
Scalable and Adaptively Secure Any-Trust Distributed Key
Generation and All-hands Checkpointing

Hanwen Feng
∗
, Tiancheng Mai

∗
, and Qiang Tang

∗

∗
School of Computer Science

University of Sydney, Australia

{hanwen.feng,tiancheng.mai,qiang.tang}@sydney.edu.au

ABSTRACT
The classical distributed key generation protocols (DKG) are resurg-

ing due to their widespread applications in blockchain.While efforts

have been made to improve DKG communication, practical large-

scale deployments are still yet to come due to various challenges,

including the heavy computation and communication (particularly

broadcast) overhead in their adversarial cases. In this paper, we

propose a practical DKG for DLog-based cryptosystems, which

achieves (quasi-)linear computation and communication per-node

cost with the help of a common coin, even in the face of the maxi-

mal amount of Byzantine nodes. Moreover, our protocol is secure

against adaptive adversaries, which can corrupt less than half of

all nodes. The key to our improvements lies in delegating the most

costly operations to an Any-Trust group together with a set of

techniques for adaptive security. This group is randomly sampled

and consists of a small number of individuals. The population only

trusts that at least one member in the group is honest, without

knowing which one. Moreover, we present a generic transformer

that enables us to efficiently deploy a conventional distributed

protocol like our DKG, even when the participants have different

weights. Additionally, we introduce an extended broadcast channel

based on a blockchain and data dispersal network (such as IPFS),

enabling reliable broadcasting of arbitrary-size messages at the cost

of constant-size blockchain storage.

Our DKG leads to a fully practical instantiation of Filecoin’s

checkpointing mechanism, in which all validators of a Proof-of-
Stake (PoS) blockchain periodically run DKG and threshold signing

to create checkpoints on Bitcoin, to enhance the security of the PoS

chain. In comparison with the recent checkpointing approach of

Babylon (Oakland, 2023), ours enjoys a significantly smaller cost of

Bitcoin transaction fees. For 2
12

validators, our cost is merely 0.4%

of that incurred by Babylon’s approach.

1 INTRODUCTION
Distributed key generation protocols (DKG) [35, 56] enable a set

of participants to jointly generate a public key, and each of them

outputs a secret key share. It is a classical topic and the basis of

threshold cryptography. They were usually considered in small-

scale in-house applications. There are recent resurge of interests of

those protocols, mostly because of a diverse set of new blockchain

applications, for example, cross-chain bridge [18, 49], MEV protec-

tion [50, 59, 66], censorship resistance in asynchronous consensus

[42, 52], checkpointing into Bitcoin [2], and more. Those new appli-

cations raise a new fundamental challenge of deploying distributed

key generation on a very large scale.

Enhancing Proof of Stake Security via All-hands Checkpoint-
ing. As one main motivational example of large-scale DKG, we

elaborate on the checkpointing mechanism, which aims at address-

ing a prominent security challenge in the Proof-of-Stake (PoS)

blockchain known as long-range attacks [62]. At a high level, in a

PoS blockchain, validators (with stakes) are in charge of propos-

ing blocks; as time evolves, validators’ secret keys could be leaked

or simply sold (when all coins are spent) to the adversary, who

can now easily create a fork from a historic block using the cor-

responding secret keys. For a newly joined node, such a fork is

also considered valid. This long-range attack hints at an inherent

vulnerability of “revisionist history” in PoS (and other resources

such as space) blockchain.

One promising defense approach is to leverage proof-of-work

(PoW) blockchains which are immune to such attacks, particularly

to periodically let the whole PoS network (e.g., all validators) produce
checkpoints and put them into Bitcoin. A recent work, Babylon

[63], let all validators generate checkpoints via multi-signatures and

select some of them to post the checkpoints to Bitcoin. It follows

that the number of Bitcoin transactions needed for each checkpoint

grows linearly in the number of PoS validators (to at least put a bit

vector for indicating corresponding public keys). Particularly, for a

PoS chain with 2
12

validators (e.g., Filecoin), the annual cost would

be over 6 million USD (using the Bitcoin price retrieved on March

31st, 2024, and assuming checkpoints are created hourly).

Instead, Filecoin proposed a blueprint for the checkpointing

mechanism called Pikachu [2] via threshold Schnorr signature

[35, 48]. Specifically, all validators of a PoS chain need to run a

DKG protocol for every epoch, and the resulting public keys will

serve as Bitcoin addresses. At epoch 𝑖 , the validators from epoch

𝑖 −1 will jointly create a Bitcoin transaction via a threshold Schnorr

signing protocol, which contains the state of the PoS chain at epoch

𝑖 − 1 and transfers all coins from the address created in epoch

𝑖 − 1 to the newly created address. In doing so, the Bitcoin transac-

tions uniquely decide the state of the PoS chain in each epoch, and

they are verifiably endorsed by the majority of validators. Since

this approach only needs exactly one Bitcoin transaction for each

checkpoint, the Bitcoin transaction fees incurred are always a small

constant regardless of the scale of the PoS blockchain network and

much lower than Babylon’s approach.

1

Despite being appealing, and recent progress on threshold Schnorr

signatures [8, 24, 48] could potentially be deployable, Pikachu re-

mains in theory (or toy prototype) as all validators have to jointly

run a DKG protocol for every checkpoint (as validator set evolves

thus previous DKG cannot be reused). Particularly, even a moderate-

scale PoS chain can have thousands of validators. Moreover, some

applications need to be done in a “timely” manner, which makes the

task more challenging. For example, Filecoin currently has around

2
12

validators, with anticipated growth to 2
14

validators in the

future, while checkpoints may be supposed to be created hourly

(as suggested in [63]). To deploy the Pikachu checkpointing into

Bitcoin mechanism [2] for real-world blockchains (for example,

Filecoin), we need to design a scalable DKG protocol that can be

efficiently run among all validators in popular public blockchains.

Existing DKGs are practically infeasible at a whole-chain
scale. Let us first briefly introduce the common paradigm for DKG

protocols, which subsumes most DKG constructions, including

[35, 46, 56, 65, 70], to illustrate the astronomical communication

and computation costs of existing DKGs in a large scale.

In a nutshell, among 𝑛 participants where up to 𝑡 could be adver-

sarial, each participant 𝑃𝑖 selects a 𝑡-degree polynomial 𝑓𝑖 to define

𝑠𝑘 (𝑖) = 𝑓𝑖 (0). They then deliver the share (as a dealer of a verifiable

secret sharing (VSS) [56]) 𝑠𝑘
(𝑖)
𝑗

= 𝑓𝑖 (𝑗) to other 𝑃 𝑗 and broadcast 1

a commitment, com𝑖 , for the polynomial 𝑓𝑖 (𝑋). Then, each partici-

pant 𝑃 𝑗 could verify if 𝑠𝑘
(𝑖)
𝑗

is a valid share w.r.t. com𝑖 ; If there are

invalid shares, the participants will collectively engage in a com-
plaint phase, where they broadcast complaints and identify the set

of qualified dealersQual ⊂ [𝑛], ensuring that all transmitted secret

shares are valid. The final secret share for 𝑃𝑖 is 𝑠𝑘𝑖 =
∑

𝑗∈Qual 𝑠𝑘
(𝑗)
𝑖

,

and the aggregate secret key is 𝑠𝑘 =
∑

𝑗∈Qual 𝑠𝑘
(𝑗)

.

The DKG scheme by Kate, Zaverucha, and Goldberg [46] (and its

recently improved version by Zhang et al. [70], dubbed KZG here-

after) represents the state of the art following this paradigm. In KZG,

the commitment to the polynomial 𝑓𝑖 is constant in size and enables

validating a secret share with constant-sized information. In an op-

timistic case, when all participants are honest, KZG protocol can

remain efficient even for large-scale deployment, as demonstrated

in [70]. However, since there is a constant fraction of adversarial

participants, its performance got dramatically worse. Particularly,

when another node complains about a dealer, the dealer shall broad-
cast the corresponding secret share for public verification. Hence, in
facing 𝑂 (𝑛) malicious nodes, each complaining 𝑂 (𝑛) nodes, there
are 𝑂 (𝑛2) shares to be broadcasted, and every node shall verify

these shares. Indeed, improving the adversarial case performance

is the major open problem left by [65].

We can readily anticipate that both communication and com-

putation costs would skyrocket as the scale increases, as seen in

scenarios like Filecoin validators. For instance, with 2
12

participants

in the DKG protocol, the entire network would need to transmit tens
of terabytes of data, while each node would have to allocatemultiple
hours to verify shares (in response to complaints) to produce just

one public key!
2

1
Broadcast satisfies agreement, i.e., all parties receive the same message even when

the sender is malicious. Thus, it is more complicated and expensive than multicast.

2
For detailed numerical estimates and comparisons, we refer to Sect.9.2.

We remark that publicly verifiable secret sharing (PVSS) can

eliminate the complaint phase in DKG [5, 17, 32, 38], as each party

could now broadcast all “encrypted” shares and enable the pub-

lic verification immediately. However, existing PVSS-based DKGs

are either even more costly than KZG [32, 41] or only generate

group-element secrets, while mainstream threshold cryptographic

protocols like threshold Schnorr signatures use field-element se-

crets. In addition, no existing PVSS schemes with field-element

secrets are provably secure against adaptive attackers [5], while

adaptive security is desired in practice
3
.

Besides those high costs, one extra challenge may make things

even worse: in PoS chains, validators usually have different weights
(proportional to the number of held stakes), while a threshold of

weights is assumed to belong to honest validators. Simply viewing a

validator as a participant in DKG can be leveraged by an adversary

to amplify its power: the adversary can choose to corrupt many

validators with small weights and eventually control the majority of

DKG participants within its budget. A naive approach is to allocate

different numbers of sub-IDs proportional to their weights. Each

sub-ID is then treated as an independent participant. While this

approach addresses the security concern, it can lead to an enormous

number of sub-IDs. For example, we would need to allocate 674

trillion sub-IDs to 3700 Filecoin validators
4
.

It follows that the following question remains:

Could we have a practically feasible DKG protocol that enables
all-hands participation in blockchains with weighted validators, as

well as being adaptively secure?

1.1 Our Results
In this article, we give an affirmative answer to this question. We

proceed in two main steps:

A scalable and adaptively secure DKG. Our primary result is

a practical DKG protocol (called Any-Trust DKG) for DLog-based

cryptographic systems. We compare our scheme with state-of-the-

art efficient DKG constructions
5
in Table 1 and discuss more related

works in Sect.10. Particularly, our DKG protocol features:

– Efficiency: It enjoys (quasi-)linear (in 𝑛) per-node computation

complexity
6
, even in adversarial cases. Additionally, the size of all

data to be broadcasted also only grows linearly in 𝑛. In contrast,

previous constructions suffer from quadratic per-node computation

and quadratic broadcast overhead. Specifically, as our experiments

will demonstrate, for 𝑛 = 2
12
, each node can complete all com-

putation tasks in approximately 26 seconds, with the data to be

broadcasted totaling around 7.7 MB in size.

– Security: Our protocol achieves optimal resilience and satisfies the

security definitions achievable by classical DKGs. Specifically, in

the presence of adaptive adversaries (who cannot retract messages

3
While there are two very recent PVSS-based DKG works [3, 30] have further pushed

down the asymptotical complexity of DKG, they are either only with group-element

secrets or statically secure.

4
https://filfox.info/en/ranks/power. It has a total mining power of around 25 EB, while

the power unit is 32KB, so 674 trillion sub-IDs are needed.

5
We focus on fully synchronous networks; asynchronous or partial synchronous DKGs

[1, 25, 33] are not included in the table, as their implementations cannot simply leverage

a broadcast channel and appear to be more expensive.

6
Although evaluating 𝑂 (𝑛)-degree polynomials at 𝑂 (𝑛) points inherently causes

𝑂 (𝑛 log𝑛) computation, we only require𝑂 (𝑛) expensive group exponentiations.

2

https://filfox.info/en/ranks/power

Table 1: Comparison with the state-of-the-art DKGs for DLog-based Cryptography.

Schemes Resilience Adap.?*
Comm. Cost (total)*** Comp. Cost (per node)**
Good† Bad† Good† Bad†

Pedersen [56] 1/2 ! 𝑂 (𝑛B(𝑛𝜆)) +𝑂 (𝑛2𝜆) - 𝑂 (𝑛2) -

KZG[46, 70] 1/2 ! 𝑂 (𝑛B(𝜆))+𝑂 (𝑛2𝜆) +𝑂 (𝑛B(𝑛𝜆)) 𝑂 (𝑛 log𝑛) +𝑂 (𝑛2)
GHL [37]‡ 1/2 % 𝑂 (𝑛B(𝑛𝜆)) 𝑂 (𝑛2)
GJM+ [43]‡ log𝑛/𝑛 % 𝑂 (𝑛B(𝜆) + log𝑛B(𝑛𝜆)) 𝑂 (𝑛 log

2 𝑛)
BHK+[10] § ≈ 1/4 ! 𝑂 (𝐶B(𝐶𝜆)) +𝑂 (𝐶M(𝐶2𝜆)) - 𝑂 (𝐶3) -

Ours (Sect.5)§ 1/2 ! 𝑂 (𝑠B(𝑛𝜆)) +𝑂 (𝑛M(𝑠𝜆)) 𝑂 (𝑠𝑛) -

*Adap.? asks if the protocol is adaptively secure, and we accept the relaxed definition from [4]

**Comp.Cost measures the number of group exponentiation operations performed by each node.

*** Comm.Cost measures the total communication cost, where B(ℓ) (orM(ℓ)) denotes the cost of one node broadcasting (or multicasting) ℓ bits to the

network, and𝑂 (ℓ) means there are𝑂 (ℓ) bits sent by honest nodes over pair-wise channels.

†For both communication and computation, Good considers the cost without complaints, Bad considers the extra cost when facing the maximal number of

complaints; “-" represents no asymptotically greater cost. ‡GHL and GJM+ do not have a complaint phase.

§BHK+ and ours are committee-based approaches. For ensuring the quality of the committee with high probability (say 1 − 5 × 10
−9
, as adopted by Algorand

[21]), BHK+ needs the committee size of 𝐶 ≈ 6000 (estimated based on [9]), while ours only needs 𝑠 = 38 (further analysis available in Table.2).

sent by honest parties, as in many settings, such as Algorand [39]),

our scheme complies with the oracle-aided algebraic simulatability,

which was recently introduced in [4] for capturing the adaptive

security of many practical DKGs including Pedersen [56] and KZG.

We remark that our primary goal is to enable massive-scale DKG;

we may use resources that are naturally available in the application

settings. Compared with the classical DKG schemes, our protocol

additionally leverages one common coin that is generated after

all participants’ public keys are determined (as the YOSO-model

DKG [10]), which is available in most blockchains. Nonetheless, it

enables a distributed randomness beacon [22] for continuous coin

generation, by applying threshold unique signatures with secret

shares from the DKG [15] . We introduce a set of techniques for the

efficient, adaptively secure DKG (detailed in the next section).

A generic transformer for weighted distributed protocols.We

present a generic sub-ID allocation mechanism that enables us to

efficiently apply conventional distributed protocols in the weighted

setting. Our sub-ID allocation mechanism deterministically decides

the number of sub-IDs for each validator according to the weight

distribution, such that every sub-ID will be viewed as an individual

participant in the subsequent protocol.

The trivial sub-ID allocation method that precisely preserves the

portion of each validator’s weight may need to issue tremendously

many sub-IDs. In contrast, we have noticed and leveraged a gap

between the usual assumption on the honest participant’s weight

ratio (assumed to be more than 2/3 due to other system components)

and the honest ratio needed in threshold cryptography (usually

just above 1/2). Particularly, our sub-ID allocation method is lossy-

yet-qualified, guaranteeing that more than half of the sub-IDs will

be issued to honest participants if they possess over 2/3 of the

weights, and therefore it can be much more compact. The number

of sub-IDs issued by our method for 𝑛 validators is probably at

most 2𝑛, regardless of the weight distribution. For the real-world

weight distributions of blockchain validators, the issued sub-IDs

can even be fewer. For example, our method gives only 1688 sub-IDs

instead of 674 trillion to the 3700 Filecoin validators. Compared

with concurrent work in [27], ours issues fewer sub-IDs for large

validator sets like Filecoin’s. More details can be found in Sect.6.

Implementation and Evaluation. We implement our protocol

in Java
7
and deploy it on AWS EC2 instances with 16, 32, 64, 128,

and 256 nodes. The results demonstrate that our protocol scales

effectively and completes within a few seconds (adding some ledger

waiting time, which could vary depending on the blockchain if we

instantiate the broadcast channel via a distributed ledger.). Addi-

tionally, we conduct computational time tests for various values

of 𝑛, ranging from 2
9
to 2

15
. In comparison with the state-of-the-

art DKG protocol KZG [46], our protocol’s performance in both

the good-case and worst-case scenarios is comparable to or even

superior to KZG’s performance in the good-case scenario, while

KZG’s cost in the adversarial case experiences a dramatic increase.

Notably, for 𝑛 = 2
12 ∼ 2

14
, a node in our protocol can finish all

computation tasks within around 26 ~181 seconds, even facing the

maximal amount of Byzantine nodes. The total amount of data

to be broadcasted is around 7.7 ~30.6 MB; If the nodes broadcast

the data by posting it on the Filecoin blockchain, it takes around

5 minutes ~20 minutes. The experimental results show that our

protocols effectively enable massive-scale DKG deployment.

Deployment friendliness: It is worth noting our DKG is more friendly

for large-scale deployment since our DKG makes exclusive use of

multicast channels (besides broadcast channels), which can be ef-

ficiently implemented, e.g., with gossip protocols and does not

require a node to know the IP addresses of all other peers. In con-

trast, both Pedersen DKG and KZG DKG require pair-wise private
channels for their efficiency claims. While it is not infeasible for

large-scale deployment, it does add extra difficulties and overheads,

particularly in public blockchain settings.

Application: better all-hands checkpointing. We then apply

our techniques to realize the checkpointing blueprint Pikachu of

Filecoin [2] that requires all validators to participate. After our

optimized sub-ID allocation, we execute a DKG and a threshold

Schnorr signature [61] among these 1688 sub-IDs to create a check-

point. With our Any-Trust DKG, the DKG phase only incurs around

3MB of broadcast messages in total. Each node can complete all

7
Our code is available at https://github.com/mtc2000/AnyTrustDKG.

3

https://github.com/mtc2000/AnyTrustDKG

computations in just a few seconds, even when facing the maxi-

mum number of complaints. Regarding the threshold signature, we

use Any-Trust DKG again to generate the nonce in the GJKR [35]

signing protocol, resulting in a non-interactive threshold signing

protocol (after nonce-generation), eliminating the potential single

point of failures in coordinator-based protocols like FROST [48].

Compared with the existing checkpointing scheme Babylon [63],

in which the number of Bitcoin transactions per checkpoint grows

linearly to the scale of the blockchain, ours/Pikachu only requires

exactly one Bitcoin transaction for each checkpoint. This difference

is reflected in the monetary cost. As an example with Filecoin, the

estimated Bitcoin transaction fee incurred annually using Babylon

would be over six million USD, while only 26,048.8 USD using

ours/Pikachu. More details can be found in Sect.8.

2 TECHNIQUE OVERVIEW
We give a high-level overview of how we leverage various tech-

niques to lead to our DKG protocol. Through the analysis of how

DKG usually works, we observe one major reason for the ineffi-

ciency (both high communication and high computation costs) is

due to the following simple facts: everyone broadcast shares to
everyone, and broadcast channels are expensive!

