
On Linear Communication Complexity for
(Maximally) Fluid MPC

Alexander Bienstock,1 Daniel Escudero2 and Antigoni Polychroniadou2

1 New York University, New York, U.S.A.
2 J.P. Morgan AI Research & J.P. Morgan AlgoCRYPT CoE, New York, U.S.A.

Abstract. Secure multiparty computation protocols with dynamic par-
ties, which assume that honest parties do not need to be online through-
out the whole execution of the protocol, have recently gained a lot of
traction for computations of large scale distributed protocols, such as
blockchains. More specifically, in Fluid MPC, introduced in (Choudhuri
et al. CRYPTO 2021), parties can dynamically join and leave the compu-
tation from round to round. The best known Fluid MPC protocol in the
honest majority setting communicates O(n2) elements per gate where n
is the number of parties online at a time. While Le Mans (Rachuri and
Scholl, CRYPTO 2022) extends Fluid MPC to the dishonest majority
setting with preprocessing, it still communicates O(n2) elements per gate.

In this work we present alternative Fluid MPC solutions that require
O(n) communication per gate for both the information-theoretic honest
majority setting and the information-theoretic dishonest majority setting
with preprocessing. Our solutions also achieve maximal fluidity where
parties only need to be online for a single communication round. Addi-
tionally, we show that a protocol in the information-theoretic dishonest
majority setting with sub-quadratic o(n2) overhead per gate requires for
each of the N parties who may ever participate in the (later) execution
phase, Ω(N) preprocessed data per gate.

1 Introduction

Secure multiparty computation (MPC) is a promising set of techniques that has
been studied since the 80s [Yao86, GMW87, CCD87], and aims at enabling a
set of mutually distrustful parties to securely compute a given function on their
private inputs, without leaking anything but the output of the function. This
should hold even if an unknown subset of the parties is corrupted by an adversary
which tries to compromise the privacy of the remaining honest parties.

A protocol may be designed to tolerate an arbitrary amount of corruptions,
refereed to as the the dishonest majority setting, or this can be relaxed to only
require security as long as a minority of the parties are corrupted, honest majority
setting. Even though dishonest majority MPC protocols offer stronger security
guarantees tolerating a higher corruption threshold, protocols in the honest
majority setting do not require any computational assumptions and tend to be
computationally more efficient than the cryptographic machinery required for the

dishonest majority setting. Ever since the introduction of MPC, big efforts have
been made at improving its efficiency, which has resulted in a rich and fruitful
line of works, including [DPSZ12, BENO19] for the dishonest majority setting,
and [DN07, GIP+14, CGH+18, GS20, BGIN20, GLO+21, EGPS22] for honest
majority.

The narrow set of use-cases that MPC has seen in practice, in spite of the
major push to improve its efficiency and the amount of prototype implementations
available, may be a direct effect of some of the other limitations present in MPC
which are not precisely related to efficiency metrics such as running times or
communication complexities. MPC protocols are distributed interactions that
obey a set of rules and, importantly, take place over a communication network,
such as the internet. In the real world, networks are unstable, nodes join and
leave, computers crash, software has bugs and messages take variable times to
reach their destination—or they may even not arrive at all. Moreover, in the
cloud setting, cloud resiliency is essential given that networks are dynamic and
need to tolerate power and regional outages. Unfortunately, most MPC protocols
are not designed to tolerate such unstable networking settings which appear
in practice. One may argue that actively secure protocols do tolerate unstable
environments, since, ultimately, they tolerate arbitrary behavior from the set of
corrupted parties. This, however, is unsatisfactory: every MPC protocol has a
limited amount of active corruptions it can tolerate, and treating genuinely honest
parties as corrupt due to, say, networking or software errors is unacceptable. In
particular, not only it reduces the amount of actual malicious corruptions the
protocol can tolerate, but also deprives the flagged honest party from any security
guarantee, since from a definitional point of view corrupt parties do not need
any protection.

Fluid MPC. The limitations of MPC mentioned above have been already identified
by several previous works [CGG+21, GHK+21b, BJMS20, DEP21, GPS19, RS22].
These works aim at developing MPC solutions for more unstable settings where
the parties or the network may fail to accommodate real world conditions. We
discuss these in more detail in the related work section (Section 1.2). In this work
we focus on the Fluid MPC setting, introduced in [CGG+21]. This approach aims
at making MPC more suitable for practical settings by reducing the connectivity
requirements that the set of computing parties need to have. Instead of requiring
all parties to stay 100% online and with no failures during the whole duration
of the computation (which, depending on the protocol, can range from a few
minutes to hours, to a whole day), the fluid MPC model allows the parties to
join only at parts of the computation, which can be made as “small” as required.
More specifically, parties are called online to participate in a committee for a
given set of communication rounds. Each committee computes over a specific
number of rounds, and once the task is completed the parties in the committee
need to transfer the state of the computation to the next committee in line, who
continues with the computation.

In [CGG+21] it was shown how to instantiate fluid MPC in the maximal
fluidity setting where parties only need to be online for a single communication

2

round. The parties receive the previous state of the computation, advance one
step, and transfer the new state to the next committee. This is done in the setting
where the adversary corrupts at most a minority in each chosen committee, or in
other words, each committee contains an honest majority. Later, in [RS22], it
was shown how to obtain fluid MPC with maximal fluidity in the setting where
each committee contains an arbitrary amount of corruptions, or put differently,
the corruptions in each committee may constitute of a dishonest majority. The
authors aim for an information-theoretic online phase and thus require to assume
certain “global preprocessing” among the pool of all parties who will eventually
form the different computation committees. The preprocessing is “consumed” at
execution time in order to accelerate the computation and is independent of
the inputs to the computation and the evaluation function. Both of these works
make a noticeable step in making MPC more suitable for practical settings where
participants do not need to guarantee stability for extended periods of time.

However, for both the protocols in [CGG+21] and [RS22], the fluidity feature
comes at the expense of asymptotically increasing communication complex-
ity with respect to state-of-the art solutions in the non-fluid setting, such as
[DPSZ12, BENO19] for dishonest majority, and [DN07, GIP+14, CGH+18, GS20,
BGIN20, GLO+21, EGPS22] for honest majority. Existing non-fluid techniques
achieve linear communication complexity, which is to say that the communication
complexity per party does not increase in the average as the set of computing
parties increases. In contrast, the protocols from [CGG+21] and [RS22] require
quadratic communication, which means the communication complexity per party
grows linearly with the total number of parties. Such an overhead deprives the
scalability of the protocols (e.g. if there are twice the amount of parties, then
each party needs to send twice the amount of messages). In a way, it seems
that achieving the flexibility of the fluid MPC setting comes at the expense of
lowering the performance of the resulting protocol. That said, there is no known
MPC protocol in the fluid setting which only requires constant communication
overhead per party for any corruption threshold (for both honest and dishonest
majority).

1.1 Our Contribution

In this work we aim at achieving the efficiency of the non-fluid MPC protocols
(i.e. overall linear communication complexity), while simultaneously achieving
maximal fluidity3where a participating party stays online for a single communi-
cation round of the secure computation. The goal is to achieve the best of both
worlds: flexible enough computation that can somehow mitigate the instability of
networks present in the real world without significantly degrading the communi-
cation complexity. In particular, we propose fluid MPC protocols with constant
communication overhead per party in a committee of size n for any corruption
threshold.
3 Note that even for fluidity f ≥ 2 the works of [RS22, CGG+21] still only achieve

communication complexity Ω(n2 · |C|/f); in particular quadratic if f is constant.

3

In the following we let C be a layered arithmetic circuit over a finite field
F with |C| multiplication gates and depth depth(C). A layered circuit is a type
of arithmetic circuit comprised of input, output, addition, multiplication, and
identity gates, where all output wires of a given layer go only to the immediately
next layer. As is common in MPC protocols that achieve linear communication
complexity (e.g., [DN07, DIK10]), we assume that the width of all layers of
considered circuits is at least proportional to n. We remark, however, that even
with smaller widths, our result is a strict improvement over prior works.

– Information-theoretic honest majority without preprocessing: We show that,
in the case where each committee contains an honest majority (i.e. the setting
from [CGG+21]), the circuit C can be evaluated with maximal fluidity by us-
ing (2 ·depth(C)+14) different committees in the execution stage with a total
communication of O(n|C|) for the largest n. The input and output stages re-
quire a small constant of committees. This protocol requires no preprocessing
among the parties for the circuit computation and is information-theoretic.

– Information-theoretic dishonest majority with preprocessing: For the case
where each committee may contain a dishonest majority (i.e. the setting from
[RS22]), we show that the circuit C can be evaluated with maximal fluidity by
using (2 · depth(C)+ 5) different committees during the execution stage, with
a total communication of O(n|C|) for the largest n. This is done starting from
a global preprocessing among the pool of all parties that, crucially, does not
assume knowledge of the committee assignments ahead of the computation.
The online phase is information-theoretic. Similarly to the honest majority
case, the input and output stages require a small constant of committees.

– Lower bound on the amount of preprocessed data: Finally, on the negative
side, we prove a lower bound on the amount of preprocessing required in
the information-theoretic dishonest majority setting in order to transfer the
secret-shared execution state st from one committee to the next, which is
a major building block used in fluid protocols. We show that, in order to
achieve sub-quadratic communication for the transfer, it must be the case
that each party in the global pool of parties has preprocessing whose size
is proportional to Ω(N · |st|), where N is the total amount of parties in the
global pool. In particular, if each committee computes the output of at most
one circuit layer (possibly including multiplication gates) at a time, and each
party may participate in a constant fraction of committees in the worst-
case, then the total preprocessing per party must be Ω(N · |C|). Such large
preprocessing is not needed for the case in which quadratic communication
suffices, since in this case the parties can perform a resharing step where each
party secret-shares their share to each other party in the next committee,
without making use of any preprocessing.
This result shows that linear communication complexity in the dishonest
majority setting comes at a price: if more parties join the global pool, the
preprocessing held by each party must necessarily grow.4

4 We remark however that, even in [RS22], the preprocessing per party grows as Ω(N),
even when quadratic communication is achieved. This preprocessing is of a different

4

As in [CGG+21, RS22], both of our protocols are actively secure and offer
security with abort (unanimous abort, if the clients have access to broadcast). A
crucial property of the model for fluid computation is that each committee only
knows the identities of the parties it is directly connected to on-the-fly without
the need to commit to a specific online time way ahead of time. Both [CGG+21,
RS22] provide ample motivation for this setting, which includes, for example,
applications to computing via distributed systems such as blockchains.

We summarize our results in the following theorems. First some extra notation:
given a layered circuit C, we let wℓ be the width of the ℓ-th layer in C and for
some gate g in C, we let ℓ(g) be the index of the layer that g belongs to in C.

Theorem 1 (Informal). For a layered arithmetic circuit C over a finite field
F, there exists an information-theoretic fluid MPC protocol with maximal fluidity
which securely computes C in the presence of an active adversary controlling up
to t < n/2 parties. The protocol uses 2 · depth(C) + 14 n-party committees and
the communication cost per gate g is O(n2/wℓ(g)) for the largest n. In particular,
if the width of all layers is w = Ω(n), then the total cost is O(n|C|) elements of
communication for the largest n.

Theorem 2 (Informal). For an arithmetic circuit C over a finite field F, there
exists an information-theoretic fluid MPC protocol with maximal fluidity in the
preprocessing model which securely computes C in the presence of an active
adversary controlling up to t ≥ n/2 parties. The protocol uses (2 · depth(C) + 5)
n-party committees in the execution stage and the communication cost per gate
g is O(n2/wℓ(g)) for the largest n. In particular, if the width of all layers is
w = Ω(n), then the total cost is O(n|C|) elements of communication for the
largest n.

Theorem 3 (Informal). A secure message transmission protocol for messages
of length λ with two n-party committees that uses o(n2 · λ) total communication
must have Ω(N · λ) preprocessed data.

At the crux of our techniques for the protocols are methods to allow recon-
struction and resharing of shares in the presence of an active adversary with linear
communication in the fluid setting while dealing with the challenge of dynamic
committees which are not known ahead of time and announced one by one on
the fly. Paradoxically, we adapt the common “king” technique, originated in the
non-fluid honest majority setting [DN07], to obtain our results in the dishonest
majority setting. And at the same time, we start with the non-fluid SPDZ-like
techniques (additive secret sharing and authenticated shares), originated in the
non-fluid dishonest majority setting [DPSZ12], to obtain our honest majority

nature though and is not related to resharing, as it comes in the form of pairwise
products that are used to build multiplication triples once the exact committees
are known. Our result implies that, even if multiplication triples are pre-distributed
within each committee, transferring the state from one committee to the next will
still require Ω(N) preprocessing, unless O(n2) communication is allowed. We discuss
this in more detail in Section 6.

5

results without the need of preprocessing. Finally, we cast the problem of trans-
ferring the secret-shared execution state from one committee to the next into the
secure message transmission setting and use information theoretic arguments to
prove our lower bound.

1.2 Related Work

As mentioned above, our work expands on the work of [RS22, CGG+21] for
MPC in the fluid model. There are several works that study other alternative
models to Fluid MPC, that also aim at making MPC solutions more resilient
to unstable networking settings. Early works like [FHM98a] study MPC in the
setting where the adversary may “fail-stop” corrupt some parties, meaning these
parties can crash upon an adversarial command, but they do not reveal their
state to the adversary. Other models such as Lazy MPC [BJMS20] or sleepy
MPC [GPS19] aim at enabling dropouts, but they do so in different ways to
Fluid MPC: in Lazy MPC the parties can drop but they cannot return to the
computation, and in sleepy in MPC parties can return, but they are assumed
to receive all messages sent to them while being offline. In the recent work of
[DEP21], a model is presented where the parties can return to the computation
while enabling lost messages. Last but not least, the YOSO work of [GHK+21a]
splits the computation to committees where each committee passes the control of
the computation to the next committee. However, their work requires all parties
to be online at all times. Moreover, unlike [GHK+21a], we have no restrictions
on the size of committees nor the overlap between them. We refer the reader
to Section B in the Supplementary Material for a more thorough description of
these works.

2 Technical Overview

We begin by presenting the general idea of our fluid dishonest majority protocol
with linear communication complexity, in the preprocessing model. It turns out
some of the ideas present in this part of our work will also be helpful for the
construction of our fluid honest majority protocol. We then provide a shorter
overview for the honest majority protocol in Section 2.3.

2.1 Our Starting Point: Le Mans [RS22]

We first present the high level ideas of the protocol from [RS22], which achieves
fluid MPC in the dishonest majority setting with quadratic communication
complexity. The overall idea is the following. The circuit at hand is considered to
be a layered circuit. As in [CGG+21], the invariant that will be kept is that the
parties in committee Ci will hold certain sharings of all the current intermediate
values in layer i. Eventually, the last committee obtains shares of the outputs of
the circuit, which are then transmitted to the clients. Unlike [CGG+21] however,
Le Mans makes use of additive secret-sharing in contrast to Shamir’s, due to the
setting being dishonest majority in contrast to honest majority.

6

Resharing and Openings. To maintain the aforementioned invariant, Le Mans
makes use of two major blocks. Let us denote by [x]

C additive shares held by
committee C of some secret x. First, to preserve the invariant for addition and
identity gates, the parties make use of a resharing procedure which enables
the parties in committee Ci to transfer additive sharings of some given values
[x1]

Ci , . . . , [xm]
Ci to committee Ci+1 so that, as long as there is at least one

honest party in each of these two committees, the adversary learns no information
about the underlying secrets, and the parties in Ci+1 obtain fresh-looking shares
[x1]

Ci+1 , . . . , [xm]
Ci+1 . As we will see later, this resharing can be achieved quite

efficiently (in particular, with linear communication complexity) by preprocessing
most of the shares that the receiving committee Ci+1 should hold.

The second major block used in Le Mans is that of Beaver triples, which is
preprocessed material of the form ([a]

Ci , [b]
Ci , [c]

Ci) where c = a · b, held by a
committee Ci.5 This enables sharings [x]

Ci , [y]
Ci held by Ci to be “multiplied”, so

that committee Ci+1 obtains sharings [x · y]Ci+1 . This is done by the parties in
Ci locally computing [x+ a]

Ci and [y + b]
Ci , followed by opening these sharings

towards Ci+1 by each party in Ci revealing their shares to each party in Ci+1.
Notice that this takes quadratic communication, and in fact, opening shared
values are in essence the exact quadratic bottleneck in Le Mans.

Let us assume temporarily that committee Ci+1 has sharings of the same
multiplication triple, that is, ([a]Ci+1 , [b]

Ci+1 , [c]
Ci+1). After Ci+1 receives x+ a

and y+ b, they can locally compute [x · y]Ci+1 = (x+ a)(y+ b)− (y+ b) [a]
Ci+1 −

(x+ a) [b]
Ci+1 + [c]

Ci+1 , as required. Now, one way in which committee Ci+1 could
have obtained the multiplication triple is by assuming they obtain it from the
preprocessing. However, notice that this triple has to coincide with the one
held by Ci, which is harder to achieve while maintaining the requirement of
committee-agnostic preprocessing. Instead, in Le Mans the following approach
is taken: the parties in Ci reshare their triple ([a]

Ci , [b]
Ci , [c]

Ci) to committee
Ci+1, which enables the latter committee to obtain ([a]

Ci+1 , [b]
Ci+1 , [c]

Ci+1). In
principle, using the resharing method sketched above, this can be done with linear
communication complexity. However, as we will discuss below, active security
demands that besides additive sharings the parties also hold sharings of certain
MACs. In Le Mans this is handled by using a different resharing method named
key-switching, which makes use of openings and hence it suffers from quadratic
communication.

Authenticated Sharings. To prevent a corrupt party from breaking security,
Le Mans, as all of the dishonest majority MPC protocols, relies on the SPDZ
paradigm [DPSZ12] of adding authentication to every shared value. This consists
of additive sharings of a global MAC key [∆], and for each shared value [x],

5 Recall that a requirement in the fluid preprocessing model is that the correlations the
parties receive have to be agnostic to the specific committee assignments. It may not
be clear now, but it turns out multiplication triples are committee-agnostic, if the
parties start with BeDOZa-style correlations [BDOZ11]. This will be made clearer.

7

additive sharings of the MAC of this value, computed as [∆ · x]. In the fluid
setting, each committee Ci who has shares of a value [x]

Ci must also have shares
of its MAC [∆Ci

· x]Ci , together with shares of the global key [∆Ci
]
Ci .

The shared MAC key [∆Ci
]
Ci can be preprocessed, but it may be differ-

ent from committee to committee as a result of the committee-agnostic pre-
processing condition. Due to this, if the first committee has sharings ([x]

Ci ,

[∆Ci
· x]Ci , [∆Ci

]
Ci), and the second committee Ci+1 wants to obtain authen-

ticated sharings ([x]
Ci+1 ,

[
∆Ci+1

· x
]Ci+1

,
[
∆Ci+1

]Ci+1
) under the different key

∆Ci+1
, this cannot be achieved with the simple resharing from before, given that

the secret ∆Ci
·x changes to ∆Ci+1

·x. This is addressed in Le Mans by using a key
switching method (Protocol ΠKey-Switch in [RS22]) that enables an authenticated
value under one committee’s key to be transferred to the next committee so that
it remains authenticated, but under the key of the next committee.

In a bit more detail, assume preprocessed sharings ([r]
Ci ,
[
∆Ci+1 · r

]Ci+1
).6

With this, given [∆Ci · x]
Ci , committee Ci+1 can obtain

[
∆Ci+1 · x

]Ci+1 by letting Ci
first compute locally [x− r]

Ci and then opening this value towards committee Ci+1.
Then, committee Ci+1 computes locally

[
∆Ci+1

· x
]Ci+1

= (x− r) ·
[
∆Ci+1

]Ci+1
+[

∆Ci+1
· r
]Ci+1 . Again, because this requires opening shared values from one

committee to another, the resulting communication complexity is quadratic.

2.2 The “King Idea” in the Fluid Setting

The reconstruction of a value d requires n2 communication if all parties just send
shares to each other, but it can be done with communication O(n) based on the
“king idea” from [DN07]. This is achieved as follows: in a first round, all share
owners send their shares to a single party, a “king”, who reconstructs d and sends
this value to the intended receiving parties in a second round.

