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Abstract. We propose a new framework to homomorphically evaluate Boolean functions using the
Torus Fully Homomorphic Encryption (TFHE) scheme. Compared to previous approaches focusing on
Boolean gates, our technique can evaluate more complex Boolean functions with several inputs using a
single bootstrapping. This allows us to greatly reduce the number of bootstrapping operations necessary
to evaluate a Boolean circuit compared to previous works, thus achieving significant improvements in
terms of performances. We define theoretically our approach which consists in adding an intermediate
homomorphic layer between the plain Boolean space and the ciphertext space. This layer relies on so-
called p-encodings embedding bits into Zp. We analyze the properties of these encodings to enable the
evaluation of a given Boolean function and provides a deterministic algorithm (as well as an efficient
heuristic) to find valid sets of encodings for a given function. We also propose a method to decompose
any Boolean circuit into Boolean functions which are efficiently evaluable using our approach. We
apply our framework to homomorphically evaluate various cryptographic primitives, and in particular
the AES cipher. Our implementation results show significant improvements compared to the state of
the art.

1 Introduction

Homomorphic encryption (HE) is a cryptographic technique allowing the computation of operations on
encrypted messages (which directly reflect on the original messages once decrypted), using only knowledge
of public data. For example, an additive homomorphic encryption scheme is able to encrypt two messages
m1 and m2 in ciphertexts c1 and c2 and to compute a third ciphertext c3 from c1 and c2 that encrypts the
sum m1 +m2, without knowledge of the secret key.

The security of these schemes relies on a small noise introduced in the data when encrypting. The problem
arising is that this noise is growing while homomorphic computations are carried out, which bury the original
data into the noise and makes it unrecoverable at decryption. In 2009, Gentry [18] introduced the operation
of bootstrapping to solve this problem. This operation resets the noise at a nominal level without decryption
allowing a potentially infinite amount of operations, making the construction of a scheme achieving Fully
Homomorphic Encryption (FHE) possible. This operation being extremely heavy and slow, it is considered
as the main bottleneck for the development of schemes efficient enough to be used in practice.

Currently, the most popular schemes in the FHE ecosystem are lattice-based and rely on the hardness
of the Learning With Errors assumption [24] and/or its ring variant RLWE [22]. BFV [7], BGV [8] and
CKKS [12] are leveled schemes, which means that they keep track of the “level” of noise in the data during
the homomorphic evaluation. As soon as this level reaches a critical bound, no more computations can be
performed. Some recent works (see e.g [11], [10], [21]) propose a bootstrapping operation for these schemes
but it is not considered as efficient enough yet. On the other hand, TFHE [13] is built on top of a powerful
bootstrapping technique known to currently be the most efficient but limiting the precision of encrypted
data.

Each FHE scheme offers a set of basic homomorphic operations that can be used to build more complex
algorithms. In general, these operations are homomorphic additions and multiplications, however some com-
plex operations cannot be constructed only with these operations. TFHE offers homomorphic additions and
multiplications by a plaintext as well, but its force lies in its operation of programmable bootstrapping allowing



the evaluation of encrypted look-up tables (LUT) while resetting the noise level. However, for performance
issues, these look-up tables can only handle a small amount of bits as input (around 8 bits maximum) so the
scheme is best suited for applications requiring a small precision.

In particular, TFHE is the best option to evaluate Boolean circuits with encrypted inputs, but the
performances of the existing frameworks are still limited. In [13], the authors propose a strategy to evaluate
Boolean functions called the gate bootstrapping, in which they perform one bootstrapping for each bivariate
Boolean gate of the underlying circuit. As a consequence, the conversion of the original Boolean circuit in
a homomorphic circuit handling encrypted bits is straightforward, moreover the noise growth is contained
thanks to the systematic use of bootstrapping. However, this approach is very expensive due to the high
numbers of bootstrappings and makes it highly suboptimal for large circuits.

The authors of [14] propose a different approach: by leveraging a newer version of the TFHE scheme
supporting a new operation named TLWE ciphertexts multiplication, Boolean circuits are evaluated with
homomorphic sums for XOR gates and this new multiplication operation for AND gates. If this approach is
clearly a progress from the vanilla framework, we note that a few bootstrappings are still required to control
the noise growth and that this new operation of TLWE multiplications remains costly both in terms of
performances and in terms of noise. Thus, we choose to stick to the first version of the TFHE scheme (while
slightly modifying it) to keep the framework lighter and we tackle the performance issues of [13] with a
different approach than the one of [14].

Our work introduces a new framework to homomorphically evaluate Boolean functions on encrypted data
efficiently, i.e. by reducing the amount of necessary bootstrappings. Our approach introduces an intermediate
homomorphic layer which encodes bits on a small ring Zp before encrypted them. This allows us to evaluate
Boolean functions with one cheap homomorphic sum followed by one bootstrapping. After formalizing the
underlying concept of p-encoding and explaining our evaluation strategy, we investigate the issue of finding
valid sets of encodings for a Boolean function. We characterize this problem and provide an exact constructive
algorithm to solve it. We further provide a sieving heuristic finding solutions more efficiently but at the cost
of loosing optimally. Since our method is only efficient for Boolean functions with limited number of inputs,
we also propose a heuristic to decompose any Boolean circuit into Boolean functions which are efficiently
evaluable using our approach. Finally, we apply our technique to various cryptographic primitives, namely
the SIMON block cipher, the Trivium stream cipher, the Keccak permutation, the Ascon s-box and the AES
s-box. Compared to previous works implementing the same primitives (for SIMON, Trivium and AES) our
implementations achieve significant speedups.

After some technical preliminaries on TFHE (Section 2), we introduce a new concept of intermediate
homomorphic layer and explain how bits are encoded in Section 3. and the algorithms to construct it in
Sections 4, 5. Finally, we describe our modifications of the TFHE scheme in Section 6 and our experimental
results in Section 7.

2 Preliminaries on TFHE

2.1 Notations

Let T = R/Z be the real torus, that is to say the additive group of real numbers modulo 1. In practice, torus
elements are not represented with an infinite number of digits. Let us denote this precision in base 2 as Ω.
We can define the discretized torus Tq = {aq | a ∈ Zq} (the elements of the torus up to Ω bits of precision,
q being 2Ω) and identify it with the ring Zq. As a consequence, any element a

q of Tq will be represented in
machine by a without any loss of property of the group Tq. The operations of sum + and external product
· have to be understood modulo q.

Moreover, for a natural integer N and a given q, we will denote by TN,q[X] the ring of polynomial
Tq[X]/(XN + 1). The elements of this ring are polynomials of maximum degree N − 1 and with coefficients
in Tq. Like for the scalar version, this ring will be identified with the ring Zq/(X

N + 1). N is usually taken
as a power of two.
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Finally, we will denote by B the set of binary digits {0, 1}. & and ⊕ denote the AND and XOR binary
operations. For x and z ∈ Z , [x]q denotes the reduction of x modulo q. For S a set, x

$← S denotes a

uniformly random sampling from the set. For χ a distribution, x $← χ denotes a random sampling according
to the distribution.

2.2 Complexity Assumptions

The TFHE scheme, as other schemes using lattices, relies on the hardness of the LWE assumption. More
precisely, it relies on the torus-based version of the problem. In the following, we consider the classic definition
but over a discretized torus and with a binary secret:

Definition 1. (LWE problem over the discretized torus). Let q, n ∈ N and let s = (s1, . . . , sn)
$← Bn. Let χ

be an error distribution over Zq. The decisional Learning With Errors over discretized torus problem is to
distinguish samples chosen with the following distributions:

D0 = {(a, r) | a $← Tn
q , r

$← Tq}

and:

D1 = {(a, b) | a = (a1, . . . , an)
$← Tn

q , e
$← χ, b =

n∑
j=1

aj · sj + e}

The search version of the problem is to recover s from the samples of D1.

Both the search and decisional problems are reducible to each other [24] and their average case is as hard
as worst-case lattice problems.

[20] argues that identifying the discretized torus Tq as Zq makes the LWE assumption over the discretized
torus as hard as the standard LWE assumption.

TFHE relies as well on the generalized version of LWE over rings introduced in [8] named GLWE.

Definition 2. (GLWE problem over the discretized torus). Let N, q, k ∈ N with N a power of two and let
s = (s1, . . . , sk)

$← BN [X]k. Let χ be an error distribution over ZN,q[X]. The General decisional Learning
With Errors over discretized torus problem is to distinguish samples chosen with the following distributions:

D0 = {(a, r) | a $← TN,q[X]k, r
$← TN,q[X]}

and:

D1 = {(a, b) | a = (a1, . . . , an)
$← TN,q[X]k, e

$← χ, b =

k∑
j=1

aj · sj + e}

The search version is analogous to the LWE one.

Note that RLWE is simply an instantiation of GLWE with k = 1.
The complexity analysis is analogous to the LWE version. In practice, the error distribution χ is a centered

Gaussian distribution parametrized by its standard deviation σ.

2.3 Plaintext Space

Before expliciting more in depth the TFHE scheme, it is useful to define the plaintext space and how it is
embedded in the discretized torus.

The plaintext space is the ring Zp, with p ∈ N. For now, let us assume that p | q and identify Zp with
Tp. As p | q, all elements of Tp are elements of Tq as well. Thus, we can define a mapping ρ : Zp → Zq
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as ρ : m 7→ mq
p . Of course, only p elements of Zq are reached by such a mapping and they have the form{

kq
p | k ∈ Zp

}
. As they are evenly distributed across Zq, they define what we call sectors of Zq of the form:{(

(2k − 1)q

2p
,
(2k + 1)q

2p

)
| k ∈ Zp

}
.

During encryption of m, some small noise e is drawn from a Gaussian distribution over Zq and is added
to m. As e is small, the noisy message m+e stays in the same sector as m but while homomorphic operations
are carried out, the noise grows and may overflow out of the sector. When decrypting, one recovers the sum
of the expected result and some noise m′ + e′. As long as e′ < q

2p , the message m′ can be recovered by
rounding to the closest center of sector.