Starting observation for efficiency: Selecting an any-trust
group as VSS dealers. Our starting observation is that letting

all participants act as dealers of verifiable secret sharing (VSS)

schemes is actually unnecessary. Recall that in the common DKG

paradigm, the final secret is 𝑠𝑘 =
∑

𝑗∈Qual 𝑠
(𝑗)

, where 𝑠 (𝑗) is the
secret dealt by a qualified participant 𝑃 𝑗 , and Qual ⊂ [𝑛] is the
set of all qualified dealers. However, the existence of one honest
dealer would suffice for both secrecy and robustness. Particularly

for secrecy, a uniformly sampled secret 𝑠 (𝑗) contributed by an

honest 𝑃 𝑗 could conceal 𝑠𝑘 to the adversary who may corrupt all

other dealers. For robustness, even when the other dealers behave

arbitrarily (e.g., go offline), one honest dealer ensures the set Qual
is non-empty, and thus 𝑠𝑘 is well-defined.

Therefore, we propose utilizing a small group of representatives,

called an "any-trust" group (as introduced in the context of anony-

mous communication [68]), where we trust at least one member of

the group is honest but do not need to know which one to trust.

Note that such an any-trust group can be obtained by randomly

sampling from the whole population (with an honest majority).

Notably, the size 𝑠 of an any-trust group can be as small as a few

tens in practice, which is in stark contrast to that of a group with

an honest majority, which can be up to thousands.

If focusing on static adversaries who cannot corrupt parties

during the protocol execution, the observation alone already leads

to an efficient solution. Particularly, before the complaint phase,

there are only 𝑠 commitments in total to broadcast and only 𝑠 secret

shares for each party to verify. In the worst case, each party at most

needs to verify 𝑂 (𝑠𝑛) shares, which is still feasible.

Challenges and techniques for adaptive security. Achieving ef-
ficiency while preserving adaptive security is, however, non-trivial

as the adversary does have the budget to corrupt the entire any-trust
group. Indeed, there are multiple difficulties from different layers,

and we need different techniques to conquer them.

Preventing the damage of corrupting the entire any-trust group. We

adopt the standard techniques from existing adaptively secure

Byzantine agreement protocols [26, 39] to prevent the damage of

entire any-trust group corruption. Particularly, we use the following

techniques or assumptions.

VRF-based sortition.We use the verifiable random function (VRF)

based sortition [39] to select the any-trust group, such that only

a party itself knows whether it has been selected, which prevents

an adaptive adversary from targeting the group before the group

members send out their first messages.

Memory erasure (assumption). Once the any-trust group of dealers

sends out messages, the adversary will be aware of their identities

and proceed to corrupt them.We, therefore, require all these dealers

to erase all internal states related to dealing secrets (but not the long-
term secret keys for signing and decryption) at the same time they

send messages. Consequently, even when the adversary corrupts

them, it cannot learn the secrets dealt by them.

Forward-secure signatures. However, the adversary can still violate

the robustness and secrecy by sending different messages on behalf

of newly corrupted dealers. In this case, an initially honest dealer

may be disqualified by the network due to the disturbing messages

sent by the adversary. To prevent such an attack, we apply forward-

secure signatures [26], which ensures no further valid messages can

be generated in this round after the dealer erases its secret states.

Efficiently deciding the qualified dealer set with silent dealers.Recall
that in the conventional DKG schemes, including KZG, a dealer

shall repudiate complaints (that he was silent) by broadcasting the

corresponding shares for public verification. However, in our con-

struction, all dealers may be corrupted after the dealing phase. Also,

for security, they have already erased all internal states and cannot

repudiate anyway. We must enable the network to decide on the

qualified set of dealers while the dealers remain silent.

We tackle the problem by designing publicly verifiable complaints,
such that a dealer can be disqualified immediately once such a com-

plaint against it has been presented, without the need for further

repudiation from the dealer. There are two types of complaints: (1)

the dealer does not send anything to the receiver. (2) the dealer

sent an invalid share to the receiver. To make type (1) public ver-

ifiable, we let each dealer in the deal phase broadcast the vector
of all encrypted shares under the receivers’ public keys, such that

everyone can check the existence of ciphertexts.
8
For type (2),

we leverage verifiable decryption: if the decrypted share is invalid,

the receiver can generate a NIZK proof showing the share is the

correct decryption, which, together with the share itself, serves as

a publicly verifiable complaint.

Why not using PVSS? We note that a publicly verifiable secret shar-

ing (PVSS) scheme may look suitable for the setting with silent

dealers, as the qualified set can be determinedwithout the complaint

phase. However, as we discussed before, existing PVSS schemes

that produce field-element secrets are not adaptively secure. More-

over, our approach enables significantly better performance, due

to the following reasons: (1) our approach incurs asymptotically

lower verification cost for each node, as one verifiable complaint is

8
We remark that one can broadcast the vector of shares at a marginal cost increase

compared to broadcasting one share by leveraging the effective broadcast extension

trick, such as [54].

4

sufficient to disqualify a malicious dealer, which means that a node

needs to verify correctness proofs for at most 𝑂 (𝑠 + 𝑛) decrypted
values; In contrast, in a PVSS-based approach, a node has to verify

the encryption correctness proofs for all 𝑂 (𝑠𝑛) encrypted shares.

(2) Proving and verifying decryption correctness can be pratically

more efficient. Our scheme can be instantiated with standard El-

Gamal encryption and Schnorr proof, while proving the validity

of encrypted shares usually requires a special encryption scheme

(e.g., Paillier [?], Lattice-based [37]) and a range proof [37], which

are considerably more expensive. (3) In our approach a node is not

required to prove or verify decryption corretness when there is no

complaint, while proving and verifying encryption correteness are

always mandatory in PVSS-based approaches.

Simulating encrypted shares in the face of adaptive corruption.Now
an honest (selected) dealer needs to broadcast the sequence of en-

crypted shares (Enc(𝑒𝑘1, 𝑓 (1)), Enc(𝑒𝑘2, 𝑓 (2)), . . . , Enc(𝑒𝑘𝑛, 𝑓 (𝑛))),
where 𝑒𝑘𝑖 is the public encryption key of the party 𝑃𝑖 , and 𝑓 is the

secret polynomial such that 𝑓 (0) defines his secret. When an ad-

versary corrupts 𝑃𝑖 , it knows the decryption key 𝑑𝑘𝑖 and thus the

decrypted share 𝑓 (𝑖). However, in the security proof, a simulator

should not know 𝑓 (0) and all 𝑓 (𝑖)’s, while it needs to generate all

ciphertexts to simulate an honest dealer. Under adaptive corrup-

tions, we essentially need a non-committing public key encryption

scheme [14], which enables the simulator to generate valid cipher-

texts without knowing the plaintexts and later open the ciphertext

to an arbitrary value. However, general non-committing encryp-

tion is impossible in the standard model, unless the secret key is

unresonably long [14, 55]. We may employ a public key encryption

scheme in the random oracle model to circumvent this difficulty
9
.

Particularly, let us think about the hybrid ElGamal encryption: we

have 𝑒𝑘 = 𝑔𝑥 ∈ G, 𝑑𝑘 = 𝑥 ∈ Z𝑝 , and the ciphertext 𝑐 in the form of

(𝑔𝑟 ,Hash(𝑒𝑘𝑟) ⊕𝑚), where 𝑔 ∈ G is the generator of the group G
of prime order 𝑝 , 𝑟 ∈ Z𝑝 is the fresh encryption randomness,𝑚 is

the plaintext, Hash is a hash function modeled as a random oracle,

and ⊕ is the XOR operation on the message space (assuming binary

encoded for simplicity). Then, the simulator could first generate a

ciphertext as (𝑔𝑟 , 𝑢), where 𝑢 is uniformly sampled from the plain-

text space. Later, when the plaintext 𝑚 is known, the simulator

programs the random oracle such that Hash(𝑒𝑘𝑟) = 𝑢 ⊕𝑚, which

opens the ciphertext to𝑚.

Preventing leakages due to publicly verifiable complaints.Weobserve

that our publicly verifiable complaints expose the decrypted results

to the public, which, in some sense, provides a decryption oracle
and can potentially be leveraged by malicious nodes to break the

confidentiality of the encryption scheme. We can patch this issue

by employing a chose-ciphertext-attack (CCA) secure encryption

scheme. However, as we already have many other requirements for

the encryption scheme, we must be careful to ensure all require-

ments are compatible. For example, the encryption scheme must be

non-committing and require programmable random oracles, which

cannot coexist with standard CCA approaches like Naor-Yung [53].

Meanwhile, our complaint phase needs efficient proof of decryp-

tion, which means the ciphertext must preserve some structures to

enable efficient proof systems.

9
Now we can see the choice that we do not prove the validity of encrypted shares is

critical, as otherwise, we may not use random-oracle model PKE.

We use a signature of knowledge [19] to handle this issue. Specif-

ically, for the hybrid ElGamal encryption whose ciphertexts are in

the form of (𝑐0 = 𝑔𝑟 , 𝑐1 = Hash(𝑒𝑘𝑟) ⊕𝑚), we require the dealer
𝑃𝑖 who produces (𝑐0, 𝑐1) to sign its ID 𝑖 using the knowledge of 𝑟

against 𝑐0 = 𝑔𝑟 . Then, in the security proof, the simulator could

extract 𝑟 from the signature of knowledge, which enables the simu-

lator to know the encrypted share without the help of a decryption

oracle. We will see other benefits of this approach when we detail

the concrete encryption scheme.

Further optimizations to DKG: After overcoming the difficulties

of adaptive security, we turn back to optimizing the performance.

Reducing communication of complaints by any-trust group again.A
straightforward complaint phase is to let all nodes directly broad-

cast their (verifiable) complaints to the network. In practice, it

means there could be 𝑂 (𝑛) broadcast again, which can incur an

unpleasant overhead. In addition, the cost cannot be reduced by

our extended broadcast channel techniques either. Our broadcast

technique enables one node to broadcast large-size messages, but

now there are many senders.

We optimize the complaint phase via the following observation:

one valid complaint is enough to disqualify a dealer, and thus, there

is no need to include all complaints in the broadcast channel. We,

therefore, design a complaint phase with the following three steps.

First, each node disseminates the complaints using a multicast

channel so that all nodes receive all complaints made by all other

honest nodes. Second, we sample an any-trust group again, and

let the group members deduplicate the complaints. Each group

member will maintain a concise complaint list that contains at most

one complaint for each dealer and all dealers complained by honest

nodes. Finally, we let the group members broadcast their complaint

lists, which guarantees that all malicious dealers will be disqualified.

With the optimized complaint phase, there are𝑂 (𝑠) any-trust group
members, each posting at most𝑂 (𝑠) complaints, where 𝑠 is the size

of an any-trust group.

On the choice of VSS/polynomial commitments.While the VSS scheme

in KZG DKG [46] is usually believed to be the most efficient instan-

tiation, we do not use it in our DKG scheme due to the following

considerations: (1) The polynomial commitment scheme in KZG

VSS necessitates a structural common reference string, and securely

establishing it in decentralized applications requires additional ef-

forts. (2) The communication benefits of the VSS scheme do not

exist in our setting. Although its commitment size is constant, we

need to broadcast all encrypted shares (and their encrypted proofs)

anyway. (3) The generated public key is in a pairing-friendly group.

We need to make an extra effort to adapt it for Schnorr signatures.

Instead, we employ a VSS scheme based on a more classical poly-

nomial commitment. Specifically, the commitment to a 𝑡-degree

polynomial 𝑓 is the form of 𝑔𝑓 (0) , 𝑔𝑓 (1) , . . . , 𝑔𝑓 (𝑛) , where 𝑛 > 𝑡 is

the number shares needed to distribute. By the checking technique

from Scrape [17], a receiver could verify the 𝑛 + 1 group elements

committing to a 𝑡-dgree polynomial at the cost of𝑂 (𝑛) group opera-
tions. Then, to verify each share 𝑓 (𝑖), one just needs to perform one

group exponentiation operation, such that verifying 𝑂 (𝑛) shares
from the dealer just costs𝑂 (𝑛) group operations, which guarantees

a computationally efficient complaint phase.

5

Using multi-recipient encryption. For the PKE scheme, we have pro-

posed the hybrid version of ElGamal, which is non-committing
and supports verifiable decryption. In our DKG, we use the multi-

recipient variant of it [7], which reuses the 𝑔𝑟 component across

ciphertexts under different public keys. It greatly reduces the broad-

cast cost, making the ratio of ciphertext size and share size close

to 1. Moreover, recall that we use proof of knowledge of 𝑟 to pre-

vent leakages from decryption oracles, and using multi-recipient

encryption will only incur one proof of knowledge by each dealer.

Optimization to broadcast channels: A practical extension
trick. Two primary approaches for broadcast channels include

using Byzantine broadcast (BB) protocols [21, 28, 39] or utilizing

existing infrastructure like blockchains. Implementing a large-scale

BB protocol can be intricate and susceptible to errors; thus, using

established blockchains is an attractive, simpler, and modular alter-

native. However, on-chain storage is generally an expensive and

scarce resource. While the broadcast cost in our DKG for thousands

of participants has been reduced to a few Megabytes, it can still be

a considerable burden for blockchains.

Therefore, we present a practical extension to a blockchain-based

broadcast channel by leveraging a multicast channel and a data

dispersal network (DNN) like IPFS [67]. Our design is simple and

modular, retaining the major benefits of using blockchain, and it

enables a sender to broadcast an arbitrarily long message while

incurring constant on-chain storage cost. Though it may be folklore

to write digests alone into a blockchain to save bandwidth, we

are unaware of any design with a formal agreement guarantee.

We believe this component may be of independent interest. More

details are in Sect.7

3 MODEL AND GOAL

Communication model. We assume the network is synchronous,

and protocols proceed by rounds. Every participant has access to

multicast and broadcast channels with different guaranteed de-

livery time. They both achieve validity, while broadcast channel
additionally guarantees agreement.
Validity. When an honest node sends a message via this channel,

all honest nodes can receive this message by the end of the round.

Agreement.At the end of a broadcast round, honest receivers always
receive the same message from this channel, even when the sender

is Byzantine.

Adversarial model. Prior to protocol execution, every node hon-

estly generates their public key/secret key pairs and sends public

keys to all other nodes. After the setup, the adversary can adap-

tively corrupt any node during the protocol execution and control

their subsequent behaviors. Particularly, the adversary controls

what messages a corrupted node will send in the same round it gets

corrupted. However, messages already multicasted or broadcasted

by node 𝑖 before 𝑖 become corrupted cannot be retracted.

Notations and assumptions. Throughout the paper: We use 𝜆

to represent the security parameter. The notation [𝑖, 𝑛] represents
the set {𝑖, 𝑖 + 1, · · · , 𝑛}, where 𝑖 and 𝑛 are integers with 𝑖 < 𝑛. We

might abbreviate [1, 𝑛] simply as [𝑛]. For a set {𝑥1, 𝑥2, . . . , 𝑥𝑛} and
a sequence (𝑥1, 𝑥2, . . . , 𝑥𝑛), we may abbreviate them as {𝑥𝑖 }𝑖∈[𝑛]
and (𝑥𝑖)𝑖∈[𝑛] , respectively. A function 𝑓 (𝑛) is deemed negligible

in 𝑛, denoted by 𝑓 (𝑛) ≤ negl(𝑛), if for every positive integer 𝑐 ,

there exists an 𝑛0 such that for all 𝑛 > 𝑛0, 𝑓 (𝑛) < 𝑛−𝑐 . For a
set X, the notation 𝑥 ←$ X signifies sampling 𝑥 uniformly from

X. We use 𝑦 ← 𝐴(𝑥1, 𝑥2, · · ·) to represent running 𝐴 with inputs

𝑥1, 𝑥2, · · · and uniform randomness and outputting 𝑦. Adversaries

are assumed to be probabilistic polynomial time (PPT).

Distributed Key Generation (DKG): An (𝑛, 𝑡)-DKG for DLog-

based cryptography is an interactive protocol involving 𝑛 parties.

At the end of execution, all honest parties possess a common public

key 𝑝𝑘 ∈ G and a list of public key shares (𝑝𝑘1, . . . , 𝑝𝑘𝑛), while
each of them holds a secret share 𝑠𝑘𝑖 ∈ Z𝑝 . This setup allows any

subset of 𝑡 + 1 honest parties to reconstruct the secret key 𝑠𝑘 of 𝑝𝑘 .

We follow the oracle-aided algebraic simulatability, which was

recently proposed by Bacho and Loss [4] for capturing the adaptive

security of many practical DKG schemes. This definition focuses

on algebraic adversaries.

Definition 1 (Algebraic Algorithm). An algorithm A is called

algebraic over a group G if all group element 𝜁 ∈ G that A outputs,

it additionally outputs a vector ®𝑧 = {𝑧0, . . . , 𝑧𝑚} of integers in
Z𝑝 such that 𝜁 =

∏
𝑖 𝑔

𝑧𝑖
𝑖
, where (𝑔1, . . . , 𝑔𝑚) is the list of group

elements that A has received so far.

Definition 2. Let Π be a protocol among 𝑛 parties 𝑃1, 𝑃2, . . . , 𝑃𝑛
where 𝑃𝑖 outputs a secret key share 𝑠𝑘𝑖 , a vector of public key shares

(𝑝𝑘1, . . . , 𝑝𝑘𝑛), and a public key 𝑝𝑘 . Π is a secure DKG for a DL

cryptosystem over a group G of a prime order 𝑝 if it satisfies the

following properties.

• Consistency: Π is 𝑡-consistent if although at most 𝑡 parties

have been corrupted, the honest parties can output the same

public key 𝑝𝑘 and the same vector of public key shares

(𝑝𝑘1, . . . , 𝑝𝑘𝑛).
• Correctness: Π is 𝑡-correct, if despite that at most 𝑡 parties

have been corrupted, there is a 𝑡-degree polynomial 𝑓 (𝑥) ∈
Z𝑝 [𝑋], such that for every 𝑖 ∈ [𝑛], 𝑝𝑘𝑖 = 𝑔𝑓 (𝑖) , every
honest P𝑖 has 𝑠𝑘𝑖 = 𝑓 (𝑖), and the public key is 𝑝𝑘 = 𝑔𝑓 (0) .

• Oracle-aidedAlgebraic Simulatability:Π has (𝑡, 𝑘,𝑇A ,𝑇sim)-
oracle-aided algebraic simulatability if for every adversary

A that runs in time at most 𝑇A and corrupts at most 𝑡

parties, there exists an algebraic simulator Sim that runs in

time at most𝑇sim, makes 𝑘 − 1 queries to oracle DL𝑔 (·) and
satisfies the following properties:

On input 𝜁 = (𝑔𝑧1 , . . . , 𝑔𝑧𝑘), Sim simulates the role of the

honest participants in an execution of Π. Upon an honest

party P𝑖 being corrupted, the simulator needs to return the

internal state of P𝑖 to the adversary.

On input 𝜁 = (𝑔𝑧1 , . . . , 𝑔𝑧𝑘), let 𝑔𝑖 denote the 𝑖-th query

by Sim to DL𝑔 (·). Let (𝑎𝑖 , 𝑎𝑖,1, . . . , 𝑎𝑖,𝑘) be the correspond-
ing algebraic coefficients of 𝑔𝑖 , i.e., 𝑔𝑖 = 𝑔𝑎𝑖

∏𝑘
𝑗=1 (𝑔𝑧 𝑗)𝑎𝑖,𝑗

and set (𝑎, 𝑎0,1, . . . , 𝑎0,𝑘) as the algebraic coefficients of 𝑝𝑘 .