Given that, as we have highlighted above, opening shared values is the
bottleneck in Le Mans, a natural approach to achieving linear communication
complexity in that protocol is to replace all-to-all openings, which have quadratic
communication complexity, by the king idea above. However, this imposes a major
complication: all-to-all openings require quadratic communication, but only make
use of one single round, while in contrast, the king idea has linear communication
complexity but requires two rounds. As a result, using the king idea does not
allow committee Ci to open shared values to committee Ci+1, but rather, these
can be opened towards a committee Ci+2 (by making use of a king in Ci+1). At
first sight, one may think that the techniques from Le Mans carry over when
using this king idea by simply using two committees per circuit layer, instead
of one, to accommodate for the extra round required for the reconstruction of
shared values. Unfortunately, as we will argue below, such approach is much
more complicated than how it looks at a high level.
6 This form of preprocessing is not committee-agnostic, but a simpler form of it is, and

the actual tuple required is obtained by adding an extra resharing step. This is not
relevant for our discussion.

8

Problems with key switching. Recall the key switching protocol from Le Mans
sketched above. In that protocol, the parties start with a pair ([r]Ci ,

[
∆Ci+1

· r
]Ci+1

),
and this enables committee Ci to “transfer” shares of MACs [∆Ci · x]

Ci to com-
mittee Ci+1 so that the latter obtains

[
∆Ci+1

· x
]Ci+1 . This approach works for

the one-round openings used in the key switching, but if instead we want to
use two-round openings with a king, the king would have to be a member of
Ci+1 itself, and the key switching would have to be done towards committee
Ci+2 instead. This raises a number of complications. First, such approach would
require an initial pair ([r]

Ci ,
[
∆Ci+2 · r

]Ci+2
), but unfortunately such pair is not

easily obtainable. The reason is that
[
∆Ci+1

· r
]Ci+1 for the inefficient key-switch

protocol is obtained in part by the parties of committee Ci using preprocessed
“local MACs” of their shares of r under some keys that each party in committee
Ci+1 has. This is allowed in the fluid model, since committee Ci does learn the
parties of committee Ci+1 at some point (so that they know to whom to send
their sharings of intermediate circuit values). However, committee Ci never learns
the parties of committee Ci+2, so we do not have the preprocessing required to
obtain

[
∆Ci+2 · r

]Ci+2 .
Instead, our approach is to let committee Ci+2 obtain sharings of the MAC

of the secret x, but under a MAC key corresponding to the previous committee
Ci+1, that is,

[
∆Ci+1

· x
]Ci+2 . The Le Mans key switching protocol is naturally

extended to achieve this by using the king of committee Ci+1 to reconstruct
(x− r) to the parties of committee Ci+2 and also having committee Ci+1 reshare[
∆Ci+1

· r
]Ci+1 and

[
∆Ci+1

]Ci+1 with committee Ci+2. Committee Ci+2 can then
perform the same computation as committee Ci+1 did before with these sharings
to obtain

[
∆Ci+1

· x
]Ci+2 . However, with this key switching protocol, we need to

take some extra care in our protocol to ensure that MACs of intermediate circuit
values do not “fall behind”.

In particular, we maintain the invariant that the inputs to the gates at the
circuit layer which some committee Ci processes must be authenticated under
the MAC key of committee Ci−2. For example, ([x]Ci+2 , [∆Ci

· x]Ci+2). This is
achieved by preprocessing a multiplication triple where the sharings of a and b
are authenticated under the MAC keys of both committees Ci−2 and Ci−1. For
example, the a sharing is of the form: ([a]Ci−2 ,

[
∆Ci−2

· a
]Ci−2

,
[
∆Ci−1

· a
]Ci−1

).7
Now, committee Ci−2 can first reshare the triple that is authenticated under their
MAC key ∆i−2 to committee Ci−1, who can then reshare it to committee Ci.
Assuming the invariant holds for committee Ci, it can then successfully compute
authenticated sharings of (x+ a) and (y + b) under MAC key ∆i−2 needed to
multiply x and y. Also, from the above resharing by committee Ci−2, and the
MACs on the triple that committee Ci−1 already holds, committee Ci−1 obtains
the triple authenticated under their MAC key ∆i−1. Committee Ci−1 can then
key switch the triple with committee Ci+1 using a king in committee Ci. From

7 This kind of triple authenticated under the MAC keys of both committees Ci−2 and
Ci−1 can indeed still be computed from our actual committee-agnostic preprocessing.

9

this key switching, committee Ci+1 receives the triple authenticated under the
MAC key of committee Ci, e.g., for the a part: ([a]Ci+1 , [∆Ci · a]

Ci+1). Committee
Ci+1 can then reshare this triple to committee Ci+2, who can then use the above
multiplication technique to obtain ([xy]

Ci+2 , [∆Ci
· (xy)]Ci+2), also authenticated

under the MAC key of committee Ci. Thus the invariant is preserved.

Authenticating multiplication triples. There is a second and perhaps more subtle
problem that arises when using an intermediate king for linear reconstruction.
Note that the above preprocessed triples that we can obtain are such that
the sharing [c]

Ci is not authenticated. This is addressed in Le Mans by letting
committee Ci learn the authentication of [c]Ci , and in fact the whole multiplication
triple, from the previous committee Ci−1. In a bit more detail, Ci−1 obtains
([a]

Ci−1 ,
[
∆Ci−1

· a
]Ci−1

, [b]
Ci−1 ,

[
∆Ci−1

· b
]Ci−1

, [c]
Ci−1) from the preprocessing,

and they perform key switching so that committee Ci obtains the multiplication
triple with the MAC shares of the factors, only missing the shares of the MAC of c.
To obtain [∆Ci · c]

Ci , a pair ([v]Ci−1 , [∆Ci · v]
Ci) is generated using the key switch

protocol on a preprocessed pair ([v]
Ci−1 ,

[
∆Ci−1

· v
]Ci−1

).8 With the former pair
at hand, the parties in Ci−1 can open [c− v]

Ci−1 to Ci, who can then compute
locally [∆Ci

· c]Ci = (c− v) · [∆Ci
]
Ci + [∆Ci

· v]Ci .
We can easily enough tweak our multiplication procedure sketched above so

that committee Ci−2 instead uses a king in committee Ci−1 to open (c − v) to
committee Ci. However, recall that using our key-switch procedure, committee
Ci can only obtain sharings from committee Ci−2 that are authenticated under
the MAC key of committee Ci−1. But, we need c to be authenticated under the
MAC key of committee Ci in order to preserve the invariant described above,
since these shares of c are used to compute the shares of the output. Thus, we
must wait until committee Ci+1 to authenticate c under the key of committee Ci.
However, since (x+ a) and (y + b) are opened to the (possibly corrupt) king of
committee Ci+1, the adversary could then add errors dependent on x and y to c
while authenticating it. The adversary could thus mount a selective failure attack
using these errors. To solve this we still use the king technique so that committee
Ci−2 can open (c−v) to committee Ci. We then have only some king in committee
Ci (to preserve linear communication) again forward (c− v) to committee Ci+1,
who can then authenticate c. To ensure that this king does not cheat as above,
we also have the parties of committee Ci hash the received (c− v) values for all
multiplication gates at this circuit layer, using a universal hash function. Then
the parties of committee Ci send these hashes to each party of Ci+1, who use
them to check consistency of their received openings. Since these hashes are short,
in fact independent of the number of gates at this layer, communication is still
efficient. We use a similar hashing technique as part of the procedure that checks
the MACs of shared values.

8 [RS22] uses ‘l’ instead of our ‘v’ here.

10

2.3 Fluid Honest Majority MPC with Linear Communication

Here we comment briefly on how we obtain our results in the honest majority
setting. We remark that, for the purpose of this overview, we present our results
using as a starting point the previous discussion on dishonest majority. In this
section, let us denote by [x]

C
t Shamir shares of degree t, held by the parties in

committee C. In the work of [CGG+21], honest majority fluid MPC is achieved
by letting the parties in a given committee Ci hold Shamir sharings of the
intermediate circuit values [x1]

Ci

t , . . . , [xℓ]
Ci

t in the i-th layer, where t < n/2.
To preserve the invariant observe that, because of the multiplicative properties
of Shamir secret-sharing, the parties in Ci can locally obtain sharings of every
intermediate value [y1]

Ci

t′1
, . . . , [yℓ′]

Ci

t′1
in the next layer, where each degree t′j is

either equal to t (for addition and identity gates), or 2t, which is less than
n (for multiplication gates). At this point, the parties in Ci can reshare these
shared values towards committee Ci+1, who obtains [y1]

Ci+1

t′1
, . . . , [yℓ′]

Ci+1

t′
ℓ′

, hence
maintaining the invariant.

While in the dishonest majority setting resharing additively shared values
(with no authentication) can be achieved with linear communication complexity
assuming certain form of committee-agnostic preprocessing, such approach does
not work in our current setting. Here, Shamir secret-sharing is used, and resharing
in one round requires a quadratic amount of communication as it is done by each
party in Ci distributing shares of their Shamir share to each party in Ci+1, which
can be aggregated to obtain Shamir shares of the underlying secret. This is indeed
the approach taken in [CGG+21], and this is one of the fundamental reasons for
the quadratic communication in that work. A second reason is also similar to the
one in the dishonest majority setting, and it is related to the reconstruction of
secret-shared values.

We can interpret our protocol in the honest majority setting as addressing the
two issues highlighted above using some techniques from the dishonest majority
case as a base, while adding other new ones, and for the purpose of this section, we
describe our protocol in these terms. In a bit more detail, we overcome the issue of
resharing with squared communication by, instead of using Shamir secret-sharing
with degree t < n/2, using a larger degree n− 1, which is in essence equivalent
to additive secret-sharing, as used in the dishonest majority setting. In principle,
this would enable us to perform resharing with linear communication by using
preprocessed data as sketched in Section 2.1. However, an important challenge
in the honest majority setting is that we should not use any preprocessing
whatsoever since, unlike the dishonest majority setting, it is not required.

Due to the above, our approach for resharing degree-(n− 1) Shamir sharings
without preprocessing with linear communication is different. Assume committee
Ci has sharings [x]Ci

n−1, and the goal is for committee Ci+1 to obtain [x]
Ci+1

n−1 . Let us
write Ci = {P1, . . . , Pn} and Ci+1 = {Q1, . . . , Qn}, and also [x]

Ci

n−1 = (x1, . . . , xn).
Assume the parties in Ci have preprocessed a sharing of zero [0]

Ci

n−1 = (r1, . . . , rn).9

9 As we elaborate on below, this type of preprocessing can in fact be generated “on the
fly” by the different committees, so it is not considered preprocessing as such.

11

Our resharing protocol is summarized as follows: each party Pj sends xj+rj to Qj ,
and committee Ci+1 defines [x]

Ci+1

n−1 to be these received shares. In words, shares
are transferred in a “straight line fashion” (after randomizing with shares of zero),
and the new sharings are exactly the same as the previous ones. This approach
does not work in the dishonest majority setting: the adversary can corrupt, say,
P1, . . . , Pn−1 in the first committee, and by corrupting Qn the adversary learns
all shares. In contrast, in the honest majority setting, the adversary learns at
most t shares in the first committee and t shares in the second, for a total of
≤ 2t < n shares, which maintain privacy of the underlying secret. This powerful
observation turns out to be the enabling tool for linear communication.

Using degree-(n − 1) Shamir sharings means that the shares of the honest
parties in a given committee do not determine the underlying secret anymore,
which enables a corrupt party to cheat by modifying their share. Importantly,
a similar issue was faced in the dishonest majority setting with additive secret-
sharing, and fortunately we are able to take a similar approach here by using
MACs in order to prevent cheating. We remark that these are not needed in
[CGG+21], since they use Shamir sharings of low degree. We do not elaborate on
how MACs are used in our protocol to prevent cheating, but we mention that
the approach is in spirit similar to the one sketched in the dishonest majority
overview.

The final details we comment on are related to the “preprocessing” required
in our protocol. As we mentioned initially, it is imperative that our honest
majority protocol does not make use of any preprocessing material. However, we
already mentioned some form of preprocessing (namely, shares of zero [0]

Ci

n−1),
plus, several ideas from the dishonest majority protocol require preprocessing
such as authenticated values ([r]

Ci

n−1 , [∆Ci
· r]Ci

n−1 , [∆Ci
]
Ci

n−1), or authenticated
multiplication triples. Fortunately, in our work we are able to leverage once
more the fact that we have an honest majority in order to let committee Ci−1

generate the “preprocessing” for committee Ci on the fly. For correlations that
are “linear” such as sharings of zero, the approach from [DN07] can be easily
adapted, where the parties in committee Ci−1 distribute sharings to Ci, and
the latter perform randomness extraction using a Vandermonde matrix. On the
other hand, for correlations that include a multiplication, like multiplication
triples or authenticated values ([r]Ci

n−1 , [∆Ci · r]
Ci

n−1 , [∆Ci]
Ci

n−1), the parties in Ci−1

can obtain the linear part ([r]
Ci−1

t , [∆Ci
]
Ci−1

t) from Ci−2 using the ideas we just
described for linear correlations (notice the degree is t < n/2). Then, the parties
in Ci−1 locally multiply these sharings, to obtain [∆Ci

· r]Ci−1

2t . Finally, the parties
in Ci−1 perform the “straight-line” resharing from before so that Ci obtains
([r]

Ci

n−1 , [∆Ci · r]
Ci

n−1 , [∆Ci]
Ci

n−1).

2.4 Technical Overview of SMT Lower Bound

Now we provide an overview for the lower bound on the amount of preprocessed
data, for the dishonest majority case. We do this in the context of secure message
transmission (SMT). Assume we have some sender A who wants to send some

12

secret value x to a receiver B through two committees that are not known ahead
of time. This is related to fluid MPC: we can think of an identity function that is
to be computed using two committees. That said, assume that between A and B,
there are two (non-overlapping) committees C1 and C2, each of size n, that are
chosen at random from the larger universe U of parties of size N . Furthermore,
assume that some adversary A that is trying to learn x is able to (passively)
corrupt all-but-one party in each of C1 and C2, as well as any other parties in U .
In such a setting, we also allow for some global preprocessing protocol that the
parties of U can run amongst each other before the secret x or committees C1 and
C2 are chosen. We show that if the size of each preprocessing state is o(N · |x|),
then the total communication must be Ω(n2 · |x|). The intuition is as follows.

Suppose that A corrupts all but the first parties of each committee. Fur-
thermore, suppose, towards contradiction, that the size of the message c1,1 that
the first party of C1 sends to the first party of C2 is small (≪ |x|). First, this
means that A can guess this message with high probability. Now, suppose that
the preprocessing r1,1 of the first party of C1 is not anymore correlated with
the preprocessing r2,1 of the second party of C2, than the preprocessing of the
rest of the corrupted parties of C1. This correlation is what the parties of C1
(perhaps, implicitly) use to construct messages that will eventually result in
correct transmission to the receiver B. In particular, any possible preprocessing
r′2,1 that has non-zero probability weight conditioned on the preprocessing of
the parties of C1, and thus by the above assumption, the corrupted parties of
C1, must enable correct transmission. So, since the first party of C2 only uses
r2,1 along with the ciphertexts it receives to produce its message to the receiver
B, A must be able to use a guess for r2,1 conditioned on the preprocessing of
corrupt parties of C1 to produce a valid such message. Together with the other
messages to the receiver B from the corrupted parties of C2, A can reconstruct x
with high probability.

So, it must in fact be that r1,1 provides some unique information on the
preprocessing of r2,1 that the corrupted parties of C1 do not already provide.
However, it is just as likely that some other party in U could have been chosen
to be the first party of C1, in some other execution of the protocol. So, in fact
every party outside of C1 and C2 must provide some unique information on the
preprocessing of r2,1. Since A can corrupt as many of these parties as it wishes,
if r2,1 is small enough (in particular, o(N · |x|)), then A will eventually be able
to reconstruct r2,1 completely, guess (short) c1,1 and thus again reconstruct x
with high probability, as above. Therefore, a contradiction is reached, and the
size of each (n2 total) ciphertext ci,j must be Ω(|x|).

3 Security Model and Preliminaries

We present some of the preliminaries required in our work. First we discuss the
fluid model in Section 3.1, and then in Section 3.2 we present our security model.
We utilize the universal composability framework of [Can01].

13

3.1 Modelling Fluid MPC

We first recall at a high level the modelling of Fluid MPC from [RS22, CGG+21].
A more detailed description is given in Section A in the Supplementary Material.
We consider the client-server model, where there is a universe U of parties,
that includes both the clients, who provide inputs, and servers, who perform
computation. Computation is composed of an optional preprocessing stage among
all clients and servers, an input phase where clients provide inputs, an execution
stage where the servers compute the function, and an output phase where the
clients receive output. The execution step is itself divided into epochs, where each
epoch i runs among a fixed set of servers, or committee Ci. An epoch contains two
parts, the computation phase, where the committee performs some computation
local to itself, followed by a hand-off phase, where the current committee securely
transfers some current state to the next committee. We assume that all parties
have access to only point-to-point channels. For simplicity, throughout the paper
we may refer to the set of clients, Cclnt, as C0 (the 0-th committee) and Cℓ (the
last committee).

Fluidity. This is defined as the minimum number of rounds in any given epoch
of the execution stage. We say a protocol achieves maximal fluidity if each epoch
i only lasts for one total round. In this paper, as in [RS22, CGG+21], we only
consider maximal fluidity.

Committee formation. The committees used in each epoch are chosen on-the-fly
throughout the execution stage. See [CGG+21] for more motivation and details
on committee selection. The model of [CGG+21] specifies the formation process
via an ideal functionality that samples and broadcasts committees according to
the desired mechanism. However, as in [RS22], we desire to divorce the study of
committee selection from the actual MPC and simply require that all parties of
the current committee Ci somehow agree on the next committee Ci+1. Specifically,
the parties of committee Ci during the hand-off phase of epoch i (and not before)
are informed by the environment Z of its choice of committee Ci+1 (i.e., it is
a worst-case choice by Z). We make no assumptions or restrictions on the size
of committees nor the overlap between committees. In particular, committees
may consist of a large number (possibly constant fraction) of parties in the entire
universe, U .

Corruptions. We study two different settings for the number of parties that may
be corrupted for our model to still require security:

– For honest majority, the adversary A may only corrupt any minority of
servers in the committee of each epoch.10 This is the setting that [CGG+21]
studies.

– For dishonest majority, the adversary A may corrupt all-but-one client and all-
but-one server in the committee of each epoch. This is the setting that [RS22]
studies.

10 All-but-one client could be corrupted, however.

14

We consider a malicious R-adaptive adversary from [CGG+21] and used
in [RS22]. In short, if there is a preprocessing stage, the adversary statically
chooses some parties to corrupt beforehand. Then, the adversary statically chooses
a set of clients to corrupt. During each epoch i of the execution phase, after
learning which servers are in committee Ci, the adversary adaptively chooses a
subset of Ci to corrupt. Upon such a corruption, the adversary learns the server’s
entire past state and can send messages on its behalf in epoch i. Therefore,
when counting the number of corruptions for some epoch i, we must retroactively
include those servers in committee Ci that are corrupted in some later epoch j > i.
Furthermore, if there is a preprocessing stage, we count a server in committee Ci
as corrupted also if they were corrupted during the preprocessing phase.

3.2 Security Model

To model Fluid MPC, we adapt the dynamic arithmetic black box (DABB) ideal
functionality FDABB of [RS22]. First, we note that our protocols, as written,
achieve security with selective abort (same as [RS22, CGG+21]), where the
adversary can prevent any clients of his or her choice from receiving output.
However, similar to the protocol of [CGG+21] (c.f. Appendix A), our protocols
can easily achieve unanimous abort (in which honest clients either all receive the
output or all abort) if the clients have access to a broadcast channel in the last
round or if they implement a broadcast over their point-to-point channels. The
same applies to the protocol of [RS22]. Functionality FDABB, presented below,
is parameterized by a finite field Fp, and supports addition and multiplication
operations over the field. It keeps track of the current epoch number in a variable
i and the committee of the current epoch i in a variable Ci. The functionality
receives the identity of the first committee from the clients via input Init. During
the execution stage, where the current committee may change, the functionality
receives the identity of the next committee from the currently active parties
via input Next-Committee (if it receives inconsistent committees for either of
these two inputs, we assume it aborts).

Functionality 1: FDABB

Parameters: Finite field Fp, universe U of parties, and set of clients Cclnt ⊆ U .
The functionality assumes that all parties have agreed upon public identifiers
idx, for each variable x used in the computation.