In our work, we pick some values of p that does not divide q. Consequently, the centers and the bounds of
sectors are computed by rounding the fractions to the closest integers. In practice, p is much smaller than q (p
is restricted to a few bits, while q typically equals 232 or 264), so this discrepancy makes this approximation
sound. In the following, we will ignore this rounding.

2.4 Ciphertexts Types and Basic Operations

TFHE manipulates several different types of ciphertexts. In the following, we explain their structure:

– TLWE ciphertexts: The message m to be encrypted is encoded as an element Tq. A mask a =
(a1, . . . , an) is drawn uniformely from Tn

q and a noise error e is sampled from χ. Using the secret key
sk = (s1, . . . , sn) ∈ Bn, the body of the ciphertext is defined by b =

∑n
j=1 aj ·sj+m+e. Finally, the TLWE

ciphertext is c = (a, b). The decryption is performed by calculating the phase: ϕ(c) = b− ⟨a, s⟩ = m+ e
and rounding to the closest center of sector.

– TRLWE ciphertexts: It has the same global structure as TLWE ones, except the mask a is sampled
from TN,q[X]k, the secret key from B[X]k and the error from TN,q[X]. In practice, it is common to choose
k = 1.

During the bootstrapping phase presented in Section 2.5, an other structure (the TRGSW ciphertext) is
used but it will not be used in this paper. More details about TRGSW can be found in [20].

Two basics homomorphic operations are straightforward with these two structures: the component-wise
sum of two TLWE (resp. TRLWE) ciphertexts c1 and c2 engendrates a ciphertext c3 encrypting the sum
modulo p of the two underlying messages m1 and m2. Moreover, the external product λ · c1 with λ ∈ Z also
produces an encryption of the multiplication [λ ·m1]p.

In the framework introduced by this paper, only TLWE ciphertexts are used. The TRLWE ciphertexts
are only required to understand the inner working of the programmable bootstrapping.

2.5 TFHE programmable bootstrapping (PBS)

As defined by Gentry in [18], the procedure of bootstrapping can be defined as the homomorphic evaluation
of the decryption circuit. In the context of TFHE, the hardest part to compute is the rounding of the value
to an element of Tp by removing the noise. To achieve this homomorphically, it uses three procedures called
BlindRotate, SampleExtract and Functional Keyswitching.

BlindRotate: The high level idea starts by homomorphically computing the phase µ ∈ Zq and reducing it
to µ̃ ∈ Z2N by computing µ̃ =

⌊
µ·2N

q

⌉
. In practice N takes values between 210 and 213 so the most significant

bits carrying the true value modulo p are preserved. Then, a polynomial called accumulator v(X) ∈ ZN,q[X]
is constructed. Note that the computation of X−µ̃ · v(X) yields another polynomial of ZN,q[X] of the form
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vµ̃ + vµ̃+1X + . . . . We select vj :=
⌊ jp

2N ⌉
p so the blind rotation will output an encrypted version of the clean

value of the message in the zero-degree coefficient. We do not explain here how this polynomial multiplication
occurs, the reader is referred to [13] for a more elaborated explanation. The procedure outputs a TRLWE
ciphertext of dimension k encrypting the polynomial X−µ̃ · v(X). Note that the quotient polynomial of the
ring has degree N but µ̃ lives in Z2N so each coefficient of vi can be reached with a multiplication by X−̃µ

and by X [N−µ̃]2N . In the latter case, the coefficient vi gets negated because of the ring modulus XN + 1:
we’ll refer to this problem as the negacyclicity problem. One way to prevent this issue is to ensure that the
most significant bit of µ is fixed at 0 [20] but a recent work [14] proposes a more sophisticated way to solve
this problem. In our case, we use a modified version of the accumulator detailed in Section 6.

SampleExtract: This step simply extracts the degree-zero coefficient of the previous polynomial. It
takes as input the TRLWE ciphertext yielded by the BlindRotate step and outputs the TLWE ciphertext
c′ encrypting the original message m. However, this ciphertext is not immediately available for either fur-
ther homomorphic computations or decryption, because it has a length kN + 1 instead of n + 1 (and as a
consequence is encrypted under a different TLWE key).

Key switching: The previous step outputs the right value, but encrypted under a different set of pa-
rameters i.e. c′ ∈ ZkN+1

q while we are looking for c ∈ Zn
q . The only thing left is to convert c′ to c, which

requires key switching keys constructed from the secret key sk used at encryption. More details about this
specific step can also be found in [13].

This “bland” procedure of bootstrapping simply refreshes the noise in the ciphertext to put it back at
the “initial level”, but can be very simply turned into a Programmable bootstrapping. Specifically it can
simultaneously evaluate homomorphically any function f on the input. To achieve this, at the construction
of the accumulator, the coefficient vj is replaced by their evaluation by the function f(vj). This feature is
extremely powerful and is the core of the huge potential of TFHE.

2.6 Basics on Boolean Functions and Boolean Circuits

In this paper, we focus on the evaluation of Boolean functions with TFHE. A Boolean function has the form
f : Bℓ −→ B, with ℓ being called the arity of the function.

Definition 3. The Algebraic Normal Form (ANF) of a Boolean function f : {0, 1}ℓ 7→ {0, 1} is a polynomial
expression in which each term corresponds to a specific input combination of n variables. The ANF is defined
as follows:

f(x1, x2, . . . , xl) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ . . .⊕ a2n−1x1x2 . . . xl

where: a0, a1, a2, . . . , a2ℓ−1 ∈ {0, 1} are the Boolean coefficients and
x1, x2, . . . , xℓ are called the Boolean variables

This result means that any Boolean function can be evaluated by the means of AND and XOR operations.
In the following, we will focus on the implementation of Boolean circuits composed of these operations
exclusively.

A Boolean function can be represented by its truth table, which is simply a table gathering all the possible
inputs and the corresponding result of the application by the function. It can also represented with a Boolean
formula. A third representation is the Boolean circuit :

Definition 4. A Boolean circuit associated to the Boolean function f is a finite Directed Acyclic Graph
whose edges are wires and vertices are Boolean gates representing Boolean operations. We consider AND
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gates and XOR gates, of fan-in 2 and fan-out 1. We also consider copy gates, of fan-in 1 and fan-out > 1,
that outputs several copies of its input. A circuit is further formally composed of input gates of fan-in 0 and
fan-out 1, and output gates of fan-in 1 and fan-out 0.

Evaluating a ℓ-input m-output circuit consists in writing an input x ∈ Bℓ in the input gates, processing
the gates from input gates to output gates, then reading the outputs from the output gates.

This notion of Boolean circuit will be particularly useful in Section 5.

3 Boolean Encoding over Zp and Homomorphic Evaluation Strategy Between
B and Zp

To evaluate Boolean functions in TFHE, one could use the vanilla TFHE with p = 2. The problem is that
the only evaluable function would be the XOR operation. To evaluate the other operators, the solution of [13]
which is also implemented in the tfhe-rs library [27] that we studied is to take a larger p, specifically p = 8.
This allows all the operations of the Boolean algebra to be carried out, however the negacyclicity problem
introduced in Section 2.5 arises because 8 is even. Their solution to this issue is to keep a bit of padding
fixed to zero, i.e. the values in Zp have their most significant bit fixed to zero. This restriction has a heavy
impact on performances, because it requires a bootstrapping after each Boolean gate to make sure no data
ever overflows in the most significant bit.

Our solution makes use of odd values for p, which allows us to remove this constraint of padding and
to perform more operations without bootstrapping. To do so, we had to slightly adapt the bootstrapping
procedure of TFHE to support odd moduli. We explain this tweak in Section 6.

Moreover, the PBS described in Section 2.5 takes only one input and so can only evaluate univariate
functions. The common solution to evaluate multivariate functions is to concatenate several input ciphertexts
into one by shifting the MSB of each input and to sum them all. The problem is that the number of
message bits cannot grow too much because the other parameters of the LWE problem must grow accordingly,
degrading the performances. As a consequence, the performances quickly degrades as the arity of the function
increases. Our approach consists in removing the padding bit and using a combination of homomorphic
additions before a PBS to evaluate a function for any number of inputs with the cost of a single PBS.

To this purpose, we propose a construction in which we embed Boolean values in Zp for p for well-chosen
values of p, forming an “intermediate homomorphic layer” between B and Zq. In the following, we explain
how we define such a layer, and we describe our new strategy to evaluate Boolean functions in a more efficient
way without considering the circuit representation of the function.

3.1 Encoding of B over Zp

To represent Boolean values over Zp, we use a mapping function that we call a p-encoding :

Definition 5. A p-encoding is a function E : B 7→ 2Zp that maps the Boolean space to a subset of the
discretized torus. A p-encoding is valid if and only if:{

E(0) ∩ E(1) = ∅ and
∀ x ∈ Zp,∀ b ∈ B, x ∈ E(b) ⇐⇒

[
x+ p

2

]
p
/∈ E(b) if p is even.

(1)

We call this last property relaxed negacyclicity.

In our approach when we need to encrypt a bit, we apply a p-encoding to embed it on Zp, then we encrypt
the result using the classical setup of TFHE. When new values are freshly encrypted or produced by a PBS,
only one element of Zp is chosen for each bit. We call such an encoding a canonical p-encoding:

Definition 6. A p-encoding E is said canonical if and only if it is valid and | E(0) |=| E(1) |= 1
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Fig. 1: Representation of two valid p-encodings. The green part represents E(1), and the red part E(0). Note
that the relaxed negacyclity is respected by the p-encoding on the right-hand figure as p is even.

Let c be a ciphertext encoding a bit b under a p-encoding E . Let us say that E is an arbitrary valid
encoding: its associated subsets can be any subset of Zp as long as the validity requirements of (1) are
fulfilled. One can transform the ciphertext c into another ciphertext c′ encoded under any canonical p-
encoding (even under a different p) by simply performing a PBS.

