1− ε =
∑
u̸∈P

f̂(u)2 = ⟨f, g⟩ = cor(f, g).

We note that, since f̂(0) = 0, we also have ĝ(0) = 0, so g is also balanced.

Corollary 5 Let f : Fl
2 −→ F2 be the balanced key recovery map of a linear

attack, and let g be a punctured version with puncture coefficient ε. Substituting
f for g in the attack and increasing the (corrected) data sample by a factor 1

1−ε
yields an attack with the same success probability and advantage.

Proof. According to Corollary 3, the data complexity must be increased by

1

ρ2
=
∥f∥22 · ∥g∥22
⟨f, g⟩2

=
1 · (1− ε)

(1− ε)2
=

1

1− ε
. ⊓⊔

We note that the increase in data complexity is inversely proportional to the
puncturing correlation instead of its square, as may be suggested by intuition.

3.3 Experimental Verification

We perform some experiments to verify the accuracy of the assumptions.

Normally distributed correlation. We consider an attack on 8-round PRESENT
(Figure 8 in Appendix D) using a 6-round linear approximation between rounds
1 and 6. The input mask (before SboxLayer in round 1) is 00000000 00A00000,
and that the output mask (before Sboxlayer in round 7) is 00000000 00200020.
It is known that many similar linear trails exist [31], so the approximation’s
correlation is normally-distributed and centered at zero. Several scenarios with
puncture coefficients ε = 0.25 and 0.5 were considered, where the spectrum of one
of the four active Sboxes is punctured. They included restricting the spectrum
to a hyperplane, removing a single coefficient, or removing a random subset.
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(a) 8-round PRESENT. (b) 10-round GIFT-128.

Fig. 1: The results of the puncturing experiments.

Bimodal correlation. We consider 10-round GIFT-128 (Figure 9 in Appendix D)
and a 5-round linear trail with correlation 2−10 extracted from Figure 4 of [45].
The trail covers rounds 3 to 7 and has input mask 00000000 00000000 00000000
11000000 and output mask 00000000 05000000 00000000 05000000. There
are no additional high-correlation trails. We consider three key recovery rounds
on the input side and two on the output side, and puncture the spectra of the
four active Sboxes in the inner key recovery rounds 2 and 8.

The attacks were performed for data saple sizes between 219 and 224, and the
experimental correlation of the correct key was compared with that of 210 ran-
dom wrong keys (28 for the GIFT-128 attacks), thus detecting advantage ([44])
values of up to 10 or 8 bits. Each of the punctured attacks was run 5000 times
at each data complexity value. The median of the achieved advantages approx-
imates the probability 50% advantage. The advantages are plotted against the
data complexity in Figure 1. The black line represents the base attack with-
out puncturing. The dotted blue lines represent the ε = 0.25 experiments and
the dotted green lines represent the ε = 0.5 experiments. The predictions cor-
responding to a data complexity increase from the base case by 1/(1 − ε) are
shown as continuous lines.

The results indicate that although there is some variability between the re-
sults of different scenarios at a given ε, they all follow the model predictions
closely. The variability can be attributed to several factors, the most likely of
which is the fact that a punctured key recovery map may approximate the key
recovery maps of additional linear approximations.
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3.4 Relationship to Multiple and Multidimensional Attacks

This subsection briefly discusses how puncturing the Walsh spectrum of the key
recovery map compares to other techniques which appear superficially similar,
specifically multiple [13] and multidimensional [32, 34, 33] linear cryptanalysis.
This is motivated by the observation that puncturing the spectrum of the key
recovery map to a single coefficient f̂(u) essentially amounts to appending one
round to the approximation with masks β and u. Although the effective key
guess collapses to dimension zero, the key recovery statistic can still be used to
distinguish the cipher from a random permutation. Since the expected increase
in data complexity is inversely proportional to f̂(u)2, the data complexity is the
same that is predicted by the piling-up lemma. This suggests (punctured) key
recovery attacks can be interpreted as using several linear approximations at the
same time, each one corresponding to a single coefficient of the Walsh spectrum.

Multiple linear cryptanalysis. Multiple linear cryptanalysis [35, 13], it can use an
arbitrary set of linear approximations, and can be applied in both Algorithm 1
and Algorithm 2-type attacks, with Algorithm 2 being the most common. Unlike
puncturing, it uses a χ2 statistic which is not optimised to the joint distribu-
tion of the correlations. As a result, the expected data complexity is around√
l/C [33], where l is the number of approximations and C is the sum of their

squared correlations. It also requires the assumption that the approximations are
statistically independent. If the approximations match a punctured key recovery
attack, the data complexity of that attack attack would be around 1/C.

Multidimensional linear cryptanalysis. Introduced by Hermelin et al. [32–34], a
multidimensional approximation is a vector space of classical linear approxima-
tions, which are not assumed to be independent. In addition to the χ2 statistic
with around

√
l/C data complexity, the LLR statistic is available, with data

complexity 1/C. It takes the joint distribution and sign of the correlations into
account, and the data complexity is similar to a punctured key recovery attack.
Since the joint correlation distribution has to be known, in many cases it requires
key guessing to determine this distribution. This suggests that puncturing may
be interpreted as a hybrid approach in which some key material is guessed to
determine some partial information about the correlation distribution. We note
that in many cases, the way multidimensional approximations are constructed
consists of selecting subspaces of the Walsh spectrum of the round function (see
for example [22]), which is similar to puncturing. However, multidimensional
linear cryptanalysis is limited to vector spaces of linear approximations, while
in puncturing the choice of remaining coefficients is arbitrary.

4 Puncturing Walsh Spectra

In the previous section, a theoretical framework which predicts the effect of
Walsh spectrum puncturing on the data complexity of a key recovery linear
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attack has been laid out. This section deals with the puncturing step itself. Sub-
section 4.1 provides some intuitive results about puncturing common operations
such as the composition and the XOR of Boolean functions. Detailed proofs can
be found in Appendix C. Subsection 4.2 features a discussion of several ways of
puncturing the spectrum for typical cipher designs.

4.1 Some Useful Results

We first focus on puncturing a composition of functions, which corresponds to
a key recovery scenario covering multiple rounds. When puncturing the last
function of the composition, the same ρ2 applies to the whole composition.

Proposition 6 Let f1 : Fl
2 −→ Fr

2 and f2 : Fr
2 −→ R be two Boolean functions,

and let f = f2 ◦ f1 be their composition. We also assume that the components
of f1 are all balanced. Let g2 : Fr

2 −→ R be a map which approximates f2 with
Pearson corrrelation coefficient ρ. Then g = g2 ◦ f1 is an approximation of f ,
and the Pearson correlation coefficient is also ρ.

Remark. Puncturing the components of f1 is also possible, but it requires an
abstract definition of the composition of vectorial pseudoboolean functions as
the inverse Walsh transform of the matrix product of their Walsh spectra.

Next, we look at puncturing the XOR of several functions (product of real-
valued functions). We prove the result in the case in which both functions have
the same input domain because it requires the most strict assumptions, but it
also holds when the functions have (partially) disjoint input domains.

Proposition 7 Let f1, f2 : Fl
2 −→ R be two balanced pseudoboolean functions,

and let f : Fl
2 −→ F2, f = f1 · f2. Let g1, g2 : Fl

2 −→ R be balanced functions
which approximate f1 and f2 with correlation coefficients ρ1 and ρ2, respectively.
Then g : Fl

2 −→ R, g = g1 · g2 is an approximation of f , and the compensation
factor is ρ1ρ2, under the assumption that

Cov(f1, f2) = Cov(f2
1 , f

2
2 ) = Cov(g1, g2)

=Cov(g21 , g
2
2) = Cov(f1, g2) = Cov(f2, g1) = 0.

We would also like a more general result which permits “step-by-step ap-
proximation" which would permit starting from the key recovery map f and
taking successive approximations g1, g2, . . . where each function approximates
the previous one. Unfortunately, the correlation is not a distance. Indeed, tak-
ing f, g, h : F2 → R with f = (1, 1), g = (1, 0), and h = (1,−1), the Pearson
correlation coefficient between f and g and between g and h is 1/

√
2, but f

and h are incorrelated. However, in the scope of normal applications, there are
many instances in which the puncturing coefficients can be multiplied, such as
in Proposition 7. This means that we can often puncture the whole key recovery
map by puncturing the spectra of its components, such as Sboxes.
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1

k[19,...,16]

k[15,...,0]

x[15,...,0]

y[3,...,0]

S1S2S3S4

S0

x
ε

0 1 2 3 4 5 6 7 8 9 A B C D E F

S0 1 F 8 3 C 0 B 6 2 5 4 A 9 E 7 D
f 1 -1 1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 -1
f̂ 0 4 0 4 4 0 -4 8 4 0 -4 -8 0 4 0 4

ĝ1 0 4 0 4 4 0 -4 8 0 0 0 0 0 0 0 0 0.5
g1 1 -1 0 1 0 0 0 -1 1 -1 0 1 0 0 0 -1

ĝ2 0 4 0 0 0 0 0 8 0 0 0 -8 0 4 0 0 0.375
g2 0.5 -0.5 0.5 -0.5 -1 1 1 -1 1 -1 -1 1 0.5 -0.5 0.5 -0.5

ĝ3 0 0 0 0 0 0 0 8 0 0 0 -8 0 0 0 0 0.5
g3 0 0 0 0 -1 1 1 -1 1 -1 -1 1 0 0 0 0

ĝ4 0 4 0 4 4 0 -4 8 4 0 -4 -8 0 4 0 0 2−4

g4 0.75 -0.75 1.25 0.75 -0.75 0.75 0.75 -0.75 1.25 -1.25 -1.25 1.25 0.75 -0.75 -0.75 -1.25

Fig. 2: Example of puncturing (the coefficients are multiplied by 16 for clarity).

4.2 Puncturing Strategies

Generic Hyperplane Puncturing. Given a Walsh transform-based linear
attack with data complexity N ≤ 2n−1 and a key recovery input space of dimen-
sion l (so the complexity of the transforms is l2l additions), we can choose any
hyperplane of Fl

2 and puncture the spectrum of f to either the hyperplane itself
or its complement. Since the sum of the puncture coefficients of both options
is 1, one must be equal to or smaller than 1/2. This means it’s always possible
to construct a pruned transform attack with data complexity at most 2N with
complexity O

(
(l − 1)2l−1

)
. This is a generic technique which can be used to

rapidly create time-data trade-offs in a wide range of attacks.

Bit Puncturing. Puncturing can be used to find optimal ways to model the cost
of ignoring parts of the key recovery map input space. For example, forcefully
making one input bit of an Sbox inactive to exclude part of the key guess means
forcing a hyperplane of its Walsh spectrum to be zero. It is clear that simply
puncturing these coefficients gives the optimal approximation of the Sbox, and
the data complexity impact is easy to compute.

Example 1. Consider the key recovery map depicted in Figure 2. The key recov-
ery map to compute y2 requires all of x and a 20-bit key guess. In the FWT-based
procedure, we compute the Walsh transform for every 4-bit internal key guess.
The complexity of a Walsh transform attack is thus proportional to 24×16×216.

We focus on S0 and let f denote f(x) = (−1)⟨4,S0(x)⟩, and f̂ its Walsh
spectrum. Using bit puncturing, we exclude the MSB of the input of S0. We
obtain the punctured spectrum ĝ1, and we can compute the associated function
g1. We observe that the MSB is indeed irrelevant, as g1(x) = g1(x ⊕ 8) for
all x. In this case g1 can be described as a traditional Boolean function which
rejects some inputs, but this is not always the case. The puncture coefficient is
ε = 4×2−4+2−2 = 2−1, i.e. the data must be doubled. We obtain a better time
complexity than hyperplane puncturing because it effectively makes S4 inactive,
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thus making the key bits k15, k14, k13, k12 and k19 unnecesary, and reducing the
complexity of the Walsh transforms to 23 × 12× 212.

More advanced bit puncturing is also possible in the case of ciphers with
more complicated linear layers. For example, we may decide that one Sbox will
become inactive, and transforming this condition through the linear layer leads
to restrictions on the spectra of the Sboxes of the next round. This technique is
used in the Serpent attacks of Section 5. In the GIFT attacks of Section 6, the
spectrum of the GIFT super Sbox is punctured instead of the spectrum of the
Sbox itself. In this case, we don’t obtain a traditional Boolean function which
rejects some inputs, but a function taking multiple different real values.

LAT Subspace Puncturing. When applying hyperplane puncturing, it is
often possible to choose a hyperplane for which ε will be significantly smaller
than 1/2, or to choose a subspace of smaller dimension with ε = 1/2. Quite often,
these subspaces can be found by examining the Walsh spectra of the Sbox(es).
For example, with 4-bit Sboxes, there often exists an affine subspace of dimension
1 (that is, two coefficients) which concentrates half of the 2-norm of the map.

Example 2. We return to Figure 2. First, we consider puncturing the coefficients
in the positions {3, 4, 6, 8, A, F} to obtain ĝ2 and the corresponding function g2.
The puncture coefficient is ε = 6 × 2−4 = 6/16, so the data complexity is
increased by a factor of 1/(1 − 6/16) = 1.6. All remaining nonzero coefficients
lie in the affine subspace 1 + span {6, A}. Since the dimension is 2, only a 2-bit
internal key guess is enough. Thus, the complexity of the Walsh transforms is
reduced to 22 × 16× 216.

Example 3. Puncturing all coefficients of value±2−2, we obtain ĝ3 with puncture
coefficient ε = 8 × 2−4 = 2−1, which doubles the data. The remaining nonzero
coefficients are positions 7 and B, which form an affine subspace of dimension 1,
i.e., 7+ span {C}. The complexity of the Walsh transforms is 21 × 16× 216.

To explain the reduction of the internal key guess, we show why using g3
reduces it to 1 bit. Let a = (a3, a2, a1, a0) be the input to S0 before xoring the
key k = (k19, k18, k17, k16). We guess the bit ⟨C, k⟩. When ⟨C, a ⊕ k⟩ = 0, the
input of S0 can be 00 ∗ ∗ or 11 ∗ ∗, where ∗ are arbitrary. Looking at g3, the
outputs are always 0, so this data is rejected. When ⟨C, a⊕ k⟩ = 1, the input of
S0 can be 10 ∗ ∗ or 01 ∗ ∗, and we have g3 = (−1)⟨7,a⊕k⟩. In other words, ⟨7, k⟩
just flips the sign of the correlation, which is unnecessary in many attacks.

We can use LAT subspace puncturing more generally than bit puncturing
because it doesn’t require taking the outermost key recovery map into consider-
ation. This technique is used in the Serpent attacks of Section 5.

Hamming Weight Puncturing. The plaintext-ciphertext pair rejection tech-
nique of [30] is used in cases in which the key recovery map is of the form

f(x0, x1, . . . , xd) = f2(f10(x0), f11(x1), . . . , f1d(xd)),
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which is frequent on attacks on Sbox-based ciphers with bit permutations as
linear layers. A subset of inputs of f2 is selected so that the function which rejects
these inputs, f∗

2 , verifies f̂∗
2 (11...1) = 0. As a result, the support of the Walsh

spectrum of the modified key recovery map can be covered with d subspaces of
smaller dimension. However, rejecting these inputs of f2 modifies its whole Walsh
spectrum. Using puncturing, we can simply remove the coefficient f̂2(11...1),
which has a smaller impact on the data complexity. Furthermore, additional
Walsh coefficients can be targeted, such as the ones of Hamming weight d − 1,
to cover the Walsh spectrum with even smaller subspaces. An example of this
strategy is the attack on the DES of Section 7.

Example 4. We puncture the coefficient of Hamming weight four (mask F) to
obtain ĝ4. The corresponding pseudoboolean function is g4. The puncture co-
efficient ε is 2−4, and as a result the data complexity increases by a factor of
1/0.9375. The key recovery map then decomposes into four components with
supports of dimension 12. Therefore, the complexity of the Walsh transforms is
reduced to 4× 23 × 12× 212.

Generic Puncturing. Finally, it is possible to study the possible propagations
of the input and output masks of the linear approximation to obtain a list of
the Walsh coefficients of the key recovery map which are larger than a bigger
threshold. Then, which Walsh coefficients will be used in the attack can be
decided as an optimization problem (for example, trying to obtain the largest
possible ρ while keeping the number of active key bits below a certain threshold).
This is the approach used in the Noekeon attack of Section 8.

5 Application to Serpent

Serpent is a 128-bit block cipher and one of the AES competition finalists [7,
8]. Appendix E.1 contains the full specification. It is the subject of substantial
cryptanalysis, such as linear [9, 10, 24, 23], multidimensional-linear [32, 34, 41],
and differential-linear [10, 36, 18] attacks, which are summarised in Table 1.

On the Key Recovery Attack against 11-Round Serpent-128. Before
describing the 12-round attack, we start with an 11-round attack. Figure 3 shows
the high-level structure, which uses the 9-round linear trail with correlation 2−57

reported in [23] (see Appendix E.2). We also searched for other linear trails with
the same input/output mask to evaluate the ELP, but found no such trails with
correlation higher than 2−64. Therefore, we estimate the ELP as 2−114 + 2−128,
where 2−128 is the noise component.

We append one key recovery round to both the plaintext and ciphertext sides,
leading to a 1 + 9+ 1 = 11-round attack. 15 Sboxes and 12 Sboxes are active in
the first and last rounds, respectively. This attack structure is identical to the
previous attack [24], where the Walsh transform complexity was 108× 2108.
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| -*XY---Y------***-*-***--**-*--X |

| 08E100010000002B40B046300C70D00E |

| 40006000040280C00008000050B02C03 | 

| *---*----*-**-*----*----*-Z-**-* |

X={2,3,A,B}=2+{1,8}

Y={A,B,E,F}=A+{1,4}

Z={4,5,8,9}=4+{1,C}

Fig. 3: Key recovery attack against 11-round Serpent

We first apply Walsh transform pruning [30]. The spectra of ⟨E, S2⟩, ⟨1, S2⟩
and ⟨B, S−1

4 ⟩ contain only four nonzero coefficients, and they lie in subspaces of
dimension 2. The spectrum therefore occupies an (52 + 46) = 98-dimensional
affine space1. The complexity of the Walsh transforms is reduced to 98× 298.

Puncturing Walsh coefficients of the first or last-round Sboxes can reduce
the time complexity in return for a slight data increase. However, the dominant
complexity of the 11-round attack is the data collection. Therefore, we must
reduce the data complexity to improve the 11-round attack. It is possible by
switching some active Sboxes of the approximation to punctured key recovery.
We adopt such an approach in the application to GIFT and Noekeon. Here,
we focus on a simpler and more attractive case with a longer key length.

5.1 Improved Key Recovery Attack against 12-Round Serpent-256

To attack 12-round Serpent-256, we add an additional round of key recovery to
the ciphertext side of the 11-round attack. Figure 4 shows these last two key
recovery rounds. On the left is the original key recovery map. Since the 11th
Sbox in the 12th round is not involved, 128− 4 = 124 ciphertext bits are used.
Similarly to the 11-round attack, 52 plaintext bits, 52 first-round subkey bits
and 46 11th-round subkey bits are involved in the key recovery.

On the right of Figure 4, we use bit puncturing. First, we focus on Sbox 19
at round 11. The input mask is 8, and the Walsh spectrum of ⟨8, S−1

4 ⟩ is

(0, 0, 0, 8, 4,−4, 4, 4, 0, 0, 0,−8, 4,−4, 4, 4).

When the MSB is ignored, via the linear layer, Sbox 26 in the last round becomes
inactive. Therefore, we puncture the five coefficients which involve the MSB. The
key guess is reduced by 5 bits, and the data complexity is doubled. Next, we
try to exclude the 6th Sbox in the 12th round from the key recovery map. To
do it, we puncture the following coefficients in the 11th round: five coefficients
whose mask LSB is 1 in the 20th Sbox, four coefficients whose mask MSB is 0 in
the 31st Sbox, and four coefficients whose 2nd mask MSB is 0 in the 3rd Sbox.
1 The authors of [40] make a similar observation and decrease the number of recovered

bits from 108 to 98. However, without pruning techniques [30], the complexity of the
transforms of their attack is still 108× 2108.
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012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

Y10

X10

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

012345678910111213141516171819202122232425262728293031

Y10

X10

Original key recovery map Punctured key recovery map

Fig. 4: Ciphertext side of the key recovery attack against 12-round Serpent

The puncturing correlations are 2−1, 3/4 and 3/4. Therefore, the key guess is
reduced by 7 bits at 2× 4/3× 4/3 ≈ 21.83 higher data.

In summary, puncturing reduces the number of active ciphertext bits from
124 to 116 and the key guess by 12 bits. On the other hand, the data complexity
is increased by a factor ρ−2 = 22.83.

Attack Procedure. We have the following attack procedure using the FWT.

1. Store N known plaintext-ciphertext pairs.
2. Guess the 52 active subkey bits in the 1st round.

(a) Prepare a distillation table, a, of 2116 elements.
(b) Compute the input parity of the 9-round linear approximation. Accord-

ing to the input parity, we increment or decrement the entry of the
distillation table a indexed by the 116-bit truncated ciphertext.

(c) Evaluate â using the FWT.
(d) Guess the 4× 7 + 3× 4 + 2 = 42-bit internal key.

i. Compute the (punctured) key recovery map gkint
: F112

2 −→ R.
ii. Evaluate ĝkint

by using the FWT.
iii. Multiply â with ĝkint

component-wise.
iv. Apply the FWT to the resulting table.

The attack procedure above evaluates the experimental correlation of every 52+
42 + 116 = 210-bit key guess with a time complexity of

N+252 ·
(
N+116·2116ADD+242 ·(2116PD+116·2116ADD+2116MUL+116·2116ADD)

)
,

where PD, ADD, and MUL denote the costs of a 2-round decryption, an addition,
and a multiplication, respectively.

With Nρ2 = 2122.33, the success probability with advantage a = 210 is
higher than 81%. Therefore, we use N = 2125.16 known plaintexts. The correct
guess ranks among the few highest correlations, and auxiliary techniques recover
the rest of the key bits. Assuming that ADD and MUL are faster than one round
function and one encryption, respectively, the time complexity is at most 2

122
210+

116
12 2210+2210+ 116

12 2210 ≈ 2214.36. The dominant part of the memory complexity
is storing the data, 2125.16.



22 Antonio Flórez-Gutiérrez, Yosuke Todo

Further puncturing results in a time-data trade-off. The above attack punc-
tures four coefficients in the 3rd and 31st Sboxes. Puncturing a further four
coefficients, leaving only coefficients of value ±2−1, results in LAT subspace
puncturing with ρ2 = 2−4. This variant of the attack has time and data com-
plexities 2210.36 and 2126.30, respectively.

5.2 Improved Key Recovery Attack against 12-Round Serpent-192

We next show, to the best of our knowledge, the first key recovery attack on
12-round Serpent-192. Overall it’s is almost the same as the attack on 12-round
Serpent-256, but we use LAT subspace puncturing to reduce the time complexity
further. Returning to the right part of Figure 4, there are 12 active Sboxes in the
11th round. The 5th Sbox is special because a 2-bit guess is enough to determine
the parity. We use the same puncturing as above for the 19th and 20th Sbox
because it reduces the size of involved ciphertext bits. For the other 9 Sboxes, we
puncture all Walsh coefficients with ±2−2. As a result, we can reduce the number
of involved ciphertext bits from 124 to 116, and the 1+1+3×9+8 = 37-bit guess
by increasing the data by a factor of 211. The new attack procedure evaluates
the correlation of every 52+ 17+ 116 = 185-bit guess with a time complexity of

N+252×
(
N+116×2116ADD+217×(2116PD+116×2116ADD+2116MUL+116×2116ADD)

)
.

To save some more time, we can use 217+116 = 2133 memory registers and pre-
compute gkint

and ĝkint
before guessing the first round subkey. This precompu-

tation reduces the time complexity to around 2185 + 116
12 × 2185 ≈ 2188.42.

With N = 2127.5 known plaintexts, the success probability with advantage
a = 3.00 is higher than 80%. This means that we must keep 2185−3 candidates
for the 185-bit subkey. If, like [18], we assume that an a-bit advantage on the key
guess leads to a an a-bit advantage on the master key without any complexity
overhead, the final attack complexity is 2188.42 + 2189 ≈ 2189.74. In reality, such
a conversion is nontrivial due to the nonlinear key schedule. We analyzed the
key schedule and found how to convert the partially recovered key to the full
master key, although the memory complexity is 2185−3. We show the technique
in Appendix E.3.

6 Application to GIFT-128

GIFT is a lightweight block cipher introduced in [4] by Banik et al. There are
two versions of GIFT, and we focus on the 128-bit block version, GIFT-128.
Please refer to Appendix F.1 for a detailed specification. Similarly to existing
attacks [47, 45, 46], we discuss attacks in the general and COFB [21, 3] settings.
Please note that we use a more traditional step-by-step key recovery algorithm
instead of the FWT. The reason is that the GIFT-128 state is 128 bits, but the
round subkey is only 64 bits, which makes step-by-step guessing a better fit.
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X1 | 0000 FFFF 0000 FFFF 0000 0000 0000 FFFF |

X3 | 0000 0000 0000 0000 0000 0000 0000 5051 |

X25 | 5555 5555 AAAA AAAA 5555 5555 AAAA AAAA |

X5 | 0000 0000 0000 0000 0202 0000 0000 0000 |

X22 | 0044 0000 0044 0000 0000 0000 0000 0000 |

X0 | 0000 0000 0000 0000 FFFF FFFF FFFF FFFF | peelback

key recovery

key recovery

S S S S

S S S S

0010 0010 0000 0000

k1k0k3 k2k5k4k7 k6

linear approximation

punctured key rec.

Fig. 5: Overview of the 25-round attack.