Init: On input (Init, C) from every party Pj ∈ Cclnt, where each Pj sends the
same set C ⊆ U , initialize i = 1, C1 = C as the first active committee. Send
(Init, C1) to S.

Input: On input (Input, idx, x) from some Pj ∈ Cclnt, and (Input, idx) from all
other parties in Cclnt, store the pair (idx, x). Send (Input, idx) to S.

Next-Committee: On input (Next-Committee, C) from every party Pj ∈ Ci,
where each Pj sends the same set C ⊆ U , update i = i + 1, Ci = C. Send
(Next-Committee, Ci) to S.

15

Add: On input (Add, idz, idx, idy) from every party Pj ∈ Ci, compute z = x+ y
and store (idz, z). Send (Add, idz, idx, idy) to S.

Multiply: On input (Mult, idz, idx, idy) from every party Pj ∈ Ci, compute
z = x · y and store (idz, z). Send (Mult, idz, idx, idy) to S.

Output: On input (Output, {idzm}) from every party Pj ∈ Cclnt ∪ Ci, where a
value zm for each idzm has been stored previously, retrieve {(idzm , zm)} and
send (Output, {(idzm , zm)}) to S. Wait for input from S, and if it is Deliver,
send the output to every Pi ∈ Cclnt. Otherwise, abort.

3.3 Preliminaries

Notation. We first note that we will often use l ∈ Ci as shorthand to refer to
some party Pl ∈ Ci+1. We use x ←$ X to denote sampling x randomly from
distribution X .

Universal hashing. We make use of universal hash function families in both our
honest and dishonest majority protocols. A family of hash functions H = {Hs :
FT
p → Fp} is universal if for all x ̸= y ∈ FT

p ,

Pr
s
[Hs(x) = Hs(y)] ≤ 1/p.

Functionalities, protocols and procedures. In this work we denote functionalities
by F and some subscript, and protocols by Π and some subscript. We also
consider procedures, denoted by π and some subscript. These are similar to
protocols except that (1) they act like “macros” that can be called within actual
protocols and (2) they are not intended to instantiate a given functionality.
Instead, security is proven in the protocol where they are used.

Layered circuits. We refer the reader to [CGG+21] for a more precise description
on layered circuits. In short, these are arithmetic circuits composed of addition,
multiplication and identity gates. The circuit is divided in layers, and for each
such layer, the inputs to each gate on the layer come directly from the layer
above. Every circuit can be made layered by adding enough identity gates.

4 Dishonest Majority

We first turn our attention to the dishonest majority setting, where there is only
guaranteed to be at least one honest party in each committee. The protocol Le
Mans from [RS22] is set in this setting, and they show how to achieve maximal
fluidity by relying on preprocessed partially-authenticated multiplication triples,
and using accumulators to both verify openings and multiplication correctness. Le
Mans, just like the protocol from [CGG+21], achieves a communication complexity
that is quadratic in the size of the committees. However, interestingly, the source

16

of quadratic communication is different for [RS22]. In [CGG+21], as we discussed
in the previous section, quadratic communication appears in the resharing step,
where each committee reshares their status of the computation towards the next
committee. In contrast, resharing is not a problem in Le Mans, which stems
from the fact that they make use of additive secret sharing, which admits for
a very efficient resharing protocol if one is willing to assume certain form of
preprocessing. Instead, the quadratic complexity in Le Mans appears from the
approach they take to secure multiplication, which we expand on below.

As we have already mentioned Le Mans makes use of preprocessed multipli-
cation triples to make progress at every multiplication layer. This reduces the
problem of secure multiplication to that of reconstructing a shared value, which
they do by letting each party in a given committee send out their shares to every
other party in the next committee, which leads to quadratic communication.
Instead, we achieve linear communication by handling these reconstructions in
a different way: sharings are reconstructed to a single “king”, who sends the
reconstructions to the parties in the next committee. This is indeed the standard
way in which openings are handled in non-fluid dishonest majority such as SPDZ
[DPSZ12], and its derivatives. The details of our protocol are presented below.

Throughout this section we will always use additive n-out-of-n secret sharings.
We use the notation [x]

C to denote such a sharing of a value x between the parties
of some committee C.

Remark 1 (On the relevance of global preprocessing). We recall that our fluid
modelling allows for the committees to be chosen on the fly, which means that
any form of preprocessing has to be agnostic to concrete committee assignments.
This is one of the major complications we deal with in our work. If this was
not the case, that is, if the preprocessing was allowed to depend on the concrete
committee choices, then a much simpler approach can be envisioned: the same
authenticated triple is preprocessed across two alternate committees, the first uses
it to mask the two secrets to be multiplied, a king in an intermediate committee
is used for linear reconstruction, and the other committee uses the same triple to
compute the final sharings of the product. This is not a possibility in our case.

Functionality for commitments. In this section we will make use of the following
functionality, also appearing in [RS22].

Functionality 2: Fcommit

The functionality runs between a set of parties P and an adversary A.

Commit: On input (commit, Pi, x, τx) from Pi, where τx is a previously unused
identifier, store (Pi, x, τx) and sent (Pi, τx) to all parties.
Open: On input (open, Pi, τx) from Pi, retrieve x and send (x, i, τx) to all
parties.

17

4.1 Dishonest Majority Preprocessing

We begin by describing the preprocessing functionality Fprep that is used for our
dishonest majority construction. We let

⟨x⟩i,j := ((xi,∆i,M i,j ,Ki,j), (xj ,∆j ,M j,i,Kj,i))

represent a pairwise BeDOZa [BDOZ11] sharing of x between parties Pi and Pj ,
MAC’d under their respective local MAC keys Ki,j ,Kj,i and shares of the global
MAC key ∆i,∆j :

M i,j = Kj,i +∆j · xi, M j,i = Ki,j +∆i · xj .

Functionality Fprep is in charge of distributing first shares ∆j of the global
MAC key ∆ to each party in the universe U . It also distributes (i) pairwise
BeDOZa sharings ⟨r⟩i,j between each pair of parties in U , (ii) partial multiplication
triple sharings (⟨a⟩i,j , ⟨b⟩i,j , [c]i,j) between each pair of parties in U , and (iii)
common random values si,j shared between each pair of parties in U . For (ii), the
shared value c is computed as ai · bj + aj · bi, i.e., the cross terms in the product
(ai + aj) · (bi + bj) = a · b of the values a and b for which the two parties have
pairwise BeDOZa sharings. Note that [c]

i,j is not authenticated and in fact can
have additive error of the form δa · bj + δb · aj , if Pi is corrupted and Pj is honest.

We remark that this is a functionality that we do not aim at instantiating
in our work. We refer the reader to [RS22] on how this functionality can be
instantiated by having the pool of all parties perform an MPC protocol among
themselves. We note that this instantiation requires per-party communication
and storage of O(N · log |C|), if each party may participate in a constant fraction
of committees in the worst-case during the execution phase. However, in order to
have a purely information-theoretic execution phase, the stored preprocessing
states from [RS22] must be expanded to size Θ(N · |C|), before the execution
phase, consistent with our lower bound from Section 6.

Functionality 3: Fprep

Parameters: Finite fields Fp and Fpr , parties P1, . . . , PN , adversary A, set of
honest parties Hon, and set of corrupt parties Corr.
Functionality: Generate pairwise authenticated random values and pairwise
partially-authenticated multiplication triples.

1. Fprep receives from A the global MAC key shares {∆i}i∈Corr for the corrupt
parties. It then samples randomly ∆j ←$ Fpr for each honest party Pj ∈
Hon.

2. For 2 · tot_trip+ tot_rand number of times, for every Pi ̸= Pj :
(a) If both Pi, Pj ∈ Hon, Fprep samples random values ri, rj ←$ Fp and

MAC keys Ki,j ,Kj,i ←$ Fpr . It then computes M i,j = Kj,i +∆j · ri ∈
Fpr and M j,i = Ki,j +∆i · rj ∈ Fpr .

(b) If one of Pi or Pj , say Pi w.l.o.g., is in Corr, Fprep receives from A
share ri along with MAC M i,j and MAC key Ki,j . It also samples

18

random share rj ←$ Fp, then computes M j,i = Ki,j + ∆i · rj and
Kj,i = M i,j −∆j · ri.

(c) If both Pi and Pj are in Corr, Fprep receives from A all corresponding
values.

3. For tot_trip number of times, for every Pi ≠ Pj , Fprep let
⟨amT ⟩

i,j , ⟨bmT+1⟩i,j be the outputs from the mT and (mT + 1)-st iter-
ations of Step 2 above. Then:
(a) If both Pi, Pj ∈ Hon, Fprep samples ci,j , cj,i ∈ Fp randomly such that

ci,j + cj,i = ai
mT
· bjmT+1 + aj

mT
· bimT+1.

(b) If one of Pi or Pj , say Pi w.l.o.g., is in Corr, Fprep receives from
A share ci,j and additive errors δa, δb. It then computes cj,i =(
(ai

mT
+ δa) · bjmT+1 + aj

mT
· (bimT+1 + δb)

)
− ci,j .

(c) If both Pi and Pj are in Corr, Fprep receives from A all corresponding
values.

4. For tot_shared_rand number of times, for every Pi ̸= Pj :
(a) If both Pi, Pj ∈ Hon, Fprep samples random si,j ←$ Fp.
(b) If at least one of Pi or Pj , say Pi w.l.o.g., is in Corr, Fprep receives si,j

from A.
5. Finally, Fprep outputs all shares of ⟨r⟩i,j , (⟨a⟩i,j , ⟨b⟩i,j , [c]i,j), and si,j com-

puted above to parties in Hon.

We now let ⟨x⟩P,Q :=
((

xi, {M i,j}j∈Q
)
i∈P ,

(
∆j , {Kj,i}j∈Q

)
i∈P

)
represent

a pairwise BeDOZa [BDOZ11] sharing of x where each party Pi of P holds
an additive share xi of the secret x and MACs M i,j of this share under the
local keys and shares of the global key Kj,i,∆j of each party Pj of Q. Each
Pj of Q indeed holds their share ∆j of the global MAC key and each local key
Kj,i. These MACs are computed as above. Functionality Fprep is useful as it can
be used to generate partially authenticated multiplication triples and shares of
authenticated uniformly random values within any committee, once the identity of
this committee is known. This is described in detail in Procedure πget-combined-prep.

Procedure 1: πget-combined-prep

Usage: Generate BeDOZa random sharings and partially-authenticated
BeDOZa random multiplication triples using the pairwise random sharings
and partially-authenticated random multiplication triples from Fprep.

Init: mT is initialized to 0 and mR is initialized to 2 · tot_trip.

1. On input (rand,P,Q), each party Pi ∈ P outputs (rimR
, {M i,j

mR
}j∈Q) and

each Pj ∈ Q outputs (∆j , {Kj,i
mR
}i∈P), using the fresh mR-th rand value

from Fprep. Then mR is incremented: mR = mR + 1.
2. On input (trip,P,Q), each party Pi ∈ P outputs

((ai
mT

, {M i,j
mT
}j∈Q), (bimT+1, {M i,j

mT+1}j∈Q), ai
mT
· bimT+1 +

∑
l∈P\{i} c

i,l
mT

)

and each Pj ∈ Q outputs (∆j , {Kj,i
mT
}i∈P , {Kj,i

mT+1}i∈P), using the fresh
mT -th partially authenticated triples from Fprep. Then mT is incremented:
mT = mT + 2.

19

4.2 Efficient Resharing for Dishonest Majority

For efficient resharing we make use of the techniques in [RS22], which consist of
the parties sending additive shares of their shares towards the next committee,
but using some preprocessing in the form of pairwise shared randomness in order
to precompute most of the shares.11 Details are given in Procedure πeff-reshare-dm

below.

Procedure 2: πeff-reshare-dm

Usage: Ci reshares [r]Ci to Ci+1.

1. Each party Pj in Ci will use the next fresh pairwise shared random values
from Fprep, {rj,l}l∈Ci+1 .

2. Each Pj will then take their share rj of [r]Ci and locally compute rj,1 =
rj −

∑ni+1

l=2 rj,l.
3. Next, each Pj will send their rj,1 to P1 in Ci+1.
4. Finally, parties Pl in Ci+1 will locally compute their share rl of [r]Ci+1 as

rl =
∑

j∈Ci
rl,j (where if j ̸= 1, each rl,j = rl,j , obtained from Fprep).

Lemma 1. Procedure πeff-reshare-dm’s transcript is simulatable by random values.

Proof. Assume without loss of generality that only party Pni
∈ Ci is honest (the

case where other parties are honest follows easily). Now P1 ∈ Ci+1 is the only
party that receives communication in this procedure, so if P1 is not corrupted,
it is easy to simulate. If P1 is corrupted, assume without loss of generality that
Pni+1 is honest (again, the case where others are honest follows easily). So, we
must argue that simulating rni,1, that P1 ∈ Ci+1 receives from Pni ∈ Ci with
a random value is valid. From Fprep, we know that only Pni

and Pni+1
have

knowledge of rni,ni+1
; for everyone else, it is distributed uniformly at random.

Thus, since rni,ni+1
is added to rni,1, rni,1 appears uniformly random to A, and

we are done. ⊓⊔

As in Le Mans, we also rely on the fact that BeDOZa authenticated sharings
can be converted locally into SPDZ sharings. This is carefully discussed in
Procedure πconvert. First, recall that an authenticated SPDZ sharing of value x
amongst Committee C has the form JxKC∆C

:= ([x]
C
, [∆C · x]C , [∆C]

C
). Since each

committee C has its own shared MAC key ∆C =
∑

j∈Ci
∆j , we specify under

which committee’s MAC key the sharing is authenticated in the subscript.

Procedure 3: πconvert

Usage Case 1: For input pairwise-authenticated BeDOZa sharing ⟨x⟩Ci,Ci ,
convert to SPDZ sharing JxKCi

∆i
.

11 The parties can instead use pairwise shared PRG seeds, and expand them each time
they need the values rj,l used in πeff-reshare-dm.

20

1. Note that ∑
j∈Ci

∆j · xj +
∑
l∈Ci

M j
l −Kj

l

 =

∑
j∈Ci

∆j · xj +
∑
l∈Ci

Kl
j +∆l · xj −Kj

l

 = ∆Ci · x.

2. So, each Pj in Ci outputs as their SPDZ share of x: (xj ,∆j ·xj+
∑

l∈Ci
M j

l −
Kj

l ,∆
j).

Usage Case 2: For input pairwise-authenticated BeDOZa sharing ⟨x⟩Ci,Ci∪Ci+1 ,
convert to SPDZ sharings JxKCi

∆i
and JxKCi+1

∆i+1
.

1. We first note that Ci can obtain SPDZ shares of x in the same way as above
(by ignoring its pairwise MAC and MAC keys with those parties Pl ∈ Ci+1,
as the sum above is written).

2. Now, each Pj ∈ Ci additionally computes M j =
∑

l∈Ci+1
M j

l to obtain

sharing [M]Ci and invokes πeff-reshare-dm on it, along with [x]Ci .
3. Let M l be the share of [M]Ci+1 obtained by Pl. Now note that

∑
l∈Ci+1

M l −
∑
j∈Ci

Kl
j

 =

∑
l∈Ci+1

M l −
∑
j∈Ci

M j
l −∆l · xj

 = 0 +∆Ci+1 · x.

4. So, each Pl in Ci+1 outputs as their SPDZ share of x: (xl,M l −∑
j∈Ci

Kl
j ,∆

l).

Lemma 2. Procedure πconvert’s transcript is simulatable by random values.

Proof. Follows from Lemma 1, since the only communication is invoking πeff-reshare-dm

on [M]
Ci , for which the honest shares are uniformly random, by the security of

Fprep. ⊓⊔

4.3 Checking and Maintaining MACs

Similar to our honest majority protocol of Section 5 (and Le Mans), in our
dishonest majority protocol, we use n-out-of-n sharings. This means that a mali-
cious adversary can easily add errors to any value throughout the computation.
Thus, as before, we use MACs, which authenticate every intermediate value used
throughout the computation, and guarantee those values’ integrity. To attest to
the integrity of every value that is opened throughout the protocol, we again use
an accumulator that is computed similarly as before. As in the honest majority
case, to ensure that the adversary does not cheat, we open a challenge β to the

21

parties of Ci+1, even though the values are opened to Ci. The parties of Ci+1 then
use it to compute a random linear combination on the openings. So, to maintain
linear communication, P1 of Ci forwards the openings to every party in Ci+1, and
we ensure that P1 does not cheat by having all of the other parties of Ci send
hashes of the openings to the parties of Ci+1. Since the hashes are short, total
communication will still be O(n|C|) if the width of C is Ω(n). Details are given
in Procedure πMAC-check-dm below.

Procedure 4: πMAC-check-dm

Usage: Each committee Ci incrementally updates a MAC check state [σ]Ci

based on the values {JAmKCi−2

∆j
}m∈[T] (for some j ≤ i − 2) opened to them,

which the final committees at the end of the computation use to check that all
openings throughout the protocol were performed correctly.

Init: Each Party Pi in committee C2 (the first to have values opened to it)
initially defines their share of [σ]C2 as σi = 0.

Update State: On input (update, {(Am, [Am ·∆j]
Ci)}m∈[T], [∆j]

Ci) from com-
mittee Ci, where {Am}m∈[T] were the values opened to Ci:

1. Committee Ci invokes πget-combined-prep with (rand, Ci, Ci+1) so that Pj ∈ Ci
gets (βj , {M j,l}l∈Ci+1) and Pl ∈ Ci+1 gets (∆l, {Kl,j}j∈Ci).

2. Each Pj ∈ Ci also interprets the next pairwise shared random values from
Fprep, {sj,l}l∈Ci+1 as keys to a universal hash family H = {Hs : FT

p → Fp}
and computes hj,l = Hsj,l({Am}m∈[T]) for each Pl ∈ Ci+1.

3. In parallel: (i) each party Pj ∈ Ci then sends to each Pl ∈ Ci+1 their share
βj and corresponding MAC for Pl, M j,l, along with the computed hash
value hj,l; (ii) only P1 ∈ Ci sends {Am}m∈[T] to each Pl ∈ Ci+1; and (iii)
all of Ci invokes πeff-reshare-dm on [σ]Ci ,

[
∆Cj

]Ci , {
[
∆Cj ·Am

]Ci}m∈[T].
4. Each Pl ∈ Ci+1 then locally checks that M j,l = βj · ∆l + Kl,j , for each

Pj ∈ Ci, and aborts if any check fails. If not, let β =
∑

j∈Ci
βj .

5. Each Pl additionally uses the pairwise shared random values from Fprep,
{sj,l}j∈Ci , to compute h′

j,l = Hsj,l({Am}m∈[T]), checks that each h′
j,l = hj,l,

and aborts if any check fails; else continues.
6. Each Pl ∈ Ci+1 next locally computes A =

∑T
m=1(β)

m ·Am and [γ]Ci+1 =∑T
m=1(β)

m ·
[
∆Cj ·Am

]Ci+1 (here (β)m is the m-th power of β).
7. It finally updates [σ]Ci+1 = [σ]Ci+1 + [γ]Ci+1 −

[
∆Cj

]Ci+1 · A and invokes
πeff-reshare-dm on [σ]Ci+1 .

Check State: On input check from the clients Cclnt:

1. Each client Pi ∈ Cclnt invokes Fcommit on their share σi of the MAC check
state [σ]Cclnt .

2. Then they all open their commitments, and if they are consistent, output
Accept if

∑
i∈Cclnt

σi = 0; else Reject.

Lemma 3. Procedure πMAC-check-dm is correct, i.e., it accepts if all the opened
values Am and the corresponding MACs are computed correctly. Moreover, it is

22

sound, i.e., it rejects except with probability at most (2 + maxi Ti)/p in case at
least one opened value is not correctly computed. Furthermore, the transcript of
Update State is simulatable.

Proof. For soundness, we consider all of the points in which the adversary can
inject error, when a single committee Ci is updating [σ]

Ci . First, note that with
all-but-negligible probability, an honest party Pj of Ci will receive the same
(potentially incorrect) A′

m = Am + δim for each m as an honest party Pl of Ci+1.
This is because their shared universal hash key sj,l from Fprep is uniformly random
and unknown to the adversary. So, since H is a universal hash family, it holds
that if Pj gets {A′

m}m∈[T] and Pl gets a different {A′′
m}m∈[T],

Pr[Hsj,l({A′
m}m∈[T]) = hj,l = h′

j,l = Hsj,l({A′′
m}m∈[T])] ≤ 1/p.