Our goal is to represent the Boolean function we want to evaluate with a sum of p-encodings (we define
what we mean by “sum of p-encoding” in the Section 3.2). When sums are carried out on ciphertexts (and so
homomorphically on the underlying p-encodings), the sets E(0) and E(1) of the p-encodings may move, grow,
shrink, but they should never overlap as it would result in a loss of information. As we removed the need of
a bit of padding, we do not need to track a potential overflow of data (informally we say that ciphertexts
are free to “go around the torus”). After the sum, the encoding can be reset to a canonical one with a PBS
to allow further computation. Or, if the homomorphic computation is over, the result can be recovered by
decrypting the ciphertext and checking in which partition the decrypted value lies.

The next subsection explains in further details the process of evaluating Boolean functions on Zp.

3.2 A New Strategy for Homomorphic Boolean Evaluation

In the following, we consider two Boolean variables x and y and their two respective encodings over Zp:

Ex =

{
0 7→ {αi}0≤i≤l0

1 7→ {βi}0≤i≤l1

and Ey =

{
0 7→ {α′

i}0≤i≤l′0

1 7→ {β′
i}0≤i≤l′1

(2)

Let f be a bivariate Boolean function and let us construct two sets P0 and P1 such that:

Pb = {[γ + δ]p | (γ, δ) ∈ Ex(bx)× Ey(by) and f(bx, by) = b} ∀b ∈ B. (3)

We say that the sum of p-encodings Ex + Ey is suitable for the evaluation of f if and only if P0 ∩P1 = ∅.
The definition can be generalized to any number of arguments ℓ for f . Of course, for a given f , not all the
pairs of encodings may be suitable. And finding such correct encodings might be a complicated process.

If Ex and Ey are suitable for f , then one can use the computed sets Pb to construct a new p-encoding

Ez =

{
0 7→ P0

1 7→ P1

that encodes the bit f(x, y). As Ez is valid, then the clear value of the bit can be recovered by decryption,
or further computations can be performed without the need of a bootstrapping.

Definition 7. Let f : Bℓ 7→ B be a Boolean function and let E = (E1, . . . , El) be a vector of p-encodings. We
define f(E) by:

f(E) =

{
0 7→ P0

1 7→ P1
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with:

Pb =


[

l∑
i=1

γi

]
p

| (γ1, . . . , γl) ∈
ℓ∏

i=1

Ei(bi) and f(b1, . . . , bl) = b

∀b ∈ B

Let us stress that f(E) is a valid p-encoding if and only of P0 ∩ P1 = ∅.

In the following, we illustrate the latter definition with the two Boolean operators & and ⊕. The p-
encoding resulting of the function f : (x, y) 7→ x & y is:

E& =


0 7→ {αi + α′

j}0≤i≤l0
0≤j≤l′0

∪ {αi + β′
j}0≤i≤l0

0≤j≤l′1

∪ {α′
i + βj}0≤i≤l′0

0≤j≤l1

1 7→ {βi + β′
j}0≤i≤l1

0≤j≤l′1

(4)

and the p-encoding resulting of the operation f : (x, y) 7→ x⊕ y is:

E⊕ =


0 7→ {αi + α′

j}0≤i≤l0
0≤j≤l′0

∪ {βi + β′
j}0≤i≤l′0

0≤j≤l′1

1 7→ {αi + β′
j}0≤i≤l0

0≤j≤l′1

∪ {α′
i + βj}0≤i≤l′0

0≤j≤l1

(5)

Figure 2 further illustrates this construction for these two operations.

Fig. 2: Starting from two canonical encodings, we produce two new p-encodings corresponding to the results
of the & and the ⊕ operations.

To wrap up, here is our proposed framework to evaluate a Boolean function f : Bℓ 7→ B given a vector of
suitable p-encodings E = (E1, . . . , El):

1. Encrypt each input bi with some canonical p-encoding Ei into a ciphertext ci such that Esum = f(E1, . . . , El)
is a valid encoding.

2. For a Boolean function f to be evaluated on b1, . . . , bl, compute homomorphically the sum of the cipher-
texts c = c1 + · · · + cl. This yields an encryption of b = f(b1, . . . , bl), encoded with a valid p-encoding
Esum = f(E1, . . . , El).
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3. (a) If the result is directly required by the client, c is returned as ciphertext which can be decrypted to
get the result in Zp and associated to the right Boolean value.

(b) If the result is reused in further homomorphic computations, a PBS calculating Enew ◦ E−1
sum on the

result is computed, with Enew a new canonical p-encoding. The resulting value can then be used as
an input for a next Boolean function.

Of course, for a given p and a given f , a vector of p-encodings (E1, . . . , El) for which Esum = f(E1, . . . , El)
is valid may not exist. Two solutions can be considered:

– Increasing the value of p (e.g p ≥ 2ℓ always works).
– “Splitting” the function into a graph of subfunctions, evaluating each subfunction with the above method

and using a PBS per subfunction to reset its output p-encodings.

The question of finding suitable p-encodings for a given f is treated in Section 4. The question of efficiently
splitting a function is treated in Section 5.

Example: We illustrate our approach with a simple working example: let f be a basic multiplexing function,
such that

f(a, b, c) =

{
a if c = 1

b if c = 0

Instead of leveraging its Boolean representation f(a, b, c) = a&c ⊕ b&c̄, which would cost 3 PBS with the
approach of [13], our strategy consists in:

1. Encrypting the bits with the 7-encodings:

Ea = Eb =

{
0 7→ {0}
1 7→ {1}

and Ec =

{
0 7→ {0}
1 7→ {2}

.
2. Applying the function f on the 7-encodings by summing the ciphertexts, producing a valid 7-encoding:

Esum =

{
0 7→ {0, 1, 2, 5}
1 7→ {3, 4, 6}

At this point, only sums have been performed on the ciphertexts.
3. With one PBS, resetting the result to a target canonical p-encoding (with any p), for example

Enew =

{
0 7→ {0}
1 7→ {1}

with p = 7

A visualization of this procedure can be found in Figure 3.
We can keep doing that with subsequent Boolean functions. Alternatively we can return the ciphertext

under Esum without PBS which can then be decrypted and decoded as the result of the function f .

3.3 Encoding Switching

One can homomorphically switch the encoding of a ciphertext. Let us begin with some trivial cases:

Property 8. Let x be a ciphertext encoded under Ex =

{
0 7→ {αi}0≤i≤l0

1 7→ {βi}0≤i≤l1

and a ∈ Zp a constant. The

encoding of x can be switched to:

E ′x =

{
0 7→ {[αi + a]p}0≤i≤l0

1 7→ {[βi + a]p}0≤i≤l1

by an homomorphic addition of the ciphertext x and the clear value a.
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Fig. 3: Illustration of an execution of the framework for the multiplexing function.

Proof. All the elements of E ′x(0) (resp. E ′x(1)) are offset by exactly a from their counterparts in Ex(0) (resp.
E(1)). Thus, if the original encoding Ex was valid, then Ex(0)∩Ex(1) = ∅. So we trivially get E ′x(0)∩E ′x(1) = ∅
and thus the validity of E ′x. □

Property 9. Let x be a ciphertext encoded under the p-encoding: Ex =

{
0 7→ {0}
1 7→ {1}

and let a ∈ Z∗
p. Then, it

can be switched to: E ′x =

{
0 7→ {0}
1 7→ {a}

by a simple homomorphic multiplication between the ciphertext x and

the clear constant a. Note that the same holds for the same p-encodings but with E(0) and E(1) swapped.

Proof. The property is trivial by the linear homomorphism of the TFHE scheme. □

Other operations of encoding switching can be carried out with a homomorphic multiplication by a
plaintext, but their validity depends of the value of p. Lemma 12 in Section 4 adresses the case of prime
values of p.

Finally, a programmable bootstrapping can also be seen as an encoding switching. It turns any valid
encoding into another valid encoding, even with a different modulus p. A good example of that is the step
3.(b) of the protocol described in Section 3.2. Let us explain this analogy:

Recall that the programmable bootstrapping of TFHE is a homomorphic evaluation of look-up table: for
a message m ∈ Zp encrypted under a ciphertext c and a function f , the PBS outputs an encryption c′ of
f(m). Let us re-use the p-encodings Esum and Enew introduced in Section 3.2. The abstract look-up table
has p lines, indexed from 0 to p − 1. The lines whose indexes belong to Esum(0) (resp. Esum(1)) are filled
with an element of Enew(0) (resp. Enew(1)). Other lines are never reached and can be filled with an arbitrary
placeholder value. This way, evaluating the look-up table turns an encryption of the message under Esum
into an encryption under Enew. See Sections 2.5 and 6.2 for a more in-depth insight on the actual procedure
of programmable bootstrapping.
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4 Finding Valid Sets of Input Encodings

Let f : Bℓ 7→ B a Boolean function with ℓ entries. This section addresses the problem of finding, for a given
p, a set of ℓ p-encodings allowing the homomorphic evaluation of f with one single bootstrapping.

4.1 Reduction of the Search Space

While exhaustive search is a first option, it quickly becomes impractical due to the explosion of the number
of possibilities as p grows. As a consequence, a reduction of the search space is needed without leaving out
a potential solution.

We introduce two lemmas that will be used to reduce the search space:

Lemma 10. Let f : Bℓ −→ B and let (E1, . . . , El) a vector of p-encodings suitable for f and having the form:

∀ i ∈ {1, . . . , ℓ}, Ei =

{
0 7→ {x(i)

j }1≤j≤l
(i)
0

1 7→ {y(i)j }1≤j≤l
(i)
1

. Then any vector of canonical p-encodings (E ′1, . . . , E ′l ) of the

form: ∀ i ∈ {1, . . . , ℓ}, E ′i =

{
0 7→ {x(i)}
1 7→ {y(i)}

with x(i) ∈ Ei(0) and y(i) ∈ Ei(1) is suitable for the function f as

well.

Proof. Let us assume that the vector E = (E1, . . . , El) of Lemma 10 is suitable for the function f . Then
the sets P0 and P1 constructed like in Equation 3 are disjoint. Now, let us consider the vector of canonical
p-encodings E ′ = (E ′1, . . . , E ′l ) respecting the property:

∀ b ∈ B,∀ i ∈ {0, . . . , ℓ}, E ′i(b) ⊂ Ei(b).