Table 2: Punctured Walsh spectrum, where each value is multiplied by 216.
Non-zero coefficients of the spectrum

k7∥k5∥k4 type 1011 1051 4011 4051 5011 5051 ρ2

000 A 512 512 2048 2048 −1536 −1536 2−8.30

001 B −1536 −1536 −2048 −2048 512 512 2−8.30

010 B 1536 1536 2048 2048 −512 −512 2−8.30

011 A −512 −512 −2048 −2048 1536 1536 2−8.30

100 A −512 −512 −2048 −2048 1536 1536 2−8.30

101 B 1536 1536 2048 2048 −512 −512 2−8.30

110 B −1536 −1536 −2048 −2048 512 512 2−8.30

111 A 512 512 2048 2048 −1536 −1536 2−8.30

6.1 Application to GIFT-128 in the General Setting

Linear cryptanalysis of GIFT-128 has been discussed in [47, 45, 46]. To the best
of our knowledge, the best results were reported in [46], which attacks 25 rounds
using a 19-round linear approximation.

We propose an improved version with lower data complexity, a high-level
overview of which is shown in Figure 5. We switch an active super Sbox of the
approximation (between X3 and X5) to key recovery and apply bit puncturing
on it. Since there is no whitening key before the first Sbox layer, we peel back
X0 to X1. The key recovery involves 48 bits of X1 and 64 bits of X25.

Correlation and ELP of the 17-Round Linear Approximation. The correlation of
the (shortened) 17-round linear trail is 2−56. We find another linear trail with the
same input and output masks and correlation 2−57. However, it involves exactly
the same secret key bits so that the correlations of both trails always have
the same sign. Considering this situation, we estimated that ELP ≈ 2−110.57.
Furthermore, the correlation distribution is bimodal with peaks at c ≈ ±2−55.42.
Please refer to Appendix F.2 for details.
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Punctured Super Sbox. We puncture the super Sbox to approximate the parity
at X5 from X3. The right of Figure 5 represents the active super Sbox. For sim-
plicity, we use (x15, . . . , x0), (y15, . . . , y0), and (k7, . . . , k0) as the input, output
and key of this super Sbox, respectively. The initial goal is to compute y13⊕ y9.
To make adding three more key recovery rounds feasible, we use bit puncturing
and remove the 11 input bits indexed by {15, 13, 11, 10, 9, 8, 7, 5, 3, 2, 1}, which
also excludes k6. Table 2 summarizes the Walsh spectrum after puncturing. The
puncturing correlation ρ2 generally depends on the internal key, but here it takes
the same value for all key guesses. Moreover, up to a sign swap, there are only
two different Walsh spectra, A and B in the Table. The same spectrum always
returns the same absolute experimental correlation. Therefore, guessing k4 ⊕ k5
instead of the three bits is enough. In summary, the puncturing increases the
data complexity by 28.30, but the number of active input bits is reduced from
16 to 5, and the internal key guess is reduced from 4 to 1 bits.

Overview of Results. We use a step-by-step key recovery procedure on the top
and bottom three rounds. We first collect the data and prepare a distillation
table. Step-by-step round subkey guesses are used to slowly reduce the size of the
distillation tables, until a table indexed by the 5-bit input of the punctured super
Sbox for each key guess is obtained. The (approximate) experimental correlation
is obtained after guessing an additional keybit internal to the super Sbox. Refer
to Appendix F.2 for the detailed procedure.

The time complexity of the main attack procedure is N + 2117.40. When
Nρ2 = 2114.72 with a = 4.98-bit advantage, the success probability is higher than
80%. Then, the required data complexity is N = 2114.72 × 28.30 = 2123.02 known
plaintexts. The total time complexity is 2123.02+(2123.02+2117.40)+2128−4.98 ≈
2124.61. The attack requires 2112 memory.

6.2 Application to GIFT-128 on the COFB Setting

Linear cryptanalysis is not the best attack strategy against GIFT-128, as differ-
ential attacks cover more rounds [47]. Nevertheless, we believe improving linear
attacks is meaningful because of the weaker assumption, i.e., known plaintext
instead of chosen plaintext. In practice, in many modes of operation it is impos-
sible to choose the input of the underlying block cipher. Linear cryptanalysis is
applicable even if GIFT-128 is used on such modes [47, 45, 46].

We consider the COFB setting, where the collectable data is up to the birth-
day bound. Moreover, we cannot observe the top half of the plaintext because
a secret block-dependent mask is XORed. The best existing attack targets 16
rounds using a 10-round linear approximation with 2−29 correlation [46].

We improve the attack from 16 to 17 rounds. We first construct an 11-round
linear trail, but its correlation is 2−34, which makes it unapplicable because
of the birthday bound on the data complexity. Therefore, we switch the first
and the last two rounds of the linear approximation to key recovery and apply
bit puncturing on these rounds. Unlike in the 25-round attack on the general
setting, bit puncturing is used in both the plaintext and ciphertext sides. The
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X1 | 0000 FFFF 0000 FFFF 0000 FFFF 0000 FFFF |

X3 | 0000 0000 0000 0150 0000 0000 0000 0150 |

X17 | AAAA AAAA 5555 5555 AAAA AAAA 5555 5555 |

X4 | 0000 0000 0000 0000 000C 000C 0000 0000 |

X14 | 0000 0000 0000 0000 0820 2828 0410 1414 |

X0 | 0000 0000 0000 0000 FFFF FFFF FFFF FFFF | peelback

key recovery

key recovery

X12 | 0000 0000 0000 0044 0000 0022 0000 0000 |

linear approximation

punctured key rec.

punctured key rec.

Fig. 6: Overview of the 17-round attack against GIFT-128 on the COFB setting.
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0000 0000 0010 0010

k1 k0k3 k2k5 k4k7 k6

Fig. 7: Puncturing for the attack against GIFT-128 on the COFB setting.

puncturing correlations are ρ21 = 2−10 and ρ22 = 2−13.62 for the plaintext and
ciphertext sides, respectively. Figure 6 shows a high-level overview, and Fig. 7
shows the behaviour of the bit puncturing. Refer to Appendix F.3 for a detailed
analysis.

The time complexity of the main attack procedure is N × 258 + 2115.09. Us-
ing 262.10 known plaintexts (the same data complexity as the existing 16-round
attack), and with a = 2.96-bit advantage, the success probability is higher than
80%. The total time complexity is 262.10 + (262.10+58 + 2115.09) + 2128−2.96 ≈
2125.09. The main analysis requires a table of size 250, but since we must store
the N plaintext-ciphertext pairs, the memory complexity is N .

7 Application to the Data Encryption Standard

This section describes a variant of the attack on the DES [1] of [30], which uses
a 13-round linear approximation which is extended by one key recovery round
on the plaintext side and two on the ciphertext side. In rounds 1 and 15, only
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Table 3: Part of the Walsh spectrum of S5, Ŝ5(·, F), highlighting the entries which
cover the spectrum in [30] as well as the ones used in the punctured version.

00 0 08 8 10 940 18 98 20 0 28 0 30 8 38 0
01 0 09 98 11 8 19 98 21 0 29 0 31 8 39 0
02 98 0A 0 12 0 1A 0 22 924 2A 8 32 0 3A 98
03 98 0B 0 13 0 1B 0 23 98 2B 8 33 0 3B 8
04 0 0C 98 14 0 1C 0 24 0 2C 0 34 0 3C 8
05 8 0D 0 15 8 1D 8 25 98 2D 98 35 8 3D 0
06 0 0E 98 16 0 1E 0 26 0 2E 0 36 0 3E 8
07 98 0F 0 17 8 1F 98 27 98 2F 98 37 98 3F 0

S5 is active, while there are six active Sboxes in round 16. It leverages several
properties to improve the complexity, such as the bits which are duplicated by
the expansion function and the key schedule.

The Walsh spectrum of S5 in round 15 is studied carefully, as shown in
Table 3. The Walsh coefficient associated to the all-ones mask 3F is zero. The
key recovery map is thus the (arithmetic) sum of five components, each one
corresponding to one of the nonzero coefficients with mask of Hamming weight
5. In each component, one of the six active Sboxes in round 16 becomes effectively
inactive. The correlation calculation is also separated into five parts where this
inactive Sbox can be used to reduce the complexity.

In our variant, the coefficients corresponding to input masks of Hamming
weight 5 are punctured. According to Proposition 6, the resulting puncturing
coefficient is ε = 0.0781, and the data complexity increases by a factor of 1.085 ≃
20.117 to 241.62. The remaining nonzero coefficients are covered by eight masks
of Hamming weight 4 and one mask of Hamming weight 3. For each one of these
masks, we now have two instead of one inactive Sbox in round 16. The time
and memory complexities are obtained in Appendix G, and are 241.76 equivalent
encryptions and 234.54 registers.

We note that through a very small increase in data complexity by a factor
of 20.12, we are able to reduce the memory complexity by a much larger factor
of 24.21. This is especially interesting because the memory complexity decreases
from 3.3TB to 186.1GB, which makes the attack significantly more practical.

8 Application to Noekeon

This section describes an improvement on the linear attack on 12-round Noekeon
in [19]. The idea is to exclude the first and last rounds from the known 9-round
linear approximation. We then apply the puncturing technique to these excluded
rounds. The following is a summary of our attack structure.

︸ ︷︷ ︸
Key rec.

︸ ︷︷ ︸
Puncture

︸ ︷︷ ︸
Linear approximation

︸ ︷︷ ︸
Puncture

︸ ︷︷ ︸
Key rec.

︸ ︷︷ ︸
Peelback

Round 0︷ ︸︸ ︷
θ π1 γ π2

Round 1︷ ︸︸ ︷
θ π1 γ π2

Round 2︷ ︸︸ ︷
θ π1 γ π2 . . .

Round 9︷ ︸︸ ︷
θ π1 γ π2

Round 10︷ ︸︸ ︷
θ π1 γ π2

Round 11︷ ︸︸ ︷
θ π1 γ π2
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The linear approximation determines the input mask to γ (the nonlinear
layer) in Round 9. We enumerated the Walsh spectrum coefficients of γ which
activate at most 12 columns on the peeled-back ciphertext. There are only two
such coefficients, and the puncture correlation is 1 − ε = 2−9.68. There may be
up to 12× 4 = 48 active ciphertext bits, but the dimension of the support is 35.

We next focus on γ in Round 1. We adopted a computer-aided generic punc-
turing. We enumerated all non-zero Walsh spectrum coefficients for which the
size of the active plaintext bits is reasonably small. Specifically, we use 460 (out
of 105) non-zero Walsh spectrum coefficients and puncture the rest. As a result,
the puncture correlation is ρ21 = 2−6, and it involves 20×4 = 80 bits of plaintext.

The key recovery is performed using the algorithm of [30]. As a result, the
cost of the analysis phase is 2118.52 for the distillation phase, 2116.38 for the first
FWT, and 2112.33 for the second FWT. For further detail, refer to Appendix H.

When Nρ2 = 2103.86 with a 8.45-bit advantage, the success probability is
higher than 80%. Therefore, the required data complexity is N = 2103.86 × 26 ×
29.68 = 2119.54. The final time complexity is

2119.55 + 0.2 · (2118.52 + 2116.38 + 2112.33) + 2128−8.45 ≈ 2120.63,

where we inherit the same constant factor 0.2 as the cost of ADD from [19]. The
memory complexity is dominated by the distillation table of 2115 registers.

9 Conclusion

We have introduced a model which successfully generalises all previous tech-
niques of key recovery map approximation, and which provides a simple formula
which describes the data complexity of the modified linear attack. This new
model can be applied to Walsh spectrum puncturing, which allows for larger
time complexity improvements at a lower data complexity penalty than the ex-
isting techniques. Puncturing can be applied in a variety of scenarios, as shown
by the applications to Serpent, GIFT-128, the DES and Noekeon. In particu-
lar, we have described, to the best of our knowledge, the first attack on 12-round
Serpent with 192-bit key. We consider the following open problems:

– Simultaneous puncturing: Developing a generalisation of the model so that
the new key recovery map can approximate the value of more than one linear
approximation may lead to more accurate results, as well as enabling more
powerful key recovery attacks.

– Relationship to distinguishers: Understanding the relationship between punc-
tured key recovery and known distinguishers such as multidimensional linear
cryptanalysis with LLR may deepen our understanding of both puncturing
as well as these techniques.

– Finding the optimal key recovery procedure with puncturing: For each appli-
cation, we found an adequate puncturing strategy by hand. Since there is a
wide variety of puncturing strategies, we may not have found the optimal
strategy. Whether we can develop an automatic tool that can handle this
variety is an open problem.
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A Exploiting Affine Subspaces in the Walsh spectrum

In [30], a modified version of the fast Walsh transform algorithm was proposed
which can be applied when it is known that the support of the input function f is
contained in an affine subspace of Fl

2, and/or that we only desire to query inputs
of f̂ which lie in an affine subspace of Fl

2. This algorithm can be used to leverage
affine subspace structures in the Walsh spectrum, the data and the key. We will
now describe an attack algorithm for a basic case (which only acknowledges the
structure of the Walsh spectrum of the key recovery map) which does not require
the use of the pruned version of the fast Walsh transform, although it is used
implicitly by referencing Lemma 8 (Lemma 6 in [30]).

Given a subset Y ⊆ Fl
2, we say that x is orthogonal to Y and write x ⊥ Y

if x ⊥ y for all y ∈ Y . If X ⊆ Fl
2 is another subset, we say that X and Y are

orthogonal to each other and write X ⊥ Y if x ⊥ y for all x ∈ X, y ∈ Y . Given
a vector subspace U ⊆ Fl

2 of dimension d, the set of all vectors orthogonal to
U conforms another vector subspace which is denoted U⊥, and its dimension is
always l− d. Note that, unlike with real vector spaces, the intersection of U and
U⊥ is not necessarily {0}, and their sum does not necessarily span Fl

2.
Given a vector subspace U ⊆ Fl

2 of dimension d, we say that x, y ∈ Fl
2 belong

to the same coset of U if and only if x + y ∈ U . In other words, we identify all
the elements of U with the vector 0, and we consider that any pair of vectors
which differs by an element of U is the same. The coset of x ∈ Fl

2 is denoted
by x + U . When we do not want to choose a specific representative of a coset,
we will denote them by capital letters like X. The sum of the cosets x+ U and
y+U can be defined as x+ y+U , which is the same coset independently of the
choice of the representatives x, y. This gives the cosets a vector space structure.
This quotient space is denoted Fl

2/U , and its dimension is l − d.
The following auxiliary lemma is a specific case of Lemma 6 in [30]:

Lemma 8 Let U be a vector subspace of Fl
2 of dimension d, and let V = Fl

2/U
⊥

be the quotient space of Fl
2 by U⊥. Given X ∈ Fl

2/U
⊥ and y ∈ U , the inner prod-

uct ⟨X, y⟩ is uniquely defined. Furthermore, we can choose basis (X1, . . . , Xd) of
Fl
2/U

⊥ and (y1, . . . , yd) of U so that Xi ⊥ yj if i ̸= j and Xi ̸⊥ yj if i = j.

We start by expressing the value of the experimental correlation:

c̃orkint
(kext) =

1

N

∑
x∈Fl

2

fkint
(x+ kext) · a[x] =

1

N
(fkint

∗ a) (kext)

=
1

N

1

2l

∑
u∈Fl

2

(−1)⟨kext,u⟩f̂kint
(u)

∑
x∈Fl

2

(−1)⟨u,x⟩a[x].

We assume that the support of f̂kint is contained in the affine subspace u0 + U ,
where u0 ∈ Fl

2 and U ⊆ Fl
2 is a vector subspace of Fl

2 of dimension d. Then
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c̃orkint
(kext)=

1

N

1

2l

∑
u∈U

(−1)⟨kext,u0+u⟩f̂kint
(u0+u)

∑
x∈Fl

2

(−1)⟨u0+u,x⟩a[x]

=
1

N

1

2l
(−1)⟨kext,u0⟩

∑
u∈U

(−1)⟨kext,u⟩f̂kint
(u0+u)

∑
x∈Fl

2

(−1)⟨u,x⟩⊕⟨u0,x⟩a[x].

We note that for any given u ∈ U , ⟨u, x⟩ is constant for all x belonging to the
same coset of U⊥ in Fl

2. This means we can perform the calculation as follows:

c̃orkint(kext) =
1

N

1

2l
(−1)⟨kext,u0⟩

∑
u∈U

(−1)⟨kext,u⟩f̂kint(u0 + u)∑
X∈Fl

2/U
⊥

(−1)⟨u,X⟩
∑
x∈X

(−1)⟨u0,x⟩a[x]

This means that in the distillation phase, instead of a, which has 2l entries, we
can build a smaller vector of size 2d containing the values of

∑
x∈X(−1)⟨u0,x⟩a[x]

for each X ∈ Fl
2/U

⊥. Thanks to Lemma 8, we know how to construct a basis of
X ∈ Fl

2/U
⊥ so that

∑
X∈Fl

2/U
⊥(−1)⟨u,x⟩

∑
x∈X(−1)⟨u0,x⟩a[x] can be computed

by applying the fast Walsh transform algorithm on this vector of size 2d.
We next notice that ⟨kext, u⟩ is similarly constant for all kext in each coset of

U⊥. As a result, all the key guesses in this subset have the same experimental
correlation save for a potential sign flip which is given by ⟨kext, u0⟩. As before,
Lemma 8 ensures that the correlation values in all the cosets can be computed
through a Walsh transform of size 2d.

In summary, the attack proceeds as follows:
1. Choose basis of Fl

2/U
⊥ and U as in Lemma 8. This can be done using an

iterative algorithm [30], they can often be found by inspection. These basis
are used as indices for the arrays used in the attack.

2. Distillation phase: The distillation table is of size 2d and contains the
values

∑
x∈X(−1)⟨u0,x⟩a[x] for all X ∈ Fl

2/U
⊥.

3. Analysis phase:
– Apply the fast Walsh transform on the previous vector.
– Multiply this vector elementwise by the Walsh spectrum f̂kint(u0 + U).
– Apply the fast Walsh transform again and divide by N2l.

4. Key guess query phase: We obtain valid key guesses from the key sched-
ule. For each one, we obtain c̃orkint

(kext) by multiplying the entry of the cor-
relation vector corresponding to the coset of kext in Fl

2/U
⊥ by (−1)⟨kext,u0⟩.

In practice, we often divide the Walsh spectrum of fkint into several com-
ponents whose supports are included in affine subspaces of sifnificatively small
dimension, which can sometimes be deduced from the construction of the ci-
pher. In addition, there are cases in which these subspaces are independent of
the choice of kint, which means that the distillation phase can still be performed
for all of the internal key guesses at the same time. In this case, and if we assume
we use T subspaces of dimension no larger than d, the total cost of the attack is
O (TN) +O

(
TLintd2

d
)
+O (TL).
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B On Finite Population Sampling without Replacement

When proving Theorem 2 for the distinct known plaintext case, we need to ap-
proximate the distribution of the experimental correlation of several functions
when they are sampled without replacement from a finite population. In classical
key recovery attacks like the ones discussed in [15], the function only takes two
values and the hypergeometric distribution can be used. However, with punc-
turing, more than two values may appear. We use the following version of the
central limit theorem for finite population sampling which can be found as The-
orem A.2.13 in [29], and which is a version of a result from [28].

Theorem 9 (Central limit theorem for a finite population)
For each n ≥ 1, let the random vector (Xn,1, Xn,2, . . . , Xn,2n) have the discrete
uniform distribution over all 2n! permutations of the 2n (not necessarily distinct
but not all equal) real numbers xn,1, xn,2, . . . , xn,2n . Let

µn = E [Xn,1] =
1

2n

2n∑
i=1

xn,i

and

σ2
n = Var (Xn,1) =

1

2n

2n∑
i=1

(xn,i − µn)
2.

Assume that
max

1≤i≤2n

|xn,i − µn|√
2nσ2

n

−→ 0 as n→∞.

Then, with Sn,N = Xn,1 +Xn,2 + · · ·+Xn,N , we have:

Sn,N −Nµn√
NBσ2

n

d−−→ N (0, 1),

where B = 2n−N
2n−1 , and assuming n,N →∞ in such a way that N

2n → α ∈ (0, 1).

This theorem provides informal justification for the following approximation:

Corollary 10 Let f : Fn
2 −→ R be a pseudoboolean function, and let

S =
1

N

∑
x∈D

f(x) (11)

be a random variable, where D is a uniformly sampled subset of Fn
2 with |D| = N .

Then, under certain assumptions, we can approximate the distribution of S by

S ∼ N
(
f̂(0),

B

N
∥f∥22

)
.
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C Proofs of the Results of Subsection 4.1

Proposition 6 Let f1 : Fl
2 −→ Fr

2 and f2 : Fr
2 −→ R be two Boolean functions,

and let f = f2 ◦ f1 be their composition. We also assume that the components
of f1 are all balanced. Let g2 : Fr

2 −→ R be a map which approximates f2 with
Pearson corrrelation coefficient ρ. Then g = g2 ◦ f1 is an approximation of f ,
and the Pearson correlation coefficient is also ρ.

Proof. We start by looking at the inner product ⟨f, g⟩:

⟨f, g⟩ =
∑
u∈Fl

2

f̂(u)ĝ(u) =
∑
u∈Fl

2

 ∑
v1∈Fr

2

f̂1(u, v1)f̂2(v1)

 ∑
v2∈Fr

2

f̂1(u, v2)ĝ2(v2)


=

∑
u∈Fl

2

∑
v1∈Fr

2

∑
v2∈Fr

2

f̂1(u, v1)f̂2(v1)f̂1(u, v2)ĝ2(v2)

=
∑

v1∈Fr
2

∑
v2∈Fr

2

f̂2(v1)ĝ2(v2)
∑
u∈Fl

2

f̂1(u, v1)f̂1(u, v2)

=
∑

v1∈Fr
2

∑
v2∈Fr

2

f̂2(v1)ĝ2(v2)
1

2l

∑
x∈Fl

2

⟨f1(x), v1⟩ ⊕ ⟨f1(x), v2⟩

=
∑

v1∈Fr
2

∑
v2∈Fr

2

f̂2(v1)ĝ2(v2)
1

2l

∑
x∈Fl

2

⟨f1(x), v1 ⊕ v2⟩

=
∑
v∈Fr

2

f̂2(v)ĝ2(v) = ⟨f2, g2⟩.

By substituting f for g (that is, substituting f2 for g2) in the previous calculation,
we similarly deduce that ∥g∥22 = ∥g2∥22. Together with the fact that ∥f∥2 =
∥f2∥2 = 1 because both are Boolean functions, we deduce

|⟨f, g⟩|
∥f∥2∥g∥2

=
|⟨f2, g2⟩|
∥f2∥2∥g2∥2

= ρ. ⊓⊔

Proposition 7 Let f1, f2 : Fl
2 −→ R be two balanced pseudoboolean functions,

and let f : Fl
2 −→ F2, f = f1 ·f2. Let g1, g2 : Fl

2 −→ R be balancedfunctions which
approximate f1 and f2 with correlation coefficients ρ1 and ρ2, respectively. Then
g : Fl

2 −→ R, g = g1 · g2 is an approximation of f , and the compensation factor
is ρ1ρ2, under the assumption that

Cov(f1, f2) = Cov(f2
1 , f

2
2 ) = Cov(g1, g2)

=Cov(g21 , g
2
2) = Cov(f1, g2) = Cov(f2, g1) = 0.

(12)

Proof. In order to determine the Pearson correlation coefficient of f and g, we
need to compute the variances of f and g as well as their covariance. Since these
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are all written as the product of functions, we use the formulas from [17]. We
start with the variance of f :

Var(f) = Var(f1 · f2) = Cov(f2
1 , f

2
2 )

+
(
Var(f1) + Exp(f1)

2
) (

Var(f2) + Exp(f2)
2
)

− (Cov(f1, f2) + Exp(f1)Exp(f2))
2

= Var(f1)Var(f2).

Similarly, we can prove:

Var(g) = Var(g1)Var(g2).

Finally, we look at the covariance:

Cov(f, g) = Cov(f1 · f2, g1 · g2)
= Exp(f1)Exp(g1)Cov(f2, g2) + Exp(f1)Exp(g2)Cov(f2, g1)

+ Exp(f2)Exp(g1)Cov(f1, g2) + Exp(f2)Exp(g2)Cov(f1, g1)

+ Cov(f1, g1)Cov(f2, g2) + Cov(f1, g2)Cov(f2, g1)

= Cov(f1, g1)Cov(f2, g2).

From these expressions, we can deduce:

ρ =
|⟨f, g⟩|
∥f∥2 · ∥g∥2

=
|⟨f1, g1⟩ · ⟨f2, g2⟩|

∥f1∥2 · ∥f2∥2 · ∥g1∥2 · ∥g2∥2

=
|⟨f1, g1⟩|
∥f1∥2 · ∥g1∥2

· |⟨f2, g2⟩|
∥f2∥2 · ∥g2∥2

= ρ1 · ρ2. ⊓⊔
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D Diagrams of the Attacks of the Experiments of
Subsection 3.3
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Fig. 8: The attack on 8-round PRESENT used in the experiment.
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Fig. 9: The attack on 10-round GIFT-128 used in the experiment.
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E Supplementary Material for Linear Cryptanalysis
against Serpent

E.1 Specification of Serpent

Serpent is a block cipher which was introduced in [7] by Anderson, Biham and
Knudsen. In response to feedback on the original Serpent, the authors submitted
a revised version to the AES competition [8], and it was selected as one of the
finalists. We show the specification of the AES candidate.

