
Towards Optimally Small Smoothness Bounds
for Cryptographic-Sized Smooth Twins and

their Isogeny-based Applications

Bruno Sterner

Inria and Laboratoire d’Informatique de l’École polytechnique (LIX), Institut
Polytechnique de Paris, Palaiseau, France

bruno-sydney.sterner@inria.fr

Abstract. We give a new approach for finding large smooth twins.
Those twins whose sum is a prime are of interest in the parameter setup
of certain isogeny-based cryptosystems such as SQIsign. The approach
to find such twins is to find two polynomials in Q[x] that split into a
product of small degree factors and differ by 1. Then evaluate them on
a particular smooth integer. This was first explored by Costello, Meyer
and Naehrig at EUROCRYPT’21 using polynomials that split completely
into linear factors which were found using Diophantine number theory.
The polynomials used in this work split into mostly linear factors with
the exception of a few quadratic factors. Some of these linear factors
are repeated and so the overall smoothness probability is either better
or comparable to that of the prior polynomials. We use these polynomi-
als to search for large smooth twins whose sum is prime. In particular,
the smoothness bounds of the 384 and 512-bit twins that we find are
significantly smaller than those found in EUROCRYPT’21.

Keywords: Post-quantum cryptography, isogeny-based cryptography,
twin smooth integers, extended Euclidean algorithm, SQIsign.

1 Introduction

Efficient instances of many new isogeny-based cryptosystems require a large
prime p such that p2 − 1 is either B-smooth or has a large B-smooth divi-
sor for some small B. Most notably, this includes the digital signature scheme
SQIsign [19] which was submitted to NIST’s recent call for alternative signa-
ture schemes [31,11] as part of their on-going effort to standardise post-quantum
cryptography [30]. By B-smooth, we mean that each prime divisor is at most B.

This condition on p ensures that supersingular curves over Fp2 and their
quadratic twists both have many rational points of small prime order, which
permits efficient isogeny computations1. The smoothness bound, B, of p2 − 1 or
its smooth divisor is the dominant factor in the performance of these cryptosys-
tems [4]. Hence finding parameters that minimise B is vitally important. Having

1 A priori, this needs Fp4 -rational points in order to make sense of the quadratic twist
but all computations can be done over Fp2 using standard techniques [13, §3].

said this, making B as small as possible is not feasible. This is due to the exis-
tence of a theoretical bound for how small B can be [29]. This paper addresses
the problem of finding large primes p that reduce the smoothness bound of p2−1
to something which is close to the theoretical optimum.

One can translate this problem of finding primes p with p2 − 1 being smooth
into the problem of finding smooth twins in the sense of the following definition.

Definition 1. We call a pair of consecutive integers (r, r + 1) B-smooth twins
if their product, r · (r + 1), is B-smooth and drop B from this definition when
it is polynomial in log2(r). We refer to a cryptographic-sized smooth twin if it
has at least 240-bits.

Numerous applications arise from finding smooth twins including the compu-
tation of logarithms of integers [22] and the ABC conjecture [12]. In the context
of this work, if their sum p = 2r+1 of a twin is a prime, then p2−1 = 4r(r+1) is
smooth and suitable for isogeny-based applications. Much like for the primes p,
there is a theoretical optimum for the smoothness bound of smooth twins. We
refer to an optimally small smoothness bound for twins of a certain size as the
minimal smoothness bound B such that B-smooth twins of that size exist.

Related work. Broadly speaking, the known techniques to find smooth twins
can be separated into two categories: constructive and probabilistic methods.
The constructive methods [29,12] fix a smoothness boundB and find all or almost
all B-smooth twins, including those with an optimally small B. The probabilistic
methods [13,14] search for twins of a fixed size and guarantee finding them up
to some probability depending on B. Thus expecting to find B-smooth twins for
an optimally small B is not realistic. Nevertheless, if B is not too small, one can
find such twins when looking over a large search space.

Constructive methods. There are two known approaches that enumerate all or
almost all B-smooth twins. One requires solving exponentially many Pell equa-
tions [29,22,8] with respect to B, and the other is a recursive algorithm referred
to as CHM [12]. While these algorithms tackle the task of finding twins with
an optimally small smoothness bound, they become computationally infeasible
when finding twins which are at least 240-bits. The analysis in [7, §4.1] sug-
gests that the optimally smallest smoothness bound for a 256-bit twin is around
B ≈ 5000 which is much too large even with current computing resources. The
largest twin found using these methods whose sum is prime is a 127-bit prime p
such that p2 − 1 is 210-smooth [6] and was found using the CHM algorithm.