Then, the following matrix over Z𝑝 is invertible

𝐿 :=

©­­­­­­«

𝑎0,1 𝑎0,2 · · · 𝑎
0,𝑘

𝑎1,1 𝑎1,2 · · · 𝑎
1,𝑘

.

.

.
.
.
.

.

.

.

𝑎𝑘−1,1 𝑎𝑘−1,2 · · · 𝑎𝑘−1,𝑘

ª®®®®®®¬
.

6

Whenever Sim completes a simulation of an execution of

Π, we call 𝐿 the simulatability matrix of Sim.

Denote by viewA,𝑦,Π the view of A in an execution of

Π conditioned on all honest parties outputting 𝑝𝑘 = 𝑦.

Denote by viewA,𝜁 ,𝑦,Sim the view of A when interacting

with Sim on input 𝜁 , conditioned on Sim outputting 𝑝𝑘 =

𝑦. Then, for all 𝑦 and all 𝜁 , viewA,𝑦,Π and viewA,𝑦,Π are

computationally indistinguishable.

Note that the adversary A does not have to be fully algebraic.

Instead, being algebraic related to 𝑝𝑘 and queries DL𝑔 (·) would
suffice, as discussed in [4].

Additionally, we consider “key-expressibility”, as introduced in

[43], against static attackers. This property is suitable for instan-

tiating the key generation of re-keyable primitives like BLS and

ElGamal. It also works with Schnorr signature as recently shown

in [43, 61]. Formal definitions are provided in Appendix ??.

Definition 3 (Key-expressability [43]). A DKG protocol is key-

expressable if for every static PPT adversary A that corrupts up

to 𝑡 nodes, there exists a PPT simulator Sim, such that on input

of a uniformly random element 𝑝𝑘′ ∈ G, produces 𝛼Z𝑝 , 𝑠𝑘1 ∈ Z𝑝 ,
𝑝𝑘1 = 𝑔𝑠𝑘1 ∈ G, and a view which is indistinguishable from A’s

view from a run of the DKG protocol that ends with 𝑝𝑘 = 𝑝𝑘′𝛼 ·𝑝𝑘1.

4 PRELIMINARIES
Verifiable Random Function. A verifiable random function (VRF)

is a pseudorandom function whose outputs can be publicly veri-

fied using the evaluator’s public key. Throughout this paper, we

take the DDH-based VRF scheme from [40] as our instantiation.

A VRF scheme consists of three algorithms: (1) KeyGen(1𝜆) gen-
erates a verification key 𝑣𝑘 and the secret evaluation key 𝑠𝑘 ; (2)

Eval(𝑣𝑘, 𝑠𝑘, 𝑥) evaluates the function with 𝑠𝑘 on the input 𝑥 , and

outputs 𝑦 along with a proof 𝜋 . (3) Verify(𝑣𝑘, 𝑥,𝑦, 𝜋) verifies if 𝑦 is

the honest evaluation output on 𝑥 with the secret key of 𝑣𝑘 .

A secure VRF satisfies (1)Pseudorandomness: the function values

are pseudorandom, even given the public key and the proofs; (2)

Completeness: it always holds that Verify(𝑣𝑘, 𝑥, Eval(𝑣𝑘, 𝑠𝑘, 𝑥)) = 1;

and (3) Uniqueness: it is infeasible to generate a public key 𝑣𝑘 , an
input 𝑥 , and two different (𝑦1, 𝜋1) and (𝑦2, 𝜋2), such that

Verify(𝑣𝑘, 𝑥,𝑦1, 𝜋1) = Verify(𝑣𝑘, 𝑥,𝑦2, 𝜋2) = 1.

(4) Unpredictability under malicious key generation: if the input 𝑥
has enough entropy (i.e., cannot be predicted), then the correct

output 𝑦 is indistinguishable from a uniformly random value, no

matter how the VRF keys are generated. Formal definitions can be

found in [6, 51].

VRF-based sortition.We introduce the standard VRF-based sortition

scheme below and will use it as a black box in our DKG protocol.

(1) Setup(1𝜆) . Each user generates their VRF key pair (𝑣𝑘, 𝑠𝑘) and
publishes 𝑣𝑘 . A public randomness rand is sampled independent of

the key generation. (2) Sortition(𝑣𝑘, 𝑠𝑘, rand, event, ratio). A user

with (𝑣𝑘, 𝑠𝑘) evaluates the VRF on the input of (rand∥event) and
obtains 𝑦 and a proof 𝜋 . It checks if

𝑦
max ≤ ratio. If failed, abort.

Otherwise, return (𝑦, 𝜋) as the credential of being selected. (3)

Vrfy(𝑣𝑘, rand, ratio, event, credential). It verifies the credential by
validating the VRF output 𝑦 and checking if

𝑦
max ≤ ratio.

In above, ratio denotes the ratio of the expected committee size to

the whole group size, and the expected committee size is determined

by the expected ratio of honest nodes to the committee.

Security of VRF-based sortition. It is easy to argue when the under-

lying VRF satisfies the security properties defined above, and rand
is sampled independently of the key generation, the VRF-based

sortition outcome is computationally indistinguishable from the

outcome of a process where each user is elected with an indepen-

dent probability of ratio. Our further analysis is based on this fact.

Forward-secure digital signature. A forward-secure signature

scheme FS.Σ consists of four algorithms: (1) Gen(1𝜆) → (FS.𝑣𝑘,
FS.𝑠𝑘 [1]) generates a verification key and the initial signing key;

(2)Update(FS.𝑠𝑘 [𝑖]) → FS.𝑠𝑘 [𝑖 + 1] updates the signing key at

round 𝑖 to the signing key at round 𝑖 + 1; (3) Sign(FS.𝑠𝑘 [𝑖],𝑚) → 𝜎

generates a signature𝜎 for themessage𝑚; (4)Vrfy(FS.𝑣𝑘, 𝑖, 𝜎,𝑚) →
𝑏 determines if 𝜎 is a valid signature for𝑚 created by the signing

key at round 𝑖 .

A forward-secure signature scheme guarantees the unforgeabil-

ity of signatures at rounds 𝑖 < 𝑖∗, even when the adversary has

access to signing oracles at any round and corrupts the signing

key at the 𝑖∗-th round. The formal security definitions and secure

instantiations are available in [44].

Multi-recipient encryption.We use the multi-recipient hybrid

ElGamal encryption. Let 𝑔 be a generator of G, and let Hash be a

hash function whose output space is the message space (which we

assume is binary encoded and ⊕ is the XOR operation). The encryp-

tion scheme can be described as follows: (1) Gen(1𝜆) outputs (𝑒𝑘 =

𝑔𝑥 , 𝑑𝑘 = 𝑥), where 𝑥 ←$ Z𝑝 . (2) MREnc(𝑒𝑘1, . . . , 𝑒𝑘𝑛,𝑚1, . . . ,𝑚𝑛)
outputs the ciphertexts (𝑐0, 𝑐1, . . . , 𝑐𝑛), where 𝑐0 = 𝑔𝑟 for some

uniformly sampled 𝑟 ∈ Z𝑝 , 𝑐𝑖 = Hash(𝑒𝑘𝑟
𝑖
) ⊕𝑚𝑖 for 𝑖 ∈ [𝑛]. (3)

Dec(𝑒𝑘𝑖 , 𝑑𝑘𝑖 , 𝑐0, 𝑐𝑖) outputs𝑚 = Hash(𝑐𝑑𝑘𝑖
0
) ⊕ 𝑐𝑖 .

We use the above algorithms in our DKG construction, but we di-

rectly reduce our DKG to the underlying DDH assumption without

going through the security abstraction of the encryption scheme.

This is because the security properties we need from the encryption

are non-standard (as we discussed in the technique overview), and

we would like to avoid further distractions.

Signature of Knowledge. A signature of knowledge (SoK) scheme

is defined w.r.t. an NP relation 𝑅. It can be either in the common

reference string model or in the random oracle model. We focus

on the random-oracle-model instantiations and thus omit the al-

gorithm for generating the common reference string. A user with

the witness 𝑥 of a public statement 𝑦 such that (𝑦, 𝑥) ∈ 𝑅 can sign

any message 𝑚 via the signer algorithm SoK.Sign(𝑦, 𝑥,𝑚) → 𝜎 .

Later, another user can verify if𝑚 was signed by someone with the

knowledge of the witness w.r.t. 𝑦 via the verifier algorithm.

A secure SoK scheme satisfies the following properties: (1) Simu-
latability: there is an efficient simulator algorithm that can produce

a valid signature under any statement 𝑦 without using the witness

𝑥 , and the produced signatures are indistinguishable from honestly

generated signatures. (2) Extractability: There is an efficient extrac-

tor algorithm that can extract the witness 𝑥 from a valid signature

produced by the adversary under a statement 𝑦, even when the

adversary has seen some simulated signatures. In the random oracle

model, both the simulator and extractor are allowed to program

the random oracle. Formal definitions are available in [19].

7

In this paper, we use an SoK in the random oracle model for the

DLog relation, i.e., for 𝑦 ∈ G and 𝑥 ∈ Z𝑝 , we have (𝑦, 𝑥) ∈ 𝑅 iff

𝑦 = 𝑔𝑥 . Note that such an SoK is well-studied and can be instantiated

with Schnorr signature scheme.

NIZK. The proof of decryption used in our DKG is a NIZK proof

system for the decryption correctness. In the random oracle model,

a NIZK for an NP relation 𝑅 consists of a prover algorithm Prove,
which on inputs a statement 𝑦 and its witness 𝑥 outputs a proof 𝜋 ,

and a verifier algorithm Vrfy which validates the proof against the

statement 𝑦.

In this work, we require the NIZK to satisfy the following prop-

erties: (1) Completeness: For every (𝑦, 𝑥) ∈ 𝑅, it holds that Vrfy(𝑦,
Prove(𝑦, 𝑥)) = 1. (2) Zero-knowledgeness: There exists an efficient

simulator algorithm that can produce a valid proof for any state-

ment 𝑦 without knowing 𝑥 , and the simulated proofs are indistin-

guishable from honestly generated proofs. (3) Simulation soundness.
For a statement 𝑦, if there is no witness 𝑥 s.t. (𝑦, 𝑥) ∈ 𝑅, then it

is infeasible for an efficient adversary to produce a valid proof

for 𝑦, even when the adversary has seen simulated proofs. Formal

definitions are available in [60].

We use a NIZK for proof of decryption correctness w.r.t. the

encryption scheme. It consists of a prover algorithm, PKE.Prove,
which on inputs (𝑐0, 𝑐𝑖 , 𝑒𝑘𝑖 , 𝑑𝑘𝑖 ,𝑚) produces a proof Γ, and a verifier
algorithm PKE.Vrfy(𝑐0, 𝑐𝑖 , 𝑒𝑘𝑖 ,𝑚, Γ) which checks whether𝑚 is the

correct decryption from (𝑐0, 𝑐𝑖). Particularly, Γ = (𝑚,𝑐
𝑑𝑘𝑖
0

, 𝜋). Here
𝜋 demonstrates the discrete logarithm of 𝑐

𝑑𝑘𝑖
0

w.r.t 𝑐0 is equal to that

of 𝑒𝑘𝑖 w.r.t. 𝑔, which is commonly known as DLEQ proof (equality

of discrete logarithms) [20].

Scrape’s polynomial commitment. We use the polynomial com-

mitment scheme from Scrape [17]. Particularly, let 𝑔 be the genera-

tor of G of prime order 𝑝 , let 𝑓 be a 𝑡-degree polynomial over Z𝑝 ,
and let𝑛 > 𝑡 be an integer. Then, the commitment to the polynomial

𝑓 is

(cm0 = 𝑔𝑓 (0) , cm1 = 𝑔𝑓 (1) , . . . , cm𝑛 = 𝑔𝑓 (𝑛)) .

One can check whether these group elements commit to a 𝑡-

degree polynomial by performing the following steps: (1) Sample

an (𝑛 − 𝑡) -degree polynomial 𝑞(𝑋) ∈ Z𝑝 [𝑥], and compute the

dual code: cm⊥𝜏 =
𝑞 (𝜏)∏𝑛

𝑗=0, 𝑗≠𝜏 (𝜏− 𝑗)
,∀𝜏 ∈ [0, 𝑛]. (2) Check whether∏𝑛

𝜏=0 (cm𝜏)cm
⊥
𝜏 = 1G, where 1G is the identity element of G.

It is worth noting that the first step can be reused to check

different commitments. The effectiveness of the checking process

is determined by the following lemma.

Lemma 1 ([17]). For any (cm0, cm1, . . . , cm𝑛) ∈ G𝑛+1, if

𝑛∏
𝜏=0

(cm𝜏)cm
⊥
𝜏 = 1G,

then with an overwhelming probability there exists a 𝑡-degree poly-
nomial 𝑓 , such that 𝑐𝑚𝑖 = 𝑔𝑓 (𝑖) for 𝑖 ∈ [0, 𝑛].

After that, a share 𝑓 (𝑖) can be validated by checking whether

𝑔𝑓 (𝑖) equals cm𝑖 .

5 OUR DKG PROTOCOL
Following the technique overview in Sect.2, we present our Any-

Trust DKG in Sect.5.1 based on the building blocks in Sect.4, and

analyze it in Sect.5.2.

5.1 The Construction
The construction is based on building blocks such as PKE (along

with the proof decryption system), the forward-secure signature

FS, the VRF-based sortition VRF, and SoK.

Setup. Given the security parameter 𝜆, the number of participants

𝑛, and the corruption bound 𝑡 (where the adversary can corrupt up

to 𝑡 parties), configure the system as follows:

Group Description: Based on the security parameter 𝜆, deter-

mine the group G of prime-order 𝑝 and its generator 𝑔.

PKI Setup: Every participant 𝑃𝑖 produces three key pairs: (𝑒𝑘𝑖 , 𝑑𝑘𝑖)
for PKE, (𝑟𝑣𝑘𝑖 , 𝑟𝑠𝑘𝑖) for VRF, and (FS.𝑣𝑘𝑖 , FS.𝑠𝑘𝑖 [1]) for the forward-
secure digital signature scheme.

Random Coin: Uniformly select a string rand ←$ {0, 1}𝜆 that is

independent of all users’ public keys.

The setup also determines the value of ratio for VRF-based sorti-

tion. Given 𝑛 participants executing the sortition algorithm with

ratio, the chosen committee will form an any-trust group. We as-

sume the required configurations for the underlying channels are

established during this setup phase.

Protocol Details. Post-setup, all participants collaboratively run

our DKG protocol, detailed in Fig.1. The protocol initiates with a

broadcast round, transitions to a multicast round, and concludes

with a final broadcast. A brief overview of each round is as follows:

–Round 1.Nodes initially determine if they’re selected as dealers. If

not, they refresh the secret key and exit the round (lines 1-4). Elected

dealers sample a 𝑡-degree polynomial 𝑓 to decide secret shares

𝑠𝑘𝑖 = 𝑓 (𝑖), commit to 𝑠𝑘0, . . . , 𝑠𝑘𝑛 , encrypt shares 𝑠𝑘1, . . . , 𝑠𝑘𝑛 using

others’ encryption keys (lines 6-8), and sign their ID using the

knowledge of 𝑟 w.r.t. 𝑐0 = 𝑔𝑟 in the ciphertext (line 9). Dealers then

sign the commitments and ciphertexts, update their signing keys,

erase secret information, and broadcast the signed commitments

and ciphertexts (lines 10-14).

–Round 2. Nodes receive the broadcasted messages (line 1). For

every message, they authenticate the signature (line 8); if failed,

they move to the next message. Otherwise, they validate its for-

mat, the VRF sortition certificate (lines 10-11), and the signature

of knowledge (line 13). Moreover, they ascertain if the committed

values match valid coefficients of a 𝑡-degree polynomial (lines 3-5

and 12-13). If a transcript fails verification, the dealer is instantly

disqualified (line 14). Otherwise, they check the decrypted share’s

validity against the commitments and, if inconsistent, generate a

verifiable complaint against the dealer (lines 15-17). All complaints

are multicast.

–Round 3. Nodes first verify if they are selected as senders (lines

1-4). If so, they collect and verify all complaints (using ciphertexts

received from line 1 of round 2), de-duplicate them, and curate

a complaint list documenting all complained dealers (lines 6-17).

They then sign and broadcast this complaint list (lines 18-21).

–End of Round 3. Nodes finalize the set of disqualified dealers

based on received complaint lists (lines 1-13). Following that, they

8

Round 1 (broadcast): each 𝑃𝑖 do:
1 : // determine whether it is elected as a dealer.

2 : VRF.Sortition(𝑟 𝑣𝑘𝑖 , 𝑟𝑠𝑘𝑖 , rand, “deal", ratio) → CRdeal𝑖

3 : if CRdeal𝑖 =⊥, // if not, update FS secret key and exit the round

4 : then FS.Update(FS.𝑠𝑘𝑖 [1]) → FS.𝑠𝑘𝑖 [2], erase FS.𝑠𝑘𝑖 [1], exit Round 1
5 : // only elected users continue the followings.