Serpent is a 128-bit block cipher adopting a substitution-permutation net-
work (SPN). It accepts 128, 192 or 256-bit keys. The encryption consists of a
round function which is iterated 32 times. The round function consists of three
layers: a key XORing, an Sbox layer, and a linear layer. The round function uses
different Sboxes for each round. Specifically, it uses the following eight Sboxes.

xxx 0 1 2 3 4 5 6 7 8 9 A B C D E F

S0(x)S0(x)S0(x) 3 8 F 1 A 6 5 B E D 4 2 7 0 9 C
S1(x)S1(x)S1(x) F C 2 7 9 0 5 A 1 B E 8 6 D 3 4
S2(x)S2(x)S2(x) 8 6 7 9 3 C A F D 1 E 4 0 B 5 2
S3(x)S3(x)S3(x) 0 F B 8 C 9 6 3 D 1 2 4 A 7 5 E
S4(x)S4(x)S4(x) 1 F 8 3 C 0 B 6 2 5 4 A 9 E 7 D
S5(x)S5(x)S5(x) F 5 2 B 4 A 9 C 0 3 E 8 D 6 7 1
S6(x)S6(x)S6(x) 7 2 C 5 8 4 6 B E 9 1 F D 3 A 0
S7(x)S7(x)S7(x) 1 D F 0 E 8 2 B 7 4 C A 9 3 5 6

Serpent is a bit-slice implementation-friendly cipher, and we show the spec-
ification in a bit-slice manner. The 128-bit internal state X is represented by
four 32-bit words which are denoted X0, X1, X2 and X3, with Xj [i] being the
i-th leftmost bit of word j. The 32 rounds are numbered 0 to 31. Each round
consists of the following three steps:

– Key XORing. A 128-bit subkey, Ki, is XORed to the internal state X.
Specifically, in round r, compute Xi ⊕ k4×r+i for i = 0, 1, 2, 3 .

– Sbox Layer. At round r, the Sbox layer applies S(r mod 8) in a bit-slice
manner, i.e., (X3, X2, X1, X0) = S(r mod 8)(X3, X2, X1, X0), where X3 is the
MSB, and X0 is the LSB.

– Linear transformation. The four 32-bit words are mixed linearly as fol-
lows:

X0 ← X0 ≪ 13; X2 ← X2 ≪ 3

X1 ← X1 ⊕X0 ⊕X2; X3 ← X3 ⊕X2 ⊕ (X0 ≪ 3)

X1 ← X1 ≪ 1; X3 ← X3 ≪ 7

X0 ← X0 ⊕X1 ⊕X3; X2 ← X2 ⊕X3 ⊕ (X1 ≪ 7)

X0 ← X0 ≪ 5; X2 ← X2 ≪ 22
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Here ≪ j denotes a j-bit left shift and ≪ j denotes a j-bit left rotation. At
the 31st round, this linear transformation is omitted. Instead, an additional
subkey (k128, k129, k130, k131) is XORed to the state.

Note that we do not show the initial permutation IP as specified in [7, 8],because
it can be omitted in the bit-slice implementation.

Key Schedule. The original Serpent [7] and the AES-competition version [8] have
different key schedules. Here, we show the key schedule of the AES candidate [8].

The key schedule accepts a secret key of length 128, 192, or 256 bits. When
the length is 128 or 192, the key is padded to 256 bits by adding constant bits.
Then, the 256-bit key is written as eight 32-bit words, (w−8, w−7, . . . , w−1) and
expanded to an intermediate key, called prekey, w0, . . . , w131 as follows:

wi = (wi−8 ⊕ wi−5 ⊕ wi−1 ⊕ φ⊕ i) ≪ 11,

where φ = 0x9e3779b9. We then build the sequence ki from wi using the Sboxes:

{k0, k1, k2, k3} = S3(w0, w1, w2, w3)

{k4, k5, k6, k7} = S2(w4, w5, w6, w7)

· · ·
{k124, k125, k126, k127} = S4(w124, w125, w126, w127)

{k128, k129, k130, k131} = S3(w128, w129, w130, w131)

E.2 Detail of the 9-Round Linear Approximation by Collard et al.

Collard et al. showed a 9-round linear trail with a correlation of 2−57. Table 4
shows the detail of this 9-round trail. Note that the trail starts from S3, covering,
for example, from the output of round 3 to the input of round 13.

E.3 From Partial Subkey Recovery to Partial Master Key Recovery

Many modern block ciphers adopt relatively simple key schedules. For example,
GIFT uses a bit-permutated master key as the subkey. Therefore, a guess of
l independent bits of the subkeys can be converted to a guess of l bits of the
master key, and an advantage of a bits in the former becomes an advantage of
a bits in the latter. The key schedule of Serpent, however, is more complicated,
and contains a well-diffused linear layer and a nonlinear layer. Therefore, the
transition from a subkey guess to a master key guess is nontrivial.

The key schedule first expands the master key to the prekey sequence linearly.
Therefore, an a-bit prekey advantage is an a-bit master key advantage.

Hereinafter, we discuss the case of our key recovery attack against 12-round
Serpent-192 (see Fig. 10). Our attack guesses the following subkey bits:

– 52 bits of the subkey (k8, k9, k10, k11), where we guess all 4 bits of 11 columns
but guess only 2 bits of 4 other columns.
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Table 4: 9-Round Linear Approximation by Collard et al.
Y00 08E100010000002B40B046300C70D00E
X01(S3) 0E00F000BF0C00000A00000DE00CC00D 2−14

Y01 080040009105000001000004100A2004
X02(S4) 08000000000000000000000000A00040 2−6

Y02 04000000000000000000000000400080
X03(S5) 04000000000000000000000000000020 2−4

Y03 04000000000000000000000000000080
X04(S6) 00000000000000000000000800000000 2−2

Y04 00000000000000000000000100000000
X05(S7) 0000010000A000000000000000000000 2−4

Y05 00000100001000000000000000000000
X06(S0) 000000000000000000010000B0000A00 2−5

Y06 00000000000000000001000010000100
X07(S1) 010000B0000B0000A000000000000000 2−6

Y07 01000010000100001000000000000000
X08(S2) 000A0000000000010000B0000B0000B0 2−5

Y08 00010000000000050000100001000010
X09(S3) 00B0000B000030000B0200E000000100 2−11

Y09 00400004000010000508002000000E00
X10(S4) 40006000040280C00008000050B02C03

Total 2−57

– 17 bits of the subkey (ek48, ek49, ek50, ek51) = L−1(k48, k49, k50, k51).
– 116 bits of the subkey (k52, k53, k54, k55), where we guess all 4 bits in 29

columns. Note that we assume the last round of 12-round Serpent does not
contain the linear layer, as does the last round of full Serpent.

In total, we guess 185 subkey bits. With an a-bit advantage, we have 2185−a

candidates for this 185-bit segment, one of which will correspond to the correct
secret key with high probability.

There are 185−25 = 160 bits which conform full 4-bit outputs an Sbox of the
key schedule nonlinear layer. Therefore, it is easy to compute the corresponding
160 prekey bits by applying the inverse Sbox (blue bits in Figure 10). On the
other hand, the remaining 25 bits involve more than 25 prekey bits.

To get an a-bit prekey advantage, we first choose 192 bits of the prekey,
always including 16 bits of (w8, w9, w10, w11) and 112 bits of (w48, w49, w50, w51)
which are shown as slashed cells in Figure 10. These are enough to deduce the
2× 4+ 17 = 25 problematic subkey bits. The other 192− 16− 112 = 64 bits are
arbitrary linearly independent bits such that the full 192 bits determine the full
prekey sequence.

Let wg be the 160 prekey bits shown in blue in Figure 10. Let kg be the
chosen 192 prekey bits, where the last 128 bits are the slashed cells. We now
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Fig. 10: Analysis of the key schedule of Serpent

construct a linear system wg = A × kg, where A is a 160 × 192 binary matrix.
We then get U×wg = (U×A)×kg, where (U×A) is an upper triangular matrix.

We now get an a-bit prekey advantage with the following procedure.

1. For each of the 2185−a candidates, compute the 160 blue prekey bits wg and
store the 25 remaining subkey bits and U×wg. The time complexity is 2185−a

and it requires 2185−a memory.
2. We guess the last (192 − a) bits of kg and compute the 25-bit prekey and

the last (160 − a) bits of U × wg. Looking up the tables above, we get one
(on average) solution for the top (160−a) bits of U ×wg. Then, we compute
the master key and run a trial encryption. The time complexity is 2192−a.

The procedure above allows us to get an a-bit prekey (master key) advantage
from the a-bit subkey advantage without a large time complexity overhead. Un-
fortunately, the memory complexity is significantly increased, and reducing it is
left as an open problem.
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F Supplementary Material for Linear Cryptanalysis
against GIFT-128

F.1 Specification of GIFT-128

GIFT is a lightweight block cipher which was introduced in [4] by Banik et al.
There are two versions of GIFT; GIFT-64 has a 64-bit block length, and GIFT-
128 has a 128-bit block length. Both GIFT-64 and GIFT-128 accept a 128-bit
secret key. GIFT is one of the most well-known lightweight block ciphers. Some
NIST-LWC candidates use GIFT-128 as an underlying primitive, e.g., GIFT-
COFB, which is one of the finalists of the NIST LWC.

The 128-bit internal state S can be represented bit-wise, S = b127∥b126∥ · · · ∥b0,
or nibble-wise, S = w31∥w30∥ · · · ∥w0. GIFT-128 is a 40-round SPN cipher, and
the round function consists of the following three steps:

– SubCells. The Sbox S is applied to every nibble of the cipher state, i.e.,
wi ← S(wi) for all i ∈ {0, 1, . . . , 31}.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

– PermBits. The bit permutation P (i) is applied, i.e., bP (i) ← bi for all
i ∈ {0, 1, . . . , 127}.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 33 66 99 96 1 34 67 64 97 2 35 32 65 98 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 37 70 103 100 5 38 71 68 101 6 39 36 69 102 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 41 74 107 104 9 42 75 72 105 10 43 40 73 106 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 45 78 111 108 13 46 79 76 109 14 47 44 77 110 15

i 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
P (i) 16 49 82 115 112 17 50 83 80 113 18 51 48 81 114 19

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
P (i) 20 53 86 119 116 21 54 87 84 117 22 55 52 85 118 23

i 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
P (i) 24 57 90 123 120 25 58 91 88 121 26 59 56 89 122 27

i 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
P (i) 28 61 94 127 124 29 62 95 92 125 30 63 60 93 126 31
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– AddRoundKey. The round key and round constant are XORed with the
internal state. The size of the round key is the half of the block length, i.e.,
64 bits in GIFT-128. The round key RK is partitioned into two 32-bit words
RK = U∥V = u31∥ · · · ∥u0∥v31∥ · · · ∥v0. The two words U and V are XORed
to {b4i+2} and {b4i+1} of the internal state, respectively, i.e.,

b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi

for all i ∈ {0, 1, . . . , 31}.
A single bit “1” and a 6-bit round constant C = c5∥c4∥ · · · ∥c0 are XORed into
the internal state at bit position 127, 23, 19, 15, 11, 7, and 3, respectively.

Key Schedule. The key schedule accepts a 128-bit key K = k7∥k6∥ · · · ∥k0, where
ki is a 16-bit word. The round key is extracted from the secret key as follows:

RK = U∥V ← k5∥k4∥k1∥k0.

After extracting a round subkey, the key state is updated as follows:

k7∥k6∥ · · · ∥k1∥k0 ← k1 ≫ 2∥k0 ≫ 12∥k7∥k6∥k5∥k4∥k3∥k2.

The round constants are generated using a 6-bit affine LFSR, whose state is
denoted as (c5, c4, c3, c2, c1, c0). Its update function is

(c5, c4, c3, c2, c1, c0)← (c4, c3, c2, c1, c0, c5 ⊕ c4 ⊕ 1).

The six bits are initialized to zero, and updated before use every round.

F.2 Detail of the 25-Round Linear Attack against GIFT-128

Correlation and ELP of Linear Approximation. Although we inherit a
19-round linear approximation proposed in [46], we revisit the approximation
because of two reasons: First, we use a 17-round shortened approximation instead
of the 19-round approximation, which means that we need to reevaluate the ELP.
Second, the estimation of [46] ignores the interaction of the half-size key XORing
and the linear hull of the approximation.

The input and output linear masks of the 17-round approximation are

0000 0000 0000 0000 0202 0000 0000 0000,

0044 0000 0022 0000 0000 0000 0000 0000,

respectively. We enumerated all linear trails with correlation larger than 2−64.
As a result, we found 98 linear trails, and Table 5 summarizes the distribution.

Table 6 shows the two linear trails with the highest correlation. The trails
only differ in one active nibble of X4 where one has mask 8 and the other has
mask 9. If GIFT-128 used a full 128-bit independent round subkey every round,
then the correlations of both trails would be independent. However, GIFT-128
does not XOR any secret key to the MSB and LSB of each nibble. This means
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Table 5: Distribution of 17-round linear trails.
log2(|c|) −56 −57 −58 −59 −60 −61 −62 −63 −64
# trails 1 1 2 4 7 15 23 27 18

Table 6: Top two linear trails with the input/output linear mask restriction.
X0 00000000000000000202000000000000 2−4

X1 0000A000000000000000A00000000000 2−2

X2 00000000020002000000000000000000 2−2

X3 00220000001100000000000000000000 2−6

X4 80800000808000000000000000000000 2−4

X5 50500000000000005050000000000000 2−4

X6 00000000A000A00000000000A000A000 2−4

X7 00000000002200220000000000000000 2−6

X8 00990000000000000066000000000000 2−6

X9 00000000C000C0000000000000000000 2−2

X10 00000000000000000011000000000000 2−3

X11 000000000000C0000000000000000000 2−1

X12 00000000000200000000000000000000 2−1

X13 00000000000000000020000000100000 2−3

X14 00000000000080800000000000000000 2−2

X15 00050000000000000005000000000000 2−4

X16 00000000400040000000000000000000 2−2

X17 00440000002200000000000000000000

Total 2−56

X0 00000000000000000202000000000000 2−4

X1 0000A000000000000000A00000000000 2−2

X2 00000000020002000000000000000000 2−2

X3 00220000001100000000000000000000 2−6

X4 90800000808000000000000000000000 2−5

X5 50500000000000005050000000000000 2−4

X6 00000000A000A00000000000A000A000 2−4

X7 00000000002200220000000000000000 2−6

X8 00990000000000000066000000000000 2−6

X9 00000000C000C0000000000000000000 2−2

X10 00000000000000000011000000000000 2−3

X11 000000000000C0000000000000000000 2−1

X12 00000000000200000000000000000000 2−1

X13 00000000000000000020000000100000 2−3

X14 00000000000080800000000000000000 2−2

X15 00050000000000000005000000000000 2−4

X16 00000000400040000000000000000000 2−2

X17 00440000002200000000000000000000

Total 2−57

both trails involve the same subkey (and round constant), and their correla-
tion contributions always have either the same or opposite sign. We look at the
different part of both trails more carefully:

0x0022
Sbox,2−2×2−2

−−−−−−−−−→ 0x0088
bit perm.−−−−−−→ 0x8800

Sbox,−2−1×−2−1

−−−−−−−−−−−−→ 0x5500

0x0022
Sbox,2−4×2−2

−−−−−−−−−→ 0x0098
bit perm.−−−−−−→ 0x9800

Sbox,−2−2×−2−1

−−−−−−−−−−−−→ 0x5500

Fortunately for the attacker, the Sbox approximations 0x2 → 0x8 and 0x2 →
0x9 have the same sign, and the trails 0x9→ 0x5 and 0x8→ 0x5 also have the
same sign. Therefore, both full trails will always have correlation contributions
of the same sign, and the correlation of the linear approximation is enhanced to
±(2−56 + 2−57) ≈ ±2−55.42.

Such effects frequently happen in the enumerated 98 trials. Specifically, there
are only eight different active key patterns, the resulting correlations are

±2−55.42, ±2−56.83, ±2−57.79, ±2−58.42, ±2−62.42, ±2−62.42, 0, 0.

Therefore, we estimate the ELP as the sum of the squares of the above correla-
tions, which is 2−110.57.

Attack Procedure. Let xr = (xr
127, . . . , x

r
0) be the input of the rth round

function, where xr
0 and xr

127 denote the LSB and MSB of xr, respectively. We
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Fig. 11: key recovery map for the improved 25-round attack.

also use x′r = (x′r
127, . . . , x

′r
0 ) = P−1(xr). The round number r starts from 0, i.e.,

x0 denotes the plaintext and x25 denotes the ciphertext. Figure 11 shows the
key recovery map, and Fig. 12 summarizes the involved master-key bits.

1. We collect N plaintext-ciphertext pairs and store these pairs into a (48 +
64) = 112-bit table, according to (x1

111, . . . , x
1
96, x

1
79, . . . , x

1
64, x

1
15, . . . , x

1
0) and

x25
i for all odd i.

2. We focus on the 19th and 27th Sboxes of the 2nd round and the 31st Sbox
of the 25th round (part of Sboxes coloured green). It involves secret key bits
indexed by 36, 44, 100, and 108. Then, the 12-bit input can be compressed to
the 6-bit output. Therefore, after guessing the 4-bit key, we can compress the
112-bit table into a 106-bit table. The time complexity is 24 × 2112 = 2116.

3. Similar to Step 2, we focus on the green Sboxes step by step. We guess key
bits in the 1st and 25th round function. After guessing key bits indexed by

{37, 38, 39, 45, 46, 47, 101, 102, 103, 109, 110, 111},

we have 88-bit tables for each guess of a 16-bit key. The time complexity is
24+4+106 + 28+4+100 + 212+4+94 ≈ 2114.39.
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     36 37 38 39     44 45 46 47             60 61 62 63
     100 101 102 103     108 109 110 111             124 125 126 127
                                
                      17  19      25  27    31
                      81  83      89  91    95
                                
                               112  114 
                               
                                
                                
           122 110                    
           62 54                    
                                
 68  88      70  90      72  92      74  94     
 14  28      0  30      2  16      4  18     
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           122 110                    
           62 54                    
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Fig. 12: Summary of involved master-key bits

4. We next focus on Sboxes coloured blue. We guess a 12-bit secret key indexed
by

{60, 61, 62, 63, 124, 125, 126, 127, 116, 117, 118, 119}.
Then, we have 68-bit tables for each guess of a 28-bit key. The time com-
plexity is 216 × 212 × 288 = 2116.

5. We focus on Sboxes coloured pink. We guess a 16-bit secret key index by

{56, 57, 58, 59, 112, 113, 114, 115, 40, 41, 42, 43, 96, 97, 98, 99}.

Then, we have 52-bit tables for each guess of a 44-bit key. The time com-
plexity is 228 × 216 × 268 = 2112.

6. We focus on Sboxes coloured yellow. We guess an 18-bit secret key index by

{68, 88, 70, 90, 72, 92, 74, 94, 14, 28, 0, 30, 2, 16, 4, 18, 122, 54}.

Then, we can compute the output parity of the 17-round approximation and
construct 20-bit tables for each guess of the 62-bit key. The time complexity
is 244 × 218 × 252 = 2114.

7. We focus on Sboxed coloured brown. We guess a 10-bit secret key in the 2nd
round and compress the 20-bit table into a 5-bit table. The time complexity
is 262 × 210 × 220 = 292.

8. We now have 5-bit tables for each guess of the 72-bit key. These 5 bits are the
input of the punctured super Sbox. We compute the (punctured) correlation
by additionally guessing the 1-bit secret key involved in the punctured super
Sbox. The time complexity is 272 × 21 × 25 = 278.

The time complexity of the main attack procedure is

N + 2116 + 2114.39 + 2116 + 2112 + 2114 + 292 + 278 ≈ N + 2117.40.

When Nρ2 = 2114.72 is used with a = 4.98-bit advantage, the success prob-
ability is higher than 80%. Therefore, the required data complexity is N =
2114.72 × 28.30 = 2123.02 KP. Thus, the total time complexity is

2123.02︸ ︷︷ ︸
data collection

+ 2123.02 + 2117.40︸ ︷︷ ︸
cost of main analysis

+ 2128−4.98︸ ︷︷ ︸
exhaustive search

≈ 2124.61.

Step 1 requires 2112 table. Thus, the memory complexity is 2112.
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F.3 Detail of the 17-Round Linear Attack against GIFT-128 on the
COFB Setting

Table 7: 11-round linear trail.
X0 00000000000001100000000000000110 2−6

X1 0000000000000000000C000C00000000 2−2

X2 00000000000000000000000000001100 2−3

X3 0000000000000000000000000000000C 2−1

X4 00000000000000000000000200000000 2−1

X5 00000000000000000000020000000100 2−3

X6 00000000000000000000080800000000 2−2

X7 00000000000005000000000000000500 2−4

X8 00000000000000000000000000040004 2−2

X9 00000000000000440000002200000000 2−5

X10 00000900000C00000006060000030000 2−5

X11 00000000000000000800202000101410

Total 2−34

Linear Approximation. The existing attack uses the 10-round linear approx-
imation and appends a 3-round key recovery to both plaintext and ciphertext
sides. We first search for a suitable 11-round linear trail satisfying the following
conditions:
– When we add a 3-round key recovery to the plaintext side, it only involves

the last half block. This condition is necessary for the attack on the COFB
setting.

– When we add a 3-round key recovery to the ciphertext side, it involves only
half the size of the block length.

– The correlation of the linear trail is as high as possible.

As a result, we found a new 11-round linear trail shown in Table 7.
The correlation of this trail is too low to lead to a valid attack with the

birthday query limitation. Therefore, we remove the first round and the last two
rounds from the linear trail and use the following 8-round linear approximation
instead.

0000000000000000000C000C00000000

→00000000000000440000002200000000

The correlation of the extracted 8-round linear trail is ±2−18. To estimate the
correlation and ELP of this linear approximation, we searched for other linear
trails under restricting the input and output linear masks. Then, the second
best linear trail has a correlation of ±2−55, which is significantly less than 2−18.
Therefore, we simply estimate the correlation and ELP of the linear approxima-
tion is ±2−18 and 2−36, respectively.
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Punctured Key Recovery. We apply the bit puncturing to both plaintext and
ciphertext sides. Specifically, the bit puncturing is applied to the GIFT Sbox for
the plaintext side. On the other hand, it is applied to the GIFT super Sbox for
the ciphertext side. Figure 7 shows the punctured Sboxes and super Sboxes.

Plaintext Side. There are four active Sboxes in the bit puncturing of the plain-
text side. Specifically, we want to compute ⟨8, S⟩ and ⟨4, S⟩. Considering the
feasibility of adding a 3-round key recovery further, we cannot use the MSB and
the 2nd LSB. Therefore, we puncture these two bits.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 1 A 4 C 6 F 3 9 2 D B 7 5 0 8 E

f8 = (−1)⟨8,S⟩ 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 1 1 -1 -1
f̂8 0 8 4 4 0 0 -4 4 0 8 -4 -4 0 0 4 -4
ĝ8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g8 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5

f4 = (−1)⟨4,S⟩ 1 1 -1 -1 -1 -1 1 1 1 -1 1 -1 -1 1 1 -1
f̂4 0 4 0 -4 0 4 8 4 0 -4 0 4 0 -4 8 -4
ĝ4 0 4 0 0 0 4 0 0 0 0 0 0 0 0 0 0
g4 0.5 -0.5 0.5 -0.5 0 0 0 0 0.5 -0.5 0.5 -0.5 0 0 0 0

Table 8: Bit puncturing for plaintext side

Table 8 summarizes the bit puncturing for the plaintext side. Note that g8 is
equivalent to just the extension of the linear trail rather than the key recovery.
It uses only x0 to compute y3 with puncturing correlation 2−2. On the other
hand, g4 uses two non-zero Walsh spectrum coefficients. It rejects half data, and
the puncturing correlation is 2−3.

Combined four punctured Sbox, the puncturing correlation is ρ21 = 2−2−2−3−3 =
2−10.

Ciphertext Side. Figure 7 shows two active super Sboxes, to which we apply
the puncturing technique. Let (x15, . . . , x0) and (y15, . . . , y0) be the input and
output of the super Sbox, and (k7, . . . , k0) denote the internal key.

In the one super Sbox, we compute x6 ⊕ x2 from (y15, . . . , y0) with 10-
bit puncturing. Computing the Walsh spectrum, we get a very simple result.
For all involved internal key bits, only 0x0133, 0x0233 takes non-zero Walsh
spectrum coefficients, and these values (multiplied by 216) take (4096, 4096) or
(−4096,−4096). Thus, the puncturing correlation is 2−7, and we do not need to
guess internal key bits.

In another super Sbox, we compute x5 ⊕ x1 with 10-bit puncturing. The
punctured Walsh spectrum contains 38 non-zero coefficients; each non-zero value
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Fig. 13: key recovery map for the improved 17-round attack.

depends on the involved 3-bit internal key. The puncturing correlation is 2−6.62

for all internal key bits, which is larger than the second example.
Combined two punctured super Sbox, the puncturing correlation ρ22 = 2−7−6.62 =

2−13.62.

Attack Procedure. Let xr = (xr
127, . . . , x

r
0) be the input of the rth round

function, where xr
0 and xr

127 denote the LSB and MSB of xr, respectively. We
also use x′r = (x′r

127, . . . , x
′r
0 ) = P−1(xr). The round number r starts from 0, i.e.,

x0 denotes a plaintext and x25 denotes a ciphertext. Figure 13 shows the key
recovery map, and Fig. 14 summarizes the involved master-key bits.

1. We collect N (< 264) plaintext-ciphertext pairs and store them.
2. We guess involved key bits in the 1st, 2nd, 3rd, and the last rounds. Many key

guesses are overlapped, and in total, a 54-bit guess is enough. Then, we can
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Fig. 14: Summary of involved master-key bits

compute the (punctured) input parity of the 9-round approximation and the
output of the 16th-round function. Then, the punctured input parity takes
±2−4 or 0. So, we normalize it by multiplying 24. When we combine three
cases and generate a unified distillation table, each entry of the distillation
table is incremented, decremented, or not updated depending on the nor-
malized parity. We further guess the 81st, 21st, 83rd, and 23rd key bits and
evaluate four and two Sboxes in the 16th and 15th round functions, respec-
tively (Sboxes coloured green). As a result, we construct 16× 3+ 2 = 50-bit
table. The time complexity is N × 258.