The adversary can thus only inject the following kind of errors:

1. When opening shares of some Am to Pking of Ci−1, or if Pking itself is corrupted,
then when sending opened Am to the honest parties Pj of committee Ci, the
adversary can add some δim error. From above, these δim’s must in fact be
independent of the opened challenge randomness for Ci, βi.

2. When the MAC key
[
∆Cj

]Ci is reshared, the adversary can add some additive
ηi error.

3. When resharing a MAC
[
∆Cj
·Am

]Ci , the adversary can add some additive
εim.

4. Finally, when [σ]
Ci+1 is reshared, the adversary can add some additive ζi.

So, at the end of the computation (after ℓ committees), if the check passes
we will have:

0 = [σ]
Cclnt =

ℓ∑
i=1

Ti∑
m=1

(βi)m · ((∆Cji
·Ai

m + εim)− (∆Cji
+ ηi) · (Ai

m + δim)) + ζi

=

ℓ∑
i=1

Ti∑
m=1

(βi)m · (εim −∆Cji
· δim + ηi ·Ai

m + δim · ηi) + ζi

Recall that we want to show that for any i,m δim ̸= 0 can only happen
with negligible probability. First, note that the corrupt parties of committee Ci
cannot forge their share βj of β to any of the honest parties of Ci+1 except with
probability 1/p, by the security of the information-theoretic MAC provided by
Fprep. Thus, the reconstructed challenge β must indeed be uniformly random and
independent of all other values. Now, assume that indeed there is some δi

∗

m ̸= 0.
First, we argue that by the Schwartz-Zippel Lemma, with probability ≤ Ti∗/p,∑Ti∗

m=1(β
i∗)m · δi∗m = 0. This holds since βi∗ is chosen uniformly at random and,

by assumption, at least one δi
∗

m ̸= 0. So now we rewrite:

0 =

ℓ∑
i=1

Ti∑
m=1

(βi)m · (εim −∆Cji
· δim + ηi ·Ai

m + δim · ηi) + ζi

23

= −∆Cji∗
·

Ti∗∑
m=1

(βi∗)m · δi
∗

m +

Ti∗∑
m=1

(βi∗)m · (εi
∗

m + ηi
∗
·Ai∗

m + δi
∗

m · ηi
∗
) + ζi

∗
+

∑
i∈[ℓ]\{i∗}

Ti∑
m=1

(βi)m · (εim −∆Cji
· δim + ηi ·Ai

m + δim · ηi) + ζi.

Therefore:

∆Cji∗
=

1∑Ti∗
m=1(β

i∗)m · δi∗m

(
Ti∗∑
m=1

(βi∗)m · (εi
∗

m + ηi
∗
·Ai∗

m + δi
∗

m · ηi
∗
) + ζi

∗
+

∑
i∈[ℓ]\{i∗}

Ti∑
m=1

(βi)m · (εim −∆Cji
· δim + ηi ·Ai

m + δim · ηi) + ζi

 .

However, since ∆Cji∗
is sampled uniformly at random and independently, and is

unknown to the adversary, this can only happen with probability 1/p.
In total, the probability that there is some δim ̸= 0 is bounded by (2 +

maxi Ti)/p, which is negligible.
Correctness clearly holds if all errors are 0. Furthermore, we know from

Lemma 1 that πeff-reshare-dm is simulatable by random values. Also, the simulator
knows the universal hash keys that honest parties use to compute the hashes on
the opened values (which it also knows), thus it can simulate these hashes itself.
Furthermore, each βj is sampled uniformly at random in Fprep, so the simulator
can also simulate these, and the corresponding MACs by using the MAC keys
obtained from Fprep. Finally, the simulator can easily emulate Fcommit for the
commitments. ⊓⊔

In our protocol, each committee Ci has their own MAC key ∆Ci
. Thus, when

some state JxKCi

∆i
of the computation is reshared from one committee to the

next, we also need to somehow “switch” the key of its MAC to that of the new
committee. Le Mans also needs to deal with this issue. To do so, they take
advantage of πconvert to obtain random sharings JtKCi

∆i
, JtKCi+1

∆i+1
of the same value,

authenticated under both committees’ MAC keys. This is sufficient for them,
as they can then mask JxKCi

∆i
with t, reconstruct x+ t, and then use their two

authenticated sharings of t, JtKCi

∆i
, JtKCi+1

∆i+1
(including some relationship between

their MACs), to create unmasked shares of x that are indeed authenticated under
∆i+1. Note, however, that they use reconstruction of x+ t from one committee
to the next, which has quadratic communication.

We instead use the “king idea” to reconstruct (x+ t) across two committees,
i.e., from Ci to Ci+2. However, since πconvert can only obtain authenticated random
sharings of the same random value between consecutive committees, πeff-key-switch

below switches JxKCi

∆i
, shared and authenticated among Ci, to JxKCi+2

∆i+1
, shared

amongst Ci+2, but authenticated using Ci+1’s key.

24

Procedure 5: πeff-key-switch

Usage: Transform a SPDZ sharing JxKCi
∆i

held by Ci and MAC’d under Ci’s key

to a SPDZ sharing JxKCi+2

∆i+1
held by Ci+2 and MAC’d under Ci+1’s key.

1. Let JxKCi
∆i

be the shares of the input authenticated value x. All parties in
Ci agree on a special party Pking in Ci+1.

2. Ci and Ci+1 invoke πget-combined-prep with (rand, Ci, Ci ∪ Ci+1) to receive
⟨t⟩Ci,Ci∪Ci+1 .

3. Ci and Ci+1 then invoke πconvert on ⟨t⟩Ci,Ci∪Ci+1 to form JtKCi
∆i

and JtKCi+1

∆i+1
.

4. Parties in Ci in parallel: (i) invoke πeff-reshare-dm on input [x]Ci ; and (ii) open
shares of J(x+ t)KCi

∆i
to Pking in Ci+1.

5. While Pking of Ci+1 distributes opened value (x+ t) to all parties in Ci+2,
all parties in Ci+1 invoke πeff-reshare-dm on input [x]Ci+1 ,

[
∆Ci+1

]Ci+1 , and[
∆Ci+1 · t

]Ci+1 .
6. Finally, each party Pj in Ci+2 locally computes its share of the MAC[

∆Ci+1 · x
]Ci+2 as

[
∆Ci+1

]Ci+2 · (x + t) −
[
∆Ci+1 · t

]Ci+2 . Ci+2 outputs
([x]Ci+2 ,

[
∆Ci+1 · x

]Ci+2 ,
[
∆Ci+1

]Ci+2).

Lemma 4. Procedure πeff-key-switch’s transcript is simulatable by random values.

Proof. First, from Lemmas 1 and 2, we know that all values communicated to A
by πconvert and πeff-reshare-dm are simulatable by random values. Furthermore, from
Fprep, we know that JtKCi

∆i
is a random sharing of a random value. Thus, also the

openings (x+ t) can be simulated with random values. ⊓⊔

We leverage πeff-key-switch in the following procedure, πget-x-comm-shrs, to obtain
SPDZ sharings of the same random value amongst both committees Ci and Ci+3.
Committee Ci’s sharing will be authenticated under its own key, while committee
Ci+3’s sharing will be authenticated under Ci+2’s key.

Procedure 6: πget-x-comm-shrs

Usage: On input BeDOZa sharing ⟨r⟩Ci,Ci∪Ci+1 , output JrKCi
∆i

to Ci and JrKCi+3

∆i+2

to Ci+3.

1. Ci and Ci+1 invoke πconvert on ⟨r⟩Ci,Ci∪Ci+1 to obtain JrKCi
∆i

and JrKCi+1

∆i+1
.

2. Ci outputs JrKCi
∆i

.

3. Ci+1 then invokes πeff-key-switch on JrKCi+1

∆i+1
with Ci+3 (through Ci+2), who

outputs JrKCi+3

∆i+2
.

Lemma 5. Procedure πget-x-comm-shrs’s transcript is simulatable by random values.

Proof. Since only πconvert and πeff-key-switch are invoked, we know from Lemmas 2
and 4 that the transcript is simulatable by random values. ⊓⊔

25

4.4 Secure Multiplication and Verification

Finally, before we present the complete protocol, we present Procedure πmult-dm

below which enables a given committee to make progress on the computation
by securely processing multiplication gates. As in the honest majority protocol
of Section 5, this procedure makes use of multiplication triples to reduce the
task of securely multiplying two shared values to that of reconstructing two
secrets. Once again, we use the “king idea” to achieve reconstruction with linear
communication.

As in the honest majority case, we have two issues to deal with. First multi-
plication triples require different committees to have access to the same triple.
This is in part achieved by making use of the efficient resharing procedure
πeff-reshare-dm. Also, a given committee can once again only obtain a partially
authenticated multiplication triple (JaKCi

∆i
, JbKCi

∆i
, [c]

Ci) from Fprep, where the c
part is not authenticated (and in fact might have some error). Using the same
idea from [RS22] and Section 5, we authenticate the c part “on the fly” using a
random, authenticated sharing JvKCi

∆i
.

However, since our πeff-key-switch procedure when resharing a value from Ci
to Ci+2 only switches the MAC key to that of Ci+1, we need to take some
extra care to ensure that the MAC does not “fall behind”. In particular, πmult-dm

below maintains the invariant that the inputs to multiplication gates at some
circuit level which Ci computes are MAC’d under Ci−2’s key. At a high-level, this
is accomplished by combining the above “on the fly” authentication of triples
obtained from Fprep by Ci−2, so that the triple is MAC’d under the same key as
the inputs, with the use of πget-x-comm-shrs to transfer this triple to Ci+1 (under
Ci’s key). Ci+1 can then reshare this triple to Ci+2, who can then use the usual
multiplication triple technique to compute the output of the multiplication gate,
MAC’d under Ci’s key, thus maintaining the invariant.

Unfortunately, we are not done yet. Committee Ci can only obtain outputs
that are MAC’d under Ci−1’s key when Ci−2 tries to use πeff-key-switch on its
sharings. Thus, in order to maintain the invariant above, we need to wait until
Ci+1 to authenticate the c part of multiplication triples. However, this would
allow the adversary to add errors dependent on x and y to c, since (x+ a) and
(y+ b) are opened from Ci to the king of Ci+1, leading to a selective failure attack.
To solve this, the value (c+ v) needed to authenticate c is first opened to the
parties of Ci using the efficient “king idea”, then only P1 of Ci sends the opened
(c + v) to the parties of Ci+1, for efficiency. To ensure that P1 does not cheat,
the rest of the parties of Ci send hashes of the opened (c + v)’s for all of the
multiplication gates at this level to the parties of Ci+1. Although this introduces
Ω(n2) overhead, as long as if the width of the circuit is Ω(n), overall O(n · |C|)
communication is still achieved. Details are as follows.

26

Procedure 7: πmult-dm

Usage: Multiply JxKCi
∆i−2

and JyKCi
∆i−2

held by Ci and MAC’d under Ci−2’s key

so that Ci+2 outputs Jx · yKCi+2

∆i
MAC’d under Ci’s key.

1. All parties in Ci−2 first agree on a special party Pking in Ci−1.
2. Then Ci−2 and Ci−1 invoke πget-combined-prep on input

(trip, Ci−2, Ci−2 ∪ Ci−1) to get partially authenticated BeDOZa triple
(⟨a⟩Ci−2,Ci−2∪Ci−1 , ⟨b⟩Ci−2,Ci−2∪Ci−1 , [c]Ci−2) and (rand, Ci−2, Ci−2 ∪ Ci−1)

to get ⟨v⟩Ci−2,Ci−2∪Ci−1 . They also locally compute [c+ v]Ci−2 .
3. Then Ci−2 invokes πget-x-comm-shrs on
⟨a⟩Ci−2,Ci−2∪Ci−1 , ⟨b⟩Ci−2,Ci−2∪Ci−1 , ⟨v⟩Ci−2,Ci−2∪Ci−1 (with Ci+1) to
get SPDZ sharings JaKCi−2

∆i−2
, JbKCi−2

∆i−2
(JvKCi−2

∆i−2
is not needed).

4. Next, parties in Ci−2 in parallel invoke πeff-reshare-dm on input JaKCi−2

∆i−2
, JbKCi−2

∆i−2

and open shares of [c+ v]Ci−2 to Pking in Ci−1.
5. While Pking distributes opened (c+ v) to the parties of Ci, all parties in Ci−1

then invoke πeff-reshare-dm on input JaKCi−1

∆i−2
, JbKCi−1

∆i−2
.

6. Now, parties in Ci agree on a special party P ′
king in Ci+1 and then compute

Jx+ aKCi
∆i−2

= JxKCi
∆i−2

+ JaKCi
∆i−2

, and Jy + bKCi
∆i−2

= JyKCi
∆i−2

+ JbKCi
∆i−2

.
7. Each Pj ∈ Ci also interprets the next pairwise shared random values from
Fprep, {sj,l}l∈Ci+1 as keys to a universal hash family H = {Hs : FM

p → Fp}
and computes hj,l = Hsj,l({(c+ v)m}m∈[Ti]) for each Pl ∈ Ci+1, on input
the Ti values (c + v)m used for the Ti multiplications computed by this
committee.

8. In parallel: (i) each Pj in Ci invokes πeff-reshare-dm on input [∆i]
Ci , opens

their share of Jx+ aKCi
∆i−2

, Jy + bKCi
∆i−2

to P ′
king in Ci+1, and sends to each

Pl ∈ Ci+1 the computed hash value hj,l; while (ii) only P1 ∈ Ci sends (c+ v)
to each Pl ∈ Ci+1.

9. Each Pl in Ci+1 first uses the pairwise shared random values from Fprep,
{sj,l}j∈Ci to compute h′

j,l = Hsj,l({(c + v)m}m∈[Ti]), checks that each
h′
j,l = hj,l, and aborts if any check fails; else continues.

10. Then use JvKCi+1

∆i
(obtained from πget-x-comm-shrs) and opened (c + v) to

compute authenticated JcKCi+1

∆i
= ((c + v) − [v]Ci+1 , [∆i]

Ci+1 · (c + v) −
[∆i · v]Ci+1 , [∆i]

Ci+1).
11. Then while P ′

king distributes opened d = x+ a and e = y + b to the parties
of Ci+2, all parties in Ci+1 invoke πeff-reshare-dm on input JaKCi+1

∆i
, JbKCi+1

∆i
(also

obtained from πget-x-comm-shrs), and JcKCi+1

∆i
.

12. Ci+2 finally locally compute Jx · yKCi+2

∆i
= de−d JbKCi+2

∆i
−e JaKCi+2

∆i
+ JcKCi+2

∆i
.

13. Parties in Ci+2 will also invoke πMAC-check-hm on input (update, {((xm +
am, [∆i−2 · (xm + am)]Ci+2), (ym + bm, [∆i−2 · (ym + bm)]Ci+2))}m∈[T]) cor-
responding to all of the openings of the above form they receive for the
multiplication gates at this layer of the circuit.

Lemma 6. Procedure πmult-dm’s transcript is simulatable.

27

Proof. First, we know that πget-x-comm-shrs and πeff-reshare-dm are simulatable by
random values from Lemmas 5 and 1. Also, since a, b, v are uniformly random and
unknown to the adversary by security of Fprep, openings (c+ v), (x+ a), (y + b)
are simulatable by random values. Also, the simulator knows the universal hash
keys that honest parties use to compute the hashes on the opened values (which
it also knows), thus it can simulate these hashes itself. ⊓⊔

As with the honest majority protocol of Section 5 and Le Mans, we also need
to account for the errors that can be introduced in the originally unauthenticated
c parts of multiplication triples, that πMAC-check-dm will not catch. Indeed, as
with Le Mans, Fprep also allows the adversary to add errors to c of the form
{aj ·δj,lb +bj ·δj,la }j∈HCi−2

,l∈TCi−2
, where aj , bj are the honest parties’ shares of the

a and b parts of the triple, and δj,lb , δj,la are chosen by the adversary. These errors
could cause multiplications to be computed incorrectly. We thus use similar ideas
to [RS22, CGG+21], with ideas rooted in [CGH+18], to compute a randomized
version of the circuit that will be used to verify multiplications. The details
are in Procedure πmult-verify-dm below. Note that in order to “keep up” with the
invariant that we used in πmult-dm, we need to use similar techniques to ensure
that the accumulators used in πmult-verify-dm are MAC’d under the same keys as
the multiplication gate outputs.

Procedure 8: πmult-verify-dm

Usage: Each committee Ci that gets the output wires of the multiplication
gates of some layer ℓ of the circuit incrementally updates a multiplication
verification state (Ju′KCi

∆i−2
, Jw′KCi

∆i−2
), which the final committees at the end of

the computation use to check that all multiplications throughout the protocol
were performed correctly.

Init: Each Party Pi in committee C5 (the first to get output from πmult-dm)
initially defines their shares of Ju′KC7

∆5
, Jw′KC7

∆5
as (u′)

i
= (w′)

i
= 0 (same for

the SPDZ MAC shares).

Update State: On input (update, {(JzmKCi
∆i−2

, JrzmKCi
∆i−2

}m∈[T]) from commit-

tee Ci, where {(JzmKCi
∆i−2

, JrzmKCi
∆i−2

}m∈[T] were the output wires of multipli-
cation gates computed by Ci:
1. Ci−4 and Ci−3 invoke πget-combined-prep with (rand, Ci−4, Ci−4 ∪ Ci−3) twice to

get ⟨s⟩Ci−4,Ci−4∪Ci−3 , ⟨s′⟩Ci−4,Ci−4∪Ci−3 and then Ci−4 invokes πget-x-comm-shrs

on them (with Ci−1) so that Ci−4 gets JsKCi−4

∆i−4
, Js′KCi−4

∆i−4
.

2. Then Ci−4 invokes πeff-reshare-dm on JsKCi−4

∆i−4
, Js′KCi−4

∆i−4
and then Ci−3 does the

same.
3. Now, Ci−2 first agrees on Pking in Ci−1 then in parallel: (i) invokes πeff-reshare-dm

on [∆i−2]
Ci−2 ; and (ii) opens shares of Ju+ sKCi−2

∆i−4
, Jw + s′KC−2i

∆i−4
to Pking.

4. Committee Ci−1 invokes πget-combined-prep with (rand, Ci−1, Ci) so that Pj ∈
Ci−1 gets (αj , {M j,l}l∈Ci) and Pl ∈ Ci gets (∆l, {Kl,j}j∈Ci−1).

5. While Pking distributes opened (u + s), (w + s′) to the parties of Ci, all
parties in Ci−1 invoke πeff-reshare-dm on JsKCi−1

∆i−2
, Js′KCi−1

∆i−2
(obtained from

28

πget-x-comm-shrs) and send to each Pl ∈ Ci their share αj and correspond-
ing MAC for Pl, M j,l.

6. Parties Pl in Ci then locally compute JuKCi
∆i−2

= (u + s) − JsKCi
∆i−2

and

JwKCi
∆i−2

= (w + s′)− Js′KCi
∆i−2

.
7. Then each Pl ∈ Ci locally checks that M j,l = αj · ∆l + Kl,j , for each

Pj ∈ Ci−1, and aborts if any fail. If not, let α =
∑

j∈Ci−1
αj .

8. Finally, each Pl ∈ Ci locally computes JuKCi
∆i−2

= JuKCi
∆i−2

+
∑T

m=1(α)
m ·

JrzmKCi
∆i−2

and JwKCi
∆i−2

= JwKCi
∆i−2

+
∑T

m=1(α)
m · JzmKCi

∆i−2
(here (α)m is

the m-th power of α).

Check State: On input check from the clients Cclnt:

1. The clients Cℓ first open JrKCℓ
∆1

and check its MAC by running both phases
of πMAC-check-dm.

2. Then they all open (JuKCℓ
∆ℓ−2

− r · JwKCℓ
∆ℓ−2

) and check its MAC by running
both phases of πMAC-check-dm. If the opened value is 0, output Accept; else
Reject.

Lemma 7. Procedure πmult-verify-dm is correct, i.e., it accepts if all multiplications
are computed correctly. Moreover, it is sound, i.e., it rejects except with probability
at most (2+maxi Ti)/p in case at least one multiplication is not correctly computed.
Furthermore, the transcript of Update State is simulatable.