6 : sample (𝑎0, 𝑎1, . . . , 𝑎𝑡) ←$ Z𝑡+1𝑝 , define 𝑓 (𝑋) =
𝑡∑︁

𝜏=0

𝑎𝜏𝑋
𝜏

7 : commit to the random polynomial 𝑓 (𝑋) : (cm𝑗 = 𝑔𝑓 (𝑗)) 𝑗 ∈ [0,𝑛]
8 : encrypt shares: PKE.MREnc((𝑒𝑘𝑖)𝑖∈ [𝑛] , (𝑓 (𝑖))𝑖∈ [𝑛]) → (𝑐0, . . . , 𝑐𝑛)
9 : sign the ID 𝑖 using the knowledge of 𝑟 : SoK.Sign(𝑐0, 𝑟 , 𝑖) → 𝜎DL

10 : denote trans𝑖 [1] ← (CRdeal𝑖 , (cm𝑗) 𝑗 ∈ [𝑛] , (𝑐 𝑗) 𝑗 ∈ [𝑛] , 𝜎DL)
11 : sign the transcript using FS: FS.Sign(FS.𝑠𝑘𝑖 [1], trans𝑖 [1]) → 𝜎𝑖

12 : Updat the secret key of FS: FS.Update(FS.𝑠𝑘𝑖 [1]) → FS.𝑠𝑘𝑖 [2]
13 : erase FS.𝑠𝑘𝑖 [1], 𝑓 (𝑋), (𝑓 (𝑖))𝑖∈ [0,𝑛] , and encryption randomness

14 : broadcast (𝑖, trans𝑖 [1], 𝜎𝑖 [1])

Round 2 (multicast): each 𝑃𝑖 do:
1 : receive:{ (𝑗, trans𝑗 [1], 𝜎 𝑗 [1]) } 𝑗 ∈D, for D ⊂ [𝑛]
2 : set D1,D2,D3,C = ∅
3 : // prepare dual code for verifying polynomial commitments

4 : sample an (𝑛 − 𝑡)-degree polynomial 𝑞 (𝑋) ∈ Z𝑝 [𝑥], compute

5 : cm⊥𝜏 =
𝑞 (𝜏)∏𝑛

𝑗=0, 𝑗≠𝜏 (𝜏 − 𝑗) , ∀𝜏 ∈ [0, 𝑛]

6 : for 𝑗 ∈ D// verify each broadcast transcript as below

7 : // ignore the transcript if the FS signature is invalid

8 : if FS.Vrfy(FS.𝑣𝑘 𝑗 , 1, 𝜎 𝑗 [1], trans𝑗 [1]) = 0, then continue
9 : // verify if it is in a good format and the sortition credential

10 : if parse trans𝑗 [1] = (CRdeal𝑗 , (cm(𝑗)𝜏)𝜏 ∈ [𝑛] , (𝑐
(𝑗)
𝜏)𝜏 ∈ [𝑛] , 𝜎

(𝑗)
DL) failed

11 : ∨ VRF.Vrfy(𝑟 𝑣𝑘 𝑗 , rand, ratio, “deal”,CRdeal𝑗) = 0

12 : //check if (cm(𝑗)𝜏)𝜏 ∈ [𝑛] commits to a 𝑡 -degree polynomial

13 : ∨
𝑛∏
𝜏=0

(cm(𝑗)𝜏)cm
⊥
𝜏 ≠ 1G ∨ SoK.Vrfy(𝑐 (𝑗)0

, 𝜎
(𝑗)
DL , 𝑗) = 0

14 : then D1 = D1 ∪ { 𝑗 }// if any fails, disqualify 𝑗 immediately

15 : elseif PKE.Dec(𝑑𝑘𝑖 , 𝑐 (𝑗)𝑖
) = 𝑠𝑘

(𝑗)
𝑖
∧ 𝑔𝑠𝑘

(𝑗)
𝑖 ≠ cm(𝑗)

𝑖

16 : //generate a complaint, and update the complaint list

17 : then PKE.Prove(𝑐 (𝑗)
0

, 𝑐
(𝑗)
𝑖

, 𝑑𝑘𝑖 , 𝑠𝑘
(𝑗)
𝑖
) → Γ𝑗 ,D2 = D2 ∪ { (𝑗, Γ𝑗) }

18 : //otherwise, update the candidate output list

19 : else D3 = D3 ∪ { 𝑗 },C = C ∪ { (𝑗, ((cm(𝑗)𝜏)𝜏 ∈ [0,𝑛] , 𝑠𝑘
(𝑗)
𝑖
)) }

20 : D2 → trans𝑖 [2], FS.Sign(FS.𝑠𝑘𝑖 [1], trans𝑖 [2]) → 𝜎𝑖 [2]
21 : if D2 ≠ ∅, thenmulticast (𝑖, trans𝑖 [2], 𝜎𝑖 [2])

Round 3 (broadcast): each 𝑃𝑖 do :

1 : receive { (𝑗, trans𝑗 [2], 𝜎 𝑗 [2]) } 𝑗 ∈R1 , for R1 ⊂ [𝑛]
2 : // determine whether it is elected for broadcasting complaint list

3 : VRF.Sortition(𝑟 𝑣𝑘𝑖 , 𝑟𝑠𝑘𝑖 , rand, “agree", ratio) → CRagree
𝑖

4 : if CRagree
𝑖

=⊥, // if not, update FS secret key and exit the round

5 : then FS.Update(FS.𝑠𝑘𝑖 [1]) → FS.𝑠𝑘𝑖 [2], exit Round 2
6 : set DisQual,CompList = ∅// start to deduplicate complaints

7 : for 𝑗 ∈ R1, if FS.Vrfy(FS.𝑣𝑘 𝑗 , 1, 𝜎 𝑗 [2], trans𝑗 [2]) = 1

8 : then for (𝑘, Γ𝑘) ∈ trans𝑗 [2]// check every complaint by 𝑃 𝑗

9 : // if 𝐷𝑘 has not been disqualified, verify the complaint

10 : if 𝑘 ∉ DisQual, parse Γ𝑘 = (𝑠𝑘 (𝑘)
𝑗

, ·)

11 : //𝑐 (𝑘)
0

, 𝑐
(𝑘)
𝑗

are what 𝑃𝑖 received at line 1 of round 2

12 : if PKE.Vrfy(𝑐 (𝑘)
0

, 𝑐
(𝑘)
𝑗

, Γ𝑘) = 1 ∧ 𝑔𝑠𝑘
(𝑘)
𝑗 ≠ cm(𝑘)

𝑗

13 : // disqualify the dealer given a valid complaint

14 : then DisQual = DisQual ∪ {𝑘 }
15 : CompList = CompList ∪ { (𝑘, Γ𝑘) }
16 : // stop verifying complaints from 𝑗 if the complaint is invalid.

17 : else break

18 : (CRagree
𝑖

,CompList) → trans𝑖 [3]
19 : sign FS.Sign(FS.𝑠𝑘𝑖 [2], trans𝑖 [3]) → 𝜎𝑖 [3]
20 : FS.Update(FS.𝑠𝑘𝑖 [2]) → FS.𝑠𝑘𝑖 [3]; erase FS.𝑠𝑘𝑖 [2]
21 : if ComList ≠ ∅, then broadcast (𝑖, trans𝑖 [3], 𝜎𝑖 [3])

At the end of Round 3: each 𝑃𝑖 do :

1 : receive { (𝑗, trans𝑗 [3], 𝜎 𝑗 [3]) } 𝑗 ∈R2 , for R2 ⊂ [𝑛]
2 : set DisQual = ∅
3 : // decide the disqualified set based on broadcast message

4 : for 𝑗 ∈ R2
5 : parse trans𝑗 [3] = (CRagree𝑗

,CompList)
6 : if FS.Vrfy(FS.𝑣𝑘 𝑗 , 2, 𝜎 𝑗 [3], trans𝑗 [3]) = 1

7 : ∧ VRF.Vrfy(𝑟 𝑣𝑘 𝑗 , rand, ratio, “agree”,CR
agree
𝑗
) = 1

8 : then for (𝑘, Γ𝑘) ∈ CompList

9 : // put a newly complained dealer in the list

10 : if 𝑘 ∉ DisQual ∧ PKE.Vrfy(𝑐 (𝑘)
0

, 𝑐
(𝑘)
𝑗

, Γ𝑘) = 1

11 : ∧ 𝑔Γ𝑘 .𝑚 ≠ cm(𝑘)
𝑗

12 : then DisQual = DisQual ∪ {𝑘 },
13 : setQual = D3 \ DisQual

14 : output:

15 : 𝑝𝑘 =
∏

𝑗 ∈Qual

cm(𝑗)
0

, 𝑠𝑘𝑖 =
∑︁

𝑗 ∈Qual

𝑠𝑘
(𝑗)
𝑖

16 : 𝑝𝑘𝜏 =
∏

𝑗 ∈Qual

cm(𝑗)𝜏 , for every 𝜏 ∈ [𝑛]

Figure 1: The Any-Trust DKG construction.

create the public key (shares) and secret key share by aggregating

contributions from qualified dealers (lines 14-16).

9

5.2 The Analysis
Computation complexity analysis.We primarily focus on the

computationally intensive operations, particularly the group expo-

nentiation operation EXP, and will omit inexpensive operations like

multiplication operation and hash evaluation. In Round 1, a node

who is elected as a dealer needs to generate a commitment (line 6),

which takes𝑂 (𝑛)EXP, encrypt shares under 𝑛 different public keys

(line 7), which takes 𝑂 (𝑛)EXP group expo. In Round 2, to verify a

transcript, each node needs to validate its commitment (line 10),

which takes 𝑂 (𝑛)EXP, and there are expected to be 𝑠 transcripts to

verify. If there are the maximal amount of Byzantine nodes, an hon-

est node may need to verify 𝑂 (𝑛) VRF proofs and 𝑂 (𝑛) signatures
(lines 6, 8), which takes 𝑂 (𝑛)EXP, and generate 𝑂 (𝑠) complaints,

which takes𝑂 (𝑠)EXP. In Round 3, each node verifies the complaints

from other nodes. Note that a node 𝑃𝑖 stops verifying complaints

from 𝑃 𝑗 upon finding an invalid complaint made by 𝑃 𝑗 , and it also

stops verifying complaints against a dealer once the dealer has

verifiably complained. Therefore, a node verifies at most𝑂 (𝑛) com-

plaints, which takes 𝑂 (𝑛)EXP. There are no group exponentiation

operations in Round 4. Thus, even facing the maximal amount of

Byzantine nodes, each node only needs to perform 𝑂 (𝑠𝑛) group
exponentiation.

Communication complexity analysis. In Round 1, an elected

node will broadcast 𝑂 (𝑛𝜆)-size transcript, and there are expected

to be 𝑠 elected node, where 𝜆 is the computational security param-

eter, and the sizes of a group element, a digital signature, and a

VRF credential, are counted as 𝑂 (𝜆). So the communication cost in

Round 1 is 𝑠B(𝑛𝜆), where B(ℓ) denotes the communication cost of

broadcasting ℓ bits by one sender. There will be no further commu-

nication if all nodes behave honestly. Otherwise, in Round 2, each

node may need to multicast 𝑂 (𝑠) complaints, which in total incurs

the communication complexity of 𝑛M(𝑠𝜆), whereM(ℓ) denotes
the communication cost of multicasting ℓ bits by one sender. In

Round 3, there are 𝑂 (𝑠) elected nodes each broadcasting 𝑂 (𝑠𝜆)-
sized complaints, which incurs the communication complexity of

𝑠B(𝑠𝜆). In summary, the good case communication complexity is

𝑠B(𝑛𝜆), and the adversarial-case communication complexity can

be 𝑠B(𝑛𝜆) + 𝑛M(𝑠𝜆).
Security analysis. The 𝑡-correctness and 𝑡-consistency, which

ensure all participants at the end of the protocol obtain the same

public key and correct shares, follow the facts: (1) there is at least

one qualified dealer, and (2) all malicious dealers will be disqualified.

From the security of VRF-based sortition and the forward-secure

signature, at least one honest node will be selected as a dealer,

and it can successfully broadcast its valid transcript even if it later

becomes corrupted, which ensures (1). From the security of the

polynomial commitment, if a dealer is not complained by any node,

then all honest users receive consistent shares from the dealer. Our

complaint phase guarantees that every dealer who is complained

by an honest node will disqualified. Therefore, we have (2).

Proving the oracle-aided algebraic simulatability is more in-

volved. At a high level, we need to construct an efficient simulator

that, on input from a sequence of group elements, produces an

indistinguishable view for an adaptive adversary with the help of

a DLog oracle. We follow the techniques from [4] to simulate the

polynomial commitments and opening shares for corrupted nodes.

However, broadcasting all encrypted shares in our protocol poses

additional challenges for security proof. Particularly, the simulator

needs to simulate all ciphertexts without knowing the shares. It also

needs to simulate the proof of decryption without using the decryp-

tion oracle of the underlying encryption scheme. As sketched in

Sect.2, we leverage the non-committing encryption and signature

of knowledge to handle these challenges. Formally, we establish

the following theorem.

Theorem 2. The Any-Trust DKG satisfies 𝑡-consistency, 𝑡-correctness,
and (𝑡, 𝑘,𝑇A ,𝑇sim)-oracle-aided algebraic simulatability against adap-
tive adversaries (cf Def.2), with 𝑛 ≥ 2𝑡 + 1, 𝑘 ≤ 𝑛(𝑡 + 1) and 𝑇sim ≤
𝑇A + O(𝑠𝑛𝑡), under the DDH assumption in the ROM, and assuming
the security of the underlying forward-secure signature scheme. For
static adversaries, it further achieves the key-expressability(cf. Def.3).

Proof. Under DDH assumption in ROM, our building blocks,

including the VRF, the NIZKPoK, the proof of decryption, and the

multi-recipient encryption, are secure.

First, we argue the 𝑡-consistency. Note that the public key 𝑝𝑘

and the vector of public key shares are deterministically computed

based on the set of qualified dealers, which are further determined

by the information in the broadcast channel. As all honest users

have the same view of the broadcast channel, the 𝑡-consistency

follows easily.

Then, we show the 𝑡-correctness. Recall that𝑝𝑘 =
∏

𝑗∈Qual cm
(𝑗)
0

,

and 𝑝𝑘𝑖 =
∏

𝑗∈Qual cm
(𝑗)
𝑖

for 𝑖 ∈ [𝑛]. Based on line 10 of round

2, for each 𝑗 ∈Qual, with an overwhelming probability, there is

a polynomial 𝑓𝑗 (𝑥) ∈ Z𝑝 [𝑋] whose degree is up to 𝑡 , such that

cm(𝑗)
𝑖

= 𝑔𝑓𝑗 (𝑖) . Therefore, define 𝑓 (𝑋) = ∑
𝑗∈Qual 𝑓𝑗 (𝑋), and then

it follows that 𝑝𝑘 = 𝑔𝑓 (0) and 𝑝𝑘𝑖 = 𝑔𝑓 (𝑖) . Meanwhile, every hon-

est 𝑃𝑖 should have 𝑓 (𝑖). If an honest 𝑃𝑖 does not have 𝑓 (𝑖), there
must exist an index 𝑗 ∈Qual such that 𝑃𝑖 does not have 𝑓𝑗 (𝑖). In
this case, 𝑃 should follow the protocol description and multicast

a verifiable complaint against the dealer 𝑗 to all other parties. As

the verifiable complaints are posted to the broadcast channel by an

any-trust group, a verifiable complaint against 𝑗 must be included.

Then, 𝑗 should be disqualified, which contradicts our assumption

that 𝑗 is in Qual.
For correctness, it remains to show that the set Qual is non-

empty. By parameter and the security of VRF, the sampled com-

mittee contains at least one honest node with high probability. We

argue this honest node will be included inQual. Particularly, this
node shall broadcast an honestly generated transcript that contains

valid shares. It is easy to see that the complaints in our system are

unforgeable due to the soundness of proof of decryption. There-

fore, this node cannot be disqualified because of this transcript.

Moreover, although this node may be corrupted after it sends out

the transcript, by the forward security of the underlying signature

scheme, the adversary cannot send another message with a valid

signature in this round, which means the honest node cannot be

disqualified because of post-corruption.

Given its length, the analysis for the oracle-aided algebraic secu-

rity is presented in Lemma.3, and the analysis for the key express-

ibility is in Lemma.4. □

10

Lemma 3. The Any-Trust DKG satisfies (𝑡, 𝑘,𝑇A ,𝑇sim)-oracle-aided
algebraic simulatability.

Proof. By definition, if Π satisfies the oracled-aided algebraic

simulatability, then, for every adversary A, there will be an al-

gebraic simulator Sim which can indistinguishably simulate the

environment for A. We proceed with the proof by presenting the

code of a universal simulator Sim, which has access to the adversary

A.

On inputs a vector of group elements 𝜁 = (𝑔𝑧1 , 𝑔𝑧2 , . . . , 𝑔𝑧𝑘) for
𝑘 = 𝑛(𝑡 + 1), Sim can simulate each phase of Π for A as follows.

SETUP. Sim initializes the set of corrupted parties C = ∅, the set of
honest partiesH = {𝑃𝑖 }𝑖∈[𝑛] , and a table ROhist = ∅ to record the

query history of the random oracle. Then, it follows the protocol

specifications to generate the public parameters and key pairs for

all honest users. It answers the adversary’s queries as follows.

• Corruption queries.WhenA asks to corrupt the party 𝑃𝑖 ,

Sim first checks if |C| ≤ 𝑡 . If the check fails, it ignores this

query; otherwise, return the secret keys of 𝑃𝑖 , and update

the setsH = H\{𝑃𝑖 } and C = C ∪ {𝑃𝑖 }.
• Randomoracle queries.WhenA queries the random ora-

cle with an input 𝑥 , Sim checks if 𝑥 has been asked before. If

there is a record of (𝑥, output𝑥) in ROhist, return output𝑥 ;
otherwise, uniformly sample output𝑥 , add (𝑥, output𝑥) to
ROhist, and return output𝑥 .

Round 1. For every honest party 𝑃𝑖 ∈ H , Sim runs the Self-Election
procedure using 𝑃𝑖 ’s VRF secret key. We assume w.l.o.g. there are

𝑠′ ≤ 𝑛 honest parties being selected and denote the set byHele =

{D1, . . . ,D𝑠′ }, where each party has its credential CR𝑗,deal. Then,

Sim simulates the Commit to secret procedure on behalf of each

D𝑗 ∈ Hele as follows.

• Denote 𝜁 𝑗 = (𝜁 𝑗,0, 𝜁 𝑗,1, . . . , 𝜁 𝑗,𝑡)
= (𝑔𝑧 (𝑗−1) (𝑡+1)+1 , 𝑔𝑧 (𝑗−1) (𝑡+1)+2 , . . . , 𝑔𝑧 𝑗 (𝑡+1)).

• Generate the commitments cm(𝑗)𝜏 =
∏

𝜇∈[0,𝑡] 𝜁
𝜏𝜇

𝑗,𝜇
, for ev-

ery 𝜏 ∈ [0, 𝑛].
• Generate the ciphertext (𝑐 (𝑗)

0
, 𝑐
(𝑗)
1

, . . . , 𝑐
(𝑗)
𝑛), where 𝑐

(𝑗)
0

=

𝑔𝑟 𝑗 for some 𝑟 𝑗 ←$ Z𝑝 , and 𝑐
(𝑗)
𝜏 ←$ {0, 1}⌈log𝑝 ⌉ for 𝜏 ∈ [𝑛].

• Use the simulated signer algorithm of SoK to sign 𝑗 w.r.t.

𝑐
(𝑗)
0

and obtain a simulated signature of knowledge 𝜎
(𝑗)
DL .

• Broadcast (CRdeal
𝑗

, cm(𝑗)
0

, . . . , cm(𝑗)𝑛 , 𝑐
(𝑗)
0

, . . . , 𝑐
(𝑗)
𝑛 , 𝜎

(𝑗)
DL) along

with its forward-secure signature on it.

Sim needs to answer the queries from the adversary. For the

random oracle queries and corruption queries made before broad-

cast, Sim can respond as it does in the SETUP phase. We discuss

its strategy for answering these queries that are made after the

broadcast below.

• Corruption queries.WhenA asks to corrupt the party 𝑃𝑖 ,

Sim first checks if |C| ≤ 𝑡 . If the check fails, it ignores this

query; otherwise, Sim queries the oracleDL𝑔 (·) with cm(𝑗)𝑖

for all 𝑗 ∈ Hele with its representation (1, 𝑖1, . . . , 𝑖𝑡) over
𝜁 𝑗 . Sim will receive 𝜉

(𝑗)
𝑖

from the oracle. Then, Sim records

all {𝑥 (𝑗)
𝑖
}, which are secret shares dealt by honest dealers.

Sim can obtain the shares dealt by corrupted dealers for 𝑃𝑖
by decrypting the encrypted shares using 𝑑𝑘𝑖 . Finally, Sim

returns the secret shares for 𝑃𝑖 and its decryption key 𝑑𝑘𝑖
toA, and updates the setsH = H\{𝑃𝑖 } and C = C ∪ {𝑃𝑖 }.

• Random oracle queries. Before answering any random

oracle queries at this stage, Sim first calculates a matrix of

group elements

𝛾 =

©­­­­­­«

𝛾1,1 𝛾1,2 . . . 𝛾1,𝑛

𝛾2,1 𝛾2,2 . . . 𝛾2,𝑛

.

.

.
.
.
.

.

.

.

𝛾𝑠′,1 𝛾𝑠′,2 . . . 𝛾𝑠′,𝑛

ª®®®®®®¬
,

where each 𝛾 𝑗,𝜏 = 𝑝𝑘
𝑟 𝑗
𝜏 for 𝑗 ∈ [𝑠′] and 𝜏 ∈ [𝑛], 𝑝𝑘𝜏 is the

encryption public key of 𝑃𝜏 , and 𝑟 𝑗 is the randomness used

in encryption by Sim when simulating D𝑗 . Sim checks if

any 𝛾 𝑗,𝜏 has been asked before and aborts in one is in the

query history. Otherwise, continue.