3. We guess key bits indexed by {11, 13, 93, 15, 95, 1, 49}. Then, we can evaluate
four Sboxes in the 16th round and four Sboxes in the 15th round (Sboxes
coloured blue). We can compress the 50-bit table into a 38-bit table. The
time complexity is 258+7 × 250 = 2115.

4. We guess key bits indexed by {73, 3, 75, 5, 77, 7, 79, 9}. Then, we can evaluate
four Sboxes in the 16th round and two Sboxes in the 15th round (Sboxes
coloured pink). We can compress the 38-bit table into a 24-bit table. The
time complexity is 265+8 × 238 = 2111.

5. We guess key bits indexed by {65, 29, 67, 31, 69, 17, 71, 19, 41, 51}. Then, we
can evaluate four Sboxes in the 16th round and four Sboxes in the 15th
round (Sboxes coloured yellow). We can compress the 24-bit table into a
12-bit table. The time complexity is 273+10 × 224 = 2107.

6. We further guess a key bit indexed by 94. Then, we have the 12-bit table,
which outputs the punctured super Sboxes. The involved key bits in the
punctured super Sbox are 49, 113, and 121. We already guessed 49 and 113.
Thus, we additionally guess the key bit indexed by 49 and compute the
(punctured) correlation. The time complexity is 283+1+1 × 212 = 297.

The time complexity of the main attack procedure is

N × 258 + 2115 + 2111 + 2107 + 2104 ≈ N × 258 + 2115.09.
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The most critical part of the memory complexity is Step 2, and we need 2108

table.
When we use 262.10 KP, that is the same data complexity as the existing

16-round attack, with a = 2.96-bit advantage, the success probability is higher
than 80%. The total time complexity is

262.10︸ ︷︷ ︸
data collection

+262.10+58 + 2115.09︸ ︷︷ ︸
cost of main analysis

+ 2128−2.96︸ ︷︷ ︸
exhaustive search

≈ 2125.09.

The table size in the main analysis is at most 250, but we must sore N
plaintext-ciphertext pairs. Therefore, the memory complexity is N .
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G Supplementary Material for the Application to the
Data Encryption Standard

G.1 Specification of the Data Encryption Standard

The Data Encryption Standard [1] takes a 64-bit plaintext and a 56-bit key. The
cipher is a 16-round Feistel network whose state (L,R) has two 32-bit parts.

(L0, R0)← IP (P );
for i← 1 to 16 do

Li ← Ri−1;
Ri ← Li−1 ⊕ f(Ri−1,Ki);

end
C ← IP−1(R16, L16);

where IP is an initial permutation and the Ki are 48-bit round subkeys.

The round function f . The 32-bit input is expanded to a 48-bit string which is
xored with the round subkey, and eight different 6-to-4-bit Sboxes S1, . . . , S8 are
applied to obtain a 32-bit string, whose bits are reordered again. The expansion
function E, the Sboxes and the final permutation P can be found in [1].

The key schedule. The 56-bit key is expanded to sixteen 48-bit subkeys:
(C0, D0)← PC1(K);
for i← 1 to 16 do

Ci ← LSp(i)(Ci−1);
Di ← LSp(i)(Di−1);
Ki ← PC2(Ci, Di);

end
where Ci and Di are 28 bits long, PC1 and PC2 are two permutated choices,
LSj is a j bit rotation to the left, and p(i) is either 1 or 2.

G.2 Calculation of the Time and Memory Complexities

Let us compute the overall time and memory complexities of the attack. Since
the attack algorithm is nearly identical to that of [30], we will just compute
the new complexity of each step, and refer the reader to the original attack
for further details. For each of the nine components that the punctured Walsh
spectrum is split into, we must compute the dimensions of the input and out-
put spaces for both the Walsh transform steps, as well as the dimension t =
dim

(
U/(U ∩ V ⊥)

)
= dim

(
V/(V ∩ U⊥)

)
, where U is the input space and V is

the output space. This is the dimension which determines the actual time com-
plexity of the pruned Walsh transform as per Proposition 7 of [30]. The results
are shown in Table 9. The total number of necessary additions for the first set
of Walsh transforms is 239.26, and for the second set it is 239.59.

The cost of each step of the attack is thus:
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Table 9: The effective dimensions of the pruned Walsh transforms.
First FWT Second FWT

S5S5S5 Mask Input Output Inner Input Output Inner

0E 40 27 27 27 40 25
17 40 34 32 34 40 28
1D 40 34 30 34 40 28
27 40 34 32 34 40 28
2B 40 34 30 34 40 31
2D 40 34 32 34 40 28
35 40 34 32 34 40 28
3A 40 34 28 34 40 34
3C 40 34 30 34 40 32

Additions 239.26 239.59

– The cost of the distillation phase is 9 ·N increments and decrements.
– The cost of the first set of Walsh transforms is 239.26 additions.
– The cost of the Walsh spectrum multiplication step is bound by the total

number of nonzero coefficients in the Walsh spectrum. This means this step
can be carried out with 225.36 products, most of which are bit shifts.

– The second set of Walsh transforms requires 239.59 additions.
– Combining the information from the nine components takes 9 ·240 additions.
– The cost of the final search with an 8-bit advantage is 240 trial encryptions.

Using the same cost comparisons of each of the operations in the attack to
a full DES encryption as in [30], we deduce that the full time complexity of the
attack in equivalent encryptions is is

1

16
· 9 · 241.62 + 1

16

(
239.26 + 239.59 + 9 · 240

)
+

6

16
· 225.36 + 240 ≃ 241.76. (13)

The required memory registers which are used in the attack are 234.27 for
the first set of pruned Walsh transforms and 234.54 for the second. Since it is
possible to perform the multiplication step in such a way that both sets of arrays
don’t need to be stored in full simultaneously, the total memory complexity of
the attack is 234.54.
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H Supplementary Material for the Application to
Noekeon

H.1 Specification of Noekeon

Noekeon [27] is the NESSIE-proposal 128-bit block cipher accepting a 128-bit
secret key. The designers recommend 16 rounds.

The internal state a consists of four 32-bit words, a = (a[0], a[1], a[2], a[3]).
The round subkey is the same for all the rounds. Each round function consists
of the following transformations:

1. A constant is XORed to a[0].
2. A keyed linear transformation θ is applied to the state. Note that the trans-

a[0]

a[1]

a[2]

a[3]

[0]

[1]

[2]

[3]

k[0]

k[1]

k[2]

k[3]

formation θ is involution if no key is added.
3. A shift operation π1 is applied to the state.

π1(a)[0] = a[0], π1(a)[1] = a[1] ≪ 1

π1(a)[2] = a[2] ≪ 5, π1(a)[3] = a[3] ≪ 2,

4. A non-linear function γ consisting of the parallel application of 4-bit Sbox
is applied. Note that the γ is involution.

x 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

S(x) 0x7 0xA 0x2 0xC 0x4 0x8 0xF 0x0 0x5 0x9 0x1 0xE 0x3 0xD 0xB 0x6

5. Another shift operation π2, which is the inverse of π1 is applied to the state.

for convenience, we will denote θ̂ = π1 ◦ θ ◦ π2, which is also involution.
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012345678910111213141516171819202122232425262728293031 012345678910111213141516171819202122232425262728293031

Fig. 15: Iterative linear trail of Noekeon

H.2 Review of the Linear Attack Proposed in Asiacrypt 2021 [19]

The linear attack against the 12-round Noekeon was shown in [19]. We first
review the attack and then apply the punctured key recovery.

The authors of [19] showed the 2-round iterative linear trail with a correlation
of 2−14, and Fig. 15 shows the iterative trail. The trail is extended to the 9-round
one to mount the 12-round attack with the following key recovery structure:

︸ ︷︷ ︸
Key rec.

︸ ︷︷ ︸
Linear approximation

︸ ︷︷ ︸
Key rec.

︸ ︷︷ ︸
Peelback

Round 0︷ ︸︸ ︷
θ π1 γ π2

Round 1︷ ︸︸ ︷
θ π1 γ π2 . . .

Round 9︷ ︸︸ ︷
θ π1 γ π2

Round 10︷ ︸︸ ︷
θ π1 γ π2

Round 11︷ ︸︸ ︷
θ π1 γ π2

They focused on the 15th Sbox in Round 1 and applied their technique; the
3-bit input of the 15th Sbox is enough to compute the output parity with a
probability of 1/2. Therefore, when N KPs are used, N/2 plaintext-ciphertext
pairs are available. They also changed the linear approximation for the 15th
Sbox in Round 9 to increase the correlation by the factor of 2−1. As a result,
the correlation increases from 2−62 to 2−59. The size of the key guess is 124 bits.
The time complexity for the FWT is 2124.29 ADD by using the technique in [31].

There is no discussion about the success probability and advantage in [19].
Therefore, we use our formula. When N = 2122.35 KP is used, 2121.35 plaintext-
ciphertext pairs are available, with a 5.65-bit advantage, the success probability
is higher than 80%. The final time complexity is 2122.35+0.2×2124.29+2128−5.65 ≈
2123.82, where we inherit the same constant factor 0.2 from [19].

H.3 Improved Key Recovery Using Puncturing

The existing attack requires data that is equivalent to the time complexity of the
FWT. Therefore, the straightforward puncturing, reducing the time complexity
for the FWT in return for the data increase, cannot improve the attack. We need
to switch some rounds of the linear trail into the key recovery.

We remove the first and last rounds from the original 9-round linear trail and
get the 7-round trail whose correlation is 2−50. In the key recovery, we add two
rounds to the plaintext side and three rounds to the ciphertext side. Note that,
similarly to [19], the key recovery rounds of the ciphertext side are regarded as
two rounds by using the peelback. Therefore, our attack has the following key
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7-round linear approximations

Plaintext (after peelback) Ciphertext (after peelback)
X0

Y0

Y1

Y9
X1

X9

Y10

X10

Fig. 16: Key recovery of 12-round Noekeon with puncturing

recovery structure:

︸ ︷︷ ︸
Key rec.

︸ ︷︷ ︸
Puncture

︸ ︷︷ ︸
Linear approximation

︸ ︷︷ ︸
Puncture

︸ ︷︷ ︸
Key rec.

︸ ︷︷ ︸
Peelback

Round 0︷ ︸︸ ︷
θ π1 γ π2

Round 1︷ ︸︸ ︷
θ π1 γ π2

Round 2︷ ︸︸ ︷
θ π1 γ π2 . . .

Round 9︷ ︸︸ ︷
θ π1 γ π2

Round 10︷ ︸︸ ︷
θ π1 γ π2

Round 11︷ ︸︸ ︷
θ π1 γ π2

Figure 16 shows the (punctured) key recovery.
Two-round decryption is required on the ciphertext side. We use the punc-

tured key recovery in Round 9. Specifically, we remove Walsh spectrum coeffi-
cients except for two coefficients, where active Sbox in Y9 has either linear mask
(0x5, 0x9, 0xA, 0x1, 0x1) or (0x5, 0x9, 0xB, 0x1, 0x1). We call the first coefficient
type A and the second coefficient type B for simplicity. The type A has a corre-
lation of 2−6. It causes seven active Sboxes in Round 10. There are four active
Sboxes whose dimension of the affine subspace is only two. Therefore, the dimen-
sion of the affine subspace is 2×4+4×3 = 20. The type B has a correlation of 2−5.
It causes 12 active Sboxes in Round 10. There are seven active Sboxes whose di-
mension of the affine subspace is only two. Therefore, the dimension of the affine
subspace is 2×7+4×5 = 34. Note that the guessed bits in the type B include the
guessed bits in the type A. Therefore, when we consider affine subspace merging
these two types, the dimension is 35, and ρ22 = (2−10 + 2−12)−1 ≈ 2−9.68.

We more widely apply the same idea to the plaintext side. There are 105 non-
zero Walsh coefficients in X1, and we puncture Walsh coefficients if it involves
either of the 0th, 1st, 2nd, 6th, 7th, 22nd, 23rd, 27th, 28th, 29th, 30th, and 31st
Sboxes in Round 0. As a result, 460 out of 105 non-zero Walsh coefficients remain.
Then, the dimension of the involved plaintext is 20 × 4 = 80 after puncturing,
and ρ21 = 2−6.
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We must guess the 19-bit and 1-bit internal keys in Round 1 and 9, respec-
tively. Therefore, the naive FWT-based key recovery requires higher complexity
than 2128. We use the Walsh spectrum decomposition [30] to reduce the com-
plexity. Namely, we decompose the key recovery map into 2× 460 = 920 maps,
apply the FWT independently, and combine 920 results in the final guess. Note
that we no longer need to guess the internal key bits in each decomposition be-
cause the impact is just a sign of the empirical correlation. More accurately, we
take the impact into consideration in the final key guess step.

Figures 17, 18, 19, and 20 summarizes our decomposition. mask of X1 de-
notes Walsh spectrum coefficients in X1, and mask of Y0 denotes corresponding
coefficients in Y0. d1 denotes the dimension of the affine subspace in X0. comp.1
denotes the complexity for the 1st FWT, which is

(d1+ 20)× 2d1+20 + (d1+ 34)× 2d1+34.

Sometimes, we have exactly the same support in different decompositions, e.g.,
the decomposition with id 4 and id 5 share the same support. Then, we do not
need to apply the 1st FWT in id 5. By using this trick, we can reduce the number
of decompositions for the 1st FWT from 460× 2 to 331× 2. # mul denotes the
number of non-zero coefficients. It is also the number of required multiplications.
We notice that each decomposed Walsh spectrum is very sparse. Therefore, the
multiplication cost is negligible compared with other parts. d2 and d3 denote
the dimension of involved key bits when the type A and type B are used on the
ciphertext side, respectively. Note that d2 ≤ d1 + 20 and d3 ≤ d1 + 34 hold
because the 10th subkey can be linearly computed from the 0th subkey. Finally,
comp.2 denotes the complexity for the 2nd FWT, which is

2d1+20 + (d2× 2d2) + 2d1+34 + (d3× 2d3).

Distillation Phase. We first store the information of N plaintext-ciphertext pairs
into a distillation table with a size of 280+35 = 2115. Then, we construct two
distillation tables, TA and TB , where TA is used for the type A and TB is used
for the type B. The size of TA is 280+20 = 2100, and the size of TB is 280+34 = 2114.
From TA, we construct 331 distillation tables for each decomposition. We further
construct four distillation tables, TB,1, TB,2, TB,3, and TB,4, from the table TB

accordingly to the Walsh coefficieient for the 26th Sboxes in Round 0. We notice
that there is only four cases, 0x0, 0x4, 0x8, and 0xC. As a result, the sizes
of TB,1, TB,2, TB,3, and TB,4 are 2106, 2110, 2110, and 2110, respectively. From
TB,1, TB,2, TB,3, and TB,4, we construct, 63, 109, 56, and 103 distillation tables
for each decomposition, respectively. The complexity of the distillation phase is
summarized as follows.

N + (2115 + 4× 2114 + 331× 2100 + 63× 2106 + 109× 2110 + 56× 2110 + 103× 2110)

≈ N + 2118.52

First FWT. We apply the FWT to 662 decompositions. The complexity is the
sum of comp.1 and about 2116.38.
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Componenet-Wise Multiplications. As already explained, the Walsh spectrum is
very sparse. We regard the cost for the multiplications as negligible.

Second FWT. After multiplications, we have 920 tables, where each table size
is 2d1+20 or 2d1+34. The dimension of the corresponding master key subspace is
lower because the 10th subkey can be linearly computed from the 0th subkey.
The complexity is the sum of comp.2 and about 2112.33.

Final Result. As a result, when Nρ2 = 2103.86 with a 8.45-bit advantage, the
probability is higher than 80%. Therefore, the required data complexity is N =
2103.86 × 26 × 29.68 = 2119.54 The final time complexity is