Proof. For soundness, we consider all of the points in which the adversary can
inject error, either when multiplying JrKC3

∆1
with each input JvjK

C3

∆1
or when a

given committee Ci is updating JuKCi

∆i−2
and JwKCi

∆i−2
based on multiplication gate

outputs it has received. First, note that with all-but-negligible probability, the
additive error for some JcKCi

∆i−2
in a multiplication triple is independent of the

opened (x+ a), (y + b) for that multiplication. This is because the (potentially
incorrect) (c + v) that is opened to some honest party Pj ∈ Ci−2 before (x +
a), (y + b) are opened is the same as that received by an honest party Pl ∈ Ci−1

with all-but-negligible probability. We know this because their shared universal
hash key sj,l from Fprep is uniformly random and unknown to the adversary. So,
since H is a universal hash family, it holds that if Pj gets {(c+ v)m}m∈[Ti] and
Pl gets a different {(c+ v)′m}m∈[Ti],

Pr[Hsj,l({(c+ v)m}m∈[Ti]) = hj,l = h′
j,l = Hsj,l({(c+ v)′m}m∈[Ti])] ≤ 1/p.

So, since (c+ v) is opened before (x+ a) and (y + b) and v is uniformly random
and independent of them, the additive error for JcKCi

∆i−2
must be independent of

them (along with the challenge α which is opened even later).
The adversary can thus only inject the following kind of errors:

1. The JcmKCi

∆i−2
part of the m-th multiplication triple (JamKCi

∆i−2
, JbmKCi

∆i−2
, JcmKCi

∆i−2
)

used to compute JxmymKCi

∆i−2
may have errors {ajm·δ

j,l
bm

+bjm·δj,lam
}j∈HCi−4

,l∈TCi−4
+

29

δcm . The errors in the brackets come from adversarial action in Fprep while
the δc comes from the fact that c is not authenticated, so the adversary can
insert more error when resharing/authenticating them. Call this error εi,m.
(Note this is the only source of error when computing some JrvjK

C5

∆3
.)

2. Additionally, the Jc′mKCi

∆i−2
part of the multiplication triple (Ja′mKCi

∆i−2
, Jb′mKCi

∆i−2
,

Jc′mKCi

∆i−2
) used to compute JrxmymKCi

∆i−2
may have the same kind of errors

{(a′m)j · (δ′)j,lbm
+ (b′m)j · (δ′)j,lam

}j∈HCi−4
,l∈TCi−4

+ δcm . Call this error ε′i,m.
3. Also, we must consider the accumulated error ηi,m on the randomized value

rxm from previous gates.

So, at the end of the computation (after d multiplications), if the check passes
we will have:

0 = JuKCℓ

∆ℓ−2
− r · JwKCℓ

∆ℓ−2

=

T0∑
j=1

αj
0 · (rvj + ε0,j) +

d∑
i=1

Ti∑
m=1

αm
i · ((rxm + ηi,m) · ym + ε′i,m)−

r ·

 d∑
i=1

Ti∑
m=1

αm
i · (xm · ym + εi,m) +

M∑
j=1

αj
0 · vj

=

d∑
i=1

Ti∑
m=1

αm
i (ηi,m · ym + ε′i,m − r · εi,m) +

M∑
j=1

αj
0 · ε0,j .

Now, note that the corrupt parties of committee Ci−1 cannot forge their
share αj of α to any of the honest parties of Ci except with probability 1/p,
by the security of the information-theoretic MAC provided by Fprep. Thus, the
reconstructed challenge α must indeed be uniformly random and independent of
all other values. We analyze the two following cases:

Case 1: There is some j such that ε0,j ̸= 0. In this case, it is clear that the above
polynomial is non-zero. Therefore, since each αi is unknown to the adversary
and sampled uniformly at random and independently of all other values, the
Schwartz-Zippel Lemma tells us that the evaluation of this polynomial on these
αi equals 0 with probability at most maxi Ti/p.

Case 2: For all j, ε0,j = 0. Let layer i∗ be the first in which the adversary
injected error into a multiplication; i.e., ε′i∗,m ̸= 0 and/or εi∗,m ̸= 0 for some m.
Note that since this is the first such layer, it must be that ηi,m = 0 for all i∗,m.
So,

0 =

d∑
i=1

Ti∑
m=1

αm
i (ηi · ym + ε′i − r · εi)

=

Ti∗∑
m=1

αm
i∗(ε

′
i∗,m − r · εi∗,m) +

d∑
i∈[d]\{i∗}

Ti∑
m=1

αm
i (ηi · ym + ε′i − r · εi).

30

First, for the given m where the adversary injected error, (ε′i∗,m−r ·εi∗,m) = 0
can only happen with probability 1/p since r is unknown to the adversary and
sampled uniformly and independently of all other values. Now, if (ε′i∗,m − r ·
εi∗,m) ̸= 0, then the above polynomial is non-zero. Since each αi is unknown to
the adversary and sampled uniformly at random and independently of all other
values, the Schwartz-Zippel Lemma tells us that the evaluation of this polynomial
on these αi equals 0 with probability at most maxi Ti/p.

Thus, the total probability that the adversary can inject some error is upper
bounded by (2 + maxi Ti)/p.

Correctness clearly holds if all errors are 0. Finally, From Lemma 5 we know
that πget-x-comm-shrs is simulatable, and from Lemma 1, we know that πeff-reshare-dm is
simulatable. Also, since s, s′ are uniformly random and unknown to the adversary
by the security of Fprep, openings (u + s), (w + s′) are simulatable by random
values. Additionally, each αj is sampled uniformly at random in Fprep, so the
simulator can simulate these, and their corresponding MACs by using the MAC
keys obtained from Fprep. Finally, from Lemma 3, we know that πMAC-check-dm’s
transcript is indeed simulatable. ⊓⊔

4.5 Dishonest Majority Protocol

With all of the previous tools in place, we can finally present our full-fledged
actively secure, dishonest majority MPC protocol in the fluid setting, achieving
linear communication complexity and maximal fluidity. The clients first use
πeff-key-switch to securely transfer authenticated versions of their inputs to C2. The
committees then proceed to compute both the regular and randomized version of
the circuit on the authenticated inputs, using πmult-dm as well as addition and
identity gate procedures that work similarly using the same “mask, open to king,
and unmask” paradigm along with some local computation. Addition and identity
gates also need to preserve the invariant on MACs discussed in Section 4.4.
The committees also make sure to update the accumulators of πMAC-check-dm and
πmult-verify-dm along the way with each opening and multiplication, respectively.
We note that, unlike the honest majority protocol, the outputs of the final
circuit layer will be shared by the clients themselves, i.e., Cclnt = Cℓ. Once all
circuit layers have been computed, the clients invoke the Check State phases
of πMAC-check-dm and πmult-verify-dm, then reconstruct the outputs. We note that,
as is remarked in the protocols of [RS22, CGG+21], if the clients indeed have
access to a broadcast channel in the last round of the protocol, or implement a
broadcast over their point-to-point channels, then security with unanimous abort
is achieved by having the clients broadcast “abort”, if their check on their output
fails.

Protocol 9: Πmain-dm

Preprocessing Phase: All parties Pi ∈ U invoke Fprep to receive their share
of the global MAC key ∆i, along with enough pairwise random sharings,
multiplication triples, and sharings of 0.

31

Input Phase: To form a SPDZ sharing of an input xi possessed by Pi ∈ Cclnt:

1. Pi invokes πeff-key-switch on (xi,∆
i · xi,∆

i) with C2 (through C1).
2. C1 invokes πget-combined-prep with (rand, C1, C1) to get ⟨r⟩C1,C1 then invokes

πconvert on it to get SPDZ sharing JrKC1
∆1

, and finally πeff-reshare-dm on this.
3. C2 invokes πeff-reshare-dm on JxKC2

∆1
(from πeff-key-switch above) and JrKC2

∆1
.

4. Finally, C3 invokes πmult-dm on JxKC3
∆1

and JrKC3
∆1

, as well as the identity gate
procedure (below) on JxKC3

∆1
so that C5 gets JxKC5

∆3
and Jx · rKC5

∆3
.

5. Finally, C5 invokes πmult-verify-dm on input
(update, {(JxiKC5

∆3
, JrxiKC5

∆3
)}i∈[|Cclnt|]), corresponding to each input.

Execution Phase:

1. Each committee Ci of the execution phase first invokes πeff-reshare-dm on JrKCi
∆1

.
2. In parallel, every other committee (with the help of the others) will compute

the gates at each layer of the circuit as below:

Addition: To perform addition on JxKCi
∆i−2

and JyKCi
∆i−2

(and identically for

JrxKCi
∆i−2

and JryKCi
∆i−2

):

1. Ci−2 and Ci−1 invoke πget-combined-prep with (rand, Ci−2, Ci−2 ∪ Ci−1) to get
⟨s⟩Ci−2,Ci−2∪Ci−1 and then invokes πget-x-comm-shrs on it (with Ci+1) to get
SDPZ sharing JsKCi−2

∆i−2
.

2. Then Ci−2 invokes πeff-reshare-dm on JsKCi−2

∆i−2
and Ci−1 does the same.

3. Now, Ci first agrees on Pking in Ci+1 then locally computes Jx+ yKCi
∆i−2

.

4. Then Ci in parallel: (i) invokes πeff-reshare-dm on [∆i]
Ci ; and (ii) opens shares

of Jx+ y + sKCi
∆i−2

to Pking.
5. While Pking distributes opened (x+ y + s) to the parties of Ci+2, all parties

of Ci+1 invoke πeff-reshare-dm on JsKCi+1

∆i
(obtained through πget-x-comm-shrs).

6. Parties in Ci+2 finally locally compute Jx+ yKCi+2

∆i
= (x+ y + s)− JsKCi+2

∆i
.

7. Parties in Ci+2 will also invoke πMAC-check-hm on input (update, {(xm + ym +
sm, [∆i−2 · (xm + ym + sm)]Ci+2)}m∈[T]) corresponding to all of the open-
ings of the above form they receive for the addition gates at this layer of
the circuit.a

Identity Gates: Ci forwards JxKCi
∆i−2

, JrxKCi
∆i−2

to Ci+2 (so that they are MAC’d
under ∆i) in a similar fashion as addition above.

Multiplication: To multiply JxKCi
∆i−2

and JyKCi
∆i−2

, invoke πmult-dm on them

(and identically for JrxKCi
∆i−2

and JyKCi
∆i−2

). Then invoke πmult-verify-hm on input

(update, {(JxmymKCi+2

∆i
, J(rx)mymKCi+2

∆i
)}m∈[Ti]), corresponding to each multipli-

cation performed at this layer of the circuit.

Output Phase:

1. Clients in Cclnt first invoke πMAC-check-dm on check. If it outputs Reject, then
abort; else, continue. This takes 2 rounds.

32

2. Clients in Cclnt then invoke πmult-verify-dm on check. If it outputs Reject, then
abort; else, continue. This takes 6 more rounds.

3. Clients finally open each output wire JzKCℓ
∆ℓ−2

and check their MACs by
running both phases of πMAC-check-dm. If it outputs Reject, then abort; else,
output each z. This takes 3 more rounds.

a This invocation can be combined with that of the multiplication gates for
this circuit layer.

Theorem 4. Let A be an R-adaptive adversary in Πmain-dm. Then the protocol
UC-securely computes FDABB in the presence of A in the (Fprep,Fcommit)-hybrid
model.

Proof. We construct a Simulator (S) that runs the adversary (A) as a subroutine,
and is given access to FDABB. It internally emulates the functionalities Fprep

and Fcommit and we implicitly assume that it passes all communication between
A and the environment Z. It keeps track of the current committee via inputs
(Init, C) and (Next-Committee, C) from FDABB (and therefore in which committees
to simulate corresponding communication for circuit gates). The simulator uses
bad, initially set to 0, to detect any bad behavior from A. If so, it sets bad = 1.
The simulation proceeds as follows:

Init: On input (Init, C), keep track of A’s inputs to Fprep, including any additive
errors δa ̸= 0 or δb ̸= 0 for any pairwise multiplication triples (this might not be
an issue yet, as long as if the eventual additive error on any c of any triple ends
up as 0; see below).

Input: On input (Input, idx) (for both honest and adversarial inputs), simulate
πeff-key-switch as in Lemma 4, πconvert as in Lemma 2, πeff-reshare-dm as in Lemma 1,
and πMAC-check-dm as in Lemma 3. If A cheats when sending some universal
hash value during πMAC-check-dm, abort. If A cheats either when resharing or
opening a value (i.e., by sending a wrong share), set bad = 1. Also, simulate the
multiplication as below.

Addition (and similarly for identity gates): On input (Add, idz, idx, idy), sim-
ulate πget-x-comm-shrs as in Lemma 5, πeff-reshare-dm as in Lemma 1, and πMAC-check-dm

as in Lemma 3. Additionally, simulate the opening of Jx+ y + sKCi

∆i−2
with random

values. Since s is uniformly random and unknown to A, this is a perfect simulation.
If A cheats when sending some universal hash value during πMAC-check-dm, abort.
If A cheats either when resharing or opening a value (i.e., by sending a wrong
share), set bad = 1.

Multiplication: On input (Mult, idz, idx, idy), simulate πmult-dm as in Lemma 6
and πmult-verify-dm as in Lemma 7. If A cheats when sending some universal hash
value during πMAC-check-dm or πmult-dm, abort. If for any c part of a multiplication
triple, the additive error δc +

∑
j∈HCi−2

,l∈TCi−2
aj · δj,lb + bj · δj,la ̸= 0, set bad = 1.

33

Additionally, if A cheats either when resharing or opening a value (i.e., by sending
a wrong share), set bad = 1.

Output: If S ever set bad = 1 because A cheated when opening or resharing
a value, S sends random values for σ on behalf of the honest parties, then
aborts. Otherwise, S records {σi}i∈TCℓ

sent to Fcommit by A in the check state
phase of πMAC-check-dm, samples random shares for the honest parties such that∑

i∈Cℓ
σi = 0 and sends them to A. If A cheats during the check state phase of

πMAC-check-dm (e.g., by committing to the wrong MAC check value σi), S aborts.
In the check state phase of πmult-verify-dm, S sends random shares on behalf of the
honest parties for the opening of r. If A cheats by opening the wrong values for r,
S aborts after the MAC check (as above). If S ever set bad = 1 because A added
non-zero error to the c part of a multiplication triple, S sends random values on
behalf of the honest parties for (u− r ·w), then aborts. Otherwise, S records the
values sent by A for (u− r · w), then samples shares such that (u− r · w) = 0,
and sends them to A. If A cheats when opening (u− r · w), S aborts after the
MAC check (as above).

Finally, S gets the outputs from FDABB and forwards it to A. S then forwards
whatever it receives from A back to FDABB.

From all of the Lemmas, we have that the simulation is perfect up until the
output phase. By Lemmas 3 and 7, A is only able to cheat in the real world with
probability negligible in p. Thus, the distance between the real-world and the
simulation is negligible in p. ⊓⊔

5 Honest Majority

We now turn to presenting our protocol for fluid MPC with linear communication
complexity and maximal fluidity in the honest majority setting, where each
committee contains at most a minority of corrupt parties. The outline of this
section is the following. First, in Section 5.1, we present a major building block,
Procedure πeff-reshare-hm, which enables a given committee holding a sharing of
a random value to efficiently reshare this secret to the next committee. As in
the two previous fluid protocols [RS22, CGG+21], we make use of a randomized
version of the circuit that aims at detecting cheating in multiplication gates, and
we also draw inspiration from [RS22] and make use of a MAC check that accounts
for the correctness of the openings throughout the computation, which is crucial
in our case to achieve linear communication complexity. This is discussed in
Section 5.2. Then, in Section 5.3 we show how the parties make progress through
the computation by processing multiplication gates. Finally, these pieces are put
together in Section 5.4 to obtain our final protocol, Πmain-hm, for honest majority
MPC in the fluid model with linear communication complexity and maximal
fluidity.

Notation and initial building blocks. We let [x]
Ci

ti
denote a Shamir secret-

sharing of value x with degree-ti among the parties of committee Ci. A SPDZ

34

sharing [DPSZ12] of a value x among the parties of committee C, JxKC contains
a vector of degree-2t Shamir shares JxKC := ([x]2t , [∆]2t , [∆ · x]2t).

We now present some of the building blocks we will require for our final
protocol. For our main honest majority protocol, we will require the following
functionalities. These are fairly standard in the literature and implementing them
in the fluid setting represents little challenge, using the randomness extraction
ideas through Vandermonde matrices in [DN07]. Thus we omit their instantiations
for brevity.

Functionality 4: Frand

Functionality: Distribute degree-ti sharings of random value r to Ci.

1. Frand receives from the adversary shares {ri}i∈TC . Frand views these as the
shares of the corrupted parties.

2. Frand randomly samples r, then based on r and the ti shares {ri}i∈TC of
corrupted parties, Frand reconstructs the whole sharing [r]Ci

ti
.

3. Finally, Frand distributes the shares of [r]Ci
ti

to the honest parties of Ci.

Functionality 5: Fcoin

Functionality: Sample a random coin r ∈ Fp to Ci.

1. Fcoin samples a random field element r.
2. Fcoin sends r to the adversary and:

– If the adversary replies continue, Fcoin sends r to the honest parties of
Ci.

– If the adversary replies abort, Fcoin sends abort to the honest parties of
Ci.

Functionality 6: Fdouble-rand

Functionality: Distribute degree-ti and degree-2ti sharings of the same random
value r to Ci.

1. Fdouble-rand receives from the adversary two sets of shares {ri}i∈TC and
{r′i}i∈TC . Fdouble-rand views the first set as the shares of the corrupted parties
for the degree ti-sharing, and the second set as the shares for the degree
2ti-sharing.

2. Fdouble-rand randomly samples r and prepares the double sharings as follows.
– For the degree-ti sharing, based on the secret r and the ti shares
{ri}i∈TC of corrupted parties, Fdouble-rand reconstructs the whole sharing
[r]Ci

ti
.

– For the degree-2ti sharing, Fdouble-rand randomly samples ti elements as
the shares of the first ti honest parties. Based on the secret r, the ti
shares of the first ti honest parties, and the ti shares {r′i}i∈TC of the
corrupted parties, Fdouble-rand reconstructs the whole sharing [r]Ci

2ti
.

35

3. Finally, Fdouble-rand distributes the shares of ([r]Ci
ti

, [r]Ci
2ti

) to the honest parties
of Ci.

Functionality 7: Fzero

Functionality: Distribute degree 2ti shares of o = 0 to Ci.

1. Fzero receives from the adversary the set of shares {ri}i∈TC .
2. Fzero randomly samples ti elements as the shares of the first ti honest parties.

Based on the secret o = 0, the ti shares of the first ti honest parties, and
the ti shares {ri}i∈TC of the corrupted parties, Fzero reconstructs the whole
sharing [o]Ci

2ti
.

3. Finally, Fzero distributes the shares of [o]Ci
2ti

to the honest parties of Ci.

As we will later accomplish in Πmain-hm, each committee will have a degree-ti
and degree-2ti double sharing of the global MAC key ∆. Therefore we will assume
that all procedures presented below that are invoked by Ci will implicitly take
these sharings as input.

We rely on the following procedure that enables the parties in a given com-
mittee Ci to obtain authenticated sharings of a uniformly random value JrKCi ,
assuming Shamir sharings of the key ([∆]

Ci

ti
, [∆]

Ci

2ti
). This is described below. Ob-

serve that in the protocol the MAC sharings produced [r ·∆]
C
ti

are not uniformly
random, but instead, they are a product [r]

Ci

ti
· [∆]

Ci

ti
. These sharings will be

randomized in the places we use them.

Procedure 10: πget-rand-sharing

Usage: Using double sharing ([∆]Ci
ti

, [∆]Ci
2ti

) of the global MAC key, Ci outputs
a random SPDZ sharing JrKCi .

1. All parties in Ci invoke Fdouble-rand to get random double sharing ([r]Ci
ti

, [r]Ci
2ti

).
2. Parties in Ci then locally obtain and output authenticated sharing JrKCi =

([r]Ci
2ti

, [r]Ci
ti
· [∆]Ci

ti
, [∆]Ci

2ti
).