When A queries a message 𝑥 , Sim performs as follows.

– If 𝑥 ≠ 𝛾 𝑗,𝜏 for any 𝑗 and 𝜏 , proceed as what it did in the

Setup phase.

– If𝑥 = 𝛾 𝑗,𝜏 for some 𝑗 and𝜏 , checks if 𝑃𝜏 has been corrupted.

If it has not been corrupted, then Sim first queries the ora-

cleDL𝑔 (·) with cm(𝑗)𝜏 and its representation (𝜏0, 𝜏1, . . . , 𝜏𝑡)
over 𝜁 𝑗 . Sim will receive 𝜉 𝑗,𝜏 from the oracle. If it is cor-

rupted, then 𝜉 𝑗,𝜏 has been recorded by Sim. Finally, it sets

output𝛾 𝑗,𝜏 := 𝑐
(𝑗)
𝜏 ⊕𝜉 𝑗,𝜏 , records (𝛾 𝑗,𝜏 , output𝛾 𝑗,𝜏) intoROhist,

and returns output𝛾 𝑗,𝜏 to A.

Other rounds. Sim simulates the behavior of honest parties by

following the specifications of the protocol, except that whenever an

honest party 𝑃𝑖 needs to decrypt an encrypted share (𝑐0, 𝑐1, . . . , 𝑐𝑛),
Sim instead performs the following procedures for decryption.

• Use the extractor of the SoK to obtain 𝑟 , such that 𝑐0 =

𝑔𝑟 . Then, use 𝑟 to “decrypt” the encrypted share as 𝑠𝑘𝑖 =

Hash(𝑒𝑘𝑟
𝑖
) ⊕ 𝑐𝑖 .

The queries from A are answered in the same way as Sim did in

Round 1.

LetQual𝐶 be the set of qualified nodes that are corrupted before

the Round 1, and Qual = Qual𝐶 ∪ Hele. For every 𝑗 ∈ Qual𝐶 ,
the dealer must have distributed its secret shares to honest nodes;

otherwise, it will be disqualified. As Sim has always controlled

more than 𝑡 + 1 honest participants, it can recover the secret key

𝑠𝑘 𝑗 w.r.t. 𝑝𝑘 𝑗 for every 𝑗 ∈Qual𝐶 . Therefore, Sim can output the

algebraic representation for the public key as:

𝑝𝑘 =
∏

𝑗∈Qual

𝑝𝑘 𝑗 = 𝑔
∑

𝑗 ∈Qual𝐶
𝑠𝑘 𝑗

∏
𝑗∈[𝑠′]

𝑔𝑧 (𝑗−1) (𝑡+1)+1 .

Now, we argue that the simulator specified above satisfies the

requirements of oracle-aided simulatability. First, it is easy to verify

that the running time of Sim is 𝑇A + O(𝑠𝑛𝑡).
Then, we show that viewA,𝑦,Π and viewA,𝑦,Π are identical, un-

der the condition that Sim never aborts during the simulation.

Specifically, from the point of A’s view, the commitment sequence

outputted by an honest party D𝑗 is a commitment to the polyno-

mial 𝑓𝑗 (𝑥) =
∑𝑛
𝜏=0 𝑧 (𝑗−1) (𝑡+1)+𝜏+1𝑥

𝜏
. Note that the input group

elements of Sim are uniformly sampled, and thus, the distribution

11

of 𝑓𝑗 (𝑥) is also uniform, which is identical to that in the real exper-

iment. Moreover, in the random oracle model, the distribution of

ciphertexts simulated by Sim is also identical to the real distribution.

Notably, for every 𝑝𝑘
𝑟 𝑗
𝜏 that has been issued to the random oracle,

which means that A can decrypt the ciphertext 𝑐 𝑗,𝜏 , it follows that

𝑐
(𝑗)
𝜏 = Hash(𝑝𝑘𝑟 𝑗𝜏) ⊕ 𝑓𝑗 (𝜏) .

Next, we argue that Sim only aborts with a negligible probability.

When Sim aborts, A must have queried the random oracle with

some 𝑥 = 𝛾 𝑗,𝜏 before seeing the broadcast messages. However,

𝛾 𝑗,𝜏 = 𝑝𝑘
𝑟 𝑗
𝜏 is a uniformly random group element, as 𝑟 𝑗 is uniformly

chosen from Z𝑝 and completely independent ofA’s view before 𝑔𝑟 𝑗

is broadcasted. Therefore,A has negligible probability if outputting

𝑝𝑘
𝑟 𝑗
𝜏 .

Then, we show that Sim has made at most 𝑘 − 1 queries to the

DL𝑔 (·) oracle. Recall that Sim makes a query to DL𝑔 (·) whenever
A corrupts a party or queries the random oracle with a message 𝑥

which is equal to some 𝛾 𝑗,𝜏 . We note that under the DDH assump-

tion, A can output 𝛾 𝑗,𝜏 = 𝑝𝑘
𝑟 𝑗
𝜏 only when A has corrupted the

party 𝑃𝜏 (and thus can compute 𝛾 𝑗,𝜏 = (𝑔𝑟 𝑗)𝑠𝑘𝜏), except a negligible
probability. As A can corrupt at most 𝑡 parties, Sim will query

DL𝑔 (·) at most 𝑡𝑠′ times, which is smaller than 𝑘 − 1.
Finally, we show the simulatability matrix 𝐿 of Sim is invert-

ible. Without loss of generality, we assume that the adversary has

corrupted the parties 𝑃1, . . . , 𝑃𝑡 , and Sim has made 𝑠′𝑡 queries to
DL𝑔 (·) for simulating the queries from the adversary. For ease of

analysis, we let Sim make some dummy queries such that the rep-

resentations of all the queries are gonna form a square matrix of

order 𝑛(𝑡 + 1). Specifically, Sim makes the following extra queries:

𝑔𝑧𝑠′ (𝑡+1)+1 , 𝑔𝑧𝑠′ (𝑡+1)+2 , . . . , 𝑔𝑧𝑛 (𝑡+1) ,

and ∏
𝜇∈[0,𝑡]

𝜁
(𝑡+1)𝜇
𝑗,𝜇

, for 𝑗 ∈ [1, 𝑠′ − 1] .

The number of all queries by Sim is 𝑠′𝑡 + (𝑛 − 𝑠′) (𝑡 + 1) + 𝑠′ − 1 =
𝑛(𝑡 + 1) − 1, which is still smaller than 𝑘 . It is easy to verify the

matrix 𝐿 is invertible. □

Lemma 4. The Any-Trust DKG satisfies the key-expressability.

Proof. This proof is similar to the proof for Lemma.3, except

we don’t need to handle adaptive corruption queries. For any PPT

adversary A, we can construct a PPT simulator Sim that takes as

input a public key 𝑝𝑘′ ∈ G and simulates the view of A. Assume

the sef of corrupted paries is {𝑃𝑖 }𝑖∈Corr for some Corr ⊂ [𝑛] and
|Corr| ≤ 𝑡 . After sampling the any-trust group, Sim, on behalf of the

honest node in the group, creates the following transcript: cm0 =

𝑝𝑘′, 𝑐0 = 𝑔𝑟 for some 𝑟 ←$ Z𝑝 ; For 𝑖 ∈ Corr, 𝑠𝑘𝑖 ←$ Z𝑝 , cm𝑖 = 𝑔𝑠𝑘𝑖 ,

and 𝑐𝑖 = Hash(𝑒𝑘𝑟
𝑖
) ⊕𝑠𝑘𝑖 . For 𝑖 ∉ Corr, cm𝑖 are created by Lagrange

interpolation in the exponent, while 𝑐𝑖 are randomly sampled. This

transcript is indistinguishable from an honestly generated one in

the view ofA and cannot be disqualified. For every other transcript

with cm(𝑗) = 𝑝𝑘 (𝑗) which is eventually included in the qualified

set, Sim can know the secret key 𝑠𝑘 (𝑗) by reconstructing it from

shares held by honest nodes. Note that the final public key is in the

form of 𝑝𝑘′ ·∏ 𝑝𝑘 (𝑗) , and the simulator can express it by setting

𝛼 = 1, 𝑠𝑘′′ =
∑
𝑠𝑘 (𝑗) . □

Committee Size. Recall that our construction employs a VRF-

based sortition to decide the committee, in which each node can

be independently elected a committee member with a probability

ratio. Assume a network of 𝑛 nodes while at least ℎ of them re-

mains honest. Such a sortition process will produce a committee

of the expected size of 𝑠 = ratio · 𝑛. Then the probability p that at

least one honest node being elected can be expressed as follows:

p = 1 − (1 − 𝑠

𝑛
)ℎ . (1)

We compute the expected committee sizes necessary to ensure

different values of p in networks with varying ratios of honest

parties, as depicted in Table 2. For example, assuming over 51%

participants of the whole network are honest, we can set the ex-

pected committee size as 38, which ensures the resulting committee

contains at least one honest node with the probability of at least

1 − 5 × 10−9. These findings are applicable to networks of any size,

although for networks with 𝑛 ≤ 10
4
, a slightly smaller committee

size may be achievable.

PR
HR

51% 67% 80%

1 − 5 × 10−9 38 29 24

1 − 2−30 41 32 26

1 − 2−40 55 42 35

Table 2: Expected committee sizes for different probability
guarantees (PR) under different honest-party ratio (HR)

6 SUB-ID ALLOCATION FOR THEWEIGHTED
SETTING

In this section, we present a simple yet effective sub-ID allocation

mechanism that enables us to apply a conventional distributed

protocol like our Any-Trust DKG in the weighted setting. Com-

pared with the straightforward sub-ID allocation mechanism, ours

dramatically reduces the number of required sub-IDs.

Qualified allocation. The traditional sub-ID allocation method

ensures that the proportion of sub-IDs held by honest participants

is equal to the proportion of an honest participant’s weights, which

we call a perfect allocation. However, we notice a gap between the

usual assumption on the honest participant’s weight ratio, which is

typically assumed to be more than 2/3 due to other components of

the system, and the honest ratio needed in threshold cryptography,

which is usually just above 1/2. Therefore, we consider a lossy-yet-

qualified allocation, which guarantees that more than half of the

sub-IDs will be issued to honest participants if they have more than

2/3 of the weights
10
. Formally, we have the following definition.

Definition 4 (Qualifed Allocation). Let𝑊 = (𝑤1, . . . ,𝑤𝑛) be a

sequence of positive integers. Let 𝐴 and 𝐵 be any partition of the

index set [𝑛] (i.e., 𝐴 ∪ 𝐵 = [𝑛] and 𝐴 ∩ 𝐵 = ∅). We say a function

AllocateSubID(𝑤1, . . . ,𝑤𝑛) → (𝑑1, . . . , 𝑑𝑛), where 𝑑𝑖 ’s are non-

negative integers, is a qualified allocation for𝑊 , if for every

(𝐴, 𝐵) s.t.∑︁
𝑖∈𝐴

𝑤𝑖 > 2 ·
∑︁
𝑖∈𝐵

𝑤𝑖 , it holds that
∑︁
𝑖∈𝐴

𝑑𝑖 >
∑︁
𝑖∈𝐵

𝑑𝑖 .

10
While our discussion primarily centers on the gap between 2/3 and 1/2, the underlying

concept can be effortlessly extended to address other thresholds or scenarios.

12

While such a qualified allocation suffices for security, we need to

find an allocation method that minimizes the number of all sub-IDs,

i.e.,
∑

𝑗 𝑑 𝑗 is as small as possible.

Our method.We start by observing that dividing each𝑤𝑖 by the

greatest common division (GCD) leaves the fraction for any index

subset 𝐴 unchanged. This realization provides a straightforward

allocation approach: 𝑑𝑖 =
𝑤𝑖

gcd . However, if the GCD is small, the

total sub-IDs can be vast.

A viable approach is to modify each 𝑤𝑖 to 𝑤 ′
𝑖
so the new se-

quence𝑊 ′ = (𝑤 ′
1
, . . . ,𝑤 ′𝑛) has a substantial GCD. This adjustment

might increase some subsets’ proportions while reducing others,

potentially strengthening the adversary. Still, we determine that

any increased power for the adversary remains capped if we limit

the total adjustments.

Specifically, we call an adjustment 𝑡-bounded for (𝑤1, . . . ,𝑤𝑛),
if the adjusted values (𝑤 ′

1
, . . . ,𝑤 ′𝑛) satisfies

∑
𝑖∈[𝑛] |𝑤𝑖 −𝑤 ′𝑖 | ≤ 𝑡 .

Then, if

∑
𝑖∈[𝑛] 𝑤𝑖 ≥ 3𝑡 + 1, it ensures that for any partition (𝐴, 𝐵)

over [𝑛] satisfying∑𝑖∈𝐴𝑤𝑖 > 2 ·∑𝑖∈𝐵 𝑤𝑖 , it holds that
∑
𝑖∈𝐴𝑤 ′

𝑖
>∑

𝑖∈𝐵 𝑤
′
𝑖
, given the inequality:∑︁

𝑖∈𝐴
𝑤 ′𝑖 −

∑︁
𝑖∈𝐵

𝑤 ′𝑖 ≥
∑︁
𝑖∈𝐴
(𝑤𝑖 − Δ𝑖) −

∑︁
𝑖∈𝐵
(𝑤𝑖 + Δ𝑖) ≥ 1

(2)

Here, Δ𝑖 = |𝑤𝑖 − 𝑤 ′𝑖 |. Following the adjustment, Sub-IDs, 𝑑𝑖 , are

derived by dividing𝑤 ′
𝑖
by this higher GCD.

Given our objective to minimize

∑
𝑗 𝑑 𝑗 , the goal is to enhance

the GCD. To achieve this, we consider a target gcd, defining an

adjustment function 𝑓gcd (𝑤𝑖) → 𝑤 ′
𝑖
as:

𝑤 ′𝑖 =
{
𝑤𝑖 − (𝑤𝑖 mod gcd), if𝑤𝑖 mod gcd < gcd/2,
𝑤𝑖 + gcd − (𝑤𝑖 mod gcd), otherwise. (3)

Starting with gcd = 1, we increase it until 𝑓gcd is no longer a

𝑡-bounded adjustment for𝑊 . Utilizing binary search can quickly

find a very large gcd. While variations in (𝑤1, . . . ,𝑤𝑛) may suggest

larger gcd′, our found gcd is practically near-optimal. The allocation

algorithm is detailed below.

AllocateSubID(𝑤1, . . . ,𝑤𝑛)
binary search the largest gcd from 0 to max

𝑖
𝑤𝑖

s.t. 𝑓gcd is 𝑡 -bounded for (𝑤1, . . . , 𝑤𝑛)

output (𝑑𝑖 =
𝑓gcd (𝑤𝑖)

gcd
)𝑖∈ [𝑛]

Efficiency and effectiveness. Note that our AllocateSubID is only

supposed to find a 𝑡-bounded 𝑓gcd for its input (𝑤1, . . . ,𝑤𝑛). So we

can efficiently check whether

∑
𝑖∈[𝑛] |𝑓gcd (𝑤𝑖) −𝑤𝑖 | ≤ 𝑡 . Thus, the

time-cost of AllocateSubID is 𝑂 (𝑛 log𝑛). Meanwhile, using binary

search is effective since there is a general trend that the larger the

gcd is, the larger adjustment is needed. It can give us a 𝑡-bounded

𝑓gcd for the input with a large gcd (not necessarily optimal).

Our sub-ID allocation is a qualified allocation as per Def.4, since

𝑓gcd is 𝑡-bounded for (𝑤1, . . . ,𝑤𝑛). Moreover, for a set of 𝑛 valida-

tors with an arbitrary power distribution, our method only issues

at most 2𝑛 sub-IDs.

Lemma 5. Given any sequence𝑊 = (𝑤𝑖)𝑖∈[𝑛] with
∑
𝑖∈[𝑛] 𝑤𝑖 =

3𝑡+1 for some integer 𝑡 , let (𝑑1, . . . , 𝑑𝑛) be the output of ourAllocateSubID.
It follows that

∑
𝑖∈[𝑛] 𝑑𝑖 ≤ 4𝑡+1

⌊2𝑡/𝑛⌋ , which is around 2𝑛 when 𝑛 ≪ 𝑡 .

Table 3: Comparison with Swiper/Dora
Systems # Parties #Total Weights [27] Ours

Aptos[11] 104 8.4708 × 108 27 34

Tezos[64] 382 6.7579 × 108 75 77

Filecoin[31] 3700 2.5242 × 1019 1895 1688

Algorand[21] 42920 9.7223 × 109 373 301

Proof. Let gcd = ⌊2𝑡/𝑛⌋. It is easy to see that (𝑤 ′
1
, . . . ,𝑤 ′𝑛)

outputted by 𝑓gcd (𝑤1, . . . ,𝑤𝑛) and (𝑤1, . . . ,𝑤𝑛) are bounded by

𝑛 · ⌊2𝑡/𝑛⌋/2 = 𝑡 . Let 𝑑𝑖 =
𝑤′𝑖
gcd . It holds that

∑
𝑖∈[𝑛] 𝑑𝑖 =

∑
𝑖∈𝑛 𝑤′𝑖
⌊2𝑡/𝑛⌋ ≤

4𝑡+1
⌊2𝑡/𝑛⌋ ≈ 2𝑛. □

Comparisonwith Swiper/Dora [27].A concurrentwork, Swiper/Dora

[27], also addresses the imparity between conventional threshold

cryptography and the weighted setting. In Table 3, we compare our

method and theirs for validator sets across various PoS systems.

The comparison is under the same condition, i.e., ensuring more

than 1/2 sub-IDs are allocated to honest parties with more than 2/3

weights. The result shows our method issues fewer sub-IDs to large

sets of validators, such as Algorand and Fielcoin
11
.

7 PRACTICAL EXTENDED BROADCAST
CHANNELS

In this section, we introduce a practical extension to the blockchain-

based broadcast channel. Although it is folklore knowledge that,

theoretically, one may throw all messages into the ledger to facil-

itate a broadcast, this may incur prohibitive costs in practice, as

on-chain resources are generally very expensive. Instead, our ex-

tension empowers users to broadcast a message of arbitrary length

while inscribing only a constant-size storage on the blockchain. Cru-

cially, our enhanced broadcast channel retains its original simplicity

and modularity. Users can conveniently interact with it using the

APIs of well-established infrastructures, including both blockchains

and a data dispersal network (DDN) like IPFS [67].

7.1 Building Blocks
We formalize our building blocks. For simplicity, wemodel a blockchain

as a public bulletin board (PBB) that allows users to post and retrieve

data.

Public Bulletin Board. We follow the model of PBB presented in

[47] and extend it to support keyword-based retrival. A user can

interact with PBB by using the following queries:

• getCounter() → 𝑡 . It returns the current counter value 𝑡 .

• post(kw, 𝑣) → 𝑡 . On receiving value 𝑣 along with a key-

word kw, it increments the counter value by 1 to 𝑡 , stores

(𝑡, kw, 𝑣), and responses 𝑡 .

• retrieve(𝑡start, 𝑡end, kw) → {(𝑣𝑖 , 𝑡𝑖)}. It returns all pairs of
(𝑣𝑖 , 𝑡𝑖), such that 𝑡start ≤ 𝑡𝑖 ≤ 𝑡end and kw is their keyword.