2119.55 + 0.2× (2118.52 + 2116.38 + 2112.33) + 2128−8.45 ≈ 2120.63,

where we inherit the same constant factor 0.2 as the cost of ADD from [19].
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 id | mask of X1|                            mask of Y0                            | id’ |  d1 | comp.1 | # mul  |  d2 |  d3 | comp.2 | 
  1 | 5 4 C 1 1 | - - - - - C 2 - - - C A 2 C 2 4 4 2 8 A 2 C 2 - - - 8 A 2 - - -  |   1 |  56 |  96.49 |  48.91 |  72 |  83 |  96.52 |
  2 | 5 4 C 3 1 | - - - - - C 6 - - - C B 2 C 6 4 4 2 A B 2 C 6 - - - 8 B 2 - - -  |   2 |  58 |  98.52 |  46.92 |  74 |  85 |  98.55 |
  3 | 5 4 C B 1 | - - - - - C 6 4 - - C B 3 C 6 - 4 2 2 B 3 C 6 4 - - 8 B 3 - - -  |   3 |  60 | 100.55 |  48.57 |  76 |  87 | 100.58 |
  4 | 5 4 1 1 1 | - - - - - 8 A 2 - - D 2 - 8 A 6 9 2 9 2 - 8 A 2 - - 9 2 - - - -  |   4 |  62 | 102.59 |  40.55 |  74 |  84 | 102.60 |
  5 | 5 4 1 3 1 | - - - - - 8 E 2 - - D 3 - 8 E 6 9 2 B 3 - 8 E 2 - - 9 3 - - - -  |   4 |  62 |        |  40.55 |  74 |  84 | 102.60 |
  6 | 5 4 1 B 1 | - - - - - 8 E 6 - - D 3 1 8 E 2 9 2 3 3 1 8 E 6 - - 9 3 1 - - -  |   6 |  74 | 114.75 |  40.83 |  85 |  94 | 114.77 |
  7 | 5 4 5 1 1 | - - - - - 8 A 2 - - D A 2 8 A 6 D 2 9 A 2 8 A 2 - - 9 A 2 - - -  |   6 |  74 |        |  40.83 |  85 |  94 | 114.77 |
  8 | 5 4 5 3 1 | - - - - - 8 E 2 - - D B 2 8 E 6 D 2 B B 2 8 E 2 - - 9 B 2 - - -  |   6 |  74 |        |  40.83 |  85 |  94 | 114.77 |
  9 | 5 4 5 B 1 | - - - - - 8 E 6 - - D B 3 8 E 2 D 2 3 B 3 8 E 6 - - 9 B 3 - - -  |   6 |  74 |        |  40.83 |  85 |  94 | 114.77 |
 10 | 5 4 9 1 1 | - - - - - C A 2 - - C 2 - C A 6 1 2 8 2 - C A 2 - - 8 2 - - - -  |  10 |  56 |  96.49 |  45.48 |  69 |  79 |  96.51 |
 11 | 5 4 9 3 1 | - - - - - C E 2 - - C 3 - C E 6 1 2 A 3 - C E 2 - - 8 3 - - - -  |  11 |  58 |  98.52 |  43.55 |  71 |  80 |  98.54 |
 12 | 5 4 9 B 1 | - - - - - C E 6 - - C 3 1 C E 2 1 2 2 3 1 C E 6 - - 8 3 1 - - -  |  12 |  70 | 110.70 |  43.69 |  82 |  90 | 110.71 |
 13 | 5 4 D 1 1 | - - - - - C A 2 - - C A 2 C A 6 5 2 8 A 2 C A 2 - - 8 A 2 - - -  |  13 |  68 | 108.67 |  45.61 |  80 |  89 | 108.69 |
 14 | 5 4 D 3 1 | - - - - - C E 2 - - C B 2 C E 6 5 2 A B 2 C E 2 - - 8 B 2 - - -  |  12 |  70 |        |  43.69 |  82 |  90 | 110.71 |
 15 | 5 4 D B 1 | - - - - - C E 6 - - C B 3 C E 2 5 2 2 B 3 C E 6 - - 8 B 3 - - -  |  12 |  70 |        |  43.69 |  82 |  90 | 110.71 |
 16 | 5 9 B 1 1 | - - - - - 4 8 2 - - 4 - - 4 8 B 3 2 - - - 4 8 2 - - - - - - - -  |  16 |  34 |  74.09 |  45.34 |  50 |  63 |  74.15 |
 17 | 5 9 B 3 1 | - - - - - 4 C 2 - - 4 1 - 4 C B 3 2 2 1 - 4 C 2 - - - 1 - - - -  |  17 |  50 |  90.39 |  45.48 |  64 |  75 |  90.41 |
 18 | 5 9 B B 1 | - - - - - 4 C 6 - - 4 1 1 4 C F 3 2 A 1 1 4 C 6 - - - 1 1 - - -  |  18 |  62 | 102.59 |  45.61 |  75 |  85 | 102.60 |
 19 | 5 9 2 1 1 | - - - - - - - - - - 5 - - - - 9 A 2 1 - - - - - - - 1 - - - - -  |  19 |  24 |  63.86 |  36.54 |  40 |  54 |  63.96 |
 20 | 5 9 2 3 1 | - - - - - - 4 - - - 5 1 - - 4 9 A 2 3 1 - - 4 - - - 1 1 - - - -  |  20 |  42 |  82.25 |  39.85 |  56 |  68 |  82.27 |
 21 | 5 9 2 B 1 | - - - - - - 4 4 - - 5 1 1 - 4 D A 2 B 1 1 - 4 4 - - 1 1 1 - - -  |  21 |  58 |  98.52 |  42.55 |  71 |  81 |  98.54 |
 22 | 5 9 6 1 1 | - - - - - - - - - - 5 8 2 - - 9 E 2 1 8 2 - - - - - 1 8 2 - - -  |  22 |  42 |  82.25 |  41.25 |  57 |  71 |  82.31 |
 23 | 5 9 6 3 1 | - - - - - - 4 - - - 5 9 2 - 4 9 E 2 3 9 2 - 4 - - - 1 9 2 - - -  |  23 |  54 |  94.46 |  40.28 |  67 |  79 |  94.48 |
 24 | 5 9 6 B 1 | - - - - - - 4 4 - - 5 9 3 - 4 D E 2 B 9 3 - 4 4 - - 1 9 3 - - -  |  21 |  58 |        |  42.55 |  71 |  81 |  98.54 |
 25 | 5 9 A 1 1 | - - - - - 4 - - - - 4 - - 4 - 9 2 2 - - - 4 - - - - - - - - - -  |  25 |  20 |  59.75 |  39.16 |  36 |  50 |  59.86 |
 26 | 5 9 A 3 1 | - - - - - 4 4 - - - 4 1 - 4 4 9 2 2 2 1 - 4 4 - - - - 1 - - - -  |  26 |  42 |  82.25 |  44.88 |  57 |  69 |  82.28 |
 27 | 5 9 A B 1 | - - - - - 4 4 4 - - 4 1 1 4 4 D 2 2 A 1 1 4 4 4 - - - 1 1 - - -  |  27 |  58 |  98.52 |  48.74 |  72 |  82 |  98.54 |
 28 | 5 9 E 1 1 | - - - - - 4 - - - - 4 8 2 4 - 9 6 2 - 8 2 4 - - - - - 8 2 - - -  |  28 |  38 |  78.17 |  44.97 |  54 |  68 |  78.27 |
 29 | 5 9 E 3 1 | - - - - - 4 4 - - - 4 9 2 4 4 9 6 2 2 9 2 4 4 - - - - 9 2 - - -  |  29 |  54 |  94.46 |  45.07 |  68 |  80 |  94.48 |
 30 | 5 9 E B 1 | - - - - - 4 4 4 - - 4 9 3 4 4 D 6 2 A 9 3 4 4 4 - - - 9 3 - - -  |  27 |  58 |        |  48.74 |  72 |  82 |  98.54 |
 31 | 8 4 C 8 8 | - - - - - 4 - - - - 1 A 2 4 - - C - 1 A 3 4 - - - - 1 A 2 - - -  |  31 |  44 |  84.29 |  41.79 |  61 |  74 |  84.39 |
 32 | 8 4 C 2 8 | - - - - - 4 4 4 - - 1 B 3 4 4 4 C - B B 2 4 4 4 - - 1 B 3 - - -  |  32 |  56 |  96.49 |  51.17 |  72 |  83 |  96.52 |
 33 | 8 4 C A 8 | - - - - - 4 4 - - - 1 B 2 4 4 - C - 3 B 3 4 4 - - - 1 B 2 - - -  |  33 |  50 |  90.39 |  46.15 |  67 |  79 |  90.45 |
 34 | 8 4 1 8 8 | - - - - - - 8 2 - - - 2 - - 8 2 1 - - 2 1 - 8 2 - - - 2 - - - -  |  34 |  38 |  78.17 |  39.75 |  57 |  69 |  78.35 |
 35 | 8 4 1 2 8 | - - - - - - C 6 - - - 3 1 - C 6 1 - A 3 - - C 6 - - - 3 1 - - -  |  35 |  46 |  86.32 |  40.13 |  64 |  75 |  86.38 |
 36 | 8 4 1 A 8 | - - - - - - C 2 - - - 3 - - C 2 1 - 2 3 1 - C 2 - - - 3 - - - -  |  36 |  42 |  82.25 |  39.85 |  60 |  71 |  82.31 |
 37 | 8 4 5 8 8 | - - - - - - 8 2 - - - A 2 - 8 2 5 - - A 3 - 8 2 - - - A 2 - - -  |  37 |  46 |  86.32 |  40.13 |  64 |  76 |  86.42 |
 38 | 8 4 5 2 8 | - - - - - - C 6 - - - B 3 - C 6 5 - A B 2 - C 6 - - - B 3 - - -  |  38 |  50 |  90.39 |  40.21 |  67 |  78 |  90.43 |
 39 | 8 4 5 A 8 | - - - - - - C 2 - - - B 2 - C 2 5 - 2 B 3 - C 2 - - - B 2 - - -  |  38 |  50 |        |  40.21 |  67 |  78 |  90.43 |
 40 | 8 4 9 8 8 | - - - - - 4 8 2 - - 1 2 - 4 8 2 9 - 1 2 1 4 8 2 - - 1 2 - - - -  |  40 |  56 |  96.49 |  44.23 |  71 |  81 |  96.51 |
 41 | 8 4 9 2 8 | - - - - - 4 C 6 - - 1 3 1 4 C 6 9 - B 3 - 4 C 6 - - 1 3 1 - - -  |  41 |  60 | 100.55 |  44.48 |  74 |  85 | 100.57 |
 42 | 8 4 9 A 8 | - - - - - 4 C 2 - - 1 3 - 4 C 2 9 - 3 3 1 4 C 2 - - 1 3 - - - -  |  42 |  56 |  96.49 |  44.23 |  70 |  81 |  96.51 |
 43 | 8 4 D 8 8 | - - - - - 4 8 2 - - 1 A 2 4 8 2 D - 1 A 3 4 8 2 - - 1 A 2 - - -  |  43 |  64 | 104.61 |  44.50 |  78 |  88 | 104.63 |
 44 | 8 4 D 2 8 | - - - - - 4 C 6 - - 1 B 3 4 C 6 D - B B 2 4 C 6 - - 1 B 3 - - -  |  44 |  64 | 104.61 |  44.50 |  77 |  88 | 104.63 |
 45 | 8 4 D A 8 | - - - - - 4 C 2 - - 1 B 2 4 C 2 D - 3 B 3 4 C 2 - - 1 B 2 - - -  |  44 |  64 |        |  44.50 |  77 |  88 | 104.63 |
 46 | 8 9 B 8 8 | - - - - - C A 2 - - 9 - - C A F B - 9 - 1 C A 2 - - 9 - - - - -  |  46 |  50 |  90.39 |  40.21 |  64 |  76 |  90.41 |
 47 | 8 9 B 2 8 | - - - - - C E 6 - - 9 1 1 C E B B - 3 1 - C E 6 - - 9 1 1 - - -  |  47 |  66 | 106.64 |  40.73 |  79 |  88 | 106.66 |
 48 | 8 9 B A 8 | - - - - - C E 2 - - 9 1 - C E F B - B 1 1 C E 2 - - 9 1 - - - -  |  48 |  62 | 102.59 |  40.55 |  75 |  84 | 102.60 |
 49 | 8 9 2 8 8 | - - - - - 8 2 - - - 8 - - 8 2 D 2 - 8 - 1 8 2 - - - 8 - - - - -  |  49 |  36 |  76.13 |  44.62 |  53 |  66 |  76.23 |
 50 | 8 9 2 2 8 | - - - - - 8 6 4 - - 8 1 1 8 6 9 2 - 2 1 - 8 6 4 - - 8 1 1 - - -  |  50 |  58 |  98.52 |  46.62 |  75 |  85 |  98.55 |
 51 | 8 9 2 A 8 | - - - - - 8 6 - - - 8 1 - 8 6 D 2 - A 1 1 8 6 - - - 8 1 - - - -  |  51 |  50 |  90.39 |  42.96 |  67 |  78 |  90.43 |
 52 | 8 9 6 8 8 | - - - - - 8 2 - - - 8 8 2 8 2 D 6 - 8 8 3 8 2 - - - 8 8 2 - - -  |  52 |  50 |  90.39 |  50.53 |  67 |  79 |  90.45 |
 53 | 8 9 6 2 8 | - - - - - 8 6 4 - - 8 9 3 8 6 9 6 - 2 9 2 8 6 4 - - 8 9 3 - - -  |  53 |  62 | 102.59 |  46.63 |  78 |  88 | 102.61 |
 54 | 8 9 6 A 8 | - - - - - 8 6 - - - 8 9 2 8 6 D 6 - A 9 3 8 6 - - - 8 9 2 - - -  |  54 |  58 |  98.52 |  43.13 |  74 |  85 |  98.55 |
 55 | 8 9 A 8 8 | - - - - - C 2 - - - 9 - - C 2 D A - 9 - 1 C 2 - - - 9 - - - - -  |  55 |  42 |  82.25 |  39.85 |  57 |  70 |  82.29 |
 56 | 8 9 A 2 8 | - - - - - C 6 4 - - 9 1 1 C 6 9 A - 3 1 - C 6 4 - - 9 1 1 - - -  |  56 |  62 | 102.59 |  43.25 |  76 |  86 | 102.60 |
 57 | 8 9 A A 8 | - - - - - C 6 - - - 9 1 - C 6 D A - B 1 1 C 6 - - - 9 1 - - - -  |  57 |  54 |  94.46 |  40.28 |  68 |  79 |  94.48 |
 58 | 8 9 E 8 8 | - - - - - C 2 - - - 9 8 2 C 2 D E - 9 8 3 C 2 - - - 9 8 2 - - -  |  58 |  56 |  96.49 |  45.48 |  70 |  82 |  96.51 |
 59 | 8 9 E 2 8 | - - - - - C 6 4 - - 9 9 3 C 6 9 E - 3 9 2 C 6 4 - - 9 9 3 - - -  |  59 |  66 | 106.64 |  43.28 |  79 |  89 | 106.66 |
 60 | 8 9 E A 8 | - - - - - C 6 - - - 9 9 2 C 6 D E - B 9 3 C 6 - - - 9 9 2 - - -  |  60 |  62 | 102.59 |  40.55 |  75 |  86 | 102.60 |
 61 | 2 4 C 8 2 | - - - - - 4 4 4 - - B B 3 4 - - C - 1 A 3 4 4 4 - - B B 3 - - -  |  61 |  52 |  92.43 |  47.19 |  69 |  81 |  92.48 |
 62 | 2 4 C 2 2 | - - - - - 4 - - - - B A 2 4 4 4 C - B B 2 4 - - - - B A 2 - - -  |  62 |  48 |  88.36 |  45.70 |  64 |  77 |  88.42 |
 63 | 2 4 C 6 6 | - - - - - C 2 - - - B A 2 C 6 4 C - F B 2 4 - - - - F A 2 - - -  |  63 |  54 |  94.46 |  44.17 |  70 |  83 |  94.52 |
 64 | 2 4 C A 2 | - - - - - 4 - 4 - - B A 3 4 4 - C - 3 B 3 4 - 4 - - B A 3 - - -  |  64 |  50 |  90.39 |  46.15 |  67 |  79 |  90.45 |
 65 | 2 4 C E 6 | - - - - - C 2 4 - - B A 3 C 6 - C - 7 B 3 4 - 4 - - F A 3 - - -  |  65 |  56 |  96.49 |  45.11 |  73 |  85 |  96.55 |
 66 | 2 4 1 8 2 | - - - - - - C 6 - - A 3 1 - 8 2 1 - - 2 1 - C 6 - - A 3 1 - - -  |  66 |  54 |  94.46 |  40.43 |  71 |  83 |  94.52 |
 67 | 2 4 1 2 2 | - - - - - - 8 2 - - A 2 - - C 6 1 - A 3 - - 8 2 - - A 2 - - - -  |  67 |  46 |  86.32 |  40.13 |  62 |  73 |  86.35 |
 68 | 2 4 1 6 6 | - - - - - 8 A 2 - - A 2 - 8 E 6 1 - E 3 - - 8 2 - - E 2 - - - -  |  68 |  54 |  94.46 |  40.48 |  70 |  80 |  94.48 |
 69 | 2 4 1 A 2 | - - - - - - 8 6 - - A 2 1 - C 2 1 - 2 3 1 - 8 6 - - A 2 1 - - -  |  69 |  58 |  98.52 |  40.49 |  73 |  84 |  98.54 |
 70 | 2 4 1 E 6 | - - - - - 8 A 6 - - A 2 1 8 E 2 1 - 6 3 1 - 8 6 - - E 2 1 - - -  |  70 |  66 | 106.64 |  40.77 |  81 |  91 | 106.66 |
 71 | 2 4 5 8 2 | - - - - - - C 6 - - A B 3 - 8 2 5 - - A 3 - C 6 - - A B 3 - - -  |  66 |  54 |        |  40.43 |  71 |  83 |  94.52 |
 72 | 2 4 5 2 2 | - - - - - - 8 2 - - A A 2 - C 6 5 - A B 2 - 8 2 - - A A 2 - - -  |  69 |  58 |        |  40.49 |  73 |  84 |  98.54 |
 73 | 2 4 5 6 6 | - - - - - 8 A 2 - - A A 2 8 E 6 5 - E B 2 - 8 2 - - E A 2 - - -  |  70 |  66 |        |  40.77 |  81 |  91 | 106.66 |
 74 | 2 4 5 A 2 | - - - - - - 8 6 - - A A 3 - C 2 5 - 2 B 3 - 8 6 - - A A 3 - - -  |  69 |  58 |        |  40.49 |  73 |  84 |  98.54 |
 75 | 2 4 5 E 6 | - - - - - 8 A 6 - - A A 3 8 E 2 5 - 6 B 3 - 8 6 - - E A 3 - - -  |  70 |  66 |        |  40.77 |  81 |  91 | 106.66 |
 76 | 2 4 9 8 2 | - - - - - 4 C 6 - - B 3 1 4 8 2 9 - 1 2 1 4 C 6 - - B 3 1 - - -  |  76 |  64 | 104.61 |  44.50 |  78 |  89 | 104.63 |
 77 | 2 4 9 2 2 | - - - - - 4 8 2 - - B 2 - 4 C 6 9 - B 3 - 4 8 2 - - B 2 - - - -  |  77 |  52 |  92.43 |  44.21 |  67 |  78 |  92.45 |
 78 | 2 4 9 6 6 | - - - - - C A 2 - - B 2 - C E 6 9 - F 3 - 4 8 2 - - F 2 - - - -  |  78 |  56 |  96.49 |  42.44 |  71 |  80 |  96.51 |
 79 | 2 4 9 A 2 | - - - - - 4 8 6 - - B 2 1 4 C 2 9 - 3 3 1 4 8 6 - - B 2 1 - - -  |  79 |  64 | 104.61 |  44.50 |  78 |  89 | 104.63 |
 80 | 2 4 9 E 6 | - - - - - C A 6 - - B 2 1 C E 2 9 - 7 3 1 4 8 6 - - F 2 1 - - -  |  80 |  68 | 108.67 |  42.73 |  82 |  91 | 108.69 |
 81 | 2 4 D 8 2 | - - - - - 4 C 6 - - B B 3 4 8 2 D - 1 A 3 4 C 6 - - B B 3 - - -  |  76 |  64 |        |  44.50 |  78 |  89 | 104.63 |
 82 | 2 4 D 2 2 | - - - - - 4 8 2 - - B A 2 4 C 6 D - B B 2 4 8 2 - - B A 2 - - -  |  79 |  64 |        |  44.50 |  78 |  89 | 104.63 |
 83 | 2 4 D 6 6 | - - - - - C A 2 - - B A 2 C E 6 D - F B 2 4 8 2 - - F A 2 - - -  |  80 |  68 |        |  42.73 |  82 |  91 | 108.69 |
 84 | 2 4 D A 2 | - - - - - 4 8 6 - - B A 3 4 C 2 D - 3 B 3 4 8 6 - - B A 3 - - -  |  79 |  64 |        |  44.50 |  78 |  89 | 104.63 |
 85 | 2 4 D E 6 | - - - - - C A 6 - - B A 3 C E 2 D - 7 B 3 4 8 6 - - F A 3 - - -  |  80 |  68 |        |  42.73 |  82 |  91 | 108.69 |
 86 | 2 9 B 8 2 | - - - - - C E 6 - - 3 1 1 C A F B - 9 - 1 C E 6 - - 3 1 1 - - -  |  86 |  66 | 106.64 |  40.73 |  80 |  90 | 106.66 |
 87 | 2 9 B 2 2 | - - - - - C A 2 - - 3 - - C E B B - 3 1 - C A 2 - - 3 - - - - -  |  87 |  50 |  90.39 |  40.21 |  64 |  75 |  90.41 |
 88 | 2 9 B 6 6 | - - - - - 4 8 2 - - 3 - - 4 C B B - 7 1 - C A 2 - - 7 - - - - -  |  88 |  46 |  86.32 |  41.89 |  62 |  75 |  86.38 |
 89 | 2 9 B A 2 | - - - - - C A 6 - - 3 - 1 C E F B - B 1 1 C A 6 - - 3 - 1 - - -  |  89 |  62 | 102.59 |  40.55 |  76 |  87 | 102.60 |
 90 | 2 9 B E 6 | - - - - - 4 8 6 - - 3 - 1 4 C F B - F 1 1 C A 6 - - 7 - 1 - - -  |  90 |  58 |  98.52 |  42.25 |  74 |  87 |  98.58 |
 91 | 2 9 2 8 2 | - - - - - 8 6 4 - - 2 1 1 8 2 D 2 - 8 - 1 8 6 4 - - 2 1 1 - - -  |  91 |  60 | 100.55 |  45.17 |  77 |  88 | 100.59 |
 92 | 2 9 2 2 2 | - - - - - 8 2 - - - 2 - - 8 6 9 2 - 2 1 - 8 2 - - - 2 - - - - -  |  92 |  42 |  82.25 |  39.85 |  58 |  71 |  82.31 |
 93 | 2 9 2 6 6 | - - - - - - - - - - 2 - - - 4 9 2 - 6 1 - 8 2 - - - 6 - - - - -  |  93 |  32 |  72.04 |  39.09 |  49 |  63 |  72.23 |
 94 | 2 9 2 A 2 | - - - - - 8 2 4 - - 2 - 1 8 6 D 2 - A 1 1 8 2 4 - - 2 - 1 - - -  |  94 |  58 |  98.52 |  43.13 |  74 |  86 |  98.56 |
 95 | 2 9 2 E 6 | - - - - - - - 4 - - 2 - 1 - 4 D 2 - E 1 1 8 2 4 - - 6 - 1 - - -  |  95 |  48 |  88.36 |  41.84 |  65 |  78 |  88.46 |
 96 | 2 9 6 8 2 | - - - - - 8 6 4 - - 2 9 3 8 2 D 6 - 8 8 3 8 6 4 - - 2 9 3 - - -  |  96 |  62 | 102.59 |  47.16 |  79 |  90 | 102.62 |
 97 | 2 9 6 2 2 | - - - - - 8 2 - - - 2 8 2 8 6 9 6 - 2 9 2 8 2 - - - 2 8 2 - - -  |  97 |  58 |  98.52 |  43.55 |  73 |  85 |  98.55 |
 98 | 2 9 6 6 6 | - - - - - - - - - - 2 8 2 - 4 9 6 - 6 9 2 8 2 - - - 6 8 2 - - -  |  98 |  48 |  88.36 |  42.70 |  64 |  78 |  88.46 |
 99 | 2 9 6 A 2 | - - - - - 8 2 4 - - 2 8 3 8 6 D 6 - A 9 3 8 2 4 - - 2 8 3 - - -  |  99 |  62 | 102.59 |  46.79 |  77 |  88 | 102.61 |
100 | 2 9 6 E 6 | - - - - - - - 4 - - 2 8 3 - 4 D 6 - E 9 3 8 2 4 - - 6 8 3 - - -  | 100 |  52 |  92.43 |  44.92 |  68 |  81 |  92.48 |
101 | 2 9 A 8 2 | - - - - - C 6 4 - - 3 1 1 C 2 D A - 9 - 1 C 6 4 - - 3 1 1 - - -  | 101 |  62 | 102.59 |  43.25 |  77 |  88 | 102.61 |
102 | 2 9 A 2 2 | - - - - - C 2 - - - 3 - - C 6 9 A - 3 1 - C 2 - - - 3 - - - - -  | 102 |  42 |  82.25 |  39.85 |  57 |  70 |  82.29 |
103 | 2 9 A 6 6 | - - - - - 4 - - - - 3 - - 4 4 9 A - 7 1 - C 2 - - - 7 - - - - -  | 103 |  36 |  76.13 |  40.68 |  52 |  66 |  76.23 |
104 | 2 9 A A 2 | - - - - - C 2 4 - - 3 - 1 C 6 D A - B 1 1 C 2 4 - - 3 - 1 - - -  | 104 |  58 |  98.52 |  43.13 |  73 |  85 |  98.55 |
105 | 2 9 A E 6 | - - - - - 4 - 4 - - 3 - 1 4 4 D A - F 1 1 C 2 4 - - 7 - 1 - - -  | 105 |  52 |  92.43 |  43.91 |  68 |  81 |  92.48 |
106 | 2 9 E 8 2 | - - - - - C 6 4 - - 3 9 3 C 2 D E - 9 8 3 C 6 4 - - 3 9 3 - - -  | 106 |  64 | 104.61 |  45.21 |  78 |  89 | 104.63 |
107 | 2 9 E 2 2 | - - - - - C 2 - - - 3 8 2 C 6 9 E - 3 9 2 C 2 - - - 3 8 2 - - -  | 107 |  58 |  98.52 |  43.55 |  72 |  84 |  98.54 |
108 | 2 9 E 6 6 | - - - - - 4 - - - - 3 8 2 4 4 9 E - 7 9 2 C 2 - - - 7 8 2 - - -  | 108 |  52 |  92.43 |  44.73 |  67 |  81 |  92.48 |
109 | 2 9 E A 2 | - - - - - C 2 4 - - 3 8 3 C 6 D E - B 9 3 C 2 4 - - 3 8 3 - - -  | 109 |  62 | 102.59 |  46.79 |  76 |  87 | 102.60 |
110 | 2 9 E E 6 | - - - - - 4 - 4 - - 3 8 3 4 4 D E - F 9 3 C 2 4 - - 7 8 3 - - -  | 110 |  56 |  96.49 |  47.48 |  71 |  84 |  96.53 |
111 | 3 4 C 1 3 | - - - - - 4 4 - - - A B 2 4 - 4 4 2 8 A 2 4 4 - - - A B 2 - - -  | 111 |  52 |  92.43 |  48.14 |  70 |  83 |  92.61 |
112 | 3 4 C 3 3 | - - - - - 4 - - - - A A 2 4 4 4 4 2 A B 2 4 - - - - A A 2 - - -  | 112 |  52 |  92.43 |  45.71 |  68 |  81 |  92.48 |
113 | 3 4 C 7 7 | - - - - - C 2 - - - A A 2 C 6 4 4 2 E B 2 4 - - - - E A 2 - - -  | 113 |  58 |  98.52 |  44.17 |  74 |  87 |  98.58 |
114 | 3 4 C B 3 | - - - - - 4 - 4 - - A A 3 4 4 - 4 2 2 B 3 4 - 4 - - A A 3 - - -  | 114 |  54 |  94.46 |  46.15 |  71 |  83 |  94.52 |
115 | 3 4 C F 7 | - - - - - C 2 4 - - A A 3 C 6 - 4 2 6 B 3 4 - 4 - - E A 3 - - -  | 115 |  60 | 100.55 |  45.12 |  77 |  89 | 100.61 |
116 | 3 4 1 1 3 | - - - - - - C 2 - - B 3 - - 8 6 9 2 9 2 - - C 2 - - B 3 - - - -  | 116 |  50 |  90.39 |  40.21 |  64 |  75 |  90.41 |
117 | 3 4 1 3 3 | - - - - - - 8 2 - - B 2 - - C 6 9 2 B 3 - - 8 2 - - B 2 - - - -  | 117 |  50 |  90.39 |  40.21 |  64 |  75 |  90.41 |
118 | 3 4 1 7 7 | - - - - - 8 A 2 - - B 2 - 8 E 6 9 2 F 3 - - 8 2 - - F 2 - - - -  | 118 |  58 |  98.52 |  40.54 |  72 |  82 |  98.54 |
119 | 3 4 1 B 3 | - - - - - - 8 6 - - B 2 1 - C 2 9 2 3 3 1 - 8 6 - - B 2 1 - - -  | 119 |  62 | 102.59 |  40.55 |  75 |  85 | 102.60 |

Fig. 17: Walsh spectrum decomposition and attack complexity (1)