As a consequence, if we build the sets P ′
0 and P ′

1 relative to the encodings E ′, then we naturally get
P ′

0 ⊂ P0 and P ′
1 ⊂ P1. So we get P ′

0 ∩ P ′
1 = ∅, proving Lemma 10. □

Lemma 11. Let f : Bℓ −→ B and let (E1, . . . , El) a vector of p-encodings suitable for f and of the form:

∀ i ∈ {1, . . . , ℓ}, Ei =

{
0 7→ {x(i)}
1 7→ {y(i)}

Then any vector of canonical p-encodings (E ′1, . . . , E ′l ) of the form:∀ i ∈

{1, . . . , ℓ}, E ′i =

{
0 7→ {0}
1 7→ {y(i) − x(i)}

is suitable for the function f as well.

Proof. Let f : Bℓ −→ B be a function and E be a vector of canonical p-encodings (E1, . . . , El) suitable for f
with:

∀ i ∈ {1, . . . , ℓ}, Ei =

{
0 7→ {x(i)}
1 7→ {y(i)}

.

Let us build the sets P0 and P1 according to Equation 3. Each element of these sets is the sum of exactly
one element of each p-encoding, that is to say an element Ei(0) ∪ Ei(1).

Let us pick an indice k ∈ {1, . . . , ℓ}, a value a ∈ Zp and replace Ek in the vector E by:

E ′k =

{
0 7→ {x(i) − a}
1 7→ {y(i) − a}

By using the Property 8, we directly have P ′
0 ∩P ′

1 = ∅ from P0 ∩P1 = ∅ (by suitability of the encodings
for f).

By iterating this procedure on each of the ℓ elements of E , and by picking each time a = −x(i), we prove
Lemma 11. □
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Using both Lemmas 10 and 11, we can restrict the search to the encodings of the form

Ei =

{
0 7→ {0}
1 7→ {di}

with di ̸= 0 without any loss of generality.
Moreover, we restrict the solution further: we only consider p-encodings with p odd and prime. The choice

of an odd p allows to free ourselves from the negacyclicity constraint. To explain the constraint of primality,
we introduce the following lemma, that allows to drastically improve the performances of the search:

Lemma 12. Let p be a prime and f : B −→ B be a Boolean function and let E = (E1, . . . , El) be p-encodings

suitable for f with: ∀ i ∈ {1, . . . , ℓ}, Ei =

{
0 7→ {x(i)}
1 7→ {y(i)}

. For every a ∈ Z∗
p, the vector of p-encodings

E ′ = (E ′1, . . . , E ′l ) with: E ′i =

{
0 7→ {[a · x(i)]p}
1 7→ {[a · y(i)]p}

is suitable for f as well.

Proof. As p is prime, the multiplication by a is a bijection from Zp to Zp.If we construct the two sets P0 and
P1 of Equation (3) with the vector E , then we have P0 ∩ P1 = ∅. By applying a multiplication by a fixed a
in Z∗

p to each of the elements x(i) and y(i), the sets stay disjoint (because of the bijection) so the new set of
encodings E ′ is suitable for f as well. □

As a consequence, if p is prime (which we shall always choose in practice), any solution can be turned
into a solution with d1 = 1 by simply multiplying all the p-encodings of the solution by [d−1

1 ]p. So we can
fix d1 = 1 without any loss of generality, reducing drastically the size of the search space.

Moreover, one may think that the dimensioning of the sets of TFHE parameters is closely related to p. In
practice, we actually select those depending only on the bit-size of p. Thus, the restriction to prime modulus
has no impact on performances, as one can find prime numbers of any bit size.

4.2 Formalization of the Search Problem

According to the lemmas from Section 4.1, we can reduce the problem of finding a vector of p-encodings
(E1, . . . , El) such that f(E1, . . . , El) is valid to the problem of finding a vector d = (d1, . . . , dl) such that

Ei =

{
0 7→ {0}
1 7→ {di}

and f(E1, . . . , El) is valid. In the following, we describe an algorithm to find such a vector

d.
We denote V the matrix of elements of B of shape 2l × l gathering all the possible sequences of entries

for the function f :

V =


0 . . . 0 0
0 . . . 0 1
...

. . .
...

...
1 . . . 1 1


Also, we denote by b the vector of all the outputs of the function f , sorted in same order as the rows of

V . Thus, we have: ∀ i ∈ {1, . . . , 2ℓ}, bi = f(Vi) for Vi the ith row of V . Let us define the vector r as: r = V d.
To make d a solution of the problem, r has to verify the following property:

∀ i, j ∈ {1, . . . , 2ℓ}, f(Vi) ̸= f(Vj) =⇒ ri ̸= rj (6)

An alternative formulation is: we look for two disjoint subsets P0 and P1 of Zp, such that: f(Vi) = b ⇐⇒
ri ∈ Pb .

The following section describes an algorithm finding a solution to this problem.
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4.3 Algorithm

We start by constructing two sets F and T such that: F = {Vi|bi = 0} and T = {Vi|bi = 1}. Each line Vi

represents a linear combination of the dj ’s, that verifies: ri =
∑l

j=0 Vij ·dj mod p. The values ri produced by
the elements of F must be different from the ones produced by T . As a consequence, we can write: ∀ (Vi, Vj) ∈
F×T ,

∑l
k=0 Vik ·dk ̸=

∑l
k=0 Vjk ·dk, which is equivalent to write: ∀ (Vi, Vj) ∈ F×T ,

∑l
k=0(Vik−Vjk)·dk ̸= 0.

So we can rewrite our constraints in the set C = {Vi−Vj |(Vi, Vj) ∈ F×T }. C contains vectors with coordinates
in {0, 1,−1} representing linear combinations that have to be non-zero. Note that if an element of the set C
is the opposite of an other, it does not bring further constraint and can thus be safely discarded from the
set.

The use of a set in the implementation at this point of the algorithm allows to remove a lot of duplicate
constraints and to simplify the next step. Then, the problem reduces to solving a “linear system of inequalities”
in the ring Zp: 

c
(1)
1 · d1 + · · ·+ c

(1)
l · dl ̸= 0 mod p

c
(2)
1 · d1 + · · ·+ c

(2)
l · dl ̸= 0 mod p

...

with c
(j)
i ∈ {0,±1}

After filtering, we pack all the elements of C in ℓ matrices {Ci}1≤i≤ℓ (each row being a linear combination),
where the matrix Ci packs all the constraints involving only the i first inputs (i.e. all the coefficients of column
index greater than i are zeros).

We then perform a recursive search (Algorithm 1), affecting at each step of depth i a possible value di for
the i-th input. To do so, we call Algorithm 2 to construct the set of all possible values complying with the
constraints of the matrix Ci and the previously set values for the preceding inputs. If we reach a dead-end,
we backtrack by deleting the preceding input and assigning it the next possible value. Algorithms 1 and 2
formalize this idea: Algorithm 1 is a basic recursive backtracking algorithm using calls to the set construction
function (Algorithm 2) to get the possibilities for the next value of d. The latter, when called at depth j+1,
takes as input the j values already computed at higher depth for d and the matrix of constraints Cj+1. Each
line of Cj+1 creates a (potentially duplicate) forbidden value for dj+1, these values are all computed and the
complement of this set in Zp is returned by the algorithm (i.e. the set for possible values for dj+1 at this
point of the search).

Theorem 13. Running Algorithm 1 with increasing values of p ensures that the first solution d found is
optimal for the function f , i.e. the solution works and its associated p is the smallest as possible.

Optimizations: Several optimizations are possible to improve the performances of the search. First, in Algo-
rithm 2, one can check the size of the set S̄ at each iteration and stop as soon as the size of the set is p. Such
a set means that a dead-end has been reached and that no value will be returned by the function. Then,
one can leverage symmetries existing in the table but also in the function. For example, if we consider the
function f : (x, y) −→ x⊕ y, the two variables x and y have symmetric roles. Thus, if the pair of encodings
(Ex, Ey) is valid, then the pair (Ey, Ex) is valid as well. As a consequence, one can arbitrarily set dx ≤ dy and
removing half the possibilities for (x, y).

Development of an heuristic: This algorithm of the previous section is deterministic and finds any existing
set of encodings compliant with the function f . Nevertheless, it is not suitable for big functions for several
reasons. First, the complexity of the algorithm is directly correlated with the number ℓ of inputs, and for big
functions, higher values for p are required, which makes the growth of computation even worse. Moreover,
the right value for p is not known a priori, so we have to run the full algorithm for each value of p until we
find one that works. For these reasons, we might prefer an efficient heuristic over the previous algorithm in
some contexts. In Section 4.4, we define such a heuristic which allows to drastically improve the performance
by executing directly the algorithm with realistic values for p.
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Algorithm 1 Recursive function search that adds an element to the vector d

Require:
d := (di)1≤i≤j ▷ The vector of values for the inputs already computed
{Ci|i ∈ {0, . . . , ℓ− 1}} ▷ The matrices of constraints, pre-computed
p ∈ N∗ ▷ the modulus of the input encodings
ℓ ∈ N∗ ▷ The target number of encodings required

Ensure: f is evaluable using the encodings d.
if j = ℓ then

return d ▷ Base case of recursion when a complete solution has been found
else
P ← get_possible_values(d, Cj+1, p) ▷ Retrieving the set of

possible values for dk.
for x ∈ P do

d← (d||x) ▷ Affecting one of the possible value to dk
dsol ← search(d, C, p, l) ▷ Recursively calling the algorithm
if dsol ̸= ⊥ then

return dsol ▷ If a final solution has been found,
propagating it to the higher level

else
d← d[: j + 1] ▷ If the previous call failed, we remove

the last value and try an other one.
end if

end for
return ⊥ ▷ If all of the possibilities have been tested

and none of them work, we need to backtrack
end if

Algorithm 2 Function get_possible_values that builds the set of possible values for the next slot of d
given the slots already filled in.
Require:

d := (di){1≤i≤j} ▷ The set of values for the inputs already computed. Note that d1 is fixed to 1
Cj+1 ▷ The matrix of constraints of this step, pre-computed
p ∈ N∗ ▷ the modulus of input encoding

Ensure: The set S contains only values suitable for the j + 1-th slot of d.
S̄ ← {} ▷ S̄ is the set of forbidden values for dj+1

for c ∈ Ck do
c̄← c[j + 1] ▷ We retrieve the (j + 1)th coefficient of the inequation c
S̄ ← S̄ ∪ {−c̄ ·

∑
k=0 jck · dk} ▷ We compute the value forbidden by c

end for
S ← Zp \ S̄
return S
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4.4 An Efficient Sieving Heuristic to Find Suitable Encodings

The algorithm of the previous section is deterministic and finds any existing set of encodings compliant with
the function f . Nevertheless, it is not suitable for big functions for several reasons. First, the complexity of
the algorithm is directly correlated with the number ℓ of inputs, and for big functions, higher values for p are
required, which makes the growth of computation even worse. Moreover, the right value for p is not known
a priori, so we have to run the full algorithm for each value of p until we find one that works. For these
reasons, we might prefer an efficient heuristic over the previous algorithm in some contexts. In the following,
we define such a heuristic which allows to drastically improve the performance by executing directly the
algorithm with realistic values for p.