5.1 Efficient Resharing for Honest Majority

As we highlighted in Section 2, a fundamental reason why the protocol from
[CGG+21] does not achieve linear communication complexity stems from the
fact that the hand-off procedure from one committee to the next one consists of
every party resharing their share towards the next committee, which requires
quadratic communication. In our work, we address this limitation by making use
of Procedure πeff-reshare-hm below, which shows how to reshare a degree-2ti Shamir
sharing from committee Ci to the next committee Ci+1, while using only linear

36

communication. The idea is in fact simple: assuming each committee has the
same amount of parties n (the procedure below is more general), each party with
index j in committee Ci will send (a re-randomized version of) their share to
the party with index j in Ci+1 directly. This is secure since the adversary learns
in total at most 2t shares across the two committees, which is the degree of
the polynomial used. As briefly mentioned above, the parties first re-randomize
their shares using Fzero, which is done to prevent a new sharing from leaking the
underlying secret when transmittted to the next committee.

Procedure 11: πeff-reshare-hm

Usage: Ci reshares re-randomized [r]Ci
2ti

to Ci+1. Assume that the parties in Ci
are indexed from 1 to ni and those in Ci+1 are indexed from ni +1 to ni +ni+1.

1. Let [r]Ci
2ti

be the input shares.
2. Ci invokes Fzero and receives a sharing of o = 0, [o]Ci

2ti
.

3. All parties locally compute [r′]
Ci
2ti

= [r]i2ti + [o]i2ti , for r′ = r + 0 = r.
4. Finally:

– If ni < ni+1: Let d = ni+1/ni (assuming ni|ni+1 for simplicity). Each
Pj ∈ Ci samples d − 1 random values rl, sets rj·d = (r′)j −

∑d−1
l=1 rl,

where (r′)
j is their share of [r′]

Ci
2ti

, and sends each rl for l ∈ [d] to

Pni+(j−1)·d+l ∈ Ci+1, who outputs this as their share of [r′]Ci+1
2ti+1

.
– Else: Let d = ni/ni+1 (assuming ni+1|ni for simplicity). For l such that

(l− 1) · d < j ≤ l · d, each Pj ∈ Ci sends their share r′
j to Pni+l ∈ Ci+1,

who outputs as their share of [r′]Ci+1
2ti+1

,
∑

j r
′j for each Pj it received

from.

Lemma 8. Assume that at most 2ti shares of [r]Ci

2ti
can be computed by A (and

the rest are uniformly random to A). Then procedure πeff-reshare-hm’s transcript is
simulatable with random values and preserves the invariant that at most 2ti+1

shares of [r]Ci+1

2ti+1
can be computed by A, while the rest are uniformly random to

A.

Proof. For this proof, we assume for simplicity that ti = ti+1. Now, assume w.l.o.g.
that the shares of [r]Ci

2ti
known by A are r1, . . . , r2ti , which must also mean that

Pni
∈ Ci is honest. Thus, we can also assume w.l.o.g. that the corrupted parties

in Ci are P1, . . . , Pti . This means that the shares of [o]Ci

2ti
held by Pti+1, . . . , Pni ,

are unknown and uniformly random (subject to them reconstructing to 0) to A,
by the security of Fzero.

Now, consider what the adversarial parties in TCi+1
are sent from Pti+1 . . . Pni

:
rj + oj (where each Pj /∈ TCi in the worst case). Since A does not know at least
two shares of [o]Ci

2ti
, the oj ’s in the communication above that it receives are each

individually uniformly random. Therefore, all of these messages can be simulated
with random values.

In particular, this means that even if the adversary sees rni +oni , rni remains
uniformly random and unknown to A. Furthermore, consider some Pl ∈ Ci+1

37

such that Pl itself is uncorrupted and Pj ∈ Ci who sent to Pl was not corrupted
(there must exist at least one such pair). Since the oj in Pl’s share (r′)l = rj + oj

is uniformly random and unknown to A, then (r′)l itself is uniformly random
and unknown to A, even if rj was known by A. In fact, all of the shares in this
case are uniform and unknown to A. All other shares (corresponding to the case
in which at least one of Pl ∈ Ci+1, or the Pj who sent to Pl is corrupted) are
known to A. Thus, the invariant is preserved. ⊓⊔

Inefficient resharing. We will also need to reshare degree-ti Shamir sharings
across committees using Procedure πineff-reshare-hm, below. This can only be done
with Ω(n2) communication, however, since it is only done once per committee,
we can still achieve O(n|C|) total communication if the width of circuit C is
Ω(n).

Procedure 12: πineff-reshare-hm

Usage Ci reshares [r]Ci
ti

to Ci+1.

1. Let rj be Pj ’s share of [r]Ci
ti

. Each Pj ∈ Ci will create a random degree ti+1

Shamir secret sharing
[
rj
]Ci

ti+1
of their share and distribute the corresponding

shares to each Pl ∈ Ci+1.
2. Finally, each Pl ∈ Ci+1 will then compute [r]Ci

ti+1
=

∑
j∈Ci

cj
[
rj
]Ci

ti+1
, where

cj is the Lagrange reconstruction coefficient for a degree-ti+1 polynomial.

Lemma 9. Procedure πineff-reshare-hm’s transcript is simulatable with random val-
ues.

Proof. This follows easily from the fact that the shares of the honest parties of
Ci are unknown to the adversary. So, by the security of Shamir secret sharing,
the ti+1 shares of each honest party’s share in Ci that the corrupt parties of Ci+1

receive are uniformly random.

5.2 Incremental Checks

As in [CGG+21], we achieve active security by maintaining a few “accumulators”
that somehow aggregate the potential errors that are introduced by each commit-
tee. These accumulators are updated by every other committee, and the current
(possibly updated) version of the accumulator is transferred from one committee
to the next. Finally, the final committees will use these accumulators to verify
the integrity of the computation.

In our protocol, we make use of the “straightline” resharing procedure πeff-reshare-hm

that achieves linear communication complexity, but requires a larger threshold of
2ti to achieve security. This means that the underlying secrets are not determined
by the honest parties alone, and as a result a malicious adversary can in fact add
errors to any value throughout the computation. A similar issue happens in the

38

dishonest majority fluid protocol of [RS22], and we draw inspiration from such
approach to address this attack in our protocol. The solution consists of using
MACs, which are used to authenticate every intermediate value used throughout
the computation and serve as additional redundancy on secret values that guar-
antees integrity. This is done by maintaining an accumulator that attests for the
integrity of all of the reconstructions, which is built using the shared MACs and
the claimed openings.

Succinctly maintaining this accumulator involves opening random challenges
β to committees, who then use such β to compute random linear combinations
that compress the verification of many MACs into one field element that should
be 0. However, these challenges β should not be opened at the same time that
the values whose MACs it checks are opened, for otherwise the adversary could
cheat in the above linear combination. Thus, when the parties of Ci receive some
openings and want to verify their MACs, they each hash together all of these
openings and then send these hashes to each of the parties of Ci+1. The challenge
β is then opened to Ci+1, and only P1 of Ci forwards all of the openings to all of
the parties of Ci+1, in order to maintain linear communication. Since the hashes
prevent P1 from changing the openings, they cannot be dependent on β. Since
the hashes are short, total communication will still be O(n|C|) if the width of C
is Ω(n).

Also note that it takes two committees to update the accumulator based on
values opened to the first committee. However, since values are only opened to
every other committee, there is no entanglement of updates. Details are given in
Procedure πMAC-check-hm below.

Procedure 13: πMAC-check-hm

Usage: Each committee Ci incrementally updates a MAC check state [σ]Ci
2ti

based on the values opened to them, which the final committees at the end of
the computation use to check that all openings throughout the protocol were
performed correctly.

Init: Each Party Pi in committee C4 (the first to have values opened to it, since
the first invocation of πmult-hm is by C2 to create randomized versions of the
circuit inputs) initially defines their share of [σ]C4

2t4
as σi = 0.

Update State: On input (update, {(Am, [∆ ·Am]Ci
2ti

)}m∈[T], [∆]Ci
2ti

) from com-
mittee Ci, where {Am}m∈[T] were the values opened to Ci:

1. First each party Pj ∈ Ci samples keys sj,l to the universal hash family H =
{Hs : FT

p → Fp} for each Pl ∈ Ci+1 and computes hj,l = Hsj,l({Am}m∈[T).
2. In parallel: (i) each party Pj ∈ Ci then sends to each Pl ∈ Ci+1 the universal

hash key and value sj,l, hj,l; (ii) only P1 sends {Am}m∈[T] to each Pl ∈ Ci+1;
and (iii) all of Ci invokes πeff-reshare-hm on [σ]Ci

2ti
, {[∆ ·Am]Ci

2ti
}m∈[T].

3. Each Pl in Committee Ci+1 first for each Pj ∈ Ci computes h′
j,l =

Hsj,l({Am}m∈[T]) and checks if h′
j,l = hj,l. If not, it aborts; else continues.

4. Ci+1 then invokes Fcoin to get a random challenge β.

39

5. Each Pl ∈ Ci+1 next locally computes A =
∑T

m=1 β
m · Am and [γ]

Ci+1
2ti+1

=∑T
m=1 β

m · [∆ ·Am]Ci
2ti+1

.

6. It finally updates [σ]
Ci+1
2ti+1

= [σ]
Ci+1
2ti+1

+ [γ]
Ci+1
2ti+1

− [∆]
Ci+1
2ti+1

· A and invokes

πeff-reshare-hm on [σ]
Ci+1
2ti+1

.

Check State: On input check from committee Ci:

1. Let σj be the share of the MAC check state [σ]Ci
2ti

held by each Pj ∈ Ci.
Each Pj creates a random degree-ti+1 Shamir secret share

[
σj

]Ci+1

ti+1
of their

share σj and distributes the corresponding shares to the parties of Ci+1.
2. Then each party Pl ∈ Ci+1 computes [σ]

Ci+1
ti+1

=
∑

j∈Ci
cj ·

[
σj

]Ci+1

ti+1
, where

cj is the Lagrange reconstruction coefficient for a degree-2ti polynomial.
3. Finally, parties open the shares of [σ]

Ci+1
ti+1

to each party of Ci+2, who
reconstruct σ, and if successful, output Accept if σ = 0; else Reject.

Lemma 10. Procedure πMAC-check-hm is correct, i.e., it accepts if all the opened
values Am and the corresponding MACs are computed correctly. Moreover, it is
sound, i.e., it rejects except with probability at most (2 + maxi Ti)/p in case at
least one opened value is not correctly computed. Furthermore, the transcript of
Update State is simulatable.

Proof. The proof follows along the lines of the proof for Lemma 3 in the dishonest
majority case. One difference is that the parties in Ci send unique universal hash
keys to each party in Ci+1, rather than getting them from the preprocessing of
the dishonest majority protocol. But since there will be at least one honest party
in each committee, at least one key will remain random and unknown to the
adversary, and thus it serves the same purpose. Also, πMAC-check-hm gets β from
Fcoin, but from the security of Fcoin, this is also still random and independent of
all other values.

So, the adversary can thus only inject additive error δim for each m-th value
Ai

m opened to Ci, ηi for when the MAC key ∆ is reshared to Ci, εim for when the
MAC of the m-th opened value is reshared to Ci, and ζi for when the current
accumulator value σ is reshared to Ci. Additionally, in the Check State phase,
since at least one share of [σ]Ci

2ti
is unknown to A and remains unknown after the

degree reduction step, A can only inject another additive error ε independent of
σ. Thus, ensuring that [σ]

Cℓ

2tℓ
= 0 follows the analysis of the proof of Lemma 3

for the dishonest majority case.
Finally, we know from Lemma 8 that πeff-reshare-hm is simulatable by random

values. Also, the universal hash keys are sampled randomly by the clients, and the
opened values are known to the simulator, so the hash keys and their resulting
hash outputs can easily be simulated.

⊓⊔
Unfortunately, this is not the only kind of error we need to account for.

As in [RS22], the c parts of multiplication triples that are used in πmult-hm

40

are only authenticated “on the fly”. This means that the adversary can inject
additive errors into these c parts that πMAC-check-hm will not catch (since the
corresponding errors will be incorporated into the MACs, too). As a result,
multiplications may not be computed correctly. To address this attack vector, we
use similar ideas to [RS22, CGG+21], which have their roots in the techniques of
[CGH+18], and consists of maintaining a randomized version of the circuit which
can be used to verify multiplications. The associated accumulator is presented in
Procedure πmult-verify-hm below.12

Procedure 14: πmult-verify-hm

Usage: Each committee Ci that gets the output wires of the multiplication
gates of some layer ℓ of the circuit incrementally updates a multiplication
verification state (Ju′KC2ti , Jw′KC2ti), which the final committees at the end of
the computation use to check that all multiplications throughout the protocol
were performed correctly.

Init: Each Party Pi in committee C4 (the first to get output from πmult-hm, as a
result of C2 creating randomized versions of the circuit inputs) initially defines
their shares of Ju′KC4 , Jw′KC4 as (u′)

i
= (w′)

i
= 0 (same for the MAC shares).

Update State: On input (update, {(JzmKCi , JrzmKCi}m∈[T]) from committee
Ci, where {(JzmKCi , JrzmKCi}m∈[T] were the output wires of multiplication gates
computed by Ci:

1. Each Pj in Ci invokes Fcoin to get random challenge α.
2. Parties Pj in Ci locally compute JuKCi = JuKCi +

∑T
m=1 α

m · JrzmKCi and
JwKCi = JwKCi +

∑T
m=1 α

m · JzmKCi .
3. Finally Ci invokes πeff-reshare-hm on JuKCi , JwKCi .

Check State: On input check from the clients Ci:

1. The parties of Ci first open JrKCi to the parties of Ci+1, who then check its
MAC by running both phases of πMAC-check-hm on it.

2. Then the parties of Ci+4 (πMAC-check-hm takes 4 rounds) all open (JuKCclnt −
r · JwKCclnt) to the parties of Ci+5, who then check its MAC by running both
phases of πMAC-check-hm on it. If the opened value is 0, the parties of Ci+8

(πMAC-check-hm takes 4 rounds) output Accept; else Reject.

Lemma 11. Procedure πmult-verify-hm is correct, i.e., it accepts if all multiplications
are computed correctly. Moreover, it is sound, i.e., it rejects except with probability
at most (1+maxi Ti)/p in case at least one multiplication is not correctly computed.
Furthermore, the transcript of Update State is simulatable.

Proof. This proof follows along the lines of Lemma 7 for the dishonest majority
case. One difference is that in πmult-hm, we do not need to use a universal hash
function. This is because we can authenticate JcKCi−2 before (x+ a), (y + b) are
12 Note that the invocations of πMAC-check-hm in the Check State phase of πmult-verify-hm

can be condensed to 3 rounds, since only one value at a time is opened.

41

opened and thus the error in JcKCi−2 must be independent of them (and also
the later opened challenge α). So, the probability of πmult-verify-hm failing when
the adversary cheats is even lower (i.e., as in the lemma statement). Also, since
parties locally compute [c]

Ci

2ti
= [a]

Ci

ti
· [b]Ci

ti
, there is only additive error on c, δc,

i.e., independent of the shares aj , bj of the honest parties (and same for Jc′KCi+2 of
the randomized computation). Finally, πmult-verify-hm gets α from Fcoin, but from
the security of Fcoin, α is in this case also random and independent of all other
values.

So (assuming that πMAC-check-hm does not fail), the adversary can only inject
additive error ϵi,m(= δci,m) for each m-th multiplication gate that Ci receives
output for, along with ϵ′i,m for that of the randomized version of the multiplication
gate, and finally, any accumulated error ηi,m on the randomized value from the
previous gates in the circuit. Thus, ensuring that JuKCclnts − r · JwKCclnts = 0 follows
the exact same case analysis of that in the proof of Lemma 7.

Finally, we know from Lemma 8 that πeff-reshare-hm is simulatable by random
values. ⊓⊔

5.3 Secure Multiplication

Finally, before we discuss our ultimate protocol, we present Procedure πmult-hm

below which enables a given committee to make progress on the computation by
securely processing multiplication gates. At a high level, this procedure makes
use of multiplication triples [Bea92] to reduce the task of securely multiplying
two shared values, to that of reconstructing two secrets. Reconstruction is done
by using the “king idea”, originating from [DN07], which achieves linear commu-
nication complexity by first reconstructing to a single party who then sends the
reconstruction to the other parties.

However, there are a couple of issues we need to deal with. First, using
multiplication triples requires different committees to have access to the same
multiplication triple. We indeed achieve this by making use of our resharing
procedure πeff-reshare-hm from Section 5.1. Second, a given committee can only
obtain a partially authenticated multiplication triple (JaKC , JbKC , [c]C2t), where the
c part is not authenticated. Using an idea from [RS22], we authenticate the c part
of each triple “on the fly”. Intuitively, this is done by masking [c]

C
2t with a random,

authenticated sharing JvKC , reconstructing (c + v), then creating unmasked,
authenticated shares of c using JvKC (including its MAC). Reconstructing (c+ v)
here is also done by using the “king idea”. The details are presented below.

Procedure 15: πmult-hm

Usage: Using double sharing ([∆]Ci
ti

, [∆]Ci
2ti

) of the global MAC key, multiply
JxKCi and JyKCi held by Ci so that Ci+2 outputs Jx · yKCi+2 .

1. All parties in Ci−2 agree on a special party Pking in Ci−1.

42

2. All parties in Ci−2 invoke πget-rand-sharing three times to get
JaKCi−2 , JbKCi−2 , JvKCi−2 (they also save the sharings [a]

Ci−2
ti−2

, [b]
Ci−2
ti−2

generated during this invocation).
3. Ci−2 then locally obtains (unauthenticated) [c]

Ci−2
2ti−2

= [a]
Ci−2
ti−2

· [b]Ci−2
ti−2

.
4. Finally, parties in Ci−2 in parallel invoke πeff-reshare-hm on input

JaKCi−2 , JbKCi−2 , JvKCi−2 and open [c+ v]
Ci−2
2ti−2

to Pking in Ci−1.
5. Then, while Pking distributes opened (c + v) to the parties of Ci, the

rest of the parties in Ci−1 in parallel invoke πeff-reshare-hm on input
JaKCi−1 , JbKCi−1 , JvKCi−1 .

6. Parties in Ci then use opened (c + v) to compute authenticated JcKCi =

((c+ v)− [v]Ci
2ti

, [∆]Ci
2ti
· (c+ v)− [∆ · v]Ci+2

2ti
, [∆]Ci

2ti
).

7. Parties in Ci agree on a special party P ′
king in Ci+1 and then compute

Jx+ aKCi = JxKCi + JaKCi , and JyKCi = JyKCi + JbKCi .
8. Parties in Ci then in parallel open Jx+ aKCi , Jy + bKCi to P ′

king in Ci+1 and
invoke πeff-reshare-hm on JaKCi , JbKCi , JcKCi , [∆ · (x+ a)]Ci

2ti
, [∆ · (y + b)]Ci

2ti
.

9. Then while P ′
king distributes opened d = x + a and e = y + b to

the parties of Ci+2, all parties in Ci+1 invoke πeff-reshare-hm on input
JaKCi+1 , JbKCi+1 , JcKCi+1 , [∆ · (x+ a)]

Ci+1
2ti+1

, [∆ · (y + b)]
Ci+1
2ti+1

.
10. Ci+2 finally locally computes Jx · yKCi+2 = de−d JbKCi+2−e JaKCi+2+JcKCi+2 .
11. Parties in Ci+2 will also invoke πMAC-check-hm on input (update, {((xm +

am, [∆ · (xm + am)]
Ci+2
2ti+2

), (ym + bm, [∆ · (ym + bm)]
Ci+2
2ti+2

))}m∈[T]) corre-
sponding to all of the openings of the above form they receive for the
multiplication gates at this layer of the circuit.

Lemma 12. Procedure πmult-hm’s transcript is simulatable.