Linear Attacks using Walsh Spectrum Puncturing 59

 id | mask of X1|                            mask of Y0                            | id’ |  d1 | comp.1 | # mul  |  d2 |  d3 | comp.2 | 
120 | 3 4 1 F 7 | - - - - - 8 A 6 - - B 2 1 8 E 2 9 2 7 3 1 - 8 6 - - F 2 1 - - -  | 120 |  70 | 110.70 |  40.82 |  83 |  92 | 110.71 |
121 | 3 4 5 1 3 | - - - - - - C 2 - - B B 2 - 8 6 D 2 9 A 2 - C 2 - - B B 2 - - -  | 121 |  62 | 102.59 |  40.55 |  75 |  85 | 102.60 |
122 | 3 4 5 3 3 | - - - - - - 8 2 - - B A 2 - C 6 D 2 B B 2 - 8 2 - - B A 2 - - -  | 119 |  62 |        |  40.55 |  75 |  85 | 102.60 |
123 | 3 4 5 7 7 | - - - - - 8 A 2 - - B A 2 8 E 6 D 2 F B 2 - 8 2 - - F A 2 - - -  | 120 |  70 |        |  40.82 |  83 |  92 | 110.71 |
124 | 3 4 5 B 3 | - - - - - - 8 6 - - B A 3 - C 2 D 2 3 B 3 - 8 6 - - B A 3 - - -  | 119 |  62 |        |  40.55 |  75 |  85 | 102.60 |
125 | 3 4 5 F 7 | - - - - - 8 A 6 - - B A 3 8 E 2 D 2 7 B 3 - 8 6 - - F A 3 - - -  | 120 |  70 |        |  40.82 |  83 |  92 | 110.71 |
126 | 3 4 9 1 3 | - - - - - 4 C 2 - - A 3 - 4 8 6 1 2 8 2 - 4 C 2 - - A 3 - - - -  | 126 |  54 |  94.46 |  46.20 |  69 |  80 |  94.48 |
127 | 3 4 9 3 3 | - - - - - 4 8 2 - - A 2 - 4 C 6 1 2 A 3 - 4 8 2 - - A 2 - - - -  | 127 |  56 |  96.49 |  44.23 |  69 |  80 |  96.51 |
128 | 3 4 9 7 7 | - - - - - C A 2 - - A 2 - C E 6 1 2 E 3 - 4 8 2 - - E 2 - - - -  | 128 |  60 | 100.55 |  42.50 |  73 |  82 | 100.57 |
129 | 3 4 9 B 3 | - - - - - 4 8 6 - - A 2 1 4 C 2 1 2 2 3 1 4 8 6 - - A 2 1 - - -  | 129 |  68 | 108.67 |  44.51 |  80 |  90 | 108.69 |
130 | 3 4 9 F 7 | - - - - - C A 6 - - A 2 1 C E 2 1 2 6 3 1 4 8 6 - - E 2 1 - - -  | 130 |  72 | 112.73 |  42.78 |  84 |  92 | 112.74 |
131 | 3 4 D 1 3 | - - - - - 4 C 2 - - A B 2 4 8 6 5 2 8 A 2 4 C 2 - - A B 2 - - -  | 131 |  66 | 106.64 |  46.47 |  80 |  90 | 106.66 |
132 | 3 4 D 3 3 | - - - - - 4 8 2 - - A A 2 4 C 6 5 2 A B 2 4 8 2 - - A A 2 - - -  | 129 |  68 |        |  44.51 |  80 |  90 | 108.69 |
133 | 3 4 D 7 7 | - - - - - C A 2 - - A A 2 C E 6 5 2 E B 2 4 8 2 - - E A 2 - - -  | 130 |  72 |        |  42.78 |  84 |  92 | 112.74 |
134 | 3 4 D B 3 | - - - - - 4 8 6 - - A A 3 4 C 2 5 2 2 B 3 4 8 6 - - A A 3 - - -  | 129 |  68 |        |  44.51 |  80 |  90 | 108.69 |
135 | 3 4 D F 7 | - - - - - C A 6 - - A A 3 C E 2 5 2 6 B 3 4 8 6 - - E A 3 - - -  | 130 |  72 |        |  42.78 |  84 |  92 | 112.74 |
136 | 3 9 B 1 3 | - - - - - C E 2 - - 2 1 - C A B 3 2 - - - C E 2 - - 2 1 - - - -  | 136 |  54 |  94.46 |  40.43 |  68 |  78 |  94.48 |
137 | 3 9 B 3 3 | - - - - - C A 2 - - 2 - - C E B 3 2 2 1 - C A 2 - - 2 - - - - -  | 137 |  54 |  94.46 |  40.28 |  67 |  77 |  94.48 |
138 | 3 9 B 7 7 | - - - - - 4 8 2 - - 2 - - 4 C B 3 2 6 1 - C A 2 - - 6 - - - - -  | 138 |  50 |  90.39 |  41.92 |  65 |  77 |  90.42 |
139 | 3 9 B B 3 | - - - - - C A 6 - - 2 - 1 C E F 3 2 A 1 1 C A 6 - - 2 - 1 - - -  | 139 |  66 | 106.64 |  40.61 |  79 |  88 | 106.66 |
140 | 3 9 B F 7 | - - - - - 4 8 6 - - 2 - 1 4 C F 3 2 E 1 1 C A 6 - - 6 - 1 - - -  | 140 |  62 | 102.59 |  42.26 |  77 |  88 | 102.61 |
141 | 3 9 2 1 3 | - - - - - 8 6 - - - 3 1 - 8 2 9 A 2 1 - - 8 6 - - - 3 1 - - - -  | 141 |  50 |  90.39 |  40.21 |  65 |  76 |  90.41 |
142 | 3 9 2 3 3 | - - - - - 8 2 - - - 3 - - 8 6 9 A 2 3 1 - 8 2 - - - 3 - - - - -  | 142 |  46 |  86.32 |  39.94 |  61 |  73 |  86.35 |
143 | 3 9 2 7 7 | - - - - - - - - - - 3 - - - 4 9 A 2 7 1 - 8 2 - - - 7 - - - - -  | 143 |  36 |  76.13 |  39.24 |  52 |  66 |  76.23 |
144 | 3 9 2 B 3 | - - - - - 8 2 4 - - 3 - 1 8 6 D A 2 B 1 1 8 2 4 - - 3 - 1 - - -  | 144 |  62 | 102.59 |  43.17 |  77 |  87 | 102.60 |
145 | 3 9 2 F 7 | - - - - - - - 4 - - 3 - 1 - 4 D A 2 F 1 1 8 2 4 - - 7 - 1 - - -  | 145 |  52 |  92.43 |  41.93 |  68 |  81 |  92.48 |
146 | 3 9 6 1 3 | - - - - - 8 6 - - - 3 9 2 8 2 9 E 2 1 8 2 8 6 - - - 3 9 2 - - -  | 146 |  64 | 104.61 |  42.46 |  78 |  89 | 104.63 |
147 | 3 9 6 3 3 | - - - - - 8 2 - - - 3 8 2 8 6 9 E 2 3 9 2 8 2 - - - 3 8 2 - - -  | 147 |  62 | 102.59 |  43.57 |  76 |  87 | 102.60 |
148 | 3 9 6 7 7 | - - - - - - - - - - 3 8 2 - 4 9 E 2 7 9 2 8 2 - - - 7 8 2 - - -  | 148 |  52 |  92.43 |  42.75 |  67 |  81 |  92.48 |
149 | 3 9 6 B 3 | - - - - - 8 2 4 - - 3 8 3 8 6 D E 2 B 9 3 8 2 4 - - 3 8 3 - - -  | 149 |  66 | 106.64 |  46.80 |  80 |  89 | 106.66 |
150 | 3 9 6 F 7 | - - - - - - - 4 - - 3 8 3 - 4 D E 2 F 9 3 8 2 4 - - 7 8 3 - - -  | 150 |  56 |  96.49 |  44.96 |  71 |  83 |  96.52 |
151 | 3 9 A 1 3 | - - - - - C 6 - - - 2 1 - C 2 9 2 2 - - - C 6 - - - 2 1 - - - -  | 151 |  46 |  86.32 |  40.13 |  61 |  73 |  86.35 |
152 | 3 9 A 3 3 | - - - - - C 2 - - - 2 - - C 6 9 2 2 2 1 - C 2 - - - 2 - - - - -  | 152 |  46 |  86.32 |  39.94 |  60 |  72 |  86.34 |
153 | 3 9 A 7 7 | - - - - - 4 - - - - 2 - - 4 4 9 2 2 6 1 - C 2 - - - 6 - - - - -  | 153 |  40 |  80.21 |  40.73 |  55 |  69 |  80.27 |
154 | 3 9 A B 3 | - - - - - C 2 4 - - 2 - 1 C 6 D 2 2 A 1 1 C 2 4 - - 2 - 1 - - -  | 154 |  62 | 102.59 |  43.17 |  76 |  86 | 102.60 |
155 | 3 9 A F 7 | - - - - - 4 - 4 - - 2 - 1 4 4 D 2 2 E 1 1 C 2 4 - - 6 - 1 - - -  | 155 |  56 |  96.49 |  43.93 |  71 |  84 |  96.53 |
156 | 3 9 E 1 3 | - - - - - C 6 - - - 2 9 2 C 2 9 6 2 - 8 2 C 6 - - - 2 9 2 - - -  | 156 |  60 | 100.55 |  42.40 |  75 |  87 | 100.58 |
157 | 3 9 E 3 3 | - - - - - C 2 - - - 2 8 2 C 6 9 6 2 2 9 2 C 2 - - - 2 8 2 - - -  | 157 |  62 | 102.59 |  43.57 |  75 |  86 | 102.60 |
158 | 3 9 E 7 7 | - - - - - 4 - - - - 2 8 2 4 4 9 6 2 6 9 2 C 2 - - - 6 8 2 - - -  | 158 |  56 |  96.49 |  44.74 |  70 |  84 |  96.53 |
159 | 3 9 E B 3 | - - - - - C 2 4 - - 2 8 3 C 6 D 6 2 A 9 3 C 2 4 - - 2 8 3 - - -  | 159 |  66 | 106.64 |  46.80 |  79 |  88 | 106.66 |
160 | 3 9 E F 7 | - - - - - 4 - 4 - - 2 8 3 4 4 D 6 2 E 9 3 C 2 4 - - 6 8 3 - - -  | 160 |  60 | 100.55 |  47.49 |  74 |  86 | 100.57 |
161 | 6 4 C 8 2 | - - - - - C 6 4 - - F B 3 C 2 - C - 1 A 3 C 6 4 - - B B 3 - - -  | 161 |  60 | 100.55 |  45.11 |  76 |  86 | 100.57 |
162 | 6 4 C 2 2 | - - - - - C 2 - - - F A 2 C 6 4 C - B B 2 C 2 - - - B A 2 - - -  | 162 |  58 |  98.52 |  44.17 |  73 |  84 |  98.54 |
163 | 6 4 C 6 6 | - - - - - 4 - - - - F A 2 4 4 4 C - F B 2 C 2 - - - F A 2 - - -  | 163 |  52 |  92.43 |  45.70 |  68 |  81 |  92.48 |
164 | 6 4 C A 2 | - - - - - C 2 4 - - F A 3 C 6 - C - 3 B 3 C 2 4 - - B A 3 - - -  | 161 |  60 |        |  45.11 |  76 |  86 | 100.57 |
165 | 6 4 C E 6 | - - - - - 4 - 4 - - F A 3 4 4 - C - 7 B 3 C 2 4 - - F A 3 - - -  | 165 |  54 |  94.46 |  46.15 |  71 |  83 |  94.52 |
166 | 6 4 1 8 2 | - - - - - 8 E 6 - - E 3 1 8 A 2 1 - - 2 1 8 E 6 - - A 3 1 - - -  | 166 |  66 | 106.64 |  40.73 |  81 |  92 | 106.66 |
167 | 6 4 1 2 2 | - - - - - 8 A 2 - - E 2 - 8 E 6 1 - A 3 - 8 A 2 - - A 2 - - - -  | 167 |  58 |  98.52 |  40.49 |  72 |  82 |  98.54 |
168 | 6 4 1 6 6 | - - - - - - 8 2 - - E 2 - - C 6 1 - E 3 - 8 A 2 - - E 2 - - - -  | 168 |  50 |  90.39 |  40.15 |  66 |  77 |  90.42 |
169 | 6 4 1 A 2 | - - - - - 8 A 6 - - E 2 1 8 E 2 1 - 2 3 1 8 A 6 - - A 2 1 - - -  | 169 |  70 | 110.70 |  40.78 |  83 |  93 | 110.71 |
170 | 6 4 1 E 6 | - - - - - - 8 6 - - E 2 1 - C 2 1 - 6 3 1 8 A 6 - - E 2 1 - - -  | 170 |  62 | 102.59 |  40.51 |  77 |  88 | 102.61 |
171 | 6 4 5 8 2 | - - - - - 8 E 6 - - E B 3 8 A 2 5 - - A 3 8 E 6 - - A B 3 - - -  | 166 |  66 |        |  40.73 |  81 |  92 | 106.66 |
172 | 6 4 5 2 2 | - - - - - 8 A 2 - - E A 2 8 E 6 5 - A B 2 8 A 2 - - A A 2 - - -  | 169 |  70 |        |  40.78 |  83 |  93 | 110.71 |
173 | 6 4 5 6 6 | - - - - - - 8 2 - - E A 2 - C 6 5 - E B 2 8 A 2 - - E A 2 - - -  | 170 |  62 |        |  40.51 |  77 |  88 | 102.61 |
174 | 6 4 5 A 2 | - - - - - 8 A 6 - - E A 3 8 E 2 5 - 2 B 3 8 A 6 - - A A 3 - - -  | 169 |  70 |        |  40.78 |  83 |  93 | 110.71 |
175 | 6 4 5 E 6 | - - - - - - 8 6 - - E A 3 - C 2 5 - 6 B 3 8 A 6 - - E A 3 - - -  | 170 |  62 |        |  40.51 |  77 |  88 | 102.61 |
176 | 6 4 9 8 2 | - - - - - C E 6 - - F 3 1 C A 2 9 - 1 2 1 C E 6 - - B 3 1 - - -  | 176 |  70 | 110.70 |  40.78 |  82 |  91 | 110.71 |
177 | 6 4 9 2 2 | - - - - - C A 2 - - F 2 - C E 6 9 - B 3 - C A 2 - - B 2 - - - -  | 177 |  58 |  98.52 |  40.49 |  71 |  80 |  98.54 |
178 | 6 4 9 6 6 | - - - - - 4 8 2 - - F 2 - 4 C 6 9 - F 3 - C A 2 - - F 2 - - - -  | 178 |  54 |  94.46 |  42.23 |  69 |  80 |  94.48 |
179 | 6 4 9 A 2 | - - - - - C A 6 - - F 2 1 C E 2 9 - 3 3 1 C A 6 - - B 2 1 - - -  | 176 |  70 |        |  40.78 |  82 |  91 | 110.71 |
180 | 6 4 9 E 6 | - - - - - 4 8 6 - - F 2 1 4 C 2 9 - 7 3 1 C A 6 - - F 2 1 - - -  | 180 |  66 | 106.64 |  42.51 |  80 |  91 | 106.66 |
181 | 6 4 D 8 2 | - - - - - C E 6 - - F B 3 C A 2 D - 1 A 3 C E 6 - - B B 3 - - -  | 176 |  70 |        |  40.78 |  82 |  91 | 110.71 |
182 | 6 4 D 2 2 | - - - - - C A 2 - - F A 2 C E 6 D - B B 2 C A 2 - - B A 2 - - -  | 176 |  70 |        |  40.78 |  82 |  91 | 110.71 |
183 | 6 4 D 6 6 | - - - - - 4 8 2 - - F A 2 4 C 6 D - F B 2 C A 2 - - F A 2 - - -  | 180 |  66 |        |  42.51 |  80 |  91 | 106.66 |
184 | 6 4 D A 2 | - - - - - C A 6 - - F A 3 C E 2 D - 3 B 3 C A 6 - - B A 3 - - -  | 176 |  70 |        |  40.78 |  82 |  91 | 110.71 |
185 | 6 4 D E 6 | - - - - - 4 8 6 - - F A 3 4 C 2 D - 7 B 3 C A 6 - - F A 3 - - -  | 180 |  66 |        |  42.51 |  80 |  91 | 106.66 |
186 | 6 9 B 8 2 | - - - - - 4 C 6 - - 7 1 1 4 8 F B - 9 - 1 4 C 6 - - 3 1 1 - - -  | 186 |  60 | 100.55 |  44.48 |  76 |  88 | 100.59 |
187 | 6 9 B 2 2 | - - - - - 4 8 2 - - 7 - - 4 C B B - 3 1 - 4 8 2 - - 3 - - - - -  | 187 |  44 |  84.29 |  43.88 |  60 |  73 |  84.34 |
188 | 6 9 B 6 6 | - - - - - C A 2 - - 7 - - C E B B - 7 1 - 4 8 2 - - 7 - - - - -  | 188 |  48 |  88.36 |  42.16 |  64 |  75 |  88.39 |
189 | 6 9 B A 2 | - - - - - 4 8 6 - - 7 - 1 4 C F B - B 1 1 4 8 6 - - 3 - 1 - - -  | 189 |  56 |  96.49 |  44.23 |  72 |  85 |  96.55 |
190 | 6 9 B E 6 | - - - - - C A 6 - - 7 - 1 C E F B - F 1 1 4 8 6 - - 7 - 1 - - -  | 190 |  60 | 100.55 |  42.50 |  76 |  87 | 100.58 |
191 | 6 9 2 8 2 | - - - - - - 4 4 - - 6 1 1 - - D 2 - 8 - 1 - 4 4 - - 2 1 1 - - -  | 191 |  46 |  86.32 |  42.72 |  64 |  77 |  86.50 |
192 | 6 9 2 2 2 | - - - - - - - - - - 6 - - - 4 9 2 - 2 1 - - - - - - 2 - - - - -  | 192 |  26 |  65.91 |  37.16 |  43 |  57 |  66.09 |
193 | 6 9 2 6 6 | - - - - - 8 2 - - - 6 - - 8 6 9 2 - 6 1 - - - - - - 6 - - - - -  | 193 |  36 |  76.13 |  37.90 |  53 |  67 |  76.31 |
194 | 6 9 2 A 2 | - - - - - - - 4 - - 6 - 1 - 4 D 2 - A 1 1 - - 4 - - 2 - 1 - - -  | 194 |  42 |  82.25 |  39.85 |  59 |  72 |  82.35 |
195 | 6 9 2 E 6 | - - - - - 8 2 4 - - 6 - 1 8 6 D 2 - E 1 1 - - 4 - - 6 - 1 - - -  | 195 |  52 |  92.43 |  41.14 |  69 |  82 |  92.53 |
196 | 6 9 6 8 2 | - - - - - - 4 4 - - 6 9 3 - - D 6 - 8 8 3 - 4 4 - - 2 9 3 - - -  | 196 |  48 |  88.36 |  44.67 |  66 |  79 |  88.54 |
197 | 6 9 6 2 2 | - - - - - - - - - - 6 8 2 - 4 9 6 - 2 9 2 - - - - - 2 8 2 - - -  | 197 |  42 |  82.25 |  40.73 |  58 |  72 |  82.35 |
198 | 6 9 6 6 6 | - - - - - 8 2 - - - 6 8 2 8 6 9 6 - 6 9 2 - - - - - 6 8 2 - - -  | 198 |  52 |  92.43 |  41.57 |  68 |  82 |  92.53 |
199 | 6 9 6 A 2 | - - - - - - - 4 - - 6 8 3 - 4 D 6 - A 9 3 - - 4 - - 2 8 3 - - -  | 199 |  46 |  86.32 |  42.92 |  62 |  75 |  86.38 |
200 | 6 9 6 E 6 | - - - - - 8 2 4 - - 6 8 3 8 6 D 6 - E 9 3 - - 4 - - 6 8 3 - - -  | 200 |  56 |  96.49 |  44.79 |  72 |  85 |  96.55 |
201 | 6 9 A 8 2 | - - - - - 4 4 4 - - 7 1 1 4 - D A - 9 - 1 4 4 4 - - 3 1 1 - - -  | 201 |  54 |  94.46 |  45.31 |  70 |  83 |  94.52 |
202 | 6 9 A 2 2 | - - - - - 4 - - - - 7 - - 4 4 9 A - 3 1 - 4 - - - - 3 - - - - -  | 202 |  32 |  72.04 |  40.67 |  48 |  62 |  72.15 |
203 | 6 9 A 6 6 | - - - - - C 2 - - - 7 - - C 6 9 A - 7 1 - 4 - - - - 7 - - - - -  | 203 |  38 |  78.17 |  39.82 |  54 |  68 |  78.27 |
204 | 6 9 A A 2 | - - - - - 4 - 4 - - 7 - 1 4 4 D A - B 1 1 4 - 4 - - 3 - 1 - - -  | 204 |  48 |  88.36 |  43.90 |  64 |  77 |  88.42 |
205 | 6 9 A E 6 | - - - - - C 2 4 - - 7 - 1 C 6 D A - F 1 1 4 - 4 - - 7 - 1 - - -  | 205 |  54 |  94.46 |  43.12 |  70 |  83 |  94.52 |
206 | 6 9 E 8 2 | - - - - - 4 4 4 - - 7 9 3 4 - D E - 9 8 3 4 4 4 - - 3 9 3 - - -  | 206 |  56 |  96.49 |  47.28 |  71 |  84 |  96.53 |
207 | 6 9 E 2 2 | - - - - - 4 - - - - 7 8 2 4 4 9 E - 3 9 2 4 - - - - 3 8 2 - - -  | 207 |  48 |  88.36 |  44.73 |  63 |  77 |  88.42 |
208 | 6 9 E 6 6 | - - - - - C 2 - - - 7 8 2 C 6 9 E - 7 9 2 4 - - - - 7 8 2 - - -  | 208 |  54 |  94.46 |  43.54 |  69 |  83 |  94.52 |
209 | 6 9 E A 2 | - - - - - 4 - 4 - - 7 8 3 4 4 D E - B 9 3 4 - 4 - - 3 8 3 - - -  | 209 |  52 |  92.43 |  47.48 |  67 |  80 |  92.46 |
210 | 6 9 E E 6 | - - - - - C 2 4 - - 7 8 3 C 6 D E - F 9 3 4 - 4 - - 7 8 3 - - -  | 210 |  58 |  98.52 |  46.79 |  73 |  86 |  98.56 |
211 | 7 4 C 1 3 | - - - - - C 6 - - - E B 2 C 2 4 4 2 8 A 2 C 6 - - - A B 2 - - -  | 211 |  60 | 100.55 |  46.16 |  76 |  87 | 100.58 |
212 | 7 4 C 3 3 | - - - - - C 2 - - - E A 2 C 6 4 4 2 A B 2 C 2 - - - A A 2 - - -  | 212 |  62 | 102.59 |  44.17 |  76 |  87 | 102.60 |
213 | 7 4 C 7 7 | - - - - - 4 - - - - E A 2 4 4 4 4 2 E B 2 C 2 - - - E A 2 - - -  | 213 |  56 |  96.49 |  45.71 |  72 |  85 |  96.55 |
214 | 7 4 C B 3 | - - - - - C 2 4 - - E A 3 C 6 - 4 2 2 B 3 C 2 4 - - A A 3 - - -  | 214 |  64 | 104.61 |  45.12 |  79 |  89 | 104.63 |
215 | 7 4 C F 7 | - - - - - 4 - 4 - - E A 3 4 4 - 4 2 6 B 3 C 2 4 - - E A 3 - - -  | 215 |  58 |  98.52 |  46.16 |  75 |  87 |  98.58 |
216 | 7 4 1 1 3 | - - - - - 8 E 2 - - F 3 - 8 A 6 9 2 9 2 - 8 E 2 - - B 3 - - - -  |   4 |  62 |        |  40.55 |  74 |  84 | 102.60 |
217 | 7 4 1 3 3 | - - - - - 8 A 2 - - F 2 - 8 E 6 9 2 B 3 - 8 A 2 - - B 2 - - - -  |   4 |  62 |        |  40.55 |  74 |  84 | 102.60 |
218 | 7 4 1 7 7 | - - - - - - 8 2 - - F 2 - - C 6 9 2 F 3 - 8 A 2 - - F 2 - - - -  | 218 |  54 |  94.46 |  40.22 |  68 |  79 |  94.48 |
219 | 7 4 1 B 3 | - - - - - 8 A 6 - - F 2 1 8 E 2 9 2 3 3 1 8 A 6 - - B 2 1 - - -  |   6 |  74 |        |  40.83 |  85 |  94 | 114.77 |
220 | 7 4 1 F 7 | - - - - - - 8 6 - - F 2 1 - C 2 9 2 7 3 1 8 A 6 - - F 2 1 - - -  | 220 |  66 | 106.64 |  40.57 |  79 |  89 | 106.66 |
221 | 7 4 5 1 3 | - - - - - 8 E 2 - - F B 2 8 A 6 D 2 9 A 2 8 E 2 - - B B 2 - - -  |   6 |  74 |        |  40.83 |  85 |  94 | 114.77 |
222 | 7 4 5 3 3 | - - - - - 8 A 2 - - F A 2 8 E 6 D 2 B B 2 8 A 2 - - B A 2 - - -  |   6 |  74 |        |  40.83 |  85 |  94 | 114.77 |
223 | 7 4 5 7 7 | - - - - - - 8 2 - - F A 2 - C 6 D 2 F B 2 8 A 2 - - F A 2 - - -  | 220 |  66 |        |  40.57 |  79 |  89 | 106.66 |
224 | 7 4 5 B 3 | - - - - - 8 A 6 - - F A 3 8 E 2 D 2 3 B 3 8 A 6 - - B A 3 - - -  |   6 |  74 |        |  40.83 |  85 |  94 | 114.77 |
225 | 7 4 5 F 7 | - - - - - - 8 6 - - F A 3 - C 2 D 2 7 B 3 8 A 6 - - F A 3 - - -  | 220 |  66 |        |  40.57 |  79 |  89 | 106.66 |
226 | 7 4 9 1 3 | - - - - - C E 2 - - E 3 - C A 6 1 2 8 2 - C E 2 - - A 3 - - - -  | 226 |  60 | 100.55 |  42.40 |  73 |  82 | 100.57 |
227 | 7 4 9 3 3 | - - - - - C A 2 - - E 2 - C E 6 1 2 A 3 - C A 2 - - A 2 - - - -  | 227 |  62 | 102.59 |  40.55 |  73 |  82 | 102.60 |
228 | 7 4 9 7 7 | - - - - - 4 8 2 - - E 2 - 4 C 6 1 2 E 3 - C A 2 - - E 2 - - - -  | 228 |  58 |  98.52 |  42.25 |  71 |  82 |  98.54 |
229 | 7 4 9 B 3 | - - - - - C A 6 - - E 2 1 C E 2 1 2 2 3 1 C A 6 - - A 2 1 - - -  | 229 |  74 | 114.75 |  40.83 |  84 |  92 | 114.77 |
230 | 7 4 9 F 7 | - - - - - 4 8 6 - - E 2 1 4 C 2 1 2 6 3 1 C A 6 - - E 2 1 - - -  | 230 |  70 | 110.70 |  42.53 |  82 |  92 | 110.71 |
231 | 7 4 D 1 3 | - - - - - C E 2 - - E B 2 C A 6 5 2 8 A 2 C E 2 - - A B 2 - - -  | 231 |  72 | 112.73 |  42.65 |  84 |  92 | 112.74 |
232 | 7 4 D 3 3 | - - - - - C A 2 - - E A 2 C E 6 5 2 A B 2 C A 2 - - A A 2 - - -  | 229 |  74 |        |  40.83 |  84 |  92 | 114.77 |
233 | 7 4 D 7 7 | - - - - - 4 8 2 - - E A 2 4 C 6 5 2 E B 2 C A 2 - - E A 2 - - -  | 230 |  70 |        |  42.53 |  82 |  92 | 110.71 |
234 | 7 4 D B 3 | - - - - - C A 6 - - E A 3 C E 2 5 2 2 B 3 C A 6 - - A A 3 - - -  | 229 |  74 |        |  40.83 |  84 |  92 | 114.77 |
235 | 7 4 D F 7 | - - - - - 4 8 6 - - E A 3 4 C 2 5 2 6 B 3 C A 6 - - E A 3 - - -  | 230 |  70 |        |  42.53 |  82 |  92 | 110.71 |
236 | 7 9 B 1 3 | - - - - - 4 C 2 - - 6 1 - 4 8 B 3 2 - - - 4 C 2 - - 2 1 - - - -  | 236 |  48 |  88.36 |  44.19 |  64 |  76 |  88.40 |
237 | 7 9 B 3 3 | - - - - - 4 8 2 - - 6 - - 4 C B 3 2 2 1 - 4 8 2 - - 2 - - - - -  | 237 |  48 |  88.36 |  43.90 |  63 |  75 |  88.39 |
238 | 7 9 B 7 7 | - - - - - C A 2 - - 6 - - C E B 3 2 6 1 - 4 8 2 - - 6 - - - - -  | 238 |  52 |  92.43 |  42.23 |  67 |  77 |  92.45 |
239 | 7 9 B B 3 | - - - - - 4 8 6 - - 6 - 1 4 C F 3 2 A 1 1 4 8 6 - - 2 - 1 - - -  | 239 |  60 | 100.55 |  44.25 |  75 |  86 | 100.57 |