We care about the storage cost of PBB. For a user posting ℓ bits

to the PBB, we denote the cost as PB(ℓ). We assume that a PBB

satisfies the validity and agreement.
Validity. Assume an honest user posted (𝑣, kw) to the PBB and re-

ceived 𝑡 . Then, every honest userwho retriveswith (𝑡start, 𝑡end, kw′)
11
We note a very recent version of Swiper/Dora[?] (after our paper submission) has

further reduced the number of sub-IDs.

13

such that 𝑡start ≤ 𝑡 ≤ 𝑡end and kw′ = kw will receive a sequence of

value/counter pairs containing (𝑣, 𝑡).
Agreement. If an honest user retrievingwith (𝑡start, 𝑡end, kw) when
getCounter() ≥ 𝑡end receives a sequence of value/counter pairs 𝑆 ,

then every honest user retrieving with (𝑡start, 𝑡end, kw) will receive
the same 𝑆 .

It is rather straightforward to use PBB as a broadcast channel by

simply posting a broadcast message into the PBB. The authenticity

can be established with standard digital signatures in the PKI model.

Data Dispersal Network. A data dispersal network (DDN) pro-

vides a platform where one can provision a data block for others

who may need it. Compared with standard multicast, which is also

for data dissemination, DDN saves communication costs when there

are multiple nodes providing the same data block. Assuming there

are𝑚 receivers out of 𝑛 potential receivers, and there are 𝑘 data

providers for a data block of ℓ bits. Through multicast, every sender

needs to send their data to every potential receiver, incurring the

communication cost of 𝑘 · M(ℓ) = 𝑂 (𝑘𝑛ℓ). In contrast, through

DDN, each receiver receives exactly one copy of data, incurring a

total communication cost of 𝑂 (𝑚ℓ), which is smaller thanM(ℓ).
In principle, we can either use an erasure-code-based informa-

tion dispersal protocol [58] or practical infrastures like IPFS [67]

to instantiate a DDN. In this work, we focus on the IPFS-based

instantiation as it becomes easier to implement (given IPFS already

exists) and model it with the following two queries, which might

be specific to the instantiation.

• register: on receiving a node ID nid and a block ID bid
(which is the hash value of the data), it checks whether

bid has been registered. If not, add a new entry (bid, nid);
otherwise, it appends nid to the existing entry with bid.

• retrieve: on receiving a block ID bid, it returns the associated
datablock 𝑣 , by orchestrating the data flow from candidate

providers.

We assume as long as there is an honest data provider who has

registered bid and remains active, everyone can retrieve the data

block with bid. We denote the cost of registering for 𝑠 data blocks

as R(𝑠).

7.2 Our Extended Broadcast Channel
A strawman and our intuition. Anaive approach to broadcasting

a sizeable data block involves posting its ID, denoted as bid, on the

PBB while simultaneously registering both bid and the sender’s ID

(nid) on the DDN. However, this methodology cannot guarantee

agreement. Specifically, a malicious sender has the capability to

selectively deny some retrieval requests on the DDN. Moreover, an

adaptive adversary, upon observing the bid on the PBB, can corrupt

the sender, subsequently rendering the data inaccessible on the

DDN.

To address these security vulnerabilities, we suggest using DDN

and PBB together in a smarter way. Recognizing the potential threat

of adaptive corruption, the sender directly multicasts the data block

to all receivers while posting the block ID bid into the PBB. Impor-

tantly, this process does not induce additional overhead compared

with the DDN-based dissemination since there is only one provider,

and all receivers will require the data block. For agreement, an

honest majority committee is sampled, which subsequently votes

Round 1: each sender 𝑆 𝑗 (𝑣 𝑗) do:
compute the block ID: Hash(𝑣𝑗) → bid𝑗
post PBB.post(kw, bid𝑗), kw := (sid | |send) ;multicast 𝑣𝑗

Round 2: each receiver 𝑃𝑖 do:
PBB.getCounter() → 𝑡 ′

1

// assume the index set of senders is J

PBB.retrieve(𝑡 ′
0
, 𝑡 ′
1
, sid | |send) → { (bid𝑗 , 𝑡 𝑗) } 𝑗 ∈J

receive multicast messages: {𝑣′𝑗 } 𝑗 ∈J
for 𝑗 ∈ J : if Hash(𝑣′𝑗) = bid𝑗 , then valid𝑗 = 1; else valid𝑗 = 0

VRF.Sortition(𝑟 𝑣𝑘𝑖 , 𝑟𝑠𝑘𝑖 , rand, “check", ratiohm) → CR𝑖
if CR𝑖 ≠⊥
then PBB.post(kw′,CR𝑖 | | (valid𝑗) 𝑗 ∈J), kw′ := (sid | |check)

Round 3: each receiver 𝑃𝑖 (with node id nid𝑖) do:
PBB.getCounter() → 𝑡 ′

2

PBB.retrieve(𝑡 ′
1
, 𝑡 ′
2
, sid | |check) → {CR𝑘 | | (valid(𝑘)𝑗

) 𝑗 ∈J}𝑘∈K′
verify every CR𝑘 , and obtain the valid set K ⊂ K′

for 𝑗 ∈ J : if
∑︁
𝑘∈K

valid(𝑘)
𝑗
≥ |K |

2

+ 1

then final𝑗 = 1; else final𝑗 = 0

for 𝑗 ∈ J, if final𝑗 = valid𝑗 = 1, then DNN.register(nid𝑖 , bid𝑗)

At the end of Round 3: each receiver 𝑃𝑖 do :

for 𝑗 ∈ J s.t. valid𝑗 = 0 :

if final𝑗 = 1, then DNN.retrieve(bid𝑗) → 𝑣𝑗 ; else 𝑣𝑗 =⊥
output (𝑣𝑗) 𝑗 ∈J

Figure 2: Our extended broadcast channel

to validate the accessibility of the data block against the advertised

bid. In scenarios where the majority of the committee members

vouch for the data block’s availability, all receivers who successfully

received the data block are then prompted to register on the DDN.

This ensures that any receivers who fail to receive the data through

multicast will be able to retrieve it from DDN.

Protocol details. We assume the PKI setup, as well as the setup

for the VRF-based sortition, such that everyone in the group gets

to know others’ verification keys w.r.t. a digital signature scheme

and VRF. A ratio ratiohm is also determined in the setup, which

ensures a high probability that the sampled committee will contain

an honest majority. Moreover, we assume every message has been

signed by the sender. Besides that, a session id sid and an initial

counter 𝑡 ′
0
are supposed to be known to everyone in the group and

can be used to retrieve related messages from the PBB. We w.l.o.g.

describe our protocols in a batch manner, i.e., there can be multiple

senders, as this is the situation of our DKG protocol. We elucidate

our design in Fig.2.

Complexity analysis. Assume there are 𝑠 senders, and each of

them broadcasts a message of ℓ bits to the group with 𝑛 nodes. The

14

communication cost of our extended broadcast channel is

𝑠 · B(ℓ) = 𝑠PB(𝜆) + O(𝑠𝑛ℓ) + 𝑐PB(𝜆 + 𝑠) + 𝑛R(𝑠),

where 𝜆 denotes the security parameter (i.e., the size of a digest, the
output length of a VRF, e.t.c.), 𝑠PB(𝜆) is caused by that 𝑠 senders

post their digests into the PBB, O(𝑠𝑛ℓ) is caused by that the senders
multicast their message and the receivers retrieve from a DDN,

𝑐PB(𝜆 + 𝑠) is caused by the selected committee members vote for

the broadcast status, and 𝑛R(𝑠) is caused by that the honest parties

register to the DDN. Now, the on-chain storage cost is independent
of ℓ .

Security analysis.We establish the security of our extended broad-

cast channel in the following lemma.

Lemma 6. Assume the underlying PBB satisfies validity and agree-
ment, and the DDN guarantees the data block can be retrieved when
there is an honest and active provider. The protocol in Fig.2 satisfies
the validity and agreement.

Proof. Our construction satisfies both the validity and agree-

ment. Regarding validity, in our protocol, when the sender is honest,

every honest receiver can receive the message 𝑣 from the multicast

channel and retrieve the digest from the PBB. Then, in round 2,

selected honest committee members would vote for this broadcast

(by setting and posting valid = 1), such that the final status of this

broadcast will be 1, and honest nodes can decide on 𝑣 .

Regarding agreement, note that whether 𝑣 =⊥ is determined by

the votes on PBB. Therefore, if an honest receiver decides on 𝑣 =⊥,
everyone will do the same thing. The potential chance causing

disagreement is that when an honest receiver decides on 𝑣 ≠⊥,
some receiver cannot successfully retrieve 𝑣 from the DDN. Below,

we show that this case is unlikely to happen.

Assume that the adversary is allowed to corrupt at most 𝑡 partic-

ipants among all the 𝑛 participants, and the VRF-based sortition at

round 2 will yield a committee C of 𝑐 = 2𝑡 ′ + 1 participants. As the
parameter is configured to guarantee the honest majority of the

elected committee, it implies that, for any subgroup 𝐴 whose size

is not greater than 𝑡 , the following probability is very small:

Pr[|𝑍 | ≥ 𝑡 ′ + 1 : 𝑍 = 𝐴 ∩ C] .

Now, we consider the group 𝐵 of nodes that are, before the election,

either corrupted nodes or honest nodes that have received 𝑣 . In the

case that there are 𝑡 ′+1 votes endorsing the availability of 𝑣 , it holds
that |𝐵 ∩ C| ≥ 𝑡 ′ + 1, which implies the probability Pr[|𝐵 | ≤ 𝑡] is
small. Therefore, the adversary cannot corrupt all nodes in 𝐵 even

after knowing the committee C. It follows that there is always at
least one honest node that has received 𝑣 and provisioned it to the

DDN, such that everyone can retrieve the data from the DDN and

can agree on the value 𝑣 . □

8 APPLICATION TO ALL-HANDS
CHECKPOINTING INTO BITCOIN

In this section, we delineate how our DKG yields the first realization

of the checkpointing blueprint Pikachu of Filecoin [2] that involves

all validators in the whole blockchain network, e.g., Filecoin, that

has 3700 of them, with various mining power.

8.1 Realizing the Bitcoin Checkpointing
Pikachu with Any-Trust DKG

We review the checkpointing blueprint Pikachu in Appendix.A. At

a high level, all validators need to run a DKG for Schnorr signature

every epoch, and the resulting public keys will be used as Bitcoin

addresses
12
. A Bitcoin transaction that embeds the digest of the

PoS chain at epoch 𝑖 − 1 and transfers assets from the address at

epoch 𝑖 − 1 to epoch 𝑖 will serve as a checkpoint for epoch 𝑖 − 1.
All validators jointly run the threshold Schnorr signing protocol to

create such checkpointing transactions.

Pikachu only gave a proof-of-concept prototype with 21 par-

ticipants due to the inefficiency of their underlying DKG scheme.

Meanwhile, as they instantiated the threshold Schnorr signature

with FROST [48], which relies on a coordinator, there may be a

single point of failure. In the following, we demonstrate how our

Any-Trust DKG can realize the blueprint efficiently and securely.

Sub-ID allocation. At each epoch 𝑖 , the current validators of the

blockchain locally run the deterministic sub-ID allocation algorithm

on a publicly agreed power distribution, and then they obtain the

same sub-ID allocation outcome. A validator with𝑚 sub-IDs will

participate in further protocols as𝑚 individuals.

Our optimized sub-ID allocation algorithm in Sect.6 issues fewer

sub-IDs to validators than the straightforward approach. We con-

sider a snapshot of Filecoin’s validator distribution
13
, which has

3700 validators with a total mining power of around 25 EB, while

the power unit is 32KB. The standard method may issue around 674

trillion sub-IDs. In contrast, our method identifies that 13 PB can be

a good GCD, and only 1688 sub-IDs need to be issued, significantly

reducing the scale of the problem.

Apply Any-Trust DKG. The validators with 1688 sub-IDs will

act like 1688 participants to execute the DKG protocol to generate

a public key for Schnorr signature and share the secret keys. We

set ratioat = 38/1688, guaranteeing the committee has at least one

good node with a probability of 1−5×10−9. Then, the validators can
run our Any-Trust DKG which incurs only around 3MB of data that

needs to be broadcasted. It takes each node a few seconds to finish

computation, even facing the maximum number of complaints.

Checkpointingwith non-interactive threshold Schnorr signa-
ture. At epoch 𝑖 , the validators of epoch 𝑖 − 1 use their shared keys

to sign the checkpointing Bitcoin transaction. Note that no matter

how many nodes try to post the signed transaction to the Bitcoin,

there will be only one transaction appearing on the chain. To sign

this transaction, we adopt the GJKR protocol[35], which does not

require a coordinator and is thus free of single-point failures. The

GJKR protocol involves a DKG as its subroutine for generating the

nonce and follows a non-interactive phase where every signer can

locally compute its signature share (or called a partial signature).

GJKR was believed to be inadequate for large-scale deployment due

to its DKG subroutine, which, however, is no longer a bottleneck

with our any-trust DKG. Since our DKG is key-expressable (cf. Def.3

and [43]), the static security of the resulting scheme directly follows

the recent result in [61]. Note that despite recent advancements [24],

achieving adaptively secure and robust threshold Schnorr without

12
Bitcoin has supported Schnorr signature since its Taproot update.

13
https://filfox.info/en/ranks/power

15

https://filfox.info/en/ranks/power

Table 4: Checkpointing cost per annum. in USD.
#Parties 2

7
(Cosmos) 2

10
(Polkadot) 2

12
(Filecoin)

Babylon 1510826.9 2266245.6 6043306.5

Ours 26048.8

*Based on the Bitcoin price on Mar. 31, 2024: 0.000708 USD per Satoshi.

using a coordinator remains a significant open problem. We leave

it as future work to analyze the adaptive security of this scheme,

namely GJKR with an oracle-aided algebraic simulatable DKG.

8.2 Comparison with Babylon Checkpointing
Overview of Babylon. Babylon [63] is a recently proposed check-

pointing scheme that does not use DKG and threshold signature.

Instead, it employs the following approach: (1) All validators sign

the digest of the PoS block to be checkpointed. (2) One honest val-

idator collects and aggregates enough signatures (using the BLS

aggregatable signature scheme [12]) and publishes a Bitcoin trans-

action with the OP_RETURN code. This transaction contains the

epoch number, the digest, the aggregated signature, and a bit vector

that indicates the public keys involved.

Comparison of Bitcoin Transaction Fees. It’s important to note

that for 𝑛 validators, at least 𝑛 bits are needed to encode the public

key list. A Bitcoin transaction allows 80 bytes with OP_RETURN,
which means the number of Bitcoin transactions per checkpoint

grows linearly with the number of validators. Particularly, the epoch

number, the block digest, and the aggregated signature together

take 88 bytes; the bit-vector requires 𝑛 bits. Therefore, the number

of Bitcoin transactions for a Babylon checkpoint can be calculated

as #Bitcoin TxBabylon = 1 + ⌈𝑛+64
640
⌉.

Moreover, since it assumes an honest validator to create the

checkpointing transaction, it might have a single point of failure.

This issue can be resolved by sampling a committee that includes at

least one honest validator for creating Bitcoin transactions. For the

more secure version of Babylon, the number of Bitcoin transactions

per checkpoint would increase by a factor of the any-trust commit-

tee size 𝜅 , i.e., #Bitcoin Txsecure−Babylon = 𝜅 +𝜅 · ⌈𝑛+64
640
⌉. For 𝜅 = 29

(see Table 2) and 𝑛 = 2
12
, we have #Bitcoin TxBabylon = 8, while

#Bitcoin Txsecure−Babylon = 232.

In comparison, our approach (Pikachu) only requires 1 Bitcoin

transaction for each checkpoint, since the transaction is uniquely

created via threshold signing, and Bitcoin will only accept one

transaction no matter how many validators try to publish it. It is

naturally free of single points of failure.

We compare the Bitcoin transaction fees for checkpointing per

annum in Table 4, where the cost of Babylon is for its secure ver-

sion. Following [63], we consider the checkpoint transactions to be

created hourly. We assume, without loss of generality, each Bitcoin

transaction has 300 bytes, the transaction fee is 14 Satoshi per byte

(such that the transaction can be confirmed within six blocks as

per
14
), and the price of a Satoshi is 0.000708 USD

15
. We evaluate

the cost for PoS chains with different numbers of validators: 2
7

validators for small-scale PoS chains (like the ones in Cosmos [23]),

2
10
validators for moderate-scale chains (like Polkadot[57]), and 2

12

validators for relatively large-scale chains (like Filecoin [31]).

14
https://btc.network/estimate

15
updated on Mar. 31, 2024, from https://coincodex.com/crypto/satoshi-sats/

9 IMPLEMENTATION AND EVALUATION
We implemented our proposed DKG and present the experimental

results in this section.

Implementation. We implemented our protocol in Java 8, com-

prising approximately 1500 lines of code. To facilitate Elliptic Curve

operations and communication, we utilized the open-source Java

library mpc4j16 and the Bouncy Castle library17. Given our pro-

tocol’s primary application in creating checkpoints on Bitcoin, we

opted for the secp256k1 curve and SHA-256 for cryptographic op-
erations. Our implementation includes components such as VRF

and multi-recipient encryption but does not employ the broad-

cast extension trick in Appendix 7. It is essential to note that this

implementation serves as a proof-of-concept, demonstrating the

practicality of our protocol for large-scale deployment, even under

the presence of the maximal number of Byzantine nodes. We do

not implement forward-secure signatures; however, their cost is

marginal and independent of the scale. Whenever possible, we set

the expected size 𝑠 of an any-trust group to 38, which ensures that

the committee qualifies with a probability of 1 − 5 × 10
−9
, as in

Table 2. For small-scale tests like 𝑛 = 16 and 32, we set 𝑠 = 𝑛/2 + 1.

16 32 64 128 256

Number of nodes

0

2

4

6

8

T
ot

al
ru

n
ti

m
e

(i
n

se
co

n
d

s) Computation

Multicast

(a) Worst-case Adjusted Running Time of bad instances.

16 32 64 128 256

Number of nodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

B
an

d
w

id
th

u
sa

ge
(i

n
M

B
s)

good

bad

(b) Worst-case bandwidth usage, the amount of data transfers in-
bound to and outbound from a node during the ATDKG protocol.

Figure 3: End-to-end Test Results

9.1 End-to-End Implementation
Evaluation Setup. We evaluate our Any-Trust DKG implemen-

tation with a varying number of nodes: 16, 32, 64, 128, and 256.

Each node is encapsulated within an individual Amazon Web Ser-

vices (AWS) t3a.medium EC2 virtual machine (VM). Each VM has

2 vCPUs and 4 GiB RAM and runs in Amazon Linux 2023 AMI
2023.4.20240416.0 x86_64 HVM kernel-6.1. All nodes are placed in

16
https://github.com/alibaba-edu/mpc4j

17
https://www.bouncycastle.org/

16

https://btc.network/estimate
https://coincodex.com/crypto/satoshi-sats/
https://github.com/alibaba-edu/mpc4j
https://www.bouncycastle.org/

the same AWS region and are connected pair-wise; for example,

every two nodes are directly connected. Since the network delay

within the same AWS region is almost negligible, we simulate a

more realistic delay by employing the Linux command tc (traffic

control) to introduce an artificial delay of 100 ms for all traffic.

Implementation Remarks. We set up an additional node to sim-

ulate a blockchain, which serves as the broadcast channel in our

implementation. The blockchain node is directly connected to all

other nodes. In Round 1 and Round 3 of our DKG, whenever a node

needs to broadcast a message, it sends the message directly to the

blockchain node. The blockchain node then relays all received mes-

sages in the round to every node in the network. As our protocol

assumes network synchrony and proceeds round by round, we need

to specify the time window for each round.