Proof. First, we know that πeff-reshare-hm is simulatable by random values from
Lemma 8. Also, since a, b, v are uniformly random and unknown to the adversary
by the security of Fdouble-rand, openings (c+ v), (x+ a), (y + b) are simulatable by
random values. Finally, from Lemma 10, we know that πMAC-check-hm’s transcript
is indeed simulatable. ⊓⊔

5.4 Honest Majority Protocol

With all the previous tools into place, we are finally ready to present our full-
fledged actively secure, honest majority MPC protocol in the fluid setting, achiev-
ing linear communication complexity and maximal fluidity. The clients first
distribute double sharings ([xi]

C1

t1
, [xi]

C1

2t1
) of their inputs to C1. Then C1 obtains a

double sharing ([∆]
C1

t1
, [∆]

C1

2t1
) of the global MAC key using Fdouble-rand, and forms

authenticated SPDZ sharings of the inputs using these sharings. The committees
then proceed to compute both the regular and randomized version of the circuit
on the authenticated inputs, using πmult-hm as well as addition and identity gate
procedures that work similarly using the same “mask, open to king, and unmask”
paradigm along with some local computation. The committees also make sure

43

to update the accumulators of πMAC-check-hm and πmult-verify-hm along the way with
each opening and multiplication, respectively. Finally, once all circuit layers
have been computed, the final committees invoke the Check State phases of
πMAC-check-hm and πmult-verify-hm, then reconstruct the outputs to the clients. We
note that, as it is remarked in the protocols of [RS22, CGG+21], if the clients
indeed have access to a broadcast channel in the last round of the protocol, or
implement a broadcast over their point-to-point channels, then security with
unanimous abort can be achieved by having the clients broadcast “abort”, if their
check on their output fails.

Protocol 16: Πmain-hm

Input Phase: To form a SPDZ sharing of an input xi possessed by Pi ∈ Cclnt:

1. Pi samples random degree-t1 and degree-2t1 Shamir sharings of xi and
distributes the corresponding shares to all parties in C1.

2. C1 then invokes Fdouble-rand to get random double sharings of the global MAC
key ([∆]C1

t1
, [∆]C1

2t1
).

3. Next, parties in C1 locally obtain authenticated sharing JxiKC1 =

([xi]
C1
2t1

, [xi]
C1
t1
· [∆]C1

t1
, [∆]C1

2t1
) and invoke πineff-reshare-hm on input [∆]C1

t1
and

πeff-reshare-hm on input JxiKC1 .a

4. Parties in C2 then invoke πget-rand-sharing to get JrKC2 and invoke πmult-hm on
input JxiKC2 and JrKC2 , as well as the identity gate procedure (below) on
JxiKC2 so that C4 gets JxiKC4 , JrxiKC4 .

5. Finally, C4 invokes πmult-verify-hm on input
(update, {(JxiKC4 , JrxiKC4)}i∈[|Cclnt|]), corresponding to each input.

Execution Phase:

1. Each Committee Ci of the execution phase will first of all invoke πineff-reshare-hm

on input [∆]Ci
ti

and πeff-reshare-hm on input JrKCi and [∆]Ci
2ti

.
2. In parallel, every other committee (with the help of the others) will compute

the gates at each layer of the circuit as below:

Addition: To perform addition on JxKCi and JyKCi (and identically for JrxKCi

and JryKCi):

1. All parties in Ci agree on a special party Pking in Ci+1 then invoke
πget-rand-sharing to get JsKCi .

2. Then, parties in Ci locally obtain Jx+ y + sKCi and open it to Pking while
invoking πeff-reshare-hm on input JsKCi .

3. While Pking distributes opened x+ y + s to the parties of Ci+2, all parties
in Ci+1 invoke πeff-reshare-hm on JsKCi+1 .

4. Parties in Ci+2 finally locally compute Jx+ yKCi+2 = (x+ y + s)− JsKCi+2 .
5. Parties in Ci+2 will also invoke πMAC-check-hm on input (update, {(xm + ym +

sm, [∆ · (xm + ym + sm)]
Ci+2
2ti+2

)}m∈[T]) corresponding to all of the openings
of the above form they receive for the addition gates at this layer of the
circuit.b

44

Identity Gates: Ci forwards JxKCi , JrxKCi to Ci+2 in a similar fashion as addition
above.

Multiplication: To multiply JxKCi and JyKCi , invoke πmult-hm on them
(and identically for JrxKCi and JyKCi). Then invoke πmult-verify-hm on input
(update, {(JxmymKCi+2 , J(rx)mymKCi+2)}m∈[Ti]), corresponding to each multi-
plication performed at this layer of the circuit.

Output Phase:

1. Parties in the last committee Cℓ who compute the shares of the output
gates then invoke πMAC-check-hm on check. If it outputs Reject, then abort;
else, continue.

2. Parties in Cℓ+2 (check of πMAC-check-hm takes 3 rounds) then invoke
πmult-verify-hm on check. If it outputs Reject, then abort; else, continue.

3. Next, for Party Pj in Cℓ+9 (check of πmult-verify-hm takes 8 rounds), let
zj , (∆ · z)j be their respective shares of output wire [z]

Cℓ+9
2tℓ+9

and MAC

[∆ · z]Cℓ+9
2tℓ+9

. Each Pj creates random degree-tℓ+10 Shamir secret sharings[
zj
]Cℓ+10

tℓ+10
,
[
(∆ · z)j

]Cℓ+10

tℓ+10
and distributes the corresponding shares to the

parties of Cℓ+10.
4. Then each party Pl ∈ Cℓ+10 computes [z]Cℓ+10

tℓ+10
=

∑
j∈Cℓ+9

cj ·
[
zj
]Cℓ+10

tℓ+10
, and

similarly for [∆ · z]Cℓ+10
tℓ+10

, where cj is the Lagrange reconstruction coefficient
for a degree-2tℓ+9 polynomial.

5. Finally, the parties of Cℓ+10 open the shares of each [z]
Cℓ+10
tℓ+10

, [∆]
Cℓ+10
tℓ+10

, and

[∆ · z]Cℓ+10
tℓ+10

to the clients, who attempt to reconstruct them and check that
indeed the product of the former two values equal the last value. If so, they
output each z; else, they abort.

a Note that the computed MAC for JxiKC1 is re-randomized with a fresh 0-
sharing in πeff-reshare-hm.

b This invocation can be combined with that of the multiplication gates for
this circuit layer.

Theorem 5. Let A be an R-adaptive adversary in Πmain-hm. Then the protocol
UC-securely computes FDABB in the presence of A in the (Frand,Fcoin,Fdouble-rand,Fzero)-
hybrid model.

Proof. The proof of this Theorem follows very similarly to that of Theorem 4. We
construct a Simulator (S) that runs the adversary (A) as a subroutine, and is given
access to FDABB. It internally emulates the functionalities Frand,Fcoin,Fdouble-rand,Fzero

and we implicitly assume that it passes all communication between A and the
environment Z. It keeps track of the current committee via inputs (Init, C) and
(Next-Committee, C) from FDABB (and therefore in which committees to simulate
corresponding communication for circuit gates). The simulator uses bad, initially
set to 0, to detect any bad behavior from A. If so, it sets bad = 1. The simulation
proceeds as follows:

45

Input: On input (Input, idx), if it is from an honest party, simulate the double
sharings using random values. From the security of Shamir secret sharing, this
is a perfect simulation. For inputs from all (even adversarial) parties, simulate
πineff-reshare-hm as in Lemma 9 and πeff-reshare-hm as in Lemma 8. If A cheats when
resharing a value (i.e., by sending a wrong share), set bad = 1. Also, simulate
the multiplication as below.

Addition (and similarly for identity gates): On input (Add, idz, idx, idy),
simulate πeff-reshare-hm as in Lemma 8, and πMAC-check-hm as in Lemma 10. Addi-
tionally, simulate the opening of Jx+ y + sKCi with random values. Since s is
uniformly random and unknown to A, this is a perfect simulation. If A cheats
when sending some universal hash value during πMAC-check-hm, abort. If A cheats
either when resharing or opening a value (i.e., by sending a wrong share), set
bad = 1.

Multiplication: On input (Mult, idz, idx, idy), simulate πmult-hm as in Lemma 12
and πmult-verify-hm as in Lemma 11. If A cheats when sending some universal hash
value during πMAC-check-hm, abort. If for any c part of a multiplication triple, the
additive error δc ̸= 0, set bad = 1. Additionally, if A cheats either when resharing
or opening a value (i.e., by sending a wrong share), set bad = 1.

Output: In the Check State phase of πMAC-check-hm, for the distributed degree
ti+1 Shamir sharings we know from Lemma 8, that at least one share of [σ]Ci

2ti
is

uniformly random and unknown to A, while all others can be computed by A.
For those that are uniformly random, by the security of Shamir secret sharings,
the distributed degree ti+1 shares can be simulated with random values. For
those that are known, the simulator can simply sample the distributed degree ti+1

shares on its own. Now, if S ever set bad = 1 because A cheated when opening
or resharing a value, S sends random values for σ on behalf of the honest parties,
then aborts. Otherwise, S, samples random shares for the honest parties such
that they reconstruct to 0 and are consistent with the degree ti+1 sampled by
the simulator above, and sends them to A. If A cheats during the check state
phase of πMAC-check-hm (e.g., by distributing incorrect degree-ti shares of some
share σi), S aborts. In the check state phase of πmult-verify-hm, S sends random
shares on behalf of the honest parties for the opening of r. If A cheats by opening
the wrong values for r, S aborts after the MAC check (as above). If S ever set
bad = 1 because A added non-zero error to the c part of a multiplication triple,
S sends random values on behalf of the honest parties for (u− r ·w), then aborts.
Otherwise, S records the values sent by A for (u−r ·w), then samples shares such
that (u− r · w) = 0, and sends them to A. If A cheats when opening (u− r · w),
S aborts after the MAC check (as above).

Finally, S gets the outputs from FDABB and forwards it to A. S then forwards
whatever it receives from A back to FDABB. We can simulate the opening of
the output wires (and MACs) in a similar fashion as the check state phase of
πMAC-check-hm.

From all of the Lemmas, we have that the simulation is perfect up until the output
phase. By Lemmas 10 (a similar argument holds for checking the MACs of the

46

output wires) and 11, A is only able to cheat in the real world with probability
negligible in p. Thus, the distance between the real-world and the simulation is
negligible in p. ⊓⊔

6 Dishonest Majority Preprocessing Size is Tight

In this section, we show that the per-party size of the preprocessing produced
in our dishonest majority protocol Πmain-dm is tight in the following sense. Any
protocol that uses more than one committee to compute some function must
have per-party size of preprocessing proportional to N , i.e. the size of the entire
server universe, U .

To show this, we intuitively reduce the problem of MPC in the Fluid Model
with more than two committees to the problem of simply resharing state securely.
Indeed, for any such MPC protocol, after one committee finishes their step of
the computation, they must securely reshare some sort of state to the next
committee, since the next committee has no information about the current state
of the computation (e.g., including the original inputs).

More formally, we show a lower bound on the per-party preprocessing size
for Secure Message Transmission (SMT) with two committees. In such an SMT
setting, there is a sender A who wishes to send some (possibly uniformly random)
message x to a receiver B, but first must send some private representation of x
through two committees, C1 and C2 that are not known ahead of time. Informally,
this corresponds to the “resharing” argument in the Fluid MPC model above,
since the transmitted x corresponds to the state that is being reshared by the
first committee to the next.

6.1 Lower Bound Preliminaries

Here we present some additional notation and definitions from probability and
information theory. For a random variable X we use H(X) to represent its
Shannon entropy. For two random variables X and Y , we define their mutual
information as:

I(X;Y) = H(X)−H(X|Y).

Also, for two random variables X and Y over the same space Z, we define the
statistical distance between their probability distributions as:

SD(X,Y) = max
Z⊆Z

|Pr[X ∈ Z]− Pr[Y ∈ Z]|.

Finally, we define the Kullback-Leibler divergence of the probability distribution
of X from that of Y as:

DKL(X||Y) =
∑
z∈Z

Pr[X = z] · log
(
Pr[X = z]

Pr[Y = z]

)
.

47

6.2 Secure Message Transmission with Two Committees

Now we formally define SMT with two committees. In this definition, we will
demand that a uniformly random message x of length λ, i.e., x ←$ {0, 1}λ,
will be transmitted from A to B, after passing through committees C1 and C2.
The two committees C1 and C2 can be arbitrarily chosen from a larger universe
U = {P1, . . . , PN} of size N . We will allow for a preprocessing phase to be
performed before the input x and committees C1 and C2 are chosen. First we
present the syntax:

– Algorithm {ri}Pi∈U ←$ SMT-Prep(U) takes as input the set of parties in U
and outputs a preprocessing state, ri, for each Pi ∈ U .

– The sender will use algorithm {Ai}Pi∈C1
←$ SMT-A-Send(x, C1) to send

messages Ai for each Pi in C1, based on chosen x ∈ {0, 1}λ.
– Each Pi ∈ C1 will then use {ci,j}Pj∈C2

←$ SMT-C1-Send(ri, Ai, C2) to send
message ci,j to each Pj in C2.

– Next, each Pj ∈ C2 will use algorithm Bj ←$ SMT-C2-Send(rj , {ci,j}Pi∈C1
, C1)

to send message Bj to the receiver.
– Finally, the receiver will use algorithm x← SMT-B-Rcv({Bj}Pj∈C2

) to output
the message x.

Since we are in the dishonest majority setting, we will consider any unbounded
adversary A that corrupts all-but-one party in each committee, only during the
online phase. That is, using the same notation as earlier in the paper, the sizes
of corruption sets TC1

and TC2
satisfy t1 < n1 and t2 < n2, respectively. Now, we

are ready for the definition:

Definition 1 (Secure Message Transmission with Two Committees.). A
Secure Message Transmission with Two Committees protocol ΠSMT is perfectly-
correct if for any choice of committees C1, C2 ⊆ U ,

Pr
[
x← SMT-B-Rcv({Bj}Pj∈C2) : x←$ {0, 1}λ, {rl}Pl∈U ←$ SMT-Prep(U),

{Ai}Pi∈C1
←$ SMT-A-Send(x, C1),∀Pi ∈ C1, {ci,j}Pj∈C2

←$ SMT-C1-Send(ri, Ai, C2),
∀Pj ∈ C2, Bj ←$ SMT-C2-Send(rj , {ci,j}Pi∈C1

, C1)] = 1.

Moreover, ΠSMT is statistically-secure if for any choice of committees C1, C2 ⊆ U ,
and any choice of corruptions TC1

⊆ C1, TC2
⊆ C2 satisfying t1 < n1 and t2 < n2,

respectively,

Pr
[
x← A({(ri, Ai)}Pi∈TC1

, {(rj , {cl,j}Pl∈C1
)}Pj∈TC2

) : x←$ {0, 1}λ,

{rl}Pl∈U ←$ SMT-Prep(U), {Ai}Pi∈C1
←$ SMT-A-Send(x, C1),

∀Pi ∈ C1, {ci,j}Pj∈C2
←$ SMT-C1-Send(ri, Ai, C2),

∀Pj ∈ C2, Bj ←$ SMT-C2-Send(rj , {ci,j}Pi∈C1 , C1)] ≤ 2−λ.

In the rest of the section, we will assume for simplicity that the two committees, C1
and C2, will each be of the same size n1 = n2 = n. Without loss of generality, we
may refer to the two committees as C1 = {P1, . . . , Pn} and C2 = {Pn+1, . . . , P2n}.

48

Communication Complexity. We will in part be concerned by the size of com-
munication needed for a correct and secure SMT protocol. Towards this end,
let Comm =

∑
i∈C1,j∈C2

|ci,j | be the total communication from some particular
execution of an SMT protocol ΠSMT.

6.3 Lower Bound on Per-Party Preprocessing for Linear SMT

We will now prove the following lower bound which informally states that in order
for an SMT protocol ΠSMT to have, in expectation over the choice of committees
C1, C2 and any randomness of the algorithms, o(n2 · λ) total communication
Comm, the expected size of each preprocessing state must be Ω(N · λ):

Theorem 6. For any perfectly-secure SMT protocol ΠSMT for two committees
C1, C2 of size n, if C1, C2 are sampled uniformly at random from the universe
U of size N , such that C1 ∩ C2 ̸= ∅, and EPi∈U [|ri|] ≤ (N − 2n+ 1) · λ/8, then
EC1,C2

[Comm] ≥ n2 · λ/4.

First, we provide the following lemma that will help us in proving the above
theorem. Assume w.l.o.g. that the smallest ciphertext in a given execution is
c1,n+1. Also, assume that the adversary corrupts (at least) every party in the
two committees except for P1 and Pn+1. In particular, this gives the adversary
preprocessing states R = r2, . . . , rn, rn+2, . . . , r2n, ciphertexts {ci,n+1}i∈[2,n] sent
by the corrupted parties of C1 to Pn+1, and ciphertexts Bn+2, . . . , B2n sent to
the receiver by the corrupted parties of C2. So, the adversary is just missing the
message Bn+1 used by the receiver B in the protocol to reconstruct x. To produce
this message Bn+1, the adversary in addition to ciphertexts {ci,n+1}i∈[2,n] it has,
only needs to learn c1,n+1 and rn+1. What this Lemma intuitively shows is that if
|c1,n+1| < λ/2 (so that the adversary can guess it with high enough probability),
then the preprocessing r1 must provide some additional, non-trivial correlation
with rn+1 that the corrupted preprocessing states, R, do not provide on their
own. If this were not the case, then the adversary could simply sample rn+1

conditioned on R. This preprocessing would then be “close enough” to what the
correlations in the entire protocol execution indicate it should be so that, by
correctness, it should also work, together with the ciphertexts {ci,n+1}i∈[n], to
produce the missing Bn+1.

In the following, we use notation RJ to represent the set of preprocessing
states {rj}j∈J , where J ⊆ [N].

Lemma 13. Assume that the two committees C1, C2, each of size n, are chosen
uniformly at random from the universe U of size N , such that C1 ∩ C2 = ∅.
Also, let J be some random (fixed-size) subset of [N] such that |J | ≥ 2n − 2.
If PrC1,C2,i,j [|ci,j | < λ/2] > 1/2, then for random i′ ̸= j′ ∈ U \ J , we have:
EJ,i′,j′ [I(rj′ |RJ ; ri′)] ≥ λ/4.

Proof. We start with the following inequality, where the randomness is over the
choice of J ∪ {i′, j′} ⊆ [N], as well as the actual generated preprocessing state
ri′ :

EJ,i′,j′,ri′ [SD((rj′ |RJ ∪ {ri′}), (rj′ |RJ))] ≤

49

EJ,i′,j′ri′

[
1− 1

2
exp(−DKL((rj′ |RJ ∪ {ri′})||(rj′ |RJ)))

]
≤

1− 1

2
exp(−EJ,i′,j′,ri′ [DKL((rj′ |RJ ∪ {ri′})||(rj′ |RJ))]) =

1− 1

2
exp(−EJ,i′,j′ [I(rj′ |RJ ; ri′)]).

The first inequality follows from the Bretagnolle-Huber inequality [BH78], and
the second inequality from Jensen’s inequality, since f(x) = e−x is convex, while
the last equality is a well-known identity.

Thus, if we assume towards contradiction that EJ,i′,j′ [I(rj′ |RJ ; ri′)] < λ/4,
this means that

EJ,i′,j′,ri′ [SD((rj′ |RJ), (rj′ |RJ ∪ {ri′}))] < 1− 1

2
exp(−λ/4).

Now, it could be the case that some 2n− 2 randomly sampled indices in J
correspond exactly to the first n − 1 parties of C1 and C2 in a given protocol
execution, and further that Pi′ is the last party chosen for C1, and Pj′ is the
last party chosen for C2. Also, from correctness, we know that for any rj′ that
is produced by the preprocessing phase for Pj′ with non-zero probability, the
SMT protocol must successfully transmit the secret x. Based on this and the
above inequality, we describe the following attack: The adversary A corrupts
the set of preprocessing states RJ and then samples guess r′j′ for rj′ conditioned
on the states in Rj , and samples (uniformly) guess c′i′,j′ for ci′,j′ . Using the
guessed r′j′ and c′i,j′ along with the learned {ci,j′}i∈[n]\{i′} via corruptions, invoke
SMT-C2-Send to produce Bj′ . Finally, using {Bj}j∈[n+1,2n], invoke SMT-B-Rcv
to produce x.

Now, let us analyze the success probability of this attack. First, we have from
PrC1,C2,i,j [|ci,j | < λ/2] > 1/2, that Pr[c′j′,j = cj′,j] > 2−λ/2−1. Next, consider the
event in which A samples some r′j′ conditioned on RJ that has weight-0 in the
distribution of rj′ conditioned on RJ ∪ {ri′}. We call such an r′j′ a bad sample.
From the above inequality, such an r′j′ is sampled with probability less than
1− 1

2 exp(−λ/4), in expectation. In particular, this means that in expectation,
A samples a good r′j′ with probability at least 1

2 exp(−λ/4). Such an r′j′ is good
because by correctness, the protocol must successfully transmit the secret x if in
fact r′j′ were the actual preprocessing of Pj′ .