Probabilistic methods. To counter this hindrance from the constructive methods,
one resorts to the probabilistic methods to find such cryptographic-sized twins.
This sacrificies the optimal smoothness bound for the ability to find concrete
cryptographic-sized twins that could have practical isogeny-based applications.
Almost all of the methods that fall into this category use some polynomial eval-
uation. The high level idea is to find two polynomials f, g ∈ Z[x] that differ by

2

Method

log2(B) of smallest B

for b-bit primes p Where

b ≈ 256 b ≈ 384 b = 512

XGCD over Z 22.7 — — [4]

Cyclotomic factors 18.9 24.4 — [13,18]

PTE sieve 15.0 20.6 27.9 [14]

XGCD over Q[x] 15.4 19.7 24.3 this work

Table 1: Best known smoothness bounds of p2 − 1 for cryptographic-sized primes p.

an integer C and factorise nicely. Then one evaluates these polynomials at an
integer, ℓ, with f(ℓ) and g(ℓ) divisible by C to generate smooth twins.

Prior to this work, only two classes of polynomial pairs have been used to
find such twins: first are the polynomials f(x) = xn − 1, g(x) = xn [13]; and the
second are polynomials f, g that completely split over the integers [14]. The latter
polynomials is the current state-of-the-art in terms of minimising the smoothness
bound. See Table 1 for a summary of the best results using these pairs.

Contributions. In this work we revisit and generalise the probabilistic meth-
ods for finding smooth twins. In particular, we use polynomial pairs f, g that
(once again) differ by an integer C and split mostly into linear factors with
the exception of a few quadratic factors. At first glance, the introduction of the
quadratic factors would decrease the smoothness probabilities in comparison to
the completely split pairs from [14]. However, this is largely compensated by
having more repeated factors in f and g. As a result, the smoothness probability
that arise from these polynomial pairs are either better or comparable to that
of the prior polynomial pairs of the same degree.

For example, the following pair of degree 8 polynomials were found in [14] –
they differ by an integer and split completely over the integers:

f(x) = x(x+ 4)(x+ 9)(x+ 23)(x+ 27)(x+ 41)(x+ 46)(x+ 50), and

g(x) = (x+ 1)(x+ 2)(x+ 11)(x+ 20)(x+ 30)(x+ 39)(x+ 48)(x+ 49).

The next pair of degree 8 polynomials is found in this work – again they differ
by an integer but g(x) is a square product of linear factors and f(x) factors into
linear factors except for one quadratic factor:

f(x) = (x+ 1)(x+ 4)(x+ 9)(x+ 10)(x+ 15)(x+ 18)(x2 + 19x− 12), and

g(x) = x2(x+ 6)2(x+ 13)2(x+ 19)2.

The probability of finding 384-bit primes p such that p2 − 1 is 223-smooth is
approximately 2−48.7 from the first polynomial pair and 2−40.2 from the second
pair. The latter probability is significantly larger than the former (see Section 3
on how these smoothness probabilities are computed).

3

We searched for these polynomial pairs with the aid of the extended Eu-
clidean (XGCD) algorithm over rational polynomial rings. A näıve search com-
putes this XGCD over Q[x] but a more fruitful approach computes this over
Q(a1, · · · , an)[x]. This can be viewed as a precomputation and, after potentially
solving some equations in the variables a1, · · · , an, results in a more fine-grained
searching criterion.

We use these polynomials pairs to find b-bit smooth twins and primes p such
that p2−1 is smooth for b ∈ {256, 384, 512}. Table 1 summarises the best results.
It shows that our polynomials result in a comparable smoothness bound when
searching for 256-bit primes, and give significantly better smoothness bounds
when searching for larger primes (with b = 384, 512). We emphasise that the
primes found here only reduce the smoothness bound of p2 − 1 and do not take
into account any additional constraints on p that may be imposed by specific
isogeny-based cryptosystems (and which may, in some cases, be incompatible
with lower smoothness bounds). We discuss this further in Section 6.