Let us consider a function f : Bℓ 7→ B of matrix of constraints C = (C
(i)
j )1≤i≤nj

1≤j≤l

and its associated system

of linear inequalities: 
c
(1)
1 × d1 + c

(1)
2 × d2 + · · ·+ c

(1)
ℓ × dℓ ̸= 0 mod p

c
(2)
1 × d1 + c

(2)
2 × d2 + · · ·+ c

(2)
ℓ × dℓ ̸= 0 mod p

. . .

The principle is to sample random values in Z (with some large bound) and affect them to the dj ’s. If all
the corresponding values for all the Ci =

∑l
j=1 c

(i)
j × dj are not divisible by a value p, then the vector (dj

mod p | j ∈ {1, . . . , ℓ}) is a solution of the system of inequalities generated by C.
To reduce the amount of samples required to find a solution, we want to avoid sampling trivially wrong

sets of dj ’s. For example, if all the dj ’s are themselves divisible by p, then the Ci’s will all be divisible as
well. To tackle this problem, we perform the sampling across prime numbers in Z.

Algorithm 3 Sample a solution d in Z for a function f and returns a possible value for p.
Require:
{Ci}1≤i≤n ▷ The lines of the matrix of constraints C of the function f
P ▷ The sets of possible values for p to be tested
D ▷ The sets of possible values in Z to assign to the di’s. All these elements are big primes

Ensure: f is possible to evaluate using a modulus greater or equal than p.
d

$← D ▷ Sample random prime values in Z and assign it to d = (d1, . . . , dl)
r = C × d ▷ r is the right member of the system
for p ∈ P do

if 0 ∈ [r]p then ▷ If p divides one of the coordinates of r
P ← P \ {p} ▷ This value of p is incorrect

end if
end for
if | P |> 0 then

return min(P ) ▷ Returns the smallest possible value for p, if any.
end if

Running this algorithm several times and keeping the smallest returned value for p, one gets an upper
bound on the minimum p required to evaluate a function with our framework. Note that, on the contrary of
the deterministic search algorithm, this heuristic does not require a prime p.

Example: Let us consider the s-box of the block cipher ASCON. We study this s-box in more details and
provide an exact optimized solution for its homomorphic evaluation in Section 7.4. Here, we apply Algorithm
3 on the five functions generating the five output bits and monitor the results until we gather N = 10000
non-zero possible values for p.

The figure 4a shows the repartition of the returned values of p by the algorithm during these N runs on
the first subfunction. The optimal value of p found by the deterministic approach of Section 4.3 is 17 so the
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upper bound 19 is pretty close, despite being rarely found by the algorithm. Also, the figure 4b shows 21
(the second best solution found by the sieving) is almost instantly found by the algorithm.

(a) The outputs of 10000 runs of the Algorithm 3 for the
first subfunction of the Ascon s-box

(b) Number of iterations required to get a solution for a
given value of p

In the process of finding the smallest p possible and a correct vector of p-encoding to evaluate a function
f , this heuristic is really efficient to get a tight upper bound on the value of p.

5 Scaling our Approach to any Boolean Circuit

The new method we introduced gives good results for simple functions but suffers the following limitations:

1. For a Boolean function with a high number of inputs, the search algorithm may be very time-consuming.
2. Some functions simply do not have any solution for acceptable values for p (p < 32 for example) and

thus are not evaluable in one single bootstrapping.

As a consequence, we need a solution to extend our framework to these cases. In this section, we propose
a strategy to leverage the circuit representation of a “tough” function f to find a strategy of homomorphic
evaluation with as few bootstrappings as possible.

5.1 Graph of Subcircuits

Let f : Bℓ −→ B be a Boolean function, and let F be a Boolean circuit representing f . A few preliminaries
about Boolean circuits can be found in Section 2.6. Let us describe the layout of the circuit F . It has l input
wires, denoted by {yj}1≤j≤ℓ, and the output wire is denoted by z. The intermediary wires are denoted by
{tj}1≤j≤θ. The Boolean operation gates are of fan-out 1. We introduce a copy gate which takes one wire as
input and simply outputs k > 1 copies of the input.

Our goal is to split the circuit into a directed acyclic graph G, whose vertexes are subcircuits {F1, . . . ,Fk}
and whose edges connect the outputs of a subcircuit with the input of another. Each subcircuit Fi represents
a subfunction fi : Bli 7→ B that is evaluable in one single bootstrapping with our framework.

We use the same notations to refer to the elements of a subcircuit Fi and we index them with i. The
output of Fi is denoted by z(i) and its inputs by {y(i)j }1≤j≤ℓ and so on.

The graph is valid for f with respect to modulus p if the following properties are satisfied:
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– Each subcircuit Fi has only one output z(i).
– For a subcircuit Fi, all its inputs are either inputs of the whole circuit or outputs of other subcircuits of

the graph. We can write this property as:

{y(i)j }1≤j≤l(i) ⊂
(
{yj}1≤j≤ℓ ∪ {z(j)}1≤j<i

)
Thus, the indexing of the Fi’s respects the topological order of the graph, i.e. no gates of Fi has a child
in any of the Fj , with j < i.

– All the Boolean functions fi represented by the subcircuits Fi are evaluable in a single bootstrapping
with modulus p with our proposed method.

– The last subcircuit Fc of the graph has z (the output of the main circuit) for output: z(c) = z.

To homomorphically evaluate the function f , we evaluate each subcircuits with one bootstrapping for
each of them and get the final result. In order to reduce the cost of evaluation for a given p, the goal is hence to
find the smallest valid graph possible in terms of number of subcircuits. Taking a greater value of p produces
a different graph that may be shorter (as subcricuits might be larger), but the timings of bootstrapping in
this graph might on the other hand be greater. One can therefore run the search for different values of p and
keep the most efficient setup among the possible graphs (which might depend on the target platform).

5.2 Heuristics to Find a Small Graph

Finding such a graph can be done by exhaustively evaluating all the possible subcircuits with our method
introduced in Section 4, and then find the smallest valid graph. However it is not really practical to evaluate
all the possible subcircuits, so we develop some heuristics to reduce the search space. Let us start by defining
a few bounds on the considered subcircuits, we will leave the other ones apart in our algorithm:

– The subcircuits have at most B inputs (∀i, l(i) < B). The purpose of this bound is to limit the running
time of Algorithm 1. In practice we take B = 10.

– The subcircuits are evaluable with one single bootstrapping with a maximum value pmax. This value
ensures a bootstrapping with a reasonable timing. If the search algorithm fails for pmax, the subcircuit
is dropped without trying to extend p. In practice, we take pmax = 31.

It could occur that several subcircuits share a common input, possibly encoded with different p-encodings
for their homomorphic evaluation with our method. In practice this is not a problem since thanks to Lemma
12 one can change encoding under the same p “for free”. This justifies the fact that we can search for solution
for each fi independently and without caring about how they are connected.

In order to decompose our Boolean circuit into a graph satisfying the above property for a modulus p, we
would want to exhaustively search all the subcircuits of F compliant with the bounds we introduced earlier.
However, all subcircuits are not as worth evaluating as the others. In particular a wire incoming a copy gate
is particularly worth evaluating because is costs one bootstrapping but produce several inputs for the next
subcircuits. Thus, our heuristic only considers the evaluation of subcircuits whose outputs incoming a copy
gate, or the output z of the main graph F .

Our heuristic works as follows:

1. For each of these outputs zi, we exhaustively construct a set F̂zi that gathers all the evaluable subcircuits
whose output is zi and whose inputs are from previous copy gates. (Calling a subcircuit surrounded by
copy gates an “atomic subcircuit”, the set F̂zi is composed of all the merges of atomic subcircuits that
respect the global circuit wiring and have zi as output). We then filter out the subcircuits of F̂zi that do
not comply with the bounds introduced at the beginning of the section or that are not evaluable with
the input modulus p (we use Algorithm 1 to decide this). If after filtering, the set F̂zi is empty, then our
heuristic fails for the input value of p. At the end of this first phase, we have a set F̂ containing all the
candidate subcircuits that can be a node of a valid graph.
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2. Now we want to construct the smallest valid graph evaluating F using subcircuits from F̂ . While finding
the smallest graph is hard, constructing any valid graph is easy. As a consequence, our strategy to find
a small graph is to randomly create a lot of valid graphs and to take the smallest one. The procedure to
create a valid graph is the following: we start from the output z and we randomly draw a subcircuit Fz

from F̂ whose output is z. The inputs of Fz can be sorted into two categories: the ones that are inputs of
the whole circuit F and the others, that are necessarily internal wires of F . For each one of these latter
wires w, we repeat the procedure, i.e. we draw a subcircuit Fw from F̂ whose output is w, and so on.
When we have reached all the input wires of F , we get a valid graph G. This second step is run a large
amount of times (the number of trials is a parameter of the method), and the smallest graph, i.e. the
one with the fewest subcircuits, is returned.

5.3 Parallelization of the Execution of the Graph

Once we have our graph G, we can identify its nL layers. Formally, they are defined as:

Definition 14. A layer L of a graph G is a set of subcircuit {Fα, . . . ,Fω} of G that verifies: ∀Fi,Fj ∈
L,Fi is not an ancestor node of Fj .