Fig. 18: Walsh spectrum decomposition and attack complexity (2)
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 id | mask of X1|                            mask of Y0                            | id’ |  d1 | comp.1 | # mul  |  d2 |  d3 | comp.2 | 
240 | 7 9 B F 7 | - - - - - C A 6 - - 6 - 1 C E F 3 2 E 1 1 4 8 6 - - 6 - 1 - - -  | 240 |  64 | 104.61 |  42.56 |  79 |  88 | 104.63 |
241 | 7 9 2 1 3 | - - - - - - 4 - - - 7 1 - - - 9 A 2 1 - - - 4 - - - 3 1 - - - -  | 241 |  36 |  76.13 |  38.72 |  52 |  66 |  76.23 |
242 | 7 9 2 3 3 | - - - - - - - - - - 7 - - - 4 9 A 2 3 1 - - - - - - 3 - - - - -  | 242 |  30 |  70.00 |  37.31 |  46 |  60 |  70.10 |
243 | 7 9 2 7 7 | - - - - - 8 2 - - - 7 - - 8 6 9 A 2 7 1 - - - - - - 7 - - - - -  | 243 |  40 |  80.21 |  37.98 |  56 |  70 |  80.31 |
244 | 7 9 2 B 3 | - - - - - - - 4 - - 7 - 1 - 4 D A 2 B 1 1 - - 4 - - 3 - 1 - - -  | 244 |  46 |  86.32 |  39.94 |  62 |  75 |  86.38 |
245 | 7 9 2 F 7 | - - - - - 8 2 4 - - 7 - 1 8 6 D A 2 F 1 1 - - 4 - - 7 - 1 - - -  | 245 |  56 |  96.49 |  41.18 |  72 |  85 |  96.55 |
246 | 7 9 6 1 3 | - - - - - - 4 - - - 7 9 2 - - 9 E 2 1 8 2 - 4 - - - 3 9 2 - - -  | 246 |  50 |  90.39 |  40.90 |  65 |  79 |  90.45 |
247 | 7 9 6 3 3 | - - - - - - - - - - 7 8 2 - 4 9 E 2 3 9 2 - - - - - 3 8 2 - - -  | 247 |  46 |  86.32 |  40.78 |  61 |  75 |  86.38 |
248 | 7 9 6 7 7 | - - - - - 8 2 - - - 7 8 2 8 6 9 E 2 7 9 2 - - - - - 7 8 2 - - -  | 248 |  56 |  96.49 |  41.59 |  71 |  85 |  96.55 |
249 | 7 9 6 B 3 | - - - - - - - 4 - - 7 8 3 - 4 D E 2 B 9 3 - - 4 - - 3 8 3 - - -  | 249 |  50 |  90.39 |  42.96 |  65 |  77 |  90.42 |
250 | 7 9 6 F 7 | - - - - - 8 2 4 - - 7 8 3 8 6 D E 2 F 9 3 - - 4 - - 7 8 3 - - -  | 250 |  60 | 100.55 |  44.80 |  75 |  87 | 100.58 |
251 | 7 9 A 1 3 | - - - - - 4 4 - - - 6 1 - 4 - 9 2 2 - - - 4 4 - - - 2 1 - - - -  | 251 |  38 |  78.17 |  42.06 |  54 |  68 |  78.27 |
252 | 7 9 A 3 3 | - - - - - 4 - - - - 6 - - 4 4 9 2 2 2 1 - 4 - - - - 2 - - - - -  | 252 |  36 |  76.13 |  40.72 |  51 |  65 |  76.19 |
253 | 7 9 A 7 7 | - - - - - C 2 - - - 6 - - C 6 9 2 2 6 1 - 4 - - - - 6 - - - - -  | 253 |  42 |  82.25 |  39.92 |  57 |  71 |  82.31 |
254 | 7 9 A B 3 | - - - - - 4 - 4 - - 6 - 1 4 4 D 2 2 A 1 1 4 - 4 - - 2 - 1 - - -  | 254 |  52 |  92.43 |  43.93 |  67 |  80 |  92.46 |
255 | 7 9 A F 7 | - - - - - C 2 4 - - 6 - 1 C 6 D 2 2 E 1 1 4 - 4 - - 6 - 1 - - -  | 255 |  58 |  98.52 |  43.16 |  73 |  86 |  98.56 |
256 | 7 9 E 1 3 | - - - - - 4 4 - - - 6 9 2 4 - 9 6 2 - 8 2 4 4 - - - 2 9 2 - - -  | 256 |  52 |  92.43 |  44.37 |  68 |  82 |  92.53 |
257 | 7 9 E 3 3 | - - - - - 4 - - - - 6 8 2 4 4 9 6 2 2 9 2 4 - - - - 2 8 2 - - -  | 257 |  52 |  92.43 |  44.74 |  66 |  80 |  92.46 |
258 | 7 9 E 7 7 | - - - - - C 2 - - - 6 8 2 C 6 9 6 2 6 9 2 4 - - - - 6 8 2 - - -  | 258 |  58 |  98.52 |  43.57 |  72 |  86 |  98.56 |
259 | 7 9 E B 3 | - - - - - 4 - 4 - - 6 8 3 4 4 D 6 2 A 9 3 4 - 4 - - 2 8 3 - - -  | 259 |  56 |  96.49 |  47.49 |  70 |  82 |  96.51 |
260 | 7 9 E F 7 | - - - - - C 2 4 - - 6 8 3 C 6 D 6 2 E 9 3 4 - 4 - - 6 8 3 - - -  | 260 |  62 | 102.59 |  46.80 |  76 |  88 | 102.61 |
261 | A 4 C 8 A | - - - - - 4 4 - - - 3 B 2 4 - - C - 1 A 3 4 4 - - - 3 B 2 - - -  | 261 |  48 |  88.36 |  44.19 |  65 |  78 |  88.46 |
262 | A 4 C 2 A | - - - - - 4 - 4 - - 3 A 3 4 4 4 C - B B 2 4 - 4 - - 3 A 3 - - -  | 262 |  52 |  92.43 |  48.14 |  68 |  80 |  92.46 |
263 | A 4 C 6 E | - - - - - C 2 4 - - 3 A 3 C 6 4 C - F B 2 4 - 4 - - 7 A 3 - - -  | 263 |  58 |  98.52 |  47.09 |  74 |  86 |  98.56 |
264 | A 4 C A A | - - - - - 4 - - - - 3 A 2 4 4 - C - 3 B 3 4 - - - - 3 A 2 - - -  | 264 |  46 |  86.32 |  43.72 |  63 |  76 |  86.42 |
265 | A 4 C E E | - - - - - C 2 - - - 3 A 2 C 6 - C - 7 B 3 4 - - - - 7 A 2 - - -  | 265 |  52 |  92.43 |  42.22 |  69 |  82 |  92.53 |
266 | A 4 1 8 A | - - - - - - C 2 - - 2 3 - - 8 2 1 - - 2 1 - C 2 - - 2 3 - - - -  | 266 |  46 |  86.32 |  40.13 |  64 |  76 |  86.42 |
267 | A 4 1 2 A | - - - - - - 8 6 - - 2 2 1 - C 6 1 - A 3 - - 8 6 - - 2 2 1 - - -  | 267 |  54 |  94.46 |  40.43 |  70 |  81 |  94.49 |
268 | A 4 1 6 E | - - - - - 8 A 6 - - 2 2 1 8 E 6 1 - E 3 - - 8 6 - - 6 2 1 - - -  | 268 |  62 | 102.59 |  40.72 |  78 |  88 | 102.61 |
269 | A 4 1 A A | - - - - - - 8 2 - - 2 2 - - C 2 1 - 2 3 1 - 8 2 - - 2 2 - - - -  | 269 |  50 |  90.39 |  40.21 |  66 |  77 |  90.42 |
270 | A 4 1 E E | - - - - - 8 A 2 - - 2 2 - 8 E 2 1 - 6 3 1 - 8 2 - - 6 2 - - - -  | 270 |  58 |  98.52 |  40.54 |  74 |  84 |  98.54 |
271 | A 4 5 8 A | - - - - - - C 2 - - 2 B 2 - 8 2 5 - - A 3 - C 2 - - 2 B 2 - - -  |  66 |  54 |        |  40.43 |  71 |  83 |  94.52 |
272 | A 4 5 2 A | - - - - - - 8 6 - - 2 A 3 - C 6 5 - A B 2 - 8 6 - - 2 A 3 - - -  |  69 |  58 |        |  40.49 |  73 |  84 |  98.54 |
273 | A 4 5 6 E | - - - - - 8 A 6 - - 2 A 3 8 E 6 5 - E B 2 - 8 6 - - 6 A 3 - - -  |  70 |  66 |        |  40.77 |  81 |  91 | 106.66 |
274 | A 4 5 A A | - - - - - - 8 2 - - 2 A 2 - C 2 5 - 2 B 3 - 8 2 - - 2 A 2 - - -  |  69 |  58 |        |  40.49 |  73 |  84 |  98.54 |
275 | A 4 5 E E | - - - - - 8 A 2 - - 2 A 2 8 E 2 5 - 6 B 3 - 8 2 - - 6 A 2 - - -  |  70 |  66 |        |  40.77 |  81 |  91 | 106.66 |
276 | A 4 9 8 A | - - - - - 4 C 2 - - 3 3 - 4 8 2 9 - 1 2 1 4 C 2 - - 3 3 - - - -  | 276 |  56 |  96.49 |  44.23 |  71 |  82 |  96.51 |
277 | A 4 9 2 A | - - - - - 4 8 6 - - 3 2 1 4 C 6 9 - B 3 - 4 8 6 - - 3 2 1 - - -  | 277 |  60 | 100.55 |  44.48 |  75 |  86 | 100.57 |
278 | A 4 9 6 E | - - - - - C A 6 - - 3 2 1 C E 6 9 - F 3 - 4 8 6 - - 7 2 1 - - -  | 278 |  64 | 104.61 |  42.68 |  79 |  88 | 104.63 |
279 | A 4 9 A A | - - - - - 4 8 2 - - 3 2 - 4 C 2 9 - 3 3 1 4 8 2 - - 3 2 - - - -  | 279 |  56 |  96.49 |  44.23 |  71 |  82 |  96.51 |
280 | A 4 9 E E | - - - - - C A 2 - - 3 2 - C E 2 9 - 7 3 1 4 8 2 - - 7 2 - - - -  | 280 |  60 | 100.55 |  42.50 |  75 |  84 | 100.57 |
281 | A 4 D 8 A | - - - - - 4 C 2 - - 3 B 2 4 8 2 D - 1 A 3 4 C 2 - - 3 B 2 - - -  |  76 |  64 |        |  44.50 |  78 |  89 | 104.63 |
282 | A 4 D 2 A | - - - - - 4 8 6 - - 3 A 3 4 C 6 D - B B 2 4 8 6 - - 3 A 3 - - -  |  79 |  64 |        |  44.50 |  78 |  89 | 104.63 |
283 | A 4 D 6 E | - - - - - C A 6 - - 3 A 3 C E 6 D - F B 2 4 8 6 - - 7 A 3 - - -  |  80 |  68 |        |  42.73 |  82 |  91 | 108.69 |
284 | A 4 D A A | - - - - - 4 8 2 - - 3 A 2 4 C 2 D - 3 B 3 4 8 2 - - 3 A 2 - - -  |  79 |  64 |        |  44.50 |  78 |  89 | 104.63 |
285 | A 4 D E E | - - - - - C A 2 - - 3 A 2 C E 2 D - 7 B 3 4 8 2 - - 7 A 2 - - -  |  80 |  68 |        |  42.73 |  82 |  91 | 108.69 |
286 | A 9 B 8 A | - - - - - C E 2 - - B 1 - C A F B - 9 - 1 C E 2 - - B 1 - - - -  | 286 |  58 |  98.52 |  40.49 |  72 |  82 |  98.54 |
287 | A 9 B 2 A | - - - - - C A 6 - - B - 1 C E B B - 3 1 - C A 6 - - B - 1 - - -  | 287 |  58 |  98.52 |  40.49 |  72 |  83 |  98.54 |
288 | A 9 B 6 E | - - - - - 4 8 6 - - B - 1 4 C B B - 7 1 - C A 6 - - F - 1 - - -  | 288 |  54 |  94.46 |  42.23 |  70 |  83 |  94.52 |
289 | A 9 B A A | - - - - - C A 2 - - B - - C E F B - B 1 1 C A 2 - - B - - - - -  | 289 |  54 |  94.46 |  40.28 |  68 |  79 |  94.48 |
290 | A 9 B E E | - - - - - 4 8 2 - - B - - 4 C F B - F 1 1 C A 2 - - F - - - - -  | 290 |  50 |  90.39 |  41.92 |  66 |  79 |  90.45 |
291 | A 9 2 8 A | - - - - - 8 6 - - - A 1 - 8 2 D 2 - 8 - 1 8 6 - - - A 1 - - - -  | 291 |  48 |  88.36 |  42.02 |  65 |  77 |  88.42 |
292 | A 9 2 2 A | - - - - - 8 2 4 - - A - 1 8 6 9 2 - 2 1 - 8 2 4 - - A - 1 - - -  | 292 |  54 |  94.46 |  43.09 |  70 |  82 |  94.50 |
293 | A 9 2 6 E | - - - - - - - 4 - - A - 1 - 4 9 2 - 6 1 - 8 2 4 - - E - 1 - - -  | 293 |  44 |  84.29 |  41.74 |  61 |  74 |  84.39 |
294 | A 9 2 A A | - - - - - 8 2 - - - A - - 8 6 D 2 - A 1 1 8 2 - - - A - - - - -  | 294 |  46 |  86.32 |  39.94 |  62 |  75 |  86.38 |
295 | A 9 2 E E | - - - - - - - - - - A - - - 4 D 2 - E 1 1 8 2 - - - E - - - - -  | 295 |  36 |  76.13 |  39.24 |  53 |  67 |  76.31 |
296 | A 9 6 8 A | - - - - - 8 6 - - - A 9 2 8 2 D 6 - 8 8 3 8 6 - - - A 9 2 - - -  | 296 |  58 |  98.52 |  44.31 |  75 |  87 |  98.58 |
297 | A 9 6 2 A | - - - - - 8 2 4 - - A 8 3 8 6 9 6 - 2 9 2 8 2 4 - - A 8 3 - - -  |  99 |  62 |        |  46.79 |  77 |  88 | 102.61 |
298 | A 9 6 6 E | - - - - - - - 4 - - A 8 3 - 4 9 6 - 6 9 2 8 2 4 - - E 8 3 - - -  | 100 |  52 |        |  44.92 |  68 |  81 |  92.48 |
299 | A 9 6 A A | - - - - - 8 2 - - - A 8 2 8 6 D 6 - A 9 3 8 2 - - - A 8 2 - - -  |  97 |  58 |        |  43.55 |  73 |  85 |  98.55 |
300 | A 9 6 E E | - - - - - - - - - - A 8 2 - 4 D 6 - E 9 3 8 2 - - - E 8 2 - - -  |  98 |  48 |        |  42.70 |  64 |  78 |  88.46 |
301 | A 9 A 8 A | - - - - - C 6 - - - B 1 - C 2 D A - 9 - 1 C 6 - - - B 1 - - - -  | 301 |  50 |  90.39 |  40.21 |  65 |  77 |  90.42 |
302 | A 9 A 2 A | - - - - - C 2 4 - - B - 1 C 6 9 A - 3 1 - C 2 4 - - B - 1 - - -  | 302 |  54 |  94.46 |  43.09 |  69 |  81 |  94.49 |
303 | A 9 A 6 E | - - - - - 4 - 4 - - B - 1 4 4 9 A - 7 1 - C 2 4 - - F - 1 - - -  | 303 |  48 |  88.36 |  43.89 |  64 |  77 |  88.42 |
304 | A 9 A A A | - - - - - C 2 - - - B - - C 6 D A - B 1 1 C 2 - - - B - - - - -  | 304 |  46 |  86.32 |  39.94 |  61 |  74 |  86.36 |
305 | A 9 A E E | - - - - - 4 - - - - B - - 4 4 D A - F 1 1 C 2 - - - F - - - - -  | 305 |  40 |  80.21 |  40.73 |  56 |  70 |  80.31 |
306 | A 9 E 8 A | - - - - - C 6 - - - B 9 2 C 2 D E - 9 8 3 C 6 - - - B 9 2 - - -  | 306 |  60 | 100.55 |  42.40 |  74 |  86 | 100.57 |
307 | A 9 E 2 A | - - - - - C 2 4 - - B 8 3 C 6 9 E - 3 9 2 C 2 4 - - B 8 3 - - -  | 109 |  62 |        |  46.79 |  76 |  87 | 102.60 |
308 | A 9 E 6 E | - - - - - 4 - 4 - - B 8 3 4 4 9 E - 7 9 2 C 2 4 - - F 8 3 - - -  | 110 |  56 |        |  47.48 |  71 |  84 |  96.53 |
309 | A 9 E A A | - - - - - C 2 - - - B 8 2 C 6 D E - B 9 3 C 2 - - - B 8 2 - - -  | 107 |  58 |        |  43.55 |  72 |  84 |  98.54 |
310 | A 9 E E E | - - - - - 4 - - - - B 8 2 4 4 D E - F 9 3 C 2 - - - F 8 2 - - -  | 108 |  52 |        |  44.73 |  67 |  81 |  92.48 |
311 | B 4 C 1 B | - - - - - 4 4 4 - - 2 B 3 4 - 4 4 2 8 A 2 4 4 4 - - 2 B 3 - - -  | 311 |  56 |  96.49 |  51.17 |  74 |  86 |  96.59 |
312 | B 4 C 3 B | - - - - - 4 - 4 - - 2 A 3 4 4 4 4 2 A B 2 4 - 4 - - 2 A 3 - - -  | 312 |  56 |  96.49 |  48.14 |  72 |  84 |  96.53 |
313 | B 4 C 7 F | - - - - - C 2 4 - - 2 A 3 C 6 4 4 2 E B 2 4 - 4 - - 6 A 3 - - -  | 313 |  62 | 102.59 |  47.09 |  78 |  90 | 102.62 |
314 | B 4 C B B | - - - - - 4 - - - - 2 A 2 4 4 - 4 2 2 B 3 4 - - - - 2 A 2 - - -  | 314 |  50 |  90.39 |  43.73 |  67 |  80 |  90.49 |
315 | B 4 C F F | - - - - - C 2 - - - 2 A 2 C 6 - 4 2 6 B 3 4 - - - - 6 A 2 - - -  | 315 |  56 |  96.49 |  42.24 |  73 |  86 |  96.59 |
316 | B 4 1 1 B | - - - - - - C 6 - - 3 3 1 - 8 6 9 2 9 2 - - C 6 - - 3 3 1 - - -  | 316 |  58 |  98.52 |  40.49 |  72 |  82 |  98.54 |
317 | B 4 1 3 B | - - - - - - 8 6 - - 3 2 1 - C 6 9 2 B 3 - - 8 6 - - 3 2 1 - - -  | 317 |  58 |  98.52 |  40.49 |  72 |  82 |  98.54 |
318 | B 4 1 7 F | - - - - - 8 A 6 - - 3 2 1 8 E 6 9 2 F 3 - - 8 6 - - 7 2 1 - - -  | 318 |  66 | 106.64 |  40.77 |  80 |  89 | 106.66 |
319 | B 4 1 B B | - - - - - - 8 2 - - 3 2 - - C 2 9 2 3 3 1 - 8 2 - - 3 2 - - - -  | 319 |  54 |  94.46 |  40.28 |  68 |  79 |  94.48 |
320 | B 4 1 F F | - - - - - 8 A 2 - - 3 2 - 8 E 2 9 2 7 3 1 - 8 2 - - 7 2 - - - -  | 320 |  62 | 102.59 |  40.60 |  76 |  86 | 102.60 |
321 | B 4 5 1 B | - - - - - - C 6 - - 3 B 3 - 8 6 D 2 9 A 2 - C 6 - - 3 B 3 - - -  | 121 |  62 |        |  40.55 |  75 |  85 | 102.60 |
322 | B 4 5 3 B | - - - - - - 8 6 - - 3 A 3 - C 6 D 2 B B 2 - 8 6 - - 3 A 3 - - -  | 119 |  62 |        |  40.55 |  75 |  85 | 102.60 |
323 | B 4 5 7 F | - - - - - 8 A 6 - - 3 A 3 8 E 6 D 2 F B 2 - 8 6 - - 7 A 3 - - -  | 120 |  70 |        |  40.82 |  83 |  92 | 110.71 |
324 | B 4 5 B B | - - - - - - 8 2 - - 3 A 2 - C 2 D 2 3 B 3 - 8 2 - - 3 A 2 - - -  | 119 |  62 |        |  40.55 |  75 |  85 | 102.60 |
325 | B 4 5 F F | - - - - - 8 A 2 - - 3 A 2 8 E 2 D 2 7 B 3 - 8 2 - - 7 A 2 - - -  | 120 |  70 |        |  40.82 |  83 |  92 | 110.71 |
326 | B 4 9 1 B | - - - - - 4 C 6 - - 2 3 1 4 8 6 1 2 8 2 - 4 C 6 - - 2 3 1 - - -  | 326 |  62 | 102.59 |  46.47 |  77 |  87 | 102.60 |
327 | B 4 9 3 B | - - - - - 4 8 6 - - 2 2 1 4 C 6 1 2 A 3 - 4 8 6 - - 2 2 1 - - -  | 327 |  64 | 104.61 |  44.50 |  77 |  87 | 104.63 |
328 | B 4 9 7 F | - - - - - C A 6 - - 2 2 1 C E 6 1 2 E 3 - 4 8 6 - - 6 2 1 - - -  | 328 |  68 | 108.67 |  42.73 |  81 |  89 | 108.69 |
329 | B 4 9 B B | - - - - - 4 8 2 - - 2 2 - 4 C 2 1 2 2 3 1 4 8 2 - - 2 2 - - - -  | 329 |  60 | 100.55 |  44.25 |  73 |  84 | 100.57 |
330 | B 4 9 F F | - - - - - C A 2 - - 2 2 - C E 2 1 2 6 3 1 4 8 2 - - 6 2 - - - -  | 330 |  64 | 104.61 |  42.56 |  77 |  86 | 104.63 |
331 | B 4 D 1 B | - - - - - 4 C 6 - - 2 B 3 4 8 6 5 2 8 A 2 4 C 6 - - 2 B 3 - - -  | 131 |  66 |        |  46.47 |  80 |  90 | 106.66 |
332 | B 4 D 3 B | - - - - - 4 8 6 - - 2 A 3 4 C 6 5 2 A B 2 4 8 6 - - 2 A 3 - - -  | 129 |  68 |        |  44.51 |  80 |  90 | 108.69 |
333 | B 4 D 7 F | - - - - - C A 6 - - 2 A 3 C E 6 5 2 E B 2 4 8 6 - - 6 A 3 - - -  | 130 |  72 |        |  42.78 |  84 |  92 | 112.74 |
334 | B 4 D B B | - - - - - 4 8 2 - - 2 A 2 4 C 2 5 2 2 B 3 4 8 2 - - 2 A 2 - - -  | 129 |  68 |        |  44.51 |  80 |  90 | 108.69 |
335 | B 4 D F F | - - - - - C A 2 - - 2 A 2 C E 2 5 2 6 B 3 4 8 2 - - 6 A 2 - - -  | 130 |  72 |        |  42.78 |  84 |  92 | 112.74 |
336 | B 9 B 1 B | - - - - - C E 6 - - A 1 1 C A B 3 2 - - - C E 6 - - A 1 1 - - -  | 336 |  62 | 102.59 |  40.68 |  76 |  85 | 102.60 |
337 | B 9 B 3 B | - - - - - C A 6 - - A - 1 C E B 3 2 2 1 - C A 6 - - A - 1 - - -  | 337 |  62 | 102.59 |  40.55 |  75 |  84 | 102.60 |
338 | B 9 B 7 F | - - - - - 4 8 6 - - A - 1 4 C B 3 2 6 1 - C A 6 - - E - 1 - - -  | 338 |  58 |  98.52 |  42.25 |  73 |  84 |  98.54 |
339 | B 9 B B B | - - - - - C A 2 - - A - - C E F 3 2 A 1 1 C A 2 - - A - - - - -  | 339 |  58 |  98.52 |  40.35 |  71 |  81 |  98.54 |
340 | B 9 B F F | - - - - - 4 8 2 - - A - - 4 C F 3 2 E 1 1 C A 2 - - E - - - - -  | 340 |  54 |  94.46 |  41.94 |  69 |  81 |  94.49 |
341 | B 9 2 1 B | - - - - - 8 6 4 - - B 1 1 8 2 9 A 2 1 - - 8 6 4 - - B 1 1 - - -  | 341 |  62 | 102.59 |  43.25 |  77 |  86 | 102.60 |
342 | B 9 2 3 B | - - - - - 8 2 4 - - B - 1 8 6 9 A 2 3 1 - 8 2 4 - - B - 1 - - -  | 342 |  58 |  98.52 |  43.13 |  73 |  83 |  98.54 |
343 | B 9 2 7 F | - - - - - - - 4 - - B - 1 - 4 9 A 2 7 1 - 8 2 4 - - F - 1 - - -  | 343 |  48 |  88.36 |  41.84 |  64 |  77 |  88.42 |
344 | B 9 2 B B | - - - - - 8 2 - - - B - - 8 6 D A 2 B 1 1 8 2 - - - B - - - - -  | 344 |  50 |  90.39 |  40.03 |  65 |  77 |  90.42 |
345 | B 9 2 F F | - - - - - - - - - - B - - - 4 D A 2 F 1 1 8 2 - - - F - - - - -  | 345 |  40 |  80.21 |  39.38 |  56 |  70 |  80.31 |
346 | B 9 6 1 B | - - - - - 8 6 4 - - B 9 3 8 2 9 E 2 1 8 2 8 6 4 - - B 9 3 - - -  | 346 |  68 | 108.67 |  45.25 |  82 |  91 | 108.69 |
347 | B 9 6 3 B | - - - - - 8 2 4 - - B 8 3 8 6 9 E 2 3 9 2 8 2 4 - - B 8 3 - - -  | 149 |  66 |        |  46.80 |  80 |  89 | 106.66 |
348 | B 9 6 7 F | - - - - - - - 4 - - B 8 3 - 4 9 E 2 7 9 2 8 2 4 - - F 8 3 - - -  | 150 |  56 |        |  44.96 |  71 |  83 |  96.52 |
349 | B 9 6 B B | - - - - - 8 2 - - - B 8 2 8 6 D E 2 B 9 3 8 2 - - - B 8 2 - - -  | 147 |  62 |        |  43.57 |  76 |  87 | 102.60 |
350 | B 9 6 F F | - - - - - - - - - - B 8 2 - 4 D E 2 F 9 3 8 2 - - - F 8 2 - - -  | 148 |  52 |        |  42.75 |  67 |  81 |  92.48 |
351 | B 9 A 1 B | - - - - - C 6 4 - - A 1 1 C 2 9 2 2 - - - C 6 4 - - A 1 1 - - -  | 351 |  58 |  98.52 |  43.21 |  73 |  83 |  98.54 |
352 | B 9 A 3 B | - - - - - C 2 4 - - A - 1 C 6 9 2 2 2 1 - C 2 4 - - A - 1 - - -  | 352 |  58 |  98.52 |  43.13 |  72 |  82 |  98.54 |
353 | B 9 A 7 F | - - - - - 4 - 4 - - A - 1 4 4 9 2 2 6 1 - C 2 4 - - E - 1 - - -  | 353 |  52 |  92.43 |  43.91 |  67 |  80 |  92.46 |
354 | B 9 A B B | - - - - - C 2 - - - A - - C 6 D 2 2 A 1 1 C 2 - - - A - - - - -  | 354 |  50 |  90.39 |  40.03 |  64 |  76 |  90.41 |
355 | B 9 A F F | - - - - - 4 - - - - A - - 4 4 D 2 2 E 1 1 C 2 - - - E - - - - -  | 355 |  44 |  84.29 |  40.78 |  59 |  73 |  84.34 |
356 | B 9 E 1 B | - - - - - C 6 4 - - A 9 3 C 2 9 6 2 - 8 2 C 6 4 - - A 9 3 - - -  | 356 |  64 | 104.61 |  45.21 |  79 |  89 | 104.63 |
357 | B 9 E 3 B | - - - - - C 2 4 - - A 8 3 C 6 9 6 2 2 9 2 C 2 4 - - A 8 3 - - -  | 159 |  66 |        |  46.80 |  79 |  88 | 106.66 |
358 | B 9 E 7 F | - - - - - 4 - 4 - - A 8 3 4 4 9 6 2 6 9 2 C 2 4 - - E 8 3 - - -  | 160 |  60 |        |  47.49 |  74 |  86 | 100.57 |
359 | B 9 E B B | - - - - - C 2 - - - A 8 2 C 6 D 6 2 A 9 3 C 2 - - - A 8 2 - - -  | 157 |  62 |        |  43.57 |  75 |  86 | 102.60 |