In practice, the time window setting for Round 1 and 3 can vary

depending on the blockchain. For simplicity, we artificially config-

ure the time window to be 30 seconds: the blockchain node receives

messages in the first 20 seconds and then relays the messages. All

nodes stop receiving current-round messages at 30 seconds and

move to the next round. Given such a configuration, a 60-second

broadcast running time is inherent to our experiments, and our

experiments are more concerned about the running time incurred

by Round 2 and the computation cost in Round 1, Round 3 and at

the end of Round 3.

We evaluate the performance of our DKG in both the good-case

and bad-case scenarios. In the good cases, all nodes are honest.

In the bad cases, we set all nodes whose node ID is smaller than

𝑛/2 to be corrupted. A corrupted node, if elected as a dealer in

Round 1, will broadcast malformed ciphertexts to all nodes, causing

𝑛 complaints against it in Round 2. Given a fixed number of nodes

and good or bad cases, each experiment configuration is repeated

eight times.

In reality, the timeout parameter for the receive{} at the start
of Round 3 should be calibrated based on the communication cost

in bad cases. In our implementation, the calibration is implicit: the

timeout parameter is set to a sufficiently large value, while the

actual communication cost in bad cases is measured independently.

AdjustedRunningTime.The total running time of the entire Any-

Trust DKG protocol can be defined by the time difference between

the moment when the communication network is established and

when a node finishes computing the shared public key and its secret

share. However, this measurement will always incorporate the 60-

second broadcast time, which may vary in different settings. Hence,

an adjusted running time is measured by subtracting the 60-second

broadcast cost from the running time of the whole Any-Trust DKG

protocol. Observe that the adjusted running time consists only two

components: the communication cost incurred by themulticast in
Round 2, and all computation costs throughout this protocol.

We take the maximum adjusted running time across all nodes,

and all repeats, to represent the end-to-end running time of our

protocol. The adjusted running time of bad cases are shown in Fig.3a.

In additional, a breakdown by themulticast communication cost

and the computation cost is shown within the stacked bar chart.

Note that the good cases should always perform better than the

bad cases, hence, we only represent the bad cases to demonstrate

the worst-cast scenario.

29 210 211 212 213 214 215

Number of nodes

100KB

1MB

10MB

100MB

1GB

10GB

50GB

B
ro

ad
ca

st
S

iz
e

Our-Good KZG-Good Our-Bad KZG-Bad

Figure 4: Broadcast Channel Overhead

Our DKG protocol only requires a few seconds to finish the

multicast round and all computation tasks, in additional to the

omitted 60-second broadcast cost.

Bandwidth Usage. We record the inbound and outbound band-

width of each node in Megabytes (10
6
bytes) and demonstrate the

maximum bandwidth usage of all nodes, and all repeats in Fig.3b.

The key observation is that the bandwidth grows linearly depending

on the size of the group.

At first glance at the results, some non-linearity may be noticed.

However, this is mainly caused by (a) a lower sortition ratio for

𝑛 = 16 and 𝑛 = 32 and (b) the randomness in the sortition results

in the Any-Trust DKG protocol. Specifically, the protocol has no

deterministic control over the actual number of parties being elected

as dealers, meaning fluctuations will be observed in bandwidth

usage, as the actual number of dealer may vary.

9.2 Performance Analysis on Large Scale
While our end-to-end implementation demonstrates that our pro-

tocol remains practical when 𝑛 = 2
8
, we further tested the compu-

tation time of our protocol and estimated the communication cost

on larger scales ranging from 𝑛 = 2
9
to 𝑛 = 2

15
, this range covers

the sizes of most PoS chain validators.

Broadacst cost. We calculate the total number of bits to be sent

via the broadcast channel. We compare our protocol and KZG in

terms of it, ranging from 𝑛 = 2
9
to 𝑛 = 2

15
, considering both the

good case and the bad case with the maximal number of complaints.

Note that in KZG, a share along with the proof for validating has

the size of 224 Bytes; in the bad case, there are 𝑛2/2 shares (with
their proofs) to be broadcasted for public verification.

As shown in Figure 4, for our protocol, the costs in the good case

and the worst case are very close and grow steadily. For 𝑛 = 2
9
,

the cost is around 1.05 MB, while for 𝑛 = 2
15
, the cost is approxi-

mately 61.1 MB. In contrast, while the good-case KZG has very low

broadcast costs, its worst-case costs grow quadratically and would

require over 120 GB when 𝑛 = 2
15
.

Computation time. We conducted tests to measure the compu-

tation time for generating a secret-sharing transcript (Deal) and

reaching an agreement on a qualified set (Verify) in both good case

and bad case on AWS c5a.large (AMD EYPC 7002 CPU with 2 cores

and 4 GB RAM). We compared our results with KZG, utilizing the

reported findings from [70] for the good case while estimating the

17

29 210 211 212 213 214 215

Number of nodes

0.1

1

10

100

1K

10K

100K

1M

C
om

pu
ta

ti
on

ti
m

e
(i

n
se

co
nd

s)

Our-Deal

KZG-Deal

Our-GoodVerify

KZG-GoodVerify

Our-BadVerify

KZG-BadVerify

Figure 5: Computation Overhead

worst-case scenario by assuming that 𝑛2/2 shares need to be ver-

ified (each share verification takes 1.3 ms). As illustrated in Fig.5,

in the good case, our protocol’s performance is comparable to or

even better than KZG, although their programming language (C++)

and environment (AWS c5a.24xlarge, AMD EYPC 7002 CPU with

96 cores, and 187 GB RAM) are supposed to be superior to ours.

However, in the worst-case scenario, our protocol remains efficient

while KZG becomes infeasible.

Note that our computation time grows faster than KZG’s, which

we believe is due to the use of a naïve implementation of multi-point

polynomial evaluation. The complexity of our current implemen-

tation is 𝑂 (𝑛2) for evaluating an 𝑂 (𝑛)-degree polynomial at 𝑂 (𝑛)
points. In contrast, the implementation in [70] employs an opti-

mized algorithm whose complexity is 𝑂 (𝑛 log2 𝑛). However, it is
important to highlight that our DKG protocol can benefit from

the 𝑂 (𝑛 log2 𝑛) polynomial evaluation algorithm as well, and our

implementation can be enhanced if a Java implementation for the

algorithm becomes available.

10 RELATEDWORKS
VSS-based DKG. Distributed Key Generation (DKG) has been a

prominent area of research for several decades. Pedersen’s seminal

work [56] established the foundation in this field by introducing

an efficient protocol for Dlog-based cryptosystems. This protocol

builds upon Feldman’s Verifiable Secret Sharing (VSS) [29]. Within

this scheme, each participant collaboratively runs 𝑛 instances of

Feldman’s VSS, taking on the role of the dealer in one of these

instances.

In the VSS framework established by Feldman, the dealer is

required to broadcast a commitment to a polynomial while dis-

tributing the shares privately among all participants. Given that the

commitment’s size is proportional to 𝑂 (𝑛𝜆), the resultant commu-

nication overhead becomes 𝑂 (𝑛B(𝑛𝜆)). Additionally, Pedersen’s
DKG involves a complaint phase where participants broadcast any

grievances against dishonest dealers. If a participant were to lodge

multiple complaints concurrently, the communication overhead of

this phase is likewise𝑂 (𝑛B(𝑛𝜆)). It is vital to highlight that during
this phase, each participant may validate up to 𝑂 (𝑛2) shares. In
Feldman’s VSS, the computational effort to validate a single share

is equivalent to 𝑂 (𝑛) group operations. This implies a per-node

computational burden before the complaint phase of 𝑂 (𝑛2), which
can potentially amplify to 𝑂 (𝑛3) during the complaint process.

A majority of DKG architectures conform to the joint-VSS model.

In essence, any innovative VSS protocol can be adapted into a new

DKG protocol. Furthermore, given that VSS can be constructed us-

ing polynomial commitments, any polynomial commitment scheme

can be evolved into both a VSS and, consequently, a DKG. A sig-

nificant advancement in this field was made by Kate et al. [46],

who proposed the first polynomial commitment (abbreviated as

KZG) with a commitment size of 𝑂 (𝜆). This innovation ensures

that prior to the complaint phase, the communication overhead can

be reduced to 𝑂 (𝑛B(𝜆)). A notable feature of the KZG polynomial

commitment is its efficiency in verifying shares; the computational

cost for verifying a single share is a mere 𝑂 (1). This denotes that
the computational overhead for each node, in terms of verification

before the complaint phase, is simply𝑂 (𝑛) in group operations, but

this can rise to𝑂 (𝑛2) during the complaint process. Historically, the

computational load for producing a polynomial commitment was

believed to be 𝑂 (𝑛2) [65]. However, a recent exploration by Zhang

et al. [70] revealed that the computational overhead for generating

a KZG commitment can be streamlined to 𝑂 (𝑛 log𝑛). It’s notewor-
thy that although KZG requires a CRS setup, there have been other

efforts [69, 70] that prioritize efficient polynomial commitments

without relying on a trusted setup, but these don’t match KZG’s

efficiency.

PVSS-based DKG. Fouque and Stern [32] offered a solution that

sidestepped the necessity for a complaint phase by incorporat-

ing publicly verifiable secret sharing (PVSS). In the event that a

PVSS transcript consists of 𝑂 (𝑛) ciphertexts, the communication

overhead will naturally be 𝑂 (𝑛BB𝑛 (𝑛𝜆)) should every participant

choose to broadcast this transcript. Historically, the validation of a

PVSS transcript required an overhead of𝑂 (𝑛2), suggesting that the
per-node computational overhead in DKG might ascend to 𝑂 (𝑛3).
However, this obstacle was surmounted by Cascudo and David with

their Scrape protocol [17], which introduced a PVSS methodology

that caps the verification duration at 𝑂 (𝑛). It’s worth highlighting

that Scrape’s strategy is versatile and can be applied to improve

many VSS-based DKG schemes, including that of Pedersen’s, en-

suring that computational overhead during the complaint phase

is kept at 𝑂 (𝑛2) and doesn’t spike to 𝑂 (𝑛3). A few recent works

focus on improving the concrete performance of PVSS schemes,

including the lattice-based PVSS [37], Groth’s PVSS [41], and PVSS

using class groups [45].

Aggregatable-PVSS-based DKG. Aggregatable PVSS schemes

[43] are PVSS schemes whose transcripts can be concisely merged

into one. There are a few designs that leverage customized commu-

nication protocols rather than simply leveraging Byzantine broad-

cast protocols (or broadcast channels), enjoying asymptotically

better complexity. Notably, Gurkan et al. [43] leveraged an aggre-

gatable PVSS combined with gossip protocols to craft a publicly

verifiable DKG. Their communication overhead is streamlined to

𝑛B(𝜆) + log𝑛 · B(𝑛𝜆) as opposed to 𝑛B(𝑛𝜆), with their per-node

communication overhead being 𝑂 (𝑛 log2 𝑛). It’s pertinent to note,

however, that their model can only accommodate 𝑂 (log𝑛) Byzan-
tine nodes. Very recently, Feng et al.[30] and Bacho et al. [3] leverage

specially designed communication protocols together with aggre-

gatable PVSS schemes and present DKG schemeswith sub-quadratic

18

per-party computation/communication cost while enjoying optimal

resilience.

Note that existing aggregatable PVSS schemes all produce secrets

in an Elliptic curve group, thus incompatible with many threshold

cryptographic protocols. Feng et al. [30] also give a variant of DKG

using conventional PVSS schemes but with slightly higher (still

sub-quadratic) per-party complexity.

DKG in the YOSO model. A common strategy to enhance scala-

bility is selecting a committee and executing the threshold crypto-

graphic systems within this smaller subset. However, this approach

is fraught with challenges. Once aware of the committee’s com-

position, an adaptive adversary can compromise the entire group,

thereby undermining security. Furthermore, given that each mem-

ber of the committee is required to contribute multiple times during

both key generation and subsequent threshold operations, methods

like silent committee sampling (e.g., using a verifiable random func-

tion [21]) and assuming memory erasure fail to provide protection

against adaptive attackers. Recent advances in the YOSO (You-Only-

Speak-Once) MPC realm [10, 36] hint at potential solutions to deter

adaptive adversaries targeting the committee. Benhamouda et al.

[10] presents a DKG in the YOSO model. However, the YOSO tech-

niques come with their own set of challenges. Notably, existing

YOSO techniques (if without using resource-intensive tools like

fully homomorphic encryption [38]) need to sample a huge commit-

tee, say with a few or tens of thousands of nodes, which is already

as large as the network scale we are interested in, let alone the

extra overhead incurred by using YOSO techniques. Furthermore,

as successive committees remain anonymous, inter-committee com-

munication is heavily dependent on a broadcast channel.

On the security of DKG. Beyond endeavors aimed at bolstering

the efficiency of DKG, various research initiatives have tackled this

challenge from different perspectives. Gennaro et al. [35] pinpointed

vulnerabilities in Pedersen’s DKG where the secret key distribution

could be manipulated by adversaries. They addressed this flaw

by achieving complete secrecy, albeit with a higher computational

overhead. Gurkan et al. [43] conceptualized amilder form of secrecy,

coined as “key-expressability", which assumes that adversaries can

influence key distribution but within predetermined constraints.

They postulated that a key-expressable DKG suffices for many

applications, with multiple DKG architectures, including Pedersen’s

[56], Fouque-Stern’s [32], and our own, fitting this criteria. Another

remarkable contribution by Canetti et al. [16] introduced a DKG

protocol with adaptive security, a departure from our model and

numerous others that ensure security only against static adversaries.

Bacho and Loss’s recent work [4] put forth an oracle-aided adaptive

definition and ascertained that several protocols, including [32, 56],

conform to this definition in the algebraic group model. Our model

also complies with this adaptive security definition.

Asynchronous DKG. Lastly, some recent research efforts [1, 25,

33] have pivoted towards DKG within asynchronous networks.

These designs adopt the joint-VSS blueprint and depend on an asyn-

chronous broadcast protocol, referred to as “reliable broadcast" [13],

to guarantee verifiability, yet they encounter the cubic computa-

tional challenge. Notably, Das et al. [25] showcased the inaugural

asynchronous DKG with a communication overhead of 𝑂 (𝑛3𝜆)

for field-element secrets, whereas Abraham et al. [1] furnished an

adaptively secure asynchronous DKG with identical complexity.

11 CONCLUSION AND FUTURE DIRECTION
To enable large-scale threshold cryptographic applications, such

as Filecoin’s checkpointing, we present an adaptively secure DKG

protocol with (quasi)linear per-node communication and computa-

tion costs. The key idea is to use a common coin, well-established

in blockchain settings, to sample a small any-trust committee for

secret contributions, which suffices for DKG security. Themain chal-

lenge is countering adaptive attackers, which we address through

carefully applied techniques. We also introduce a method to deploy

our DKG in a weighted setting without compromising efficiency.

Our approach assumes a synchronous network, leading to a fu-

ture challenge: designing a scalable, adaptively secure DKG for

asynchronous settings that better reflect real Internet conditions.

Another broader question is how to adapt DKG and threshold pro-

tocols to other cryptographic systems, like lattice-based ones, while

maintaining our performance and security metrics.

ACKNOWLEDGEMENTS
We thank Marko Vukolić and Alejandro Ranchal-Pedrosa for the

helpful discussions. This work was supported in part by Protocol

Labs Research Grants under the RFP-012 on Checkpointing Filecoin

onto Bitcoin.

REFERENCES
[1] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad

Stern. 2023. Bingo: Adaptivity and Asynchrony in Verifiable Secret Sharing and

Distributed Key Generation. In CRYPTO (1) (LNCS, Vol. 14081). Springer, 39–70.
[2] Sarah Azouvi and Marko Vukolic. 2022. Pikachu: Securing PoS Blockchains

from Long-Range Attacks by Checkpointing into Bitcoin PoW using Taproot. In

ConsensusDay@CCS. ACM, 53–65.

[3] Renas Bacho, Christoph Lenzen, Julian Loss, Simon Ochsenreither, and Dimitrios

Papachristoudis. 2023. GRandLine: Adaptively Secure DKG and Randomness

Beacon with (Almost) Quadratic Communication Complexity. IACR Cryptol.
ePrint Arch. (2023), 1887. https://eprint.iacr.org/2023/1887

[4] Renas Bacho and Julian Loss. 2022. On the Adaptive Security of the Threshold

BLS Signature Scheme. In CCS. ACM, 193–207.

[5] Renas Bacho and Julian Loss. 2023. Adaptively Secure (Aggregatable) PVSS and

Application to Distributed Randomness Beacons. In CCS. ACM, 1791–1804.

[6] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vas-

silis Zikas. 2018. Ouroboros Genesis: Composable Proof-of-Stake Blockchains

with Dynamic Availability. In CCS. ACM, 913–930.

[7] Mihir Bellare, Alexandra Boldyreva, Kaoru Kurosawa, and Jessica Staddon. 2007.

Multirecipient Encryption Schemes: How to Save on Bandwidth and Computa-

tionWithout Sacrificing Security. IEEE Trans. Inf. Theory 53, 11 (2007), 3927–3943.
[8] Mihir Bellare, Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro,

and Chenzhi Zhu. 2022. Better than Advertised Security for Non-interactive

Threshold Signatures. In CRYPTO (4) (LNCS, Vol. 13510). Springer, 517–550.
[9] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo

Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. 2020. Can a Public

Blockchain Keep a Secret?. In TCC (1) (LNCS, Vol. 12550). Springer, 260–290.
[10] Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Alex Miao, and Tal Rabin.

2022. Threshold Cryptography as a Service (in theMultiserver and YOSOModels).

In CCS. ACM, 323–336.

[11] Aptos Blockchain. [n. d.]. Aptosan. https://aptoscan.com.

[12] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from the

Weil Pairing. In ASIACRYPT (LNCS, Vol. 2248). Springer, 514–532.
[13] Gabriel Bracha. 1987. Asynchronous Byzantine agreement protocols. Information

and Computation 75, 2 (1987), 130–143.

[14] Carlo Brunetta, Hans Heum, and Martijn Stam. 2024. SoK: Public Key Encryption

with Openings. In PKC (4) (LNCS, Vol. 14604). Springer, 35–68.
[15] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random Oracles in

Constantinople: Practical Asynchronous Byzantine Agreement Using Cryptog-

raphy. J. Cryptol. 18, 3 (2005), 219–246.

19

https://eprint.iacr.org/2023/1887
https://aptoscan.com

[16] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Ra-

bin. 1999. Adaptive Security for Threshold Cryptosystems. In CRYPTO (LNCS,
Vol. 1666). Springer, 98–115.

[17] Ignacio Cascudo and Bernardo David. 2017. SCRAPE: Scalable Randomness

Attested by Public Entities. In ACNS (LNCS, Vol. 10355). Springer, 537–556.
[18] Andrea Cerulli, Aisling Connolly, Gregory Neven, Franz-Stefan Preiss, and Victor

Shoup. 2023. vetKeys: How a Blockchain Can Keep Many Secrets. Cryptology

ePrint Archive, Paper 2023/616. https://eprint.iacr.org/2023/616.

[19] Melissa Chase and Anna Lysyanskaya. 2006. On Signatures of Knowledge. In

CRYPTO (LNCS, Vol. 4117). Springer, 78–96.
[20] David Chaum and Torben P. Pedersen. 1992. Wallet Databases with Observers.