Organisation. We begin in Section 2 by reviewing known techniques for finding
such smooth twins. In Section 3 we describe existing results on smoothness
probabilities. In Section 4 we describe the general framework of our method
for finding smooth twins. In Section 5 we detail the concrete computations of
these new polynomials. As part of these computations we find polynomial pairs
of degrees 8, 10 and 12. Finally, in Section 6 we detail experimental results for
finding smooth twins and primes p using these new polynomial pairs.

2 Probabilistic Methods for Finding Smooth Twins

We start by reviewing the probabilistic techniques to find smooth twins.

XGCD over the integers. The most natural approach to find smooth twins is
to choose random B-smooth integers r until either r− 1 or r+1 is B-smooth. A
slightly better approach [13,19] is to choose two B-smooth integers α and β that
are coprime and also α ·β is roughly the target size of r and r+1. Then use the
extended Euclidean algorithm over the integers with inputs α and β. This gives
two integers, s and t, such that αs + βt = 1 with |s| < |β/2| and |t| < |α/2|. If
s and t are B-smooth then one obtains the following B-smooth twins

(r, r + 1) = (|αs|, |βt|).

The probability that s · t is B-smooth is much larger than the probability that
a random integer of similar size being B-smooth.

Searching using cyclotomic factors. In Costello’s computations with the
Pell equations [13], he noticed that some of the largest B-smooth twins are of
the form (x2 − 1, x2). He generalised this to find large smooth twins of the form

(r, r + 1) = (xn − 1, xn)

4

for small n ∈ Z, and exploited the factorisation of xn−1 into cyclotomic polyno-
mials. For instance, finding b-bit twins of the form (x6−1, x6) requires searching
for three (b/6)-bit smooth numbers and two (b/3)-bit smooth numbers. This
increases the probability of finding such smooth twins.

Searching with PTE solutions. The large-degree factors that arise from
searching with r = xn−1 is a bottleneck when reducing the smoothness bounds.
In more recent work, the approach taken in [14] is to find polynomials f, g ∈ Z[x]
with g−f ≡ C for some integer C and split completely over the integers – namely

f(x) = (x+ a1) · (x+ a2) · · · (x+ an), and

g(x) = (x+ b1) · (x+ b2) · · · (x+ bn).

Once such polynomials are known, then searching for b-bit twins consists of
sieving an interval of roughly (b/n)-bit integers and identifying the integers ℓ in
this interval such that (ℓ+ ai) and (ℓ+ bj) are all smooth. Thus the evaluations
f(ℓ) and g(ℓ) are smooth. A final check needs to be done to determine whether
one gets smooth twins – that is whether f(ℓ) and g(ℓ) are divisible by C. If all
of this holds, then we get a smooth twin of the form

(f(ℓ)/C, g(ℓ)/C).

These completely split polynomials increases the smoothness probability again.
However, such polynomial pairs f, g are non-trivial to find when the degree
n ≥ 4. Fortunately, one can construct such polynomials using solutions to the
Prouhet–Tarry–Escott (PTE) problem (see [9] for more background).

3 Smoothness Probabilities

We recall standard results on the distribution of smooth integers, and polynomial
evaluations, in intervals. This allows us to compute smoothness probabilities in
these settings. The exposition given here follows [14, §2].

3.1 Dickman rho Function and Distribution of Smooth Integers

One can attempt to count the number of B-smooth integers up to some boundN .
This is often expressed with the notation

Ψ(N,B) := #{1 ≤ m ≤ N : m is B-smooth}.

In order to do this counting, we define the Dickman-de Bruijn (rho) function. It
is a function ρ : R+ → R+ that is continuous at u = 1, differentiable for u > 1
and satisfies the following difference differentiable equation

ρ(u) = 1, (0 ≤ u ≤ 1);

uρ′(u) = −ρ(u− 1), (u > 1).

5

When 1 ≤ u ≤ 2, we have ρ(u) = 1 − ln(u). But, for u ≥ 2, there is no known
closed form for this function in terms of elementary functions. Despite this we can
still evaluate this function using numerical techniques [32,24] which are built in
to many popular computer algebra packages (including Magma and SageMath).

Relating this to the context of counting smooth integers, Dickman [17] and
independently de Bruijn [16] proved that as N → ∞ we have

Ψ(N,B) ∼ ρ(u)N,

where u = log(N)/ log(B). Hence the proportion of B-smooth integers ap-
proaches this Dickman-de Bruijn function. While this formula is asymptotic,
it is a good approximation for concrete values of N and B. As a result, assuming
that the B-smooth integers in the interval [1, N] are uniformly distributed with
B = N1/u, the Dickman-de Bruijn function can be used to approximate the
probability that an integer less than N is B-smooth.