By construction, all the subcircuits belonging to the same layer can be evaluated in parallel. This reduces
the number of bootstrapping steps from k (the number of subcircuits in the graph G) to nL (the number
of layers). Our graph-finding heuristic can be tweaked to select the graph with minimum number of layers
instead of minimum number of subcircuits to optimize parallelization.

6 Adaptation of TFHE and the tfhe-rs Library

From a high level point of view, our technique can be seen as adding an additional layer of abstraction on
top of TFHE. However things are not that simple: we had to tweak the bootstrapping procedure to make it
work with odd values of p. Moreover, we implemented our framework using the tfhe-rs library [27] written
in Rust. The following section covers the work of adaptation of the cryptographic scheme. The adaptation
of the library is treated in Section 6.3.

6.1 Dealing with the Negacyclicity Problem for an Odd p

In the following, we explain the negacyclicity problem and how we intend to solve it. To do so, we need to
dig into the details of the BlindRotation step of the bootstrapping, that we have introduced in Section 2.5.

Let v(X) be a polynomial of the ring Zq,N [X]/(XN +1), denoted by v(X) =
∑N−1

k=0 vkX
k. Observe that

a multiplication by X in this ring “rotates” the coefficients of the polynomial:

X · v(X) = −vN−1 + v0 ·X · · ·+ vN−2X
N−1 .

In TFHE, the polynomial multiplication in the blind rotation is actually done by X−µ̃, with µ̃ =
⌊
µ·2N

q

⌉
.

This value lives in {0, . . . , 2N − 1}. This leads to two problems:

– A coefficient vj can be brought in first place by two differents rotations: the one induced by the polynomial
multiplication by X [−j]2N and the one by X [−j+N ]2N .

– Each time a coefficient goes last to first, it gets negated (because XN = −1 in the ring). So actually, the
multiplication by X [−j]2N yields correctly vj , but the one by X [−j+N ]2N yields −vj .

However, these problems are not equally serious for even and odd values of p. Recall that µ = m+e ∈ Zq,
with e sampled from a small centered Gaussian. The use of a small error makes that µ does not take all
the values of Zq with the same probability: in particular, the densest parts in terms of probability over Zq
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Fig. 5: Distribution of the values of µ across Zq for p = 6 and p = 5: the colored parts show the dense spots
where the value has a high probability to lie in. The width of these sectors depends on σ (the standard
deviation of the error distribution χ of TFHE). Note that this repartition looks the same for µ̃ in Z2N .

are the one close to the “unscrambled” values of m, namely
{

kq
p | k ∈ Zp

}
(in the following, we ignore the

rounding operation necessary if q is not divisible by p). We illustrate this distribution on Figure 5. We call
these sections of the torus the dense spots.

When we transpose these dense spots into Z2N , they become the sectors close to
{

k·2N
p | k ∈ Zp

}
(we

keep ignoring the rounding). Le us note that the noises in Zq and Z2N are fundamentally different: the
former is the one added at encryption that may have grew during the homomorphic computations, and
the latter is called “drift” and is caused by the accumulation of the rounding errors on each coefficient of
the ciphertext during the modulus switching (but this difference in nature does not impact our purpose).
Let k ∈ Zp, the multiplication X− k·2N

p · v(X) yields the same degree-zero coefficient as the multiplication
X[− k·2N

p +N]
2N · v(X), up to the minus sign. For the sake of clarity, we write the exponent of the latter in a

slightly different manner: [
−k · 2N

p
+N

]
2N

=

[
(−k + p

2 ) · 2N
p

]
2N

This is where the parity of p plays a part: if p is even, then
[
(−k+ p

2 )·2N
p

]
2N

is a dense spot as well. So, the
rotations by these two values will happen with high probability and they will both yield the same coefficient
v k·2N

p
(up to the minus sign for one of them). Thus, when evaluating a function f with a PBS, the calls f(k)

and f(k+ p
2 ) will produce the same output (one again, up to the minus sign), which is a collision constraining

the definition of f . On the other hand, let us consider an odd value to p. Then,
[
(−k+ p

2 )·2N
p

]
2N

is no longer

a dense spot, as it lies exactly halfway between the two dense spots
[
(−k+ p−1

2 )·2N
p

]
2N

and
[
(−k+ p+1

2 )·2N
p

]
2N

.
As a consequence, collision never occurs. Figure 6 illustrates this phenomenon.

As a consequence, we select only odd values for p in our framework. The downside is that the acceptable
bound on the error level in the ciphertexts is tighter. We mentioned earlier in Section 2.3 that in the original
TFHE scheme the bound on error for correct decryption was e < q

2p . In the odd setup, this bound is divided
by 2, so we get e < q

4p . We will see in Section 6.4 how this change impacts the parametrization of the scheme.

Exception for p = 2: We just said that only odd values can be selected for p in our framework, however
p-encodings with even values of p exist as well: nonetheless they need to achieve the relaxed negacyclic-
ity property introduced in Definition 5. This restriction makes them basically useless, as using only odd
p-encodings is sufficient to evaluate all possible Boolean functions without having to bother with the nega-
cyclicity property. However, the case p = 2 is an exception: the valid 2-encodings are automatically negacyclic
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(a) With p even, the dense spots of each half of the torus
are aligned.

(b) With p odd, the dense spots face empty spots, close
to the bounds of the p-sectors.

Fig. 6

and allow the PBS-free evaluation of series of XOR operations. So it might be efficient to switch between 2-
encodings for XOR operations and p-encodings (with odd p) for non-linear Boolean functions. We make use
of this strategy in our implementation of the Keccak permutation in Section 7.3.

6.2 Construction of the Accumulator for an Odd p

The accumulator is the polynomial v(X) used in the BlindRotate step of the bootstrapping. In the Section
6.1, we showed how the values are spread over the torus after bootstrapping. To implement this, we need to
explicitly characterize this polynomial. In the following presentation, we neglect roundings to keep notations
light (as if p would divide N), or, equivalently, the division operator is assumed to include rounding.

Definition 15. If p is an odd modulus, and f : Zp 7→ Zp′ a function, then the accumulator v(X) ∈
ZN,q[X]/(XN + 1) has the form:

v(X) = X− N
2p ·

N/p−1∑
j=0

Xj ·

 p−1
2∑

i=0

f(i)Xi 2N
p +

p−1
2 −1∑
i=0

−f
(
i+

p+ 1

2

)
Xi 2N

p +N
p


In the following, we explain the structure of this accumulator. The polynomial has degree N and is

made of p distinct windows of width N
p . Each of these windows has constant coefficient value f(k), for k ∈

{0, . . . , p− 1}. For 0 ≤ α ≤ p−1
2 , the range of degrees whose coefficients are f(α) is

[
α 2N

p −
N
2p ; α 2N

p + N
2p

]
.

Now, for p+1
2 ≤ β ≤ p − 1, we can write β = α + p+1

2 , with 0 ≤ α < p−1
2 . This time, the range of spanned

degrees is
[
α 2N

p + N
2p ; (α+ 1) 2Np −

N
2p

]
. Thus, the values k ∈ {0, . . . , p − 1} spans the entire space [0;N)

without overlap. The values over p+1
2 gets negated by the negacyclicity, so the underlying coefficient is also

negated to compensate this effect. We illustrate this construction on Figure 7.

6.3 Concrete Implementations of p-Encodings and Homomorphic Functions in tfhe-rs

To implement our framework, we relied on the tfhe-rs library [27]. Here is a list of the major changes we
applied to the code:
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Fig. 7: Illustration of the construction of the accumulator. On top is the ring Z2N splitted in windows. Below
is a representation of the polynomial v, with its version once rotated by a multiplication by XN .

Addition of the notion of p-encoding: An encoding E is simply implemented with a structure Encoding
storing two HashSets and the modulus p. The HashSets represent both sets E(0) and E(1). When creating
an Encoding, the software checks whether the two underlying sets are disjoint or not. Moreover, the operation
of encryption and decryption are modified as well. The signatures change from:

encrypt(Boolean, ClientKey) -> Ciphertext

to:
encrypt(Boolean, ClientKey, Encoding) -> Ciphertext

(same for decrypt). The functions also perform the mapping B 7→ Zp before encryption and the other way
around after decryption.

Definition of the new structure HomFunc: According to the evaluation strategy we introduced in Section 3.2,
we wrote a new structure HomFunc, associated to a Boolean function f : Bℓ 7→ B, carrying:

– A list of the Encoding objects for the inputs: Ein = (E1, . . . , El), with the input modulus pin they encoded
on.

– The output Encoding object Eout, with the output modulus pout it is encoded on.
– The clear function f .

When such a structure is constructed, it self-checks whether f(Ein) is valid. Then, when provided ℓ Ciphertexts
objects encoded under their respective p-encoding, it executes the homomorphic sum and the PBS and
outputs the results encoded under Eout. Some utilitary functions performing encoding-switching are also
available, allowing the chaining of several HomFunc.

Implementation of the accumulator: The procedure of bootstrapping of tfhe-rs is slightly modified to
support the new version of the accumulator we introduced in Section 6.2.

Parsing of graphs: We implemented a Python script that produces graphs to represent more complex func-
tions that requires several PBS, as described in Section 5. These graphs are stored with a comprehensive file
format and our Rust implementation has a module of parsing allowing to load these graphs and automatically
generate the corresponding graph of HomFunc.
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6.4 Crafting of Parameters

The instances of the TFHE scheme are defined by a set of parameters. These parameters should simultane-
ously ensure the security of the scheme and the correctness of the homomorphic computations. The security
of the LWE instances can be estimated with the lattice-estimator [1] that gathers all the known attacks
on lattice-based schemes and gives an estimation of their level of security. The correctness of the scheme de-
pends on the statistical variance of the noise during the computation, which should not exceed some critical
bound.