In CRYPTO (LNCS, Vol. 740). Springer, 89–105.
[21] Jing Chen and Silvio Micali. 2019. Algorand: A secure and efficient distributed

ledger. Theor. Comput. Sci. 777 (2019), 155–183.
[22] Kevin Choi, Aathira Manoj, and Joseph Bonneau. 2023. SoK: Distributed Ran-

domness Beacons. In SP. IEEE, 75–92.
[23] Cosmos. [n. d.]. https://cosmos.network.

[24] Elizabeth C. Crites, Chelsea Komlo, and Mary Maller. 2023. Fully Adaptive

Schnorr Threshold Signatures. In CRYPTO (1) (LNCS, Vol. 14081). Springer, 678–
709.

[25] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-

Kogias, and Ling Ren. 2022. Practical Asynchronous Distributed Key Generation.

In SP. IEEE, 2518–2534.
[26] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018.

Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake

Blockchain. In EUROCRYPT (2) (LNCS, Vol. 10821). Springer, 66–98.
[27] Luciano Freitas de Souza and Andrei Tonkikh. 2023. Swiper and Dora: efficient

solutions to weighted distributed problems. CoRR abs/2307.15561 (2023).

[28] Danny Dolev and Rüdiger Reischuk. 1982. Bounds on Information Exchange for

Byzantine Agreement. In PODC. ACM, 132–140.

[29] Paul Feldman. 1987. A Practical Scheme for Non-interactive Verifiable Secret

Sharing. In FOCS. IEEE Computer Society, 427–437.

[30] Hanwen Feng, Zhenliang Lu, and Qiang Tang. 2023. Breaking the Cubic Barrier:

Distributed Key and Randomness Generation through Deterministic Sharding.

Cryptology ePrint Archive, Paper 2024/168. https://eprint.iacr.org/2024/168.

[31] Filecoin. [n. d.]. https://filecoin.io/.

[32] Pierre-Alain Fouque and Jacques Stern. 2001. One Round Threshold Discrete-Log

Key Generation without Private Channels. In Public Key Cryptography (LNCS,
Vol. 1992). Springer, 300–316.

[33] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.

2022. Efficient Asynchronous Byzantine Agreement without Private Setups. In

ICDCS. IEEE, 246–257.
[34] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Back-

bone Protocol: Analysis and Applications. In EUROCRYPT (2) (LNCS, Vol. 9057).
Springer, 281–310.

[35] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2007. Secure

Distributed Key Generation for Discrete-Log Based Cryptosystems. J. Cryptol.
20, 1 (2007), 51–83.

[36] Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen,

Tal Rabin, and Sophia Yakoubov. 2021. YOSO: You Only Speak Once - Secure

MPC with Stateless Ephemeral Roles. In CRYPTO (2) (LNCS, Vol. 12826). Springer,
64–93.

[37] Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. 2022. Practical Non-

interactive Publicly Verifiable Secret Sharing with Thousands of Parties. In

EUROCRYPT (1) (LNCS, Vol. 13275). Springer, 458–487.
[38] Craig Gentry, Shai Halevi, Bernardo Magri, Jesper Buus Nielsen, and Sophia Yak-

oubov. 2021. Random-Index PIR and Applications. In TCC (3) (LNCS, Vol. 13044).
Springer, 32–61.

[39] Yossi Gilad, RotemHemo, SilvioMicali, Georgios Vlachos, andNickolai Zeldovich.

2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In SOSP.
ACM, 51–68.

[40] Sharon Goldberg, Moni Naor, Dimitrios Papadopoulos, and Leonid Reyzin. 2016.

NSEC5 from Elliptic Curves: Provably Preventing DNSSEC Zone Enumeration

with Shorter Responses. IACR Cryptol. ePrint Arch. (2016), 83.
[41] Jens Groth. 2023. Non-interactive distributed key generation and key resharing.

Cryptology ePrint Archive, Paper 2021/339. https://eprint.iacr.org/2021/339.

[42] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. 2020.

Dumbo: Faster Asynchronous BFT Protocols. In CCS. ACM, 803–818.

[43] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and

Alin Tomescu. 2021. Aggregatable Distributed Key Generation. In EUROCRYPT
(1) (LNCS, Vol. 12696). Springer, 147–176.

[44] Gene Itkis and Leonid Reyzin. 2001. Forward-Secure Signatures with Optimal

Signing and Verifying. In CRYPTO (LNCS, Vol. 2139). Springer, 332–354.
[45] Aniket Kate, Easwar Vivek Mangipudi, Pratyay Mukherjee, Hamza Saleem, and

Sri Aravinda Krishnan Thyagarajan. 2023. Non-interactive VSS using Class

Groups and Application to DKG. Cryptology ePrint Archive, Paper 2023/451.

https://eprint.iacr.org/2023/451.

[46] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. 2010. Constant-Size

Commitments to Polynomials and Their Applications. In ASIACRYPT (LNCS,
Vol. 6477). Springer, 177–194.

[47] Dafna Kidron and Yehuda Lindell. 2011. Impossibility Results for Universal

Composability in Public-Key Models and with Fixed Inputs. J. Cryptol. 24, 3
(2011), 517–544.

[48] Chelsea Komlo and Ian Goldberg. 2020. FROST: Flexible Round-Optimized

Schnorr Threshold Signatures. In SAC (LNCS, Vol. 12804). Springer, 34–65.
[49] Sung-Shine Lee, Alexandr Murashkin, Martin Derka, and Jan Gorzny. 2023. SoK:

Not Quite Water Under the Bridge: Review of Cross-Chain Bridge Hacks. In

ICBC. IEEE, 1–14.
[50] Dahlia Malkhi and Pawel Szalachowski. 2022. Maximal Extractable Value (MEV)

Protection on a DAG. In Tokenomics (OASIcs, Vol. 110). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 6:1–6:17.

[51] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. 1999. Verifiable Random

Functions. In FOCS. IEEE Computer Society, 120–130.

[52] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The

Honey Badger of BFT Protocols. In CCS. ACM, 31–42.

[53] Moni Naor and Moti Yung. 1990. Public-key Cryptosystems Provably Secure

against Chosen Ciphertext Attacks. In STOC. ACM, 427–437.

[54] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun Xiang. 2020.

Improved Extension Protocols for Byzantine Broadcast and Agreement. In DISC
(LIPIcs, Vol. 179). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 28:1–28:17.

[55] Jesper Buus Nielsen. 2002. Separating Random Oracle Proofs from Complexity

Theoretic Proofs: The Non-committing Encryption Case. In CRYPTO (LNCS,
Vol. 2442). Springer, 111–126.

[56] Torben P. Pedersen. 1991. Non-Interactive and Information-Theoretic Secure

Verifiable Secret Sharing. In CRYPTO (LNCS, Vol. 576). Springer, 129–140.
[57] Polkadot. [n. d.]. https://www.polkadot.network/.

[58] Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain finite

fields. Journal of the society for industrial and applied mathematics 8, 2 (1960),
300–304.

[59] Ruby.Exchange. 2021. How SKALE Solves The Front-Running Prob-

lem. https://blog.ruby.exchange/how-skale-solves-the-front-running-problem/

?ref=blog.pantherprotocol.io.

[60] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,

and Amit Sahai. 2001. Robust Non-interactive Zero Knowledge. In CRYPTO
(LNCS, Vol. 2139). Springer, 566–598.

[61] Victor Shoup. 2023. The many faces of Schnorr. Cryptology ePrint Archive,

Paper 2023/1019. https://eprint.iacr.org/2023/1019.

[62] Selma Steinhoff, Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolic.

2021. BMS: Secure Decentralized Reconfiguration for Blockchain and BFT Sys-

tems. CoRR abs/2109.03913 (2021).

[63] Ertem Nusret Tas, David Tse, Fangyu Gai, Sreeram Kannan, Mohammad Ali

Maddah-Ali, and Fisher Yu. 2023. Bitcoin-Enhanced Proof-of-Stake Security:

Possibilities and Impossibilities. In SP. IEEE, 126–145.
[64] Tezos. [n. d.]. https://tezos.com.

[65] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas, Guy

Golan-Gueta, and Srinivas Devadas. 2020. Towards Scalable Threshold Cryp-

tosystems. In IEEE Symposium on Security and Privacy. IEEE, 877–893.
[66] Total-blockchain. 2022. Osmosis will soon be frontrunning MEV

free. https://medium.com/@totalblockchainemail/osmosis-will-soon-be-

frontrunning-mev-free-b7da89f04ce9.

[67] Dennis Trautwein, Aravindh Raman, Gareth Tyson, Ignacio Castro, Will Scott,

Moritz Schubotz, Bela Gipp, and Yiannis Psaras. 2022. Design and evaluation of

IPFS: a storage layer for the decentralized web. In SIGCOMM. ACM, 739–752.

[68] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson.

2012. Scalable anonymous group communication in the anytrust model. In

European Workshop on System Security (EuroSec), Vol. 4.
[69] Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and Andrew Miller.

2022. hbACSS: How to Robustly Share Many Secrets. In NDSS. The Internet
Society.

[70] Jiaheng Zhang, Tiancheng Xie, Thang Hoang, Elaine Shi, and Yupeng Zhang.

2022. Polynomial Commitment with a One-to-Many Prover and Applications. In

USENIX Security Symposium. USENIX Association, 2965–2982.

A SUPPLEMENTARY MATERIALS FOR
BITCOIN CHECKPOINTING

A.1 The Blueprint of Pikachu
Long-range attacks against PoS blockchain. Unlike proof-of-
work chains, block creation in PoS systems is both costless (in terms

of physical resources like energy) and timeless (unconstrained by

20

https://eprint.iacr.org/2023/616
https://eprint.iacr.org/2024/168
https://filecoin.io/
https://eprint.iacr.org/2021/339
https://eprint.iacr.org/2023/451
https://www.polkadot.network/
https://blog.ruby.exchange/how-skale-solves-the-front-running-problem/?ref=blog.pantherprotocol.io
https://blog.ruby.exchange/how-skale-solves-the-front-running-problem/?ref=blog.pantherprotocol.io
https://eprint.iacr.org/2023/1019
https://tezos.com
https://medium.com/@totalblockchainemail/osmosis-will-soon-be-frontrunning-mev-free-b7da89f04ce9
https://medium.com/@totalblockchainemail/osmosis-will-soon-be-frontrunning-mev-free-b7da89f04ce9

time limits), which enables adversaries to easily fork a chain. Exist-

ing PoS chains prevent malicious forking by punishing misbehavior

validators. However, an attacker can choose to present the fork

chain after all its stakes have been withdrawn, thus free of being

slashed, What is worse, a late coming client may not be able to

decide the canonical chain among the forks.

Securing PoS with Bitcoin checkpointing. A few works [2, 63]

have shown that long-range attacks can be effectively mitigated by

creating checkpoints of the PoS chain on a PoW chain, such that a

late coming client can distinguish the canonical chain among forks.

Pikachu illustrates a threshold signature-based checkpointingmech-

anism. At a high level, the lifetime of the PoS system is divided into

multiple epochs, and checkpoints are supposed to be created per

epoch. At every epoch 𝑖 , a configuration 𝐶𝑖 = {(V𝑖, 𝑗 ,𝑤𝑖, 𝑗)} 𝑗∈[𝑛𝑖]
for some integer 𝑛𝑖 , which is the set of all validators {V𝑖, 𝑗 } 𝑗∈[𝑛𝑖]
with their weights {𝑤𝑖, 𝑗 } 𝑗∈[𝑛𝑖] , is associated with a public key 𝑄𝑖

(w.r.t. Schnorr signature scheme) which can serve as a Bitcoin ad-

dress, while the secret key of 𝑄𝑖 is secretly shared among 𝐶𝑖 . At

epoch 𝑖 + 1, validators in 𝐶𝑖 will jointly create a Bitcoin transac-

tion which transfers all assets on 𝑄𝑖 to 𝑄𝑖+1, the address belongs
to the current configuration 𝐶𝑖+1; This transaction is the check-

point. We elucidate their design with the following three algo-

rithms/protocols
18
.

• AllocateSubID(𝐶) → {𝑑 𝑗 } 𝑗∈[𝑛] .The sub-identity alloca-

tion algorithm takes input as a configuration

𝐶 = {(V𝑗 ,𝑤 𝑗)} 𝑗∈[𝑛]
and determines the number of sub-identities 𝑑 𝑗 for each

V𝑗 according to their weight𝑤 𝑗 .

• DKG({(V𝑗 , 𝑑 𝑗)} 𝑗∈[𝑛]). The validators in𝐶 run a DKG pro-

tocol, while each sub-identity is viewed as an indepen-

dent participant. Therefore, each validator V𝑗 obtains 𝑑 𝑗
pairs of (𝑝𝑘 𝑗,𝑧 , 𝑠𝑘 𝑗,𝑧)𝑧∈[𝑑 𝑗] , and all validators obtain the

same public key 𝑄 = 𝑝𝑘 and the list of public key shares

®𝑝𝑘 = (𝑝𝑘 𝑗,𝑧) 𝑗∈[𝑛],𝑧∈[𝑑 𝑗] .
• CreateCKP(𝐶𝑖 , ckp, PreAdd, 𝑄𝑖+1) → TX.At the epoch 𝑖+1,

assume that validators in𝐶𝑖+1 have generated the public key
𝑄𝑖+1, the digest of PoS block to be checkpointed is ckp, and
the address of the last checkpointing Bitcoin transaction

is PreAdd. Then, the validators in 𝐶𝑖 invoke a Threshold

Schnorr protocol to sign a Bitcoin transaction TX with the

following information.

{Input : PreAdd;Output : 𝑄𝑖+1;OP_Return : ckp}.
Once the transaction has been properly signed, every val-

idator should disseminate it to the Bitcoin network.

With checkpoints on Bitcoin, it is rather straightforward for a

late-coming user to decide which fork is the canonical chain when

the user is provided with a block tree of finalized PoS blocks. Specif-

ically, the user first synchronizes with the Bitcoin blockchain. Then,

it finds the initial checkpoint transaction and builds a chain of

transactions following the initial transaction. Next, it obtains the di-

gest ckp from the latest checkpoint transaction and decides the fork

with the block whose digest is ckp as the canonical chain. Moreover,

18
Slightly different from their original description where the PoS digest is embedded

into the Bitcoin address, we choose to put it in OP_RETURN for simplicity.

while other approaches like key-evolving forward-secure signatures

[21, 26] may also mitigate long-range attacks, the checkpointing

mechanism enjoys the unique advantage of ensuring malicious

validators are always slashable. We defer a detailed discussion to

Sect.A.2.

A.2 Security of Checkpointing
This paradigm has been thoroughly analyzed in [2]. It considers

an efficient adversary A, which at each epoch 𝑖 can corrupt all

validators in previous configurations {𝐶 𝑗 } 𝑗<𝑖−𝐿 and a fraction of

validators up to 𝑓 in “recent" configurations {𝐶 𝑗 }𝑖−𝐿< 𝑗≤𝑖 , for some

parameter 𝐿 such that the checkpoint transaction for epoch 𝑖0 will

be confirmed in Bitcoin by epoch 𝑖0 + 𝐿. Such an adversary can

mount long-range attacks by using the previous secret keys to forge

another validate-looking chain (called a long-range attack chain).

However, since the Bitcoin blockchain has recorded transactions

that transferred all assets from previous addresses {𝑄 𝑗 } 𝑗<𝑖−𝐿 , A
cannot create valid checkpoints using secret keys of {𝑄 𝑗 } 𝑗<𝑖−𝐿 .
Therefore, a bootstrapping client can decide the canonical chain

with Bitcoin checkpoints. We summarize their results in the follow-

ing theorem.

Theorem 7 ([2]). Assume both the Bitcoin blockchain and the
PoS chain satisfy consistency, chain growth, and chain quality (as
defined in [34]). Assume the Threshold Schnorr signature satisfies
unforgeability and robustness under the DKG protocol against A
corrupting up to 𝑡 sub-identities, and AllocateSubID allocates at most
𝑡 sub-IDs to A. Then, the checkpointing mechanism satisfies the
following properties.

• Safety. A cannot produce any valid checkpointing transac-
tions for long-range attack chains.

• Liveness. A cannot stop the checkpoints from happening.

On Slashable Safety. Babylon claims the slashable safety. Specifi-

cally, for a PoS system with 3𝑡 + 1 units of stake, validators with at

least 𝑡 units should become slashable in the view of all honest val-

idators whenever there is a safety violation. Many PoS systems offer

slashable safety against short-range attacks by locking validators’

stakes for a period and slashing one’s stake once proof of security

violation is presented. However, long-range attackers can evade

being slashed by publishing the attack chain after withdrawing

their stakes from the canonical chain.

It has been proved in [63] that slashable safety against long-

range attacks is impossible without external trust. With this result,

[63] also shows that other approaches for mitigating long-range

attacks, such as key-evolving signatures [6, 21] cannot provide

slashable safety. Nonetheless, leveraging the Bitcoin blockchain as

an external trust can certainly bypass this impossibility. Assuming

that checkpoints for the canonical PoS chain have been properly

posted on the Bitcoin blockchain, the attacker cannot present an

attack chain that diverges from the canonical chain before the latest

checkpoint. In this case, the attacker must not have withdrawn its

stakes and thus is slashable.

In light of the above, both ours/Pikachu and Babylon can guar-

antee slashable safety once the checkpoints have been properly

created. Now, we turn to examine the case in which checkpoints

may not be generated correctly. The adversary has the following

21

options: (1) not make a checkpoint; (2) make a checkpoint for an

ill-formed block; (3) make more than one checkpoint for different

well-formed blocks at the same height and hide the block whose

checkpoint appears earlier; (4) make a checkpoint for a well-formed

block but exclude some valid transactions (for censorship). Babylon

introduces an emergency break to prevent from (2) and (3). The

client can notice these attacks happening and then no longer pro-

cess this chain. In case the adversary refuses to participate in the

checkpoint creation, Babylon considered the punishment of inactiv-

ity, which enables the removal of the inactive validators. Regarding

censorship resistance (4), Babylon proposed a roll-up technique

that is orthogonal to the checkpointing mechanism.

In our system, as all checkpoints are in the chain of transactions,

the adversary cannot mount the attack of (3). For (2) and (4), we

can follow the exact same approach as Babylon does. For the attack

of (1), it may be hard to identify who makes the DKG/threshold

signing fail. Instead, we require a checkpoint to be made by a certain

height of the Bitcoin blockchain, and then the client can switch to

emergency break when it does not find a valid checkpoint by the

designated position. In summary, our checkpointing mechanism

provides slashable safety as long as honest clients do not switch to

emergency breaks.

22

	Abstract
	1 Introduction
	1.1 Our Results

	2 Technique Overview
	3 Model and Goal
	4 Preliminaries
	5 Our DKG Protocol
	5.1 The Construction
	5.2 The Analysis

	6 Sub-ID Allocation for the Weighted Setting
	7 Practical Extended Broadcast Channels
	7.1 Building Blocks
	7.2 Our Extended Broadcast Channel

	8 Application to All-hands Checkpointing into Bitcoin
	8.1 Realizing the Bitcoin Checkpointing Pikachu with Any-Trust DKG
	8.2 Comparison with Babylon Checkpointing

	9 Implementation and Evaluation
	9.1 End-to-End Implementation
	9.2 Performance Analysis on Large Scale

	10 Related Works
	11 Conclusion and Future Direction
	References
	A Supplementary Materials for Bitcoin Checkpointing
	A.1 The Blueprint of Pikachu
	A.2 Security of Checkpointing