3.2 Smoothness of Polynomial Evaluations

For f ∈ Z[x], we count the number of smooth evaluations of f and define

Ψf (N,B) := #{1 ≤ m ≤ N : f(m) is B-smooth}.

Numerous works have studied this quantity Ψf (N,B) and it can be argued that
the smoothness probability of f(m) is the product of the smoothness probabil-
ities of fi(m) for each irreducible factor fi | f . While this heuristic is proven
for certain ranges of N and B [25], it does not apply for the ranges of cryp-
tographic interest. However, our experiments (and those of [14]) suggest that
these heuristics closely approximate their true values. So we formally restate the
heuristic.

Heuristic 1 ([14]) Suppose that a polynomial f ∈ Z[x] has distinct irreducible
factors of degrees d1, · · · , dk ≥ 1. Then, as X → ∞, we have

Ψf (X,B) ∼ ρ(d1u) · · · ρ(dku)X,

where u = log(X)/ log(B).

Smoothness of Rational Polynomial Evaluations. In this work we are
mostly interested in finding smooth evaluations of a polynomial f ∈ Q[x] rather
than an integer-valued polynomial. One can still use the heuristic in order to
compute these smoothness probabilities by writing

f(x) =
1

C
f̂(x),

where C ∈ Z is an integer and f̂ ∈ Z[x] is an integer-valued polynomial such that
C is coprime to the content (that is, the gcd of the coefficients) of f . We must

6

modify Heuristic 1 to include the probability that an evaluation f(m) = f̂(m)/C
is an integerr, which depends on a congruence condition modulo C: namely the
number of integers m ∈ Z/CZ such that f̂(m) = 0 mod C. By the Chinese
Remainder Theorem, this depends of a system of congruences

f̂(m) = 0 mod peii , 1 ≤ i ≤ k,

where C =
∏

peii for distinct primes pi. Computing this number of integers
modulo peii can be done directly as long as each prime power peii is not too
big. Then multiplying all of these together gives the desired number of residue
classes. Furthermore dividing this number by C gives the associated probability.

We assume that the events “f̂(m) is smooth” and “f̂(m) ≡ 0 mod C” are
mutually independent, so the probability that f(m) is smooth is (heuristically)
the product of the probability of these events. We note that this point was
addressed in [14], but this second event was not accounted in their smoothness
probabilities.

4 Smooth Twins using XGCD over Polynomial Rings

This section describes a generalisation of the techniques from Section 2. A core in-
gredient is the extended Euclidean (XGCD) algorithm over polynomial rings [28,
Theorem 17.4]. In order to fix consistent notation, we briefly recall this.

Let k be a field. The XGCD algorithm takes as input F,G ∈ k[x] and finds the
unique polynomials S, T ∈ k[x], with deg(S) < deg(G) and deg(T) < deg(F),
satisfies the following polynomial Bézout identity

F · S +G · T ≡ gcd(F,G).

4.1 The General Strategy to find Smooth Twins

Choose two coprime polynomials, F,G ∈ Z[x], that split completely into mostly
repeated linear factors. We assume for expositions sake that F and G are monic
polynomials. Use the XGCD algorithm over Q[x] to find polynomials S, T ∈ Q[x]
such that F · S + G · T ≡ 1. Assume without loss of generality that S and T
do not have any linear factors2 and the leading coefficient of G · T is positive.
Then the polynomials −F · S and G · T differ by one and thus can give smooth
twins with polynomial evaluation. We adopt a PTE style search, since these
are polynomials in Q[x], and lift these polynomials to Z[x]. Namely define the
polynomials f(x) := −C ·F (x) ·S(x) and g(x) := C ·G(x) ·T (x), where C is the
smallest integer such that f, g ∈ Z[x]. These polynomials now differ by C, so one
searches for integers ℓ such that f(ℓ) and g(ℓ) are smooth and f(ℓ) ≡ g(ℓ) ≡ 0
mod C. This ensures that f(ℓ) and g(ℓ) are divisible by C and thus gives smooth
twins. The formal procedure is given below:

2 If S(x) = (x − α)S′(x) then F (x)(x − α)S′(x) + G(x)T (x) = 1. So XGCD of F (x)
and G(x) results in the same polynomial pair as the XGCD of F (x)(x−α) and G(x).