Fig. 19: Walsh spectrum decomposition and attack complexity (3)



Linear Attacks using Walsh Spectrum Puncturing 61

 id | mask of X1|                            mask of Y0                            | id’ |  d1 | comp.1 | # mul  |  d2 |  d3 | comp.2 | 
360 | B 9 E F F | - - - - - 4 - - - - A 8 2 4 4 D 6 2 E 9 3 C 2 - - - E 8 2 - - -  | 158 |  56 |        |  44.74 |  70 |  84 |  96.53 |
361 | E 4 C 8 A | - - - - - C 6 - - - 7 B 2 C 2 - C - 1 A 3 C 6 - - - 3 B 2 - - -  | 361 |  56 |  96.49 |  42.22 |  72 |  83 |  96.52 |
362 | E 4 C 2 A | - - - - - C 2 4 - - 7 A 3 C 6 4 C - B B 2 C 2 4 - - 3 A 3 - - -  | 362 |  62 | 102.59 |  47.09 |  77 |  87 | 102.60 |
363 | E 4 C 6 E | - - - - - 4 - 4 - - 7 A 3 4 4 4 C - F B 2 C 2 4 - - 7 A 3 - - -  | 363 |  56 |  96.49 |  48.14 |  72 |  84 |  96.53 |
364 | E 4 C A A | - - - - - C 2 - - - 7 A 2 C 6 - C - 3 B 3 C 2 - - - 3 A 2 - - -  | 361 |  56 |        |  42.22 |  72 |  83 |  96.52 |
365 | E 4 C E E | - - - - - 4 - - - - 7 A 2 4 4 - C - 7 B 3 C 2 - - - 7 A 2 - - -  | 365 |  50 |  90.39 |  43.72 |  67 |  80 |  90.49 |
366 | E 4 1 8 A | - - - - - 8 E 2 - - 6 3 - 8 A 2 1 - - 2 1 8 E 2 - - 2 3 - - - -  | 366 |  58 |  98.52 |  40.49 |  74 |  85 |  98.55 |
367 | E 4 1 2 A | - - - - - 8 A 6 - - 6 2 1 8 E 6 1 - A 3 - 8 A 6 - - 2 2 1 - - -  | 367 |  66 | 106.64 |  40.73 |  80 |  90 | 106.66 |
368 | E 4 1 6 E | - - - - - - 8 6 - - 6 2 1 - C 6 1 - E 3 - 8 A 6 - - 6 2 1 - - -  | 368 |  58 |  98.52 |  40.45 |  74 |  85 |  98.55 |
369 | E 4 1 A A | - - - - - 8 A 2 - - 6 2 - 8 E 2 1 - 2 3 1 8 A 2 - - 2 2 - - - -  | 369 |  62 | 102.59 |  40.55 |  76 |  86 | 102.60 |
370 | E 4 1 E E | - - - - - - 8 2 - - 6 2 - - C 2 1 - 6 3 1 8 A 2 - - 6 2 - - - -  | 370 |  54 |  94.46 |  40.22 |  70 |  81 |  94.49 |
371 | E 4 5 8 A | - - - - - 8 E 2 - - 6 B 2 8 A 2 5 - - A 3 8 E 2 - - 2 B 2 - - -  | 166 |  66 |        |  40.73 |  81 |  92 | 106.66 |
372 | E 4 5 2 A | - - - - - 8 A 6 - - 6 A 3 8 E 6 5 - A B 2 8 A 6 - - 2 A 3 - - -  | 169 |  70 |        |  40.78 |  83 |  93 | 110.71 |
373 | E 4 5 6 E | - - - - - - 8 6 - - 6 A 3 - C 6 5 - E B 2 8 A 6 - - 6 A 3 - - -  | 170 |  62 |        |  40.51 |  77 |  88 | 102.61 |
374 | E 4 5 A A | - - - - - 8 A 2 - - 6 A 2 8 E 2 5 - 2 B 3 8 A 2 - - 2 A 2 - - -  | 169 |  70 |        |  40.78 |  83 |  93 | 110.71 |
375 | E 4 5 E E | - - - - - - 8 2 - - 6 A 2 - C 2 5 - 6 B 3 8 A 2 - - 6 A 2 - - -  | 170 |  62 |        |  40.51 |  77 |  88 | 102.61 |
376 | E 4 9 8 A | - - - - - C E 2 - - 7 3 - C A 2 9 - 1 2 1 C E 2 - - 3 3 - - - -  |  48 |  62 |        |  40.55 |  75 |  84 | 102.60 |
377 | E 4 9 2 A | - - - - - C A 6 - - 7 2 1 C E 6 9 - B 3 - C A 6 - - 3 2 1 - - -  |  47 |  66 |        |  40.73 |  79 |  88 | 106.66 |
378 | E 4 9 6 E | - - - - - 4 8 6 - - 7 2 1 4 C 6 9 - F 3 - C A 6 - - 7 2 1 - - -  | 378 |  62 | 102.59 |  42.50 |  77 |  88 | 102.61 |
379 | E 4 9 A A | - - - - - C A 2 - - 7 2 - C E 2 9 - 3 3 1 C A 2 - - 3 2 - - - -  |  48 |  62 |        |  40.55 |  75 |  84 | 102.60 |
380 | E 4 9 E E | - - - - - 4 8 2 - - 7 2 - 4 C 2 9 - 7 3 1 C A 2 - - 7 2 - - - -  | 380 |  58 |  98.52 |  42.25 |  73 |  84 |  98.54 |
381 | E 4 D 8 A | - - - - - C E 2 - - 7 B 2 C A 2 D - 1 A 3 C E 2 - - 3 B 2 - - -  | 176 |  70 |        |  40.78 |  82 |  91 | 110.71 |
382 | E 4 D 2 A | - - - - - C A 6 - - 7 A 3 C E 6 D - B B 2 C A 6 - - 3 A 3 - - -  | 176 |  70 |        |  40.78 |  82 |  91 | 110.71 |
383 | E 4 D 6 E | - - - - - 4 8 6 - - 7 A 3 4 C 6 D - F B 2 C A 6 - - 7 A 3 - - -  | 180 |  66 |        |  42.51 |  80 |  91 | 106.66 |
384 | E 4 D A A | - - - - - C A 2 - - 7 A 2 C E 2 D - 3 B 3 C A 2 - - 3 A 2 - - -  | 176 |  70 |        |  40.78 |  82 |  91 | 110.71 |
385 | E 4 D E E | - - - - - 4 8 2 - - 7 A 2 4 C 2 D - 7 B 3 C A 2 - - 7 A 2 - - -  | 180 |  66 |        |  42.51 |  80 |  91 | 106.66 |
386 | E 9 B 8 A | - - - - - 4 C 2 - - F 1 - 4 8 F B - 9 - 1 4 C 2 - - B 1 - - - -  | 386 |  52 |  92.43 |  44.21 |  68 |  80 |  92.46 |
387 | E 9 B 2 A | - - - - - 4 8 6 - - F - 1 4 C B B - 3 1 - 4 8 6 - - B - 1 - - -  | 387 |  52 |  92.43 |  44.21 |  68 |  81 |  92.48 |
388 | E 9 B 6 E | - - - - - C A 6 - - F - 1 C E B B - 7 1 - 4 8 6 - - F - 1 - - -  | 388 |  56 |  96.49 |  42.44 |  72 |  83 |  96.52 |
389 | E 9 B A A | - - - - - 4 8 2 - - F - - 4 C F B - B 1 1 4 8 2 - - B - - - - -  | 389 |  48 |  88.36 |  43.90 |  64 |  77 |  88.42 |
390 | E 9 B E E | - - - - - C A 2 - - F - - C E F B - F 1 1 4 8 2 - - F - - - - -  | 390 |  52 |  92.43 |  42.23 |  68 |  79 |  92.45 |
391 | E 9 2 8 A | - - - - - - 4 - - - E 1 - - - D 2 - 8 - 1 - 4 - - - A 1 - - - -  | 391 |  34 |  74.09 |  40.19 |  52 |  66 |  74.42 |
392 | E 9 2 2 A | - - - - - - - 4 - - E - 1 - 4 9 2 - 2 1 - - - 4 - - A - 1 - - -  | 392 |  38 |  78.17 |  39.75 |  55 |  68 |  78.27 |
393 | E 9 2 6 E | - - - - - 8 2 4 - - E - 1 8 6 9 2 - 6 1 - - - 4 - - E - 1 - - -  | 393 |  48 |  88.36 |  41.10 |  65 |  78 |  88.46 |
394 | E 9 2 A A | - - - - - - - - - - E - - - 4 D 2 - A 1 1 - - - - - A - - - - -  | 394 |  30 |  70.00 |  37.31 |  47 |  61 |  70.18 |
395 | E 9 2 E E | - - - - - 8 2 - - - E - - 8 6 D 2 - E 1 1 - - - - - E - - - - -  | 395 |  40 |  80.21 |  37.98 |  57 |  71 |  80.39 |
396 | E 9 6 8 A | - - - - - - 4 - - - E 9 2 - - D 6 - 8 8 3 - 4 - - - A 9 2 - - -  | 396 |  44 |  84.29 |  42.39 |  62 |  76 |  84.61 |
397 | E 9 6 2 A | - - - - - - - 4 - - E 8 3 - 4 9 6 - 2 9 2 - - 4 - - A 8 3 - - -  | 199 |  46 |        |  42.92 |  62 |  75 |  86.38 |
398 | E 9 6 6 E | - - - - - 8 2 4 - - E 8 3 8 6 9 6 - 6 9 2 - - 4 - - E 8 3 - - -  | 200 |  56 |        |  44.79 |  72 |  85 |  96.55 |
399 | E 9 6 A A | - - - - - - - - - - E 8 2 - 4 D 6 - A 9 3 - - - - - A 8 2 - - -  | 197 |  42 |        |  40.73 |  58 |  72 |  82.35 |
400 | E 9 6 E E | - - - - - 8 2 - - - E 8 2 8 6 D 6 - E 9 3 - - - - - E 8 2 - - -  | 198 |  52 |        |  41.57 |  68 |  82 |  92.53 |
401 | E 9 A 8 A | - - - - - 4 4 - - - F 1 - 4 - D A - 9 - 1 4 4 - - - B 1 - - - -  | 401 |  42 |  82.25 |  42.14 |  58 |  72 |  82.35 |
402 | E 9 A 2 A | - - - - - 4 - 4 - - F - 1 4 4 9 A - 3 1 - 4 - 4 - - B - 1 - - -  | 402 |  44 |  84.29 |  43.88 |  60 |  73 |  84.34 |
403 | E 9 A 6 E | - - - - - C 2 4 - - F - 1 C 6 9 A - 7 1 - 4 - 4 - - F - 1 - - -  | 403 |  50 |  90.39 |  43.08 |  66 |  79 |  90.45 |
404 | E 9 A A A | - - - - - 4 - - - - F - - 4 4 D A - B 1 1 4 - - - - B - - - - -  | 404 |  36 |  76.13 |  40.72 |  52 |  66 |  76.23 |
405 | E 9 A E E | - - - - - C 2 - - - F - - C 6 D A - F 1 1 4 - - - - F - - - - -  | 405 |  42 |  82.25 |  39.92 |  58 |  72 |  82.35 |
406 | E 9 E 8 A | - - - - - 4 4 - - - F 9 2 4 - D E - 9 8 3 4 4 - - - B 9 2 - - -  | 406 |  52 |  92.43 |  44.37 |  67 |  81 |  92.48 |
407 | E 9 E 2 A | - - - - - 4 - 4 - - F 8 3 4 4 9 E - 3 9 2 4 - 4 - - B 8 3 - - -  | 209 |  52 |        |  47.48 |  67 |  80 |  92.46 |
408 | E 9 E 6 E | - - - - - C 2 4 - - F 8 3 C 6 9 E - 7 9 2 4 - 4 - - F 8 3 - - -  | 210 |  58 |        |  46.79 |  73 |  86 |  98.56 |
409 | E 9 E A A | - - - - - 4 - - - - F 8 2 4 4 D E - B 9 3 4 - - - - B 8 2 - - -  | 207 |  48 |        |  44.73 |  63 |  77 |  88.42 |
410 | E 9 E E E | - - - - - C 2 - - - F 8 2 C 6 D E - F 9 3 4 - - - - F 8 2 - - -  | 208 |  54 |        |  43.54 |  69 |  83 |  94.52 |
411 | F 4 C 1 B | - - - - - C 6 4 - - 6 B 3 C 2 4 4 2 8 A 2 C 6 4 - - 2 B 3 - - -  | 411 |  64 | 104.61 |  49.08 |  80 |  90 | 104.63 |
412 | F 4 C 3 B | - - - - - C 2 4 - - 6 A 3 C 6 4 4 2 A B 2 C 2 4 - - 2 A 3 - - -  | 412 |  66 | 106.64 |  47.09 |  80 |  90 | 106.66 |
413 | F 4 C 7 F | - - - - - 4 - 4 - - 6 A 3 4 4 4 4 2 E B 2 C 2 4 - - 6 A 3 - - -  | 413 |  60 | 100.55 |  48.14 |  76 |  88 | 100.59 |
414 | F 4 C B B | - - - - - C 2 - - - 6 A 2 C 6 - 4 2 2 B 3 C 2 - - - 2 A 2 - - -  | 414 |  60 | 100.55 |  42.24 |  75 |  86 | 100.57 |
415 | F 4 C F F | - - - - - 4 - - - - 6 A 2 4 4 - 4 2 6 B 3 C 2 - - - 6 A 2 - - -  | 415 |  54 |  94.46 |  43.73 |  71 |  84 |  94.56 |
416 | F 4 1 1 B | - - - - - 8 E 6 - - 7 3 1 8 A 6 9 2 9 2 - 8 E 6 - - 3 3 1 - - -  | 416 |  70 | 110.70 |  40.78 |  82 |  91 | 110.71 |
417 | F 4 1 3 B | - - - - - 8 A 6 - - 7 2 1 8 E 6 9 2 B 3 - 8 A 6 - - 3 2 1 - - -  | 416 |  70 |        |  40.78 |  82 |  91 | 110.71 |
418 | F 4 1 7 F | - - - - - - 8 6 - - 7 2 1 - C 6 9 2 F 3 - 8 A 6 - - 7 2 1 - - -  | 418 |  62 | 102.59 |  40.51 |  76 |  86 | 102.60 |
419 | F 4 1 B B | - - - - - 8 A 2 - - 7 2 - 8 E 2 9 2 3 3 1 8 A 2 - - 3 2 - - - -  | 419 |  66 | 106.64 |  40.61 |  78 |  88 | 106.66 |
420 | F 4 1 F F | - - - - - - 8 2 - - 7 2 - - C 2 9 2 7 3 1 8 A 2 - - 7 2 - - - -  | 420 |  58 |  98.52 |  40.30 |  72 |  83 |  98.54 |
421 | F 4 5 1 B | - - - - - 8 E 6 - - 7 B 3 8 A 6 D 2 9 A 2 8 E 6 - - 3 B 3 - - -  |   6 |  74 |        |  40.83 |  85 |  94 | 114.77 |
422 | F 4 5 3 B | - - - - - 8 A 6 - - 7 A 3 8 E 6 D 2 B B 2 8 A 6 - - 3 A 3 - - -  |   6 |  74 |        |  40.83 |  85 |  94 | 114.77 |
423 | F 4 5 7 F | - - - - - - 8 6 - - 7 A 3 - C 6 D 2 F B 2 8 A 6 - - 7 A 3 - - -  | 220 |  66 |        |  40.57 |  79 |  89 | 106.66 |
424 | F 4 5 B B | - - - - - 8 A 2 - - 7 A 2 8 E 2 D 2 3 B 3 8 A 2 - - 3 A 2 - - -  |   6 |  74 |        |  40.83 |  85 |  94 | 114.77 |
425 | F 4 5 F F | - - - - - - 8 2 - - 7 A 2 - C 2 D 2 7 B 3 8 A 2 - - 7 A 2 - - -  | 220 |  66 |        |  40.57 |  79 |  89 | 106.66 |
426 | F 4 9 1 B | - - - - - C E 6 - - 6 3 1 C A 6 1 2 8 2 - C E 6 - - 2 3 1 - - -  | 426 |  68 | 108.67 |  42.64 |  81 |  89 | 108.69 |
427 | F 4 9 3 B | - - - - - C A 6 - - 6 2 1 C E 6 1 2 A 3 - C A 6 - - 2 2 1 - - -  | 427 |  70 | 110.70 |  40.78 |  81 |  89 | 110.71 |
428 | F 4 9 7 F | - - - - - 4 8 6 - - 6 2 1 4 C 6 1 2 E 3 - C A 6 - - 6 2 1 - - -  | 428 |  66 | 106.64 |  42.51 |  79 |  89 | 106.66 |
429 | F 4 9 B B | - - - - - C A 2 - - 6 2 - C E 2 1 2 2 3 1 C A 2 - - 2 2 - - - -  | 429 |  66 | 106.64 |  40.61 |  77 |  86 | 106.66 |
430 | F 4 9 F F | - - - - - 4 8 2 - - 6 2 - 4 C 2 1 2 6 3 1 C A 2 - - 6 2 - - - -  | 430 |  62 | 102.59 |  42.26 |  75 |  86 | 102.60 |
431 | F 4 D 1 B | - - - - - C E 6 - - 6 B 3 C A 6 5 2 8 A 2 C E 6 - - 2 B 3 - - -  | 231 |  72 |        |  42.65 |  84 |  92 | 112.74 |
432 | F 4 D 3 B | - - - - - C A 6 - - 6 A 3 C E 6 5 2 A B 2 C A 6 - - 2 A 3 - - -  | 229 |  74 |        |  40.83 |  84 |  92 | 114.77 |
433 | F 4 D 7 F | - - - - - 4 8 6 - - 6 A 3 4 C 6 5 2 E B 2 C A 6 - - 6 A 3 - - -  | 230 |  70 |        |  42.53 |  82 |  92 | 110.71 |
434 | F 4 D B B | - - - - - C A 2 - - 6 A 2 C E 2 5 2 2 B 3 C A 2 - - 2 A 2 - - -  | 229 |  74 |        |  40.83 |  84 |  92 | 114.77 |
435 | F 4 D F F | - - - - - 4 8 2 - - 6 A 2 4 C 2 5 2 6 B 3 C A 2 - - 6 A 2 - - -  | 230 |  70 |        |  42.53 |  82 |  92 | 110.71 |
436 | F 9 B 1 B | - - - - - 4 C 6 - - E 1 1 4 8 B 3 2 - - - 4 C 6 - - A 1 1 - - -  | 436 |  56 |  96.49 |  44.47 |  72 |  83 |  96.52 |
437 | F 9 B 3 B | - - - - - 4 8 6 - - E - 1 4 C B 3 2 2 1 - 4 8 6 - - A - 1 - - -  | 437 |  56 |  96.49 |  44.23 |  71 |  82 |  96.51 |
438 | F 9 B 7 F | - - - - - C A 6 - - E - 1 C E B 3 2 6 1 - 4 8 6 - - E - 1 - - -  | 438 |  60 | 100.55 |  42.50 |  75 |  84 | 100.57 |
439 | F 9 B B B | - - - - - 4 8 2 - - E - - 4 C F 3 2 A 1 1 4 8 2 - - A - - - - -  | 439 |  52 |  92.43 |  43.93 |  67 |  79 |  92.45 |
440 | F 9 B F F | - - - - - C A 2 - - E - - C E F 3 2 E 1 1 4 8 2 - - E - - - - -  | 440 |  56 |  96.49 |  42.31 |  71 |  81 |  96.51 |
441 | F 9 2 1 B | - - - - - - 4 4 - - F 1 1 - - 9 A 2 1 - - - 4 4 - - B 1 1 - - -  | 441 |  48 |  88.36 |  41.07 |  64 |  76 |  88.40 |
442 | F 9 2 3 B | - - - - - - - 4 - - F - 1 - 4 9 A 2 3 1 - - - 4 - - B - 1 - - -  | 442 |  42 |  82.25 |  39.85 |  58 |  71 |  82.31 |
443 | F 9 2 7 F | - - - - - 8 2 4 - - F - 1 8 6 9 A 2 7 1 - - - 4 - - F - 1 - - -  | 443 |  52 |  92.43 |  41.14 |  68 |  81 |  92.48 |
444 | F 9 2 B B | - - - - - - - - - - F - - - 4 D A 2 B 1 1 - - - - - B - - - - -  | 444 |  34 |  74.09 |  37.44 |  50 |  64 |  74.19 |
445 | F 9 2 F F | - - - - - 8 2 - - - F - - 8 6 D A 2 F 1 1 - - - - - F - - - - -  | 445 |  44 |  84.29 |  38.07 |  60 |  74 |  84.39 |
446 | F 9 6 1 B | - - - - - - 4 4 - - F 9 3 - - 9 E 2 1 8 2 - 4 4 - - B 9 3 - - -  | 446 |  54 |  94.46 |  43.09 |  69 |  81 |  94.49 |
447 | F 9 6 3 B | - - - - - - - 4 - - F 8 3 - 4 9 E 2 3 9 2 - - 4 - - B 8 3 - - -  | 249 |  50 |        |  42.96 |  65 |  77 |  90.42 |
448 | F 9 6 7 F | - - - - - 8 2 4 - - F 8 3 8 6 9 E 2 7 9 2 - - 4 - - F 8 3 - - -  | 250 |  60 |        |  44.80 |  75 |  87 | 100.58 |
449 | F 9 6 B B | - - - - - - - - - - F 8 2 - 4 D E 2 B 9 3 - - - - - B 8 2 - - -  | 247 |  46 |        |  40.78 |  61 |  75 |  86.38 |
450 | F 9 6 F F | - - - - - 8 2 - - - F 8 2 8 6 D E 2 F 9 3 - - - - - F 8 2 - - -  | 248 |  56 |        |  41.59 |  71 |  85 |  96.55 |
451 | F 9 A 1 B | - - - - - 4 4 4 - - E 1 1 4 - 9 2 2 - - - 4 4 4 - - A 1 1 - - -  | 451 |  50 |  90.39 |  45.28 |  66 |  78 |  90.43 |
452 | F 9 A 3 B | - - - - - 4 - 4 - - E - 1 4 4 9 2 2 2 1 - 4 - 4 - - A - 1 - - -  | 452 |  48 |  88.36 |  43.90 |  63 |  76 |  88.40 |
453 | F 9 A 7 F | - - - - - C 2 4 - - E - 1 C 6 9 2 2 6 1 - 4 - 4 - - E - 1 - - -  | 453 |  54 |  94.46 |  43.12 |  69 |  82 |  94.50 |
454 | F 9 A B B | - - - - - 4 - - - - E - - 4 4 D 2 2 A 1 1 4 - - - - A - - - - -  | 454 |  40 |  80.21 |  40.77 |  55 |  69 |  80.27 |
455 | F 9 A F F | - - - - - C 2 - - - E - - C 6 D 2 2 E 1 1 4 - - - - E - - - - -  | 455 |  46 |  86.32 |  40.01 |  61 |  75 |  86.38 |
456 | F 9 E 1 B | - - - - - 4 4 4 - - E 9 3 4 - 9 6 2 - 8 2 4 4 4 - - A 9 3 - - -  | 456 |  56 |  96.49 |  47.28 |  72 |  84 |  96.53 |
457 | F 9 E 3 B | - - - - - 4 - 4 - - E 8 3 4 4 9 6 2 2 9 2 4 - 4 - - A 8 3 - - -  | 259 |  56 |        |  47.49 |  70 |  82 |  96.51 |
458 | F 9 E 7 F | - - - - - C 2 4 - - E 8 3 C 6 9 6 2 6 9 2 4 - 4 - - E 8 3 - - -  | 260 |  62 |        |  46.80 |  76 |  88 | 102.61 |
459 | F 9 E B B | - - - - - 4 - - - - E 8 2 4 4 D 6 2 A 9 3 4 - - - - A 8 2 - - -  | 257 |  52 |        |  44.74 |  66 |  80 |  92.46 |
460 | F 9 E F F | - - - - - C 2 - - - E 8 2 C 6 D 6 2 E 9 3 4 - - - - E 8 2 - - -  | 258 |  58 |        |  43.57 |  72 |  86 |  98.56 |

Fig. 20: Walsh spectrum decomposition and attack complexity (4)