Here is a concrete overview of the different parameters at play in an instance of TFHE:

– n: the dimension of the LWE samples. Namely, the TLWE ciphertexts are vectors of length n+ 1.
– q: the modulus of the ring the encrypted values live on. In tfhe-rs those values are stored on u32 values,

making q = 232. We treat this as an immutable value.
– σ: the standard deviation of the Gaussian distribution of error in LWE samples.
– k: the dimension of the GLWE samples. Namely, the TRLWE samples are vectors of polynomial of length

k + 1. In practice, we consider only cases where k = 1 (actually making those RLWE samples).
– σ′: the standard deviation of the Gaussian distribution of error in GLWE samples.
– A few more parameters dimensioning some inner algorithms of the bootstrapping. A detailed description

and an analysis of their impact on performances and noise level can be found in [5]. In this work, they
are denoted as micro-parameters.

Following the work of [5], the tool [26] generating appropriate sets of parameters has been developed. It
takes as inputs the number of bits of precision (in our case, the number of bits of the modulus p) and the sum
of the squares of the coefficients whose ciphertexts are multiplied with. In our case, it is simply the 2-norm
of the vector d computed by the Algorithm 1, which we denote by ∥d∥. Our protocol to select parameters
suitable with our framework is to run the tool for the precision nb = ⌈log2(p)⌉+ 1 bits (where the extra bit
is added because the bound on tolerable error is divided by 2 compared to the original TFHE).

7 Application to Cryptographic Primitives

In this section, we apply our approach on some cryptographic primitives. For each primitive, we first explain
the regularization of the Boolean function, then the dimensioning of the cryptographic parameters, and finally
report the concrete performances of our implementation. We detailed all the timings of our experimentations
along with the sets of parameters we used in Section 7.6. The code of these experimentations can be found
at https://github.com/CryptoExperts/bpr-boolean-fhe.

For performance measurement, we implemented our framework in the library tfhe-rs [27] adapted as
discussed in Section 6 we and generated the sets of parameters thank to concrete-optimizer [26]. All
experiments have been carried out on a laptop with a 12th Gen Intel(R) Core(TM) i5-1245U CPU with 10
cores and a frequency of 4.4 GHz, and 16 GB of RAM.

7.1 SIMON Block Cipher

SIMON is a hardware-oriented block cipher developed in [3], which relies only on the following operations:
AND, rotation, XOR. It is a classical Feistel network for which the Feistel function consists in applying basic
operations on the branch, xoring the subkey and then xoring the result with the other branch as depicted
in the Figure 8. We use one ciphertext per bit so the rotation operation is essentially free. Note that the key
is considered as a plaintext, which does not change anything in the framework. In our implementation, we
considered a (128-128) instance of SIMON (i.e. the whole state and the key are of size 128).

The Boolean function to evaluate can be defined as

f(b0, b1, b2, b3, b4) = b0 · b1 ⊕ b2 ⊕ b3 ⊕ b4 .
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Fig. 8: One Feistel round of SIMON. Si denotes the left circular shift by i bits. This figure is extracted from
the original paper [3].

Using Algorithm 1, we found the smallest possible p (p = 9) and the following 9-encodings to evaluate
each bit of the Feistel function with one single bootstrapping (i.e. totalling 64 PBS per round).

E0 = E1 =

{
0 7→ {0}
1 7→ {1}

and E2 = E3 = E4 =

{
0 7→ {0}
1 7→ {2}

with p = 9.

The sum of these p-encodings yields the output encoding:

Eout =

{
0 7→ {0, 1, 4, 5, 8}
1 7→ {2, 3, 6, 7}

with p = 9

which is valid for f . After the PBS, all the bits of the state are encrypted under the encoding E0.
To perform a Feistel round on a state of size k, the function f is applied in parallel k/2 times. Note that

one bit may be used in several evaluation as b0, b1 and b2. So we sometimes have to switch from E0 to E1 by
a simple external multiplication by 2, which is negligible in terms of performances.

Using the concrete-optimizer [26], we crafted a set of parameters suitable for this modulus. On our
machine, one PBS with such parameters takes about 11 ms. The theoretical timings achieved on one full block
without any parallelization is 47 seconds (68 rounds × 64 bits × 11 ms) which we confirmed experimentally.

Nonetheless, this setting is intrinsically parallelizable: the 64 bootstrappings of each round can be per-
formed in parallel. We implemented parallelization using the module Rayon of Rust, which made the total
timings drop to 13 seconds on our machine.

Compared to [4] that implemented the same block cipher on an equivalent hardware with parallelism,
our implementation is about 10 times faster. Table 5 shows the comparison.

7.2 The Trivium Stream Cipher

Trivium [9] is a stream cipher that uses a circular state. At each round, the bits are rotated within the state,
except for three of them that are refreshed using the Boolean function of Section 7.1. The outer stream is
generated by xoring three bits of the state each round once a “warming-up” phase is achieved.

For each generated key bit, it requires performing this function three times and aggregating five XOR
operations in the center. Our strategy is to evaluate the refreshing function three times per round with one
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PBS for each of them, then get the result in Z2 and chain the five XOR operations to get the output. The
Figure 9 illustrates the layout of the cipher.

Fig. 9: The trivium stream cipher. Figure extracted from [9]

In [2], the authors implement Trivium using the original tfhe-rs library, with using two bits of message
and 2 bits of carry for a total of 4 significative bits out of the 32 of a ciphertext component. They call this
mode the shortint mode. The use-case they target is transciphering.

To compare our implementation with the one of [2], timings are not a good metric as in their work they
are provided on a massive AWS instance with a significant amount of parallelism. A better metric is to count
the number of PBS and compare the parameter sets.

We reproduced the PBS operation with their parameter set on our machine and then simply estimated
the timings of one round of Trivium with their approach with no parallelism. The results are summed up in
Table 1. Note that in our implementation we do not refresh the output bits with a PBS after the chain of
XOR, because in the use-case of transciphering one more XOR has to be performed with the message. We take
advantage of this and move the last PBS in the transciphering phase.

Table 1: Comparision of timings of one round of Trivium between our work and [2]
Instance Timing PBS Number of PBS per round Estimated timings

[2] 6.6 7 46.2 ms
Our work 11 3 33 ms

7.3 Keccak Permutation

Keccak is a hash function standardized by NIST under the name SHA-3 [23]. It is a sponge function, whose
transformation is called the Keccak permutation. It consists of five sub-functions: θ, ρ, π, χ, and ι.
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Let us recall that our approach encrypts each bit in one TFHE ciphertext. Let us explain the stategies
of homomorphization of these sub-functions:

– ρ and π simply reorder the bits within the state, so they are not impacted by the homomorphization.
– θ is just a serie of XOR operations, so it can be performed with a serie of homomorphic additions and

without any PBS provided that the input ciphertexts are defined over Zp with p = 2.
– χ is the only non-linear function of the permutation, and has to be performed with a PBS. It is the

transformation that applies the function defined by

fχ(a, b, c) = a⊕ c⊕ b&c

to get each bit of the output state.
– Finally, ι performs a simple xor with a constant, so it can be handled in a similar manner that θ. The

difference is that the constant is in clear this time.

The p-encodings we use are:

– E& =

{
0 7→ {1}
1 7→ {2}

with p& = 3 to evaluate the & operator in the alternative formula of χ.

– E⊕ =

{
0 7→ {0}
1 7→ {1}

with p⊕ = 2 for the other operations of ⊕.

Our strategy of homomorphic evaluation of the Keccak permutation is as follows:

1. Encrypt the input state under the encoding E⊕.
2. Evaluate the subfuctions θ, ρ, and π.
3. Change the encoding from E⊕ to E& with one PBS per bit of the state.
4. Evaluate the AND operator of the subfunction χ and change the encoding from E& to E⊕ with one PBS

per bit of the state.
5. Evaluate the remaining ⊕ operators of χ and the ι subfunctions, then restart from Step 1. for the next

loop iteration.

While converting ciphertexts from E& to E⊕ is trivial with a PBS, the other way around is more tricky
because p⊕ is even. Because of the negacyclicity problem, to be able to perform the encoding switching
E& −→ E⊕, one needs E&(0) = [−E&(1)]p&

. With p& = 3, the only candidate is the encoding E& defined
above.

As a result, each round takes two programmable bootstrappings per bit. An implementation with our
tweaked version of tfhe-rs takes 22 seconds (without any parallelism) on our hardware to perform one
Keccak round on a state of 1600 bits in spite of the two PBS required per round and per bit. Those timings
are possible because of the small values of p allowing the use of small sets of parameters, which speeds up
the computation. A full run of Keccak counting 24 rounds, we can then estimate the timings to 8.8 minutes.
For the sake of simplicity, we use the same set of parameters for both types of PBS.

7.4 Ascon

Ascon [17] is a lightweight block cipher algorithm that was designed to provide efficient and secure encryption
and authentication for a wide range of applications, particularly in resource-constrained environments such
as embedded systems and IoT devices. The name “Ascon” stands for “Authenticated encryption for Small
Constrained Devices”. We implemented its s-box, whose circuit is represented on Figure 10.

This layout is a bit different from the others: we focus on the 5-bit to 5-bit s-box and we denote f0, . . . , f4
the five functions of B5 7→ B that generate the 5 output bits x0, . . . , x4.

These functions, once analyzed by the algorithm, can be computed in one single bootstrapping each, but
for different values of p (respectively p = 17, 7, 7, 15, 11 that are the smallest possible values). To make things
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Fig. 10: The 5-bits look-up table of ASCON. Figure extracted from [17]

simpler, we generated only encodings with p = 17, making the implementation more straightforward with a
little loss of performances. For each subfunction fi, 5 canonical 17-encodings (Ei,0, . . . , Ei,4) of form

Ei,j =

{
0 7→ {0}
1 7→ {di,j}

are computed. The results are displayed in the Table 2. Note the zero values in some cases, they show that
the variable is not used in the subfunction.

subfunction di,0 di,1 di,2 di,3 di,4
f0 1 2 3 7 14

f1 1 2 2 2 4

f2 1 2 2 4 0

f3 1 1 5 5 3

f4 1 2 0 4 3

Table 2: Parameters di,j for Ascon, with p = 17 for every subfunction.