Therefore, in expectation over the choice of committee members and the
preprocessing ri′ , the attack by A succeeds with probability greater than 1/2λ.

⊓⊔

Now we can prove Theorem 6 using Lemma 13. The intuition stems from
the fact that the protocol does not a priori know which parties will be in the
committees. So, we can use Lemma 13 to show that in fact many parties outside
of the two committees must in expectation provide some unique correlation with
rn+1 (the receiver of small message c1,n+1), in case they were actually the first
party of C1 sending this small ciphertext. As a result, if the state rn+1 is small

50

enough, we can completely recover it, guess c1,n+1, then recover x with high
enough probability.

Proof (of Theorem 6). Assume towards contradiction that PrC1,C2,i,j [|ci,j | <
λ/2] > 1/2. Also assume that some adversary A in a given execution of some
ΠSMT first corrupts every party in C1 and C2 except randomly chosen Pi of C1
and randomly chosen Pj of C2. In particular, this means that the set of indices
J of corrupt parties is some random subset of [N] of size 2n − 2, and index j
is some random other index outside of J . Now, the adversary will one by one
sample M = (N − 2n + 1)/2 indices i1, . . . , iM from U that are not already
part of J , and add them to J . Let J ′ be the final such set. From Lemma 13,
we know that under the above assumption on message size, for any random,
fixed-size subset J ⊆ [N] of size |J | ≥ 2n − 2, and random index j′ /∈ J , if we
pick another random index il /∈ J , EJ,il,j′ [I(rj′ |RJ ; ril)] ≥ λ/4. Thus, recalling
that I(rj′ |RJ ; ril) = H(rj′ |Rj)−H(rj′ |R, ril), we can write

EJ′,j [I(rj ;RJ′)] = EJ′,j [H(rj)−H(rj |RJ′)] =

Ej [H(rj)] + EJ′,j,iM [−H(rj |RJ′) + H(rj |RJ′ \ {riM })]
+EJ′,j,iM ,iM−1

[−H(rj |RJ′ \ {riM }) + H(rj |RJ′ \ {riM , riM−1
})]

. . .

+EJ′,j,iM ,...,i1 [−H(rj |RJ′ \ {ril}l∈[2,M]) + H(rj |RJ′ \ {ril}l∈[M])]

−EJ′,j,iM ,...,i1 [H(rj |RJ′ \ {ril}l∈[M]])]

≥M · λ/4 + EJ′,j,iM ,...,i1 [H(rj)−H(rj |RJ′ \ {ril}l∈[M]) ≥M · λ/4.
Now, these indices J ′ will correspond to the parties that A will corrupt in

the execution. However, if some randomly chosen index il is indeed the index
i corresponding to the only honest party Pi of C1, the attack will fail, as A
cannot corrupt Pi. Yet, the probability that this happens corresponds to the
probability that if we pick M items at random from N − 2n+ 1 total items, i

is not one of them, which is equal to: (N−2n
M)

(N−2n+1
M)

= 1 − M
N−2n+1 = 1/2, since we

choose M = (N − 2n+ 1)/2.
So, if E[|rj |] ≤ (N −2n+1) ·λ/8 as in the Theorem statement, in expectation,

A can sample rj conditioned on RJ′ correctly (i.e., with probability 1) and guess
ci,j with probability greater than 2−λ/2−1. Using the guessed rj and ci,j along
with the learned {ci′,j}i′∈[n]\{i} via corruptions, we can reconstruct Bj . Finally,
using {Bj}j∈[n+1,2n], we can successfully reconstruct x.

Thus, it cannot be true that PrC1,C2,i,j [|ci,j | < λ/2] > 1/2. By the law of total
probability, it must therefore be that:

EC1,C2 [Comm] =
∑
i,j

EC1,C2 [|ci,j |]

≥
∑
i,j

λ/2 · Pr
C1,C2

[|ci,j | ≥ λ/2] = λ/2 ·
∑
i,j

Pr
C1,C2

[|ci,j | ≥ λ/2] ≥ n2 · λ
4

.

⊓⊔

51

7 Conclusions and Future Work

The fluid model represents an alternative MPC setting that aims at tolerating
certain relevant networking settings, and we believe that an interesting line of
research is the study of what is possible in the fluid setting with respect to the
non-fluid scenario. Our protocols from Sections 5 and 4 show that fluidity does
not come with a price in terms of communication complexity for the honest and
dishonest majority cases, as they achieve the same communication as non-fluid
works, i.e. O(n) communication per gate where n is the number of parties online
at a time. There are other properties whose feasibility in the fluid setting are
worth exploring. We mention some of them below.

It would be interesting to explore the cost of tolerating mixed adversaries
in the fluid setting. A mixed adversary, defined and studied in [FHM98b], can
simultaneously corrupt some parties passively and some other parties actively,
and it is an attractive question to investigate how such results for non-fluid MPC
translate to the fluid case. Other future directions could include the development
of advanced primitives such as secure truncation or comparison to support
complex applications (such as machine learning), in the fluid setting.

Another direction is to close the gap between fluid and non-fluid protocols by
achieving stronger security notions such as identifiable abort for the dishonest
majority case, or guaranteed output delivery (GOD) for honest majority which are
not explored by prior fluid works [RS22, CGG+21]. We believe this is an interesting
direction since the dispute control technique of existing honest majority protocols
with GOD is not very compatible with the fluid setting (at least with maximal or
small fluidity). To elaborate further on this, GOD protocols (cf. [GSZ20] and the
references therein) split the computation into segments and require correctness
checks at the end of each segment. In case of failure, multiple “accuse” rounds lead
to a pair of “disputed parties” being identified, and then the segment is repeated
once again in such a way that an existing dispute cannot occur again. Given
that in the fluid setting a given committee can only send messages to the next
committee, which is announced on the fly, disputes of accusing each other are not
well defined. Even if a dispute is found by a future committee, the accused parties
may not be online anymore, which voids the argument that no new disputes will
occur, and the protocol may stall forever. It seems that techniques which do not
necessarily resemble those used in the information theoretic non-fluid model are
required to achieve G.O.D. in the fluid model when there are no assumptions on
the selection of committees.

Acknowledgments

This paper was prepared in part for information purposes by the Artificial
Intelligence Research group of JPMorgan Chase & Co and its affiliates (“JP
Morgan”), and is not a product of the Research Department of JP Morgan. JP
Morgan makes no representation and warranty whatsoever and disclaims all
liability, for the completeness, accuracy or reliability of the information contained

52

herein. This document is not intended as investment research or investment
advice, or a recommendation, offer or solicitation for the purchase or sale of
any security, financial instrument, financial product or service, or to be used
in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would be unlawful. 2023 JP
Morgan Chase & Co. All rights reserved.

References

BDOZ11. Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G.
Paterson, editor, Advances in Cryptology - EUROCRYPT 2011 - 30th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, volume
6632 of Lecture Notes in Computer Science, pages 169–188. Springer, 2011.

Bea92. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Joan Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91,
pages 420–432, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

BENO19. Aner Ben-Efraim, Michael Nielsen, and Eran Omri. Turbospeedz: Double
your online spdz! improving spdz using function dependent preprocessing.
In International Conference on Applied Cryptography and Network Security,
pages 530–549. Springer, 2019.

BGIN20. Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Efficient fully se-
cure computation via distributed zero-knowledge proofs. In Advances in
Cryptology – ASIACRYPT 2020, pages 244–276, Cham, 2020. Springer
International Publishing.

BH78. J. Bretagnolle and C. Huber. Estimation des densités : Risque minimax. In
C. Dellacherie, P. A. Meyer, and M. Weil, editors, Séminaire de Probabilités
XII, pages 342–363, Berlin, Heidelberg, 1978. Springer Berlin Heidelberg.

BJMS20. Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit
Sahai. Secure mpc: laziness leads to god. In International Conference on
the Theory and Application of Cryptology and Information Security, pages
120–150. Springer, 2020.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS 2001, 14-17 October 2001, Las Vegas, Nevada,
USA, pages 136–145. IEEE Computer Society, 2001.

CCD87. David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty uncondi-
tionally secure protocols (abstract). In Advances in Cryptology - CRYPTO
’87, A Conference on the Theory and Applications of Cryptographic Tech-
niques, Santa Barbara, California, USA, August 16-20, 1987, Proceedings,
page 462, 1987.

CGG+21. Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and
Gabriel Kaptchuk. Fluid mpc: secure multiparty computation with dynamic
participants. In Annual International Cryptology Conference, pages 94–123.
Springer, 2021.

CGH+18. Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,
Yehuda Lindell, and Ariel Nof. Fast large-scale honest-majority mpc for

53

malicious adversaries. In Annual International Cryptology Conference,
pages 34–64. Springer, 2018.

DEP21. Ivan Damgård, Daniel Escudero, and Antigoni Polychroniadou. Phoenix:
Secure computation in an unstable network with dropouts and comebacks.
Cryptology ePrint Archive, 2021.

DIK10. Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multi-
party computation and the computational overhead of cryptography. In
Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, pages
445–465, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

DN07. Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure
multiparty computation. In Annual International Cryptology Conference,
pages 572–590. Springer, 2007.

DPSZ12. Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Reihaneh
Safavi-Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer
Science, pages 643–662. Springer, 2012.

EGPS22. Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou, and Yifan Song.
Turbopack: Honest majority MPC with constant online communication.
ACM Conference on Computer and Communications Security (CCS), 2022.

FHM98a. Matthias Fitzi, Martin Hirt, and Ueli Maurer. Trading correctness for
privacy in unconditional multi-party computation. In Annual International
Cryptology Conference, pages 121–136. Springer, 1998.

FHM98b. Matthias Fitzi, Martin Hirt, and Ueli Maurer. Trading correctness for
privacy in unconditional multi-party computation (extended abstract). In
Annual International Cryptology Conference, 1998.

GHK+21a. Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus
Nielsen, Tal Rabin, and Sophia Yakoubov. Yoso: you only speak once. In
Annual International Cryptology Conference, pages 64–93. Springer, 2021.

GHK+21b. Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus
Nielsen, Tal Rabin, and Sophia Yakoubov. YOSO: you only speak once -
secure MPC with stateless ephemeral roles. In CRYPTO 2021, 2021.

GIP+14. Daniel Genkin, Yuval Ishai, Manoj M. Prabhakaran, Amit Sahai, and Eran
Tromer. Circuits resilient to additive attacks with applications to secure
computation. In Proceedings of the Forty-sixth Annual ACM Symposium
on Theory of Computing, STOC ’14, pages 495–504, New York, NY, USA,
2014. ACM.

GLO+21. Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and
Yifan Song. Atlas: efficient and scalable mpc in the honest majority setting.
In Annual International Cryptology Conference, pages 244–274. Springer,
2021.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
1987, New York, New York, USA, pages 218–229, 1987.

GPS19. Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of
partition tolerance. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology - CRYPTO 2019 - 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,

54

Proceedings, Part I, volume 11692 of Lecture Notes in Computer Science,
pages 499–529. Springer, 2019.

GS20. Vipul Goyal and Yifan Song. Malicious security comes free in honest-
majority mpc. Cryptology ePrint Archive, Report 2020/134, 2020.
https://eprint.iacr.org/2020/134.

GSZ20. Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery
comes free in honest majority mpc. In Advances in Cryptology–CRYPTO
2020: 40th Annual International Cryptology Conference, CRYPTO 2020,
Santa Barbara, CA, USA, August 17–21, 2020, Proceedings, Part II, pages
618–646. Springer, 2020.

RS22. Rahul Rachuri and Peter Scholl. Le mans: Dynamic and fluid mpc for
dishonest majority. CRYPTO, 2022.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th Annual Symposium on Foundations of Computer Science,
Toronto, Canada, 27-29 October 1986, pages 162–167, 1986.

55

Supplementary Material

A Modelling Fluid MPC

We first recall the modelling of Fluid MPC from [RS22, CGG+21]. As in the
above works, we consider the client-server model, where there is a universe U
of parties, that includes both the clients and servers. The goal of these clients
is to privately compute a function over their inputs. The clients delegate this
computation to a set of servers in U that can volunteer their computational
resources for part of the computation and then potentially go offline. That is,
the set of servers is not fixed in advance, and can change from time to time.

Computation proceeds in three or four stages: preprocessing (optional), input,
execution, and output. Preprocessing is optional and typically only required to
have a statistically-secure execution phase for the dishonest majority setting (see
below). In the preprocessing stage, all clients and servers in U interact to generate
information that will be used in the execution stage, but that is independent of the
actual inputs and the function to be computed (it may be required that enough
information is generated for some particular function). After the preprocessing
stage, servers can go offline until the clients wish to perform the computation. In
the input stage, clients process their inputs and hand these (private) versions to
the servers for computation. In the execution stage, only the servers participate
to compute the function. The execution stage proceeds in epochs, where each
epoch i runs among a fixed set of servers, or committee Ci. An epoch contains two
parts, the computation phase, where the committee performs some computation
local to itself, followed by a hand-off phase, where the current committee securely
transfers some current state to the next committee. Finally, in the output stage,
the last server committee transfers some final state to the clients, who then
interact to reconstruct the output of the function. We stress that there is only
one output stage, i.e., the clients get some final state from the servers once that
allows them to reconstruct the entire output all at that time. We assume that all
parties have access to only point-to-point channels.

Fluidity. Both the computation phase and hand-off phase of each epoch in the
execution stage may require multiple rounds of interaction. Fluidity is defined as
the minimum number of rounds in any given epoch of the execution stage. We say
a protocol achieves maximal fluidity if each epoch i only lasts for one total round.
I.e., the computation phase only consists of local computation by the parties in
committee Ci, and the hand-off phase consists of only some local computation
by the parties in Ci, plus communication from Ci to Ci+1. In this paper, we only
consider maximal fluidity, as it is the optimal setting to consider and it is the
setting considered in the previous works [RS22, CGG+21]. However, we stress
that in our modelling for maximal fluidity (as well as that of [RS22, CGG+21])
the clients in the output stage may interact for a constant number of rounds (i.e.,
independent of the circuit depth) to reconstruct the output.

56

Committee formation. The committees used in each epoch may either be fixed
ahead of time, or chosen on-the-fly throughout the execution stage. While fixing
committees ahead of time may result in a simpler, more efficient protocol, we
focus on the less restrictive, more realistic setting where committees are chosen
on-the-fly. This model is more suitable for the goal of making MPC protocols
adequate for use over unstable networks since, intuitively, a given committee has
better chances of guaranteeing a stable connection if they do not need to commit
to a specific online time far in advance. See [CGG+21] for more motivation and
details on committee selection.

The model of [CGG+21] specifies the formation process via an ideal function-
ality that samples and broadcasts committees according to the desired mechanism.
However, as in [RS22], we desire to divorce the study of committee selection from
the actual MPC and simply require that all parties of the current committee Ci
somehow agree on the next committee Ci+1. Specifically, the parties of committee
Ci during the hand-off phase of epoch i (and not before) are informed by the
environment Z of its choice of committee Ci+1 (i.e., it is a worst-case choice by
Z). We make no assumptions or restrictions on the size of committees nor the
overlap between committees. In particular, committees may consist of a large
number (possibly constant fraction) of parties in the entire universe, U .

Corruptions. We study two different settings for the number of parties that may
be corrupted for our model to still require security:

– For honest majority, the adversary A may only corrupt any minority of
servers in the committee of each epoch.13 This is the setting that [CGG+21]
studies.

– For dishonest majority, the adversary A may corrupt all-but-one client and all-
but-one server in the committee of each epoch. This is the setting that [RS22]
studies.

More formally, we consider a malicious R-adaptive adversary from [CGG+21]
and used in [RS22]. For the dishonest majority case in this model, the adversary
first statically chooses some parties to corrupt during the preprocessing phase. At
this point, the only restriction on these corruption is that there must be at least
one honest party; however, we will below strengthen this restriction. For both the
honest and dishonest majority cases, when the clients are chosen, the adversary
statically corrupts a set TC0

⊆ C0 of clients (at the start of the protocol). Then,
the adversary corrupts the servers of the committees in an adaptive manner with
retroactive effect. More specifically, in each epoch i, after learning which servers
are in committee Ci, the adversary can adaptively choose to corrupt a set of
servers TCi

⊆ Ci. Upon corrupting a server (resp. client), A learns its entire past
state and can send messages on its behalf in epoch i (resp. the input and output
stages). Therefore, when counting the number of corruptions for some epoch i,
we must retroactively include those servers in committee Ci that are corrupted in
some later epoch j > i. For each committee Ci, we denote its size as ni := |Ci|
13 All-but-one client could be corrupted, however.

57

and the number of corruptions as ti := |TCi
|. For the honest majority setting, it

must be that ti < ni/2. For the dishonest majority setting, the only requirement
is that ti < ni. Note that in the dishonest majority setting, we also count a server
in committee Ci as corrupted if they were corrupted during the preprocessing
phase. In the following, we will refer to the honest parties of Ci as HCi

.

B Related Work

Fail-stop adversaries. A series of works have studied the setting of MPC, where
the adversary is allowed to not only corrupt some parties passively/actively, but
also cause some parties to fail (e.g. [FHM98a] and subsequent works). This can
be seen as similar to the Fluid setting, where parties who participate in one
committee may never participate again in another committee. However, one main
difference is that unlike in the committee approach of Fluid, the set of parties
that fail and thus exit the computation are not known to the rest of the parties.
Second, and most crucially, once a party is set to fail by the adversary, it does
not return to the computation, whereas parties in Fluid can arbitrarily be placed
in several non-consecutive committees.

LazyMPC. The work of [BJMS20] considers an adversary that can set parties
to be offline in any round (called “honest but lazy” in that work). This work
differs from ours in several places. First, the authors focus only on the case of
computational security, making use of rather strong techniques such as multi-key
fully homomorphic encryption. Second, the parties that are chosen to be “lazy”
are not known to the other parties. Third, once a party becomes offline, or “lazy”,
in their model it is assumed not to come back.

Synchronous but with partition tolerance. Recently, the work of [GPS19] designed
MPC protocol in the so-called “sleepy model”, which enables some of the parties
to lag behind the protocol execution, while not being marked as corrupt. This
could be achieved with an asynchronous protocol, naturally, but the main result
of [GPS19] is obtaining such protocols without the strong threshold assumptions
required to obtain asynchronous protocols. In particular, the authors obtain
computationally secure constant-round protocols, assuming that the set of “fast”-
and-honest parties in every round constitutes as majority, an assumption that is
shown to be necessary.

Phoenix. The work of [DEP21] proposes a model that is similar to the one in
[GPS19] in that parties can go offline for momentaneous periods of time, but
unlike [GPS19], the parties are not assumed to receive messages while they are
offline ([GPS19] considers unstable parties as “slow”, meaning they still receive
messages but they might not do so on time; in contrast, [DEP21] considers these
parties to be potentially entirely offline). The work proposes solutions in their
“Phoenix” model for MPC with perfect, statistical and computational security,
and prove exact conditions on the adversary under which these are possible.

58

YOSO. In the recent work of Gentry et al. [GHK+21a], the “You Only Speak
Once” model for MPC is introduced. In this model, the basic assumption is that
the adversary is able to corrupt a party as soon as that party sends a message.
The YOSO model breaks the computation into small atomic pieces called roles
where a role can be executed by sending only one message. The responsibility of
executing each role is assigned to a physical party in a randomized fashion. The
assumption is that this will prevent the adversary from targeting the relevant
party until it sends its (single) message. This means that one should think of
the entire set of parties as one “community” which as a whole is able to provide
secure computation as a service. However, unlike our work, Yoso requires all
parties to be online at all times. In a sense, YOSO aims to make progress and
keep the computation alive without any guarantees for particular physical parties
such as contributing inputs and receiving the output, This makes good sense in
the context of a blockchain, for instance. Moreover, the demand that the MPC
protocol must be broken down into roles makes protocol design considerably
harder, particularly for information theoretically secure protocols. An additional
caveat with the YOSO model is that one can only have information theoretically
or statistically secure protocols assuming that the role assignment mechanism is
given as an ideal functionality, and an implementation of such a mechanism must
inherently be only computationally secure. In comparison, our model assumes a
somewhat less powerful adversary who must allow a physical party to come back
after being offline, if they desire. This allows for much easier protocol design,
information theoretic security based only on point-to-point secure channels, and
allows termination such that all parties can provide input and get output.

59

	On Linear Communication Complexity for (Maximally) Fluid MPC
	Alexander Bienstock, Daniel Escudero and Antigoni Polychroniadou