7

1. Choose polynomials F,G ∈ Z[x] and apply the XGCD algorithm to get
polynomials S, T ∈ Q[x]. Let C be the smallest integer such that CS(x),
CT (x) ∈ Z[x] and set (f(x), g(x)) := (−CF (x)S(x), CG(x)T (x)).

2. Let I be an interval of integers and use the sieve of Eratosthenes, as described
in [14, §4.1] (see also [15, §3.2.5]), to identify the B-smooth integers ℓ ∈ I.

3. Use the sieve established in Step 2 to identify the integers ℓ such that ℓ+ a
are B-smooth for each integer a with (x+ a) | F (x) ·G(x).

4. Isolate those integers ℓ found in Step 3 for which f(ℓ) ≡ g(ℓ) ≡ 0 mod C.
5. Using one of the following techniques, determine when CS(ℓ) and CT (ℓ),

or equivalently Q(ℓ) for all irreducible factors Q(x) | C2S(x)T (x), are B-
smooth for the leftover integers ℓ from Step 4:
(a) Factorise the B-smooth part of Q(ℓ) directly using either trial division

or fast factoring methods such as ECM [26].
(b) Use an Eratosthenes–style sieve that sieves the list of evaluations of

each irreducible factor [15, §3.2.7]. This can be done in parallel with the
sieving in Step 2.

(c) Collate all evaluations m = Q(ℓ) for each irreducible factor Q into a list
and apply Bernstein’s sieving algorithm [3].

6. The remaining integers ℓ give smooth twins of the form (f(ℓ)/C, g(ℓ)/C).

Deciding which technique in Step 5 to use in the search depends on the specific
choice of polynomials F,G. This will be discussed in Section 6.

Realising the generalisation. One can view this method as a generalisation
of the probabilistic methods described in Secton 2. To obtain the polynomial
pair xn − 1, xn using this approach, one simply computes the XGCD of F (x) =
x − 1 and G(x) = xn. The polynomial pair that result from a PTE solution
can be recovered as follows. Iterate over all polynomials of the form F (x) =
(x+ A1) · · · (x+ An1) and G(x) = (x+B1) · · · (x+Bn2) with n1 + n2 > n and
apply the XGCD algorithm until the resulting polynomials S and T completely
split.

Precomputed Polynomials. The simplest way to choose the input polynomi-
als F and G is to take them at random by choosing integers a, b ∈ Z, with a ̸= b
to ensure coprimality and exponents ea, eb ∈ Z at random. Then construct the
polynomials F (x) =

∏
(x+a)ea and G(x) =

∏
(x+ b)fb . A better approach is to

have a precomputed list of polynomials F,G and choose one or many of them for
the search. This precomputation has the advantage that one can maximise the
smoothness probability with a good choice of polynomials F and G that result
in the largest probability of finding smooth twins.

This precomputation can be done näıvely over Q[x]. However, a slightly bet-
ter approach is to initially work over a polynomial ring with coefficients in some
rational function field before specialising to Q[x]. Effectively the integers a, b
that give the polynomials F and G become parametrised as variables over a
rational function field. Write k = Q(a1, · · · , an) for this rational function field

8

and k[x] for its polynomial ring. Once the XGCD computation over k[x] is done,
one gets polynomials S, T ∈ k[x]. Then one specialises each irreducible factor
of S · T back to Q[x] by evaluating each variable in the function field. Finally,
one computes the factorisations of these resulting polynomials and records their
factorisation structure. This provides a more tailored search and significantly
reduces the number of XGCD computations (since these are enumerable).

Seaching with one vs many pairs. Much like with the PTE sieve, one can
search for smooth twins using either a single or many polynomial pairs. The
search with a single pair is exactly as described above but one swaps the order
of Step 3 and Step 4. This is particularly beneficial when the integer C is large
since the proportion of integers with f(ℓ) ≡ g(ℓ) ≡ 0 mod C may be small. At a
practical level, this was explored by Ahrens [1] in the context of the PTE sieve.

Alternatively, one can store a list of polynomial pairs and search for twins
using all pairs simultaneously. To make this effective one employs a tree that fully
traverses all polynomial pairs in a minimal number of checks. The construction
of the tree can be seen as an instance of the hitting set problem as described
in-detail in [14, §4.3]. In the context of the general algorithm, this construction
of the tree as well as the subsequent sieving is incorporated into Step 3.

Smoothness probabilities. Recall from §3.2 that the smoothness probability
of an evaluated polynomial depends on the irreducible factors of the polynomial.
So the probability of finding smooth twins depends on the irreducible factors
of F · G · S · T . This might suggest that a maximised smoothness probability
would be obtained when these factors are all linear. This is certainly the case if
the polynomial pair has repeated linear factors since fewer smoothness checks in
Step 3 of the algorithm are needed. However, such polynomial pairs only exist
when the degree of the polynomial is n ∈ {2, 3, 4, 6}. For the larger-degree pairs
this suggests the following: instead of having all of the factors being linear, one
replaces some of the linear factors with quadratic (or potentially higher degree)
factors and counterbalance that by having more repeated linear factors. One
example of such a polynomial pair is the following degree 8 pair that differ by
an integer and factors into linear factors up to one quadratic factor:

f(x) = (x+ 1)(x+ 4)(x+ 9)(x+ 10)(x+ 15)(x+ 18)(x2 + 19x− 12), and

g(x) = x2(x+ 6)2(x+ 13)2(x+ 19)2. (1)

As mentioned in Section 1, the smoothness probability from this pair is much
larger than that of a known degree 8 pair that splits completely into linear
factors. In addition, here is another polynomial pair but of degree 12:

f(x) = (x+ 4)(x+ 7)(x+ 22)(x+ 50)(x+ 56)(x+ 84)(x+ 99)(x+ 102) (2)

(x2 + 75x− 136)(x2 + 137x+ 3150), and

g(x) = x2(x+ 14)2(x+ 39)2(x+ 67)2(x+ 92)2(x+ 106)2.

9

A more in-depth discussion on searching for such polynomials will be given in
the next section detailing searches for degree 8,10 and 12 pairs.

Remark 1. In the setting of searching for twins whose sum is a prime, an extra
probability is included which, by the prime number theorem, is approximately
1/(log(2)b). We heuristically assume that this probability can be computed in-
dependently from the other smoothness probabilities.

5 Searching for Polynomials with Better Smoothness
Probabilities

We detail strategies to find polynomial pairs f, g ∈ Z[x] that feature repeated
factors and maximise the smoothness probability. As mentioned previously, this
is only possible when their degree is not 2, 3, 4 or 6. To incoporate repeated
factors we search for pairs of the form f(x) = h(x)k−C and g(x) = h(x)k where
k,C ∈ Z, with k > 1, and h ∈ Z[x]. Moreover, if f has a root a, then C = h(a)k

is a kth power and f factorises into cyclotomic polynomials composed with h.
In addition we search for even polynomials in the sense that f(x) = f̃(x2) and
g(x) = g̃(x2) for f̃ , g̃ ∈ Z[x]. This will be combined with the following Lemma to
give an effective search for these polynomial pairs. We note that this last idea has
been used to find symmetric PTE solutions using interpolation techniques [5].

Lemma 1. Let F,G ∈ k[x] be coprime polynomials and S, T ∈ k[x] be the result
of applying XGCD to F ,G. For n ∈ Z>0, set Fn(x) := F (xn) and Gn(x) :=
G(xn). If XGCD of Fn,Gn gives Sn, Tn, then Sn(x) = S(xn) and Tn(x) = T (xn).

Proof. By the coprimality of F and G and replacing x by xn we get

Fn(x)S(x
n) +Gn(x)T (x

n) = 1.

Writing S′(x) := S(xn) and T ′(x) := T (xn), we have deg(S′) = n deg(S) <
ndeg(G) = deg(Gn) and deg(T ′) < deg(Fn). Since Sn and Tn are determined
uniquely, we must have Sn ≡ S′ and Tn ≡ T ′. ⊓⊔

5.1 General Search Strategies

We apply the XGCD algorithm over k[x], with k := Q(a1, · · · , am, a), to F (x) :=
x2 − a2 and G(x) := h(x)k where h ∈ k[x] is of the form

h(x) =

m∏
i=1

(x2 − a2i) or h(x) = x

m∏
i=1

(x2 − a2i).

With the addition of Lemma 1, this gives two polynomials S and T with deg(S) =
deg(h) · k− 2 and deg(T) = 0. Write T (x) = 1/C for some C ∈ k. With this the
desired polynomial pair can be recovered as follows: g(x) := C · (G(x) · T (x)) =
h(x)k and f(x) := C · (−F (x) · S(x)) = C · (G(x) · T (x)− 1) = h(x)k − C.

10

We now enumerate all positive coprime integers a1, · · · , am, a ≤ κ and eval-
uate the irreducible factors of S at these integers to give polynomials in Q[x].
Factorise these polynomials and record the pair f, g if it has lots of linear factors
and some quadratic factors. Finally, for sake of cleaning the polynomials, we
apply a linear shift x 7→ x + A to the polynomials f, g so that the polynomials
each linear factor of f · g is of the form (x+ α) for α ≥ 0 and x | f · g.

Remark 2. When deg(h) is even and the integer product (
∏

ai) · a is odd,
applying this linear shift gives even α’s. Thus we can consider half-integers
a1, · · · , am, a in this circumstance. This cannot be done when (

∏
ai) · a is even.

Example 1. For the sake of illustration we see this in action through a search of
degree 8 polynomial pairs. Let k = Q(a1, a2, a), k = 2 and h(x) = (x2−a21)(x

2−
a22) ∈ k[x]. Applying XGCD to F (x) = x2 − a2 and G(x) = h(x)2 gives

S(x) = − 1

C

(
x2 − (a21 + a22 − a2)

)(
x4 − (a21 + a22)x

2 + a21a
2
2 +

√
C
)

and T (x) = 1/C, where C = ((a21 − a2)(a22 − a2))2. The quadratic and quartic
factors in S(x) are irreducible in k[x]. For some rational choices for a1, a2 and
a, these factors may be reducible over Q[x]. After enumerating, one encounters
a1 = 19/2, a2 = 7/2 and a = 1/2 where S factors into four linear factors and
one irreducible quadratic. Computing f and g as described above with a linear
shift x 7→ x+ 19/2 gives

f(x) = (x+ 1)(x+ 4)(x+ 9)(x+ 10)(x+ 15)(x+ 18)(x2 + 19x− 12), and

g(x) = x2(x+ 6)2(x+ 13)2(x+ 19)2.

These are exactly the polynomials mentioned in Equation (1).

As deg(h) increases, so does deg(S) and its irreducible factors. So the like-
liness that S has at most quadratic factors after variable evaluation decreases.
One can alleviate this slightly using the following modification. One replaces F,G
described above, with F (x) = (x2 − a2)(x2 − b2) and G(x) = h(x)k, giving poly-
nomials with deg(S) = deg(h) ·k−2 and deg(T) = 2. For certain a1, . . . , am, a, b
we have deg(S) = deg(h) ·k− 4 and deg(T) = 0. This happens when the leading
coefficient of T is 0. We do not need to worry about the x coefficient since it
is already 0 by Lemma 1. This gives us a relation between the variables of the
function field: a1, . . . , am, a, b. Isolating one of the variables in this relation and
replacing it in F and G ensures that deg(S) = deg(h) · k − 4 and deg(T) = 0.
To make sure isolating a variable is possible, we take h to be either

h(x) = (x2 − a1)

m∏
i=2

(x2 − a2i) or h(x) = x(x2 − a1)

m∏
i=2

(x2 − a2i),

and the variable that will be isolated is a1. This reduction in deg(S) reduces the
cost of factoring. Also after evaluation h may not split completely, so some new
polynomial pairs can be found compared to the inital approach.

11

Method n (f(x), g(x)) ⌈log2(C)⌉ (m1,m2)
log2

(
Smoothness
Probability

)
b = 256 b = 384 b = 512

Cyclotomic

factors

[13]

6 (x6 − 1, x6) 0 (3, 2) −43.0 −49.8 −53.9

8 (x8 − 1, x8) 0 (3, 1)∗ −44.9 −51.8 −55.9

10 (x10 − 1, x10) 0 (3, 0)∗ −44.8 −51.4 −55.6

12 (x12 − 1, x12) 0 (3, 3)∗ −31.7 −37.1 −40.3

PTE sieve

[14]

6
PTE6

1 14 (9, 0) −42.8 −48.9 −52.6

PTE6
2 17 (12, 0) −55.3 −63.0 −67.7

8

PTE8
1 31 (16, 0) −47.4 −52.8 −56.0

PTE8
2 35 (16, 0) −50.1 −55.1 −58.1

PTE8
3 38 (16, 0) −52.5 −57.2 −60.0

10 PTE10 73 (20, 0) −57.5 −59.2 −60.3

12 PTE12 76 (24, 0) −44.7 −45.9 −46.7

Method n (f(x), g(x)) ⌈log2(C)⌉ (m1,m2)
log2

(
Smoothness
Probability

)
b = 256 b = 384 b = 512

XGCD over

Q[x]

6 XGCD6 6 (7, 1) −45.2 −52.5 −56.8

8

XGCD8
1 10 (8, 2) −38.6 −44.8 −48.5

XGCD8
2 12 (8, 2) −39.6 −45.6 −49.2

XGCD8
3 14 (4, 3) −41.6 −47.2 −50.5

XGCD8
4 15 (7, 2) −39.7 −45.2 −48.4

XGCD8
5 16 (8, 2) −41.4 −47.2 −50.6

XGCD8
6 21 (10, 1) −38.3 −43.4 −46.5

XGCD8
7 30 (10, 1) −43.6 −48.1 −50.8

10

XGCD10
1 22 (9, 3) −36.0 −40.8 −43.7

XGCD10
2 26 (11, 2) −34.1 −38.3 −40.9

XGCD10
3 28 (9, 3) −38.5 −43.0 −45.7

XGCD10
4 41 (11, 2) −39.4 −42.9 −45.0

12

XGCD12
1 14 (8, 5) −31.4 −36.3 −39.3

XGCD12
2,3 24 (10, 4) −31.0 −35.2 −37.7

XGCD12
4 29 (10, 4) −32.6 −36.5 −38.9

XGCD12
5 42 (12, 3) −34.3 −37.3 −39.1

XGCD12
6 56 (12, 3) −38.8 −41.1 −42.6

XGCD12
7 59 (12, 3) −42.2 −44.4 −45.8

XGCD12
8 60 (14, 2) −37.6 −39.7 −40.9

Table 2: Smoothness probabilities for finding primes p with p2 − 1 being 216, 222 and
228-smooth (resp.). An asterisk, (m1,m2)

∗, is marked when mi > 0 for some i ≥ 3.
The probabilities shaded in grey means that the search space is too small to expect to
find such primes. See Appendix C of the auxilary material for all polynomial pairs.

Can one go further and choose F (x) = (x2 − a2)(x2 − b2)(x2 − c2)? The
challenge is being able to solve the respective equation to ensure that deg(T) = 0
which is non-trivial when F has this form. Solving the equation when F (x) =
(x2 − a2)(x2 − b2) is quite a bit easier, so we focus on this.

Table 2 collates many polynomial pairs (f(x), g(x)) with g − f ≡ C found
from these searches and together with the approximate probability of finding b-
bit primes p such that p2 − 1 is B-smooth. As mentioned in §3.2 and Remark 1,
we can heuristically estimate this probability as

ρ(d1u) · · · ρ(dku) ·#{0 ≤ m < C : f(m) ≡ g(m) ≡ 0 mod C}
log(2) · b · C

,

where di are the degrees of each irreducible factor of f · g, u = log(X)/ log(B)
and X is an (b+ log2(C))/ deg(f)-bit integer. The table also include some prob-
abilities from polynomials found in prior work.

Definition 2. For a pair f, g ∈ Z[x], we denote mk by the number of irreducible
degree k factors in f · g. For instance, the pair in Equation 1 has m1 = 10 and
m2 = 1; and in Equation 2 it has m1 = 14 and m2 = 2.

5.2 Degree 8 Polynomials

We begin with the search for degree 8 polynomials. The precomputation step
consists of working over the rational function field Q(a1, a2, a, b). This search will
prove to be the easiest and, up to the XGCD precomputation, an implementation
of the search strategy can be done without needing any polynomial arithmetic.

12

k = 2. Let h(x) = (x2 − a1)(x
2 − a22) and apply the XGCD algorithm to the

polynomials F (x) = (x2 − a2)(x2 − b2) and G(x) = h(x)2 to get polynomials, S
and T , with deg(S) = 6 and deg(T) = 2. The leading coefficient of S and T is

(a1 + a22 − a2 − b2) · (2a1a22 − a1a
2 − a1b

2 − a