Using this solution, the s-box is evaluated in 92 ms. Note that the 5 different PBS described in Table
2 have different norms of vector d so they may have a different set of parameters for each. For the sake of
simplicity, we use the more restrictive one for the 5. Estimating the timings of a full run of Ascon is not trivial
because it depends a lot of the parameters. To give a rough idea, in hashing mode, 64 s-boxes are required
per round, with 12 rounds recommended. The outputs of the s-boxes are in Z2 to allow the evaluation of
the linear layer of Ascon. At the end of this linear layer, the encoding of each of the 320 bits of the state
must be switched back to Z17 with a PBS. To do so, we use the same set of parameters as for the encoding
switching in Step 3 of the Keccak evaluation in Section 7.3.

This gives a rough estimation of 92.16 seconds for one Ascon hash.

7.5 AES

AES [16], or Advanced Encryption Standard, stands as one of the most widely used and trusted encryption
algorithms in the world of computer security. Its standardization occured in 2001 when it was adopted by
NIST to replace the obsolete DES (Data Encryption Standard). Implementing this primitive in FHE is known
as particularly tricky and only few attempts have been made [19], [15], [25].

A round of AES can be decomposed into 4 steps:
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1. SubBytes: a non-linear substitution step where each byte is replaced by another according to a lookup
table. This step concentrates all the challenge for homomorphization, the other one being trivial with
our framework.

2. ShiftRows: a transposition step where the last three rows of the state are shifted cyclically a certain
number of times. As our framework encrypts each bit in a distinct ciphertext, this step is for free.

3. MixColumns: a linear mixing operation which operates on the columns of the state, combining the four
bytes in each column. This step can be implemented using only XOR operations and bit-shiftings. The
former are trivial with our framework using p = 2 and the latter are for free as the ones in the previous
step.

4. AddRoundKey: each byte of the state is combined with a byte of the key from the key schedule using a
XOR. Still using p = 2, this can be carried out easily.

Thus, we focus here on the implementation of the s-box of the SubBytes step, also known as the Rjindael
s-box. This s-box takes 8 bits in input and yields 8 bits of output. It is defined by two substeps: an inversion
in GF (28) followed by an affine transformation. While the latter is trivial to compute with TFHE, the former
is much trickier and thus we did not take advantage of this representation.

Using our framework, the obvious-looking solution is to split the full s-box B8 7→ B8 into 8 subfunctions
f0, . . . , f7 : B8 7→ B. We could then give them to the search algorithm of Section 4. If this would work, we
could evaluate the Rjindael s-box in 8 PBS. Unfortunately, the algorithm does not converge for values of p
“reasonable”.

We thus need to leverage an alternative representation of the s-box. A well known efficient Boolean
representation of the AES s-box is given in [6]. In this work, authors applied logic minimization techniques
to produce an optimized Boolean circuit (in terms of number of gates) of the s-box splitted in 3 phases:

1. A purely linear layer mapping the 8 input bits onto 22 bits.
2. A middle non-linear layer, represented by a circuit with exclusively AND and XOR logic gates, mapping

the previous 22 bits onto 18 bits.
3. A final purely linear layer mapping the 18 bits on the 8 output bits of the s-box.

In the following, we focus on the implementation of the second step, the two others being trivial with
TFHE. Of course, we cannot split the layer into 18 subfunctions f : B22 −→ B and run our algorithm of
search on every single one of them, as the runtime would explode due to their high arity. Instead, we analyze
the Boolean circuit and apply the approach introduced in Section 5.

Homomorphization of the S-box. We start from the circuit representation given in the work of [6]. This
set of instructions is compiled into a circuit A, compliant with the definitions introduced in Section 5.1.

Each of the 18 outputs (z0, . . . , z17) are isolated from each other and the circuits (A0, . . . ,A17) generating
them are separated. Of course, some intermediary values are used in several circuits, but for now we ignore
this and we considerate the 18 problems as independent from each other.

Then, for each circuit Ai, we create the sets Ĝi containing respectively all the valid subcircuits of Ai, as
introduced in Section 5.1. As the circuits are intricated with each others, these sets share a large numbers
of subcircuits in common, so they are computed all together at the same time. A small graph in each set is
computed using the strategy developed in Section 5.2.

Finally we merge all the graphs and run everything for a total of 36 PBS to evaluate the full circuit A,
with a global p = 11. This allows a relatively quick bootstrapping.

Recall that the SubBytes step is made of 16 s-boxes. So, we can extrapolate that one execution of the
SubBytes step would take 16 × 36 = 576 PBS. The outputs of this step would be encoded with p = 2,
allowing the XOR operations of the following steps to be performed efficiently. Namely, MixColumns can be
reduced to a serie of XOR and bit shifts, and AddRoundKey is basically one XOR per bit of the state. We also
need to take into account the encoding switching to come back to p = 11 before each SubBytes. It costs
one PBS per bit, so 128 PBS. Finally, this gives a total of 704 PBS per round. For AES-128, which takes 10
rounds, we estimate a full run to 7040 PBS.
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Performances. In terms of performances, with the set of parameters we selected, a PBS takes 30 ms on our
hardware. We implemented the non-linear layer of the SubBytes steps (that concentrates the majority of the
PBS) and an evaluation takes 1.1 second (which is consistent with the 36 PBS) without any parallelization.
To get the estimated runtime for a full AES-128, we will need 7040 × 0.030 = 211 seconds without any
parallelization. We note that the 16 evaluations of s-boxes in SubBytes can be parallelized, as well as each of
the 128 encoding switchings before SubBytes. Moreover, within each s-box, we can locally apply our strategy
of parallelization introduced in Section 5.3. On our machine, this intra s-box parallelization makes the time
of evaluation of the 8-bits s-box drop from 1.1 s to 450 ms.

We compare favorably to previous works of [19] and [15], who report timings of respectively 18 minutes
and 5 minutes for a full AES. The more recent work of [25], also proposes an implementation of AES-128
using a completely different technique called the tree-bootstrapping. On a similar experimental setup, they
claim an execution in 270s that we slightly beat with our 211s run.

7.6 Summary of Applications

We summarize hereafter the parameters and performances of our implementations of cryptographic primi-
tives. Table 3 gives an overview of the TFHE parameters used for each value of p in these examples. They
all meet the required level of security of 2128. It also shows the associated p and the norm of d, denoted by
Nd (that corresponds to Nd = ⌈log2(∥d∥)⌉) that are the input of the parameter selection algorithm. Table 4
shows the complexity of the cryptographic primitives expressed in PBS. Finally, Table 5 shows the concrete
performance achieved by our implementations on our machine, as well as the comparison with other works.
For more information about an implementation or a comparison, the reader is referred to the related section.

Identification Constraints TFHE parameters Timings
Ref. Sections p Nd n k N σLWE σGLWE Bg ℓg BKS tKS PBS
PBS(9,2) 7.1, 7.2 9 2 774 1 2048 2.15e−6 2.17e−19 23 1 4 3 11 ms
PBS(3,2) 7.3 3 2 668 6 256 2.04e−5 3.45e−12 18 1 4 3 7 ms
PBS(2,1) 7.3, 7.4 3 2 668 6 256 2.04e−5 3.45e−12 18 1 4 3 7 ms
PBS(17,5) 7.4 17 5 768 1 2048 7.07e−6 2.94e−16 15 2 5 3 17 ms
PBS(11,6) 7.5 11 6 807 1 4096 2.15e−6 2.16e−19 22 1 5 3 30 ms

Table 3: Sets of TFHE parameters for each PBS used in our implementations, with the constraints used to
generate the sets, and the performances. Each setting is referenced as PBS(p,ℓ) with ℓ = ⌈log2(∥d∥)⌉.

Section Primitive Complexity in PBS

7.1 One round of SIMON-128 64 PBS(9,2)

One full run of SIMON-128 4352 PBS(9,2)

7.2 One round of Trivium 3 PBS(9,2)

One warm-up phase of Trivium (∗) 3456 PBS(9,2)

7.3 One round of Keccak 1600 PBS(3,2) + 1600 PBS(2,1)

A full Keccak permutation (∗) 38400 PBS(3,2) + 38400 PBS(2,1)

7.4 One evaluation of Ascon’s s-box 5 PBS(17,5)

One full Ascon hashing run (∗) 3840 PBS(17,5) + 3840PBS(2,1)

7.5 One evaluation of the AES s-box 36 PBS(11,6)

A full run of AES-128 (∗) 5760 PBS(11,6) + 1280 PBS(2,1)

Table 4: Complexity of the different primitives we implemented with respect to the PBS of Table 3. The
primitives indicated by a (∗) are estimations while the others have been fully implemented.

28



Primitive Section or Other work Performances

One full run of SIMON [4] 128 s
Our work (Section 7.1) 13 s

One warm-up phase of Trivium (*) [2] (estimation on our machine) 53 s
Our work (Section 7.2) 38 s

One Full Keccak permutation (∗) Our work (Section 7.3) 8.8 min
One Ascon hashing (∗) Our work (Section 7.4) 92 s

One full evaluation of AES-128 (∗)

[19] 18 min
[15] 5 min
[25] 270 s

Our work (Section 7.5) 211 s

Table 5: Timings of evaluation of full primitives, and comparison with previous works when they exist. Like
on Table 4, a star (∗) is added in the cells if the timings is not obtained from a full implementation but
estimated from an implemented building block.

8 Conclusion

In this paper, we have proposed a new strategy to evaluate Boolean functions homomorphically using TFHE.
Our technique relies on constructing an intermediate homomorphic layer between the Boolean space B of
the plaintexts and the torus Tq on which ciphertexts live. We introduced a formal model for our technique
and detailed algorithms to efficiently construct such layers. We further extended our strategy to the case
of arbitrary Boolean circuits by developing some heuristic to decompose a circuit into Boolean functions
efficiently evaluable with our framework. We applied our framework to various cryptographic primitives, in
particular to the challenging AES cipher. All the reported implementations outperform the state of the art.

Future work may focus on a thinner analysis of the noise behaviour to develop a better protocol to select
parameters. The search algorithm can probably be enhanced to scale better with the arity of the input
function. Finally, more work on the efficient decomposition of Boolean circuits would be welcome: especially
if we want to evaluate deeper circuits.
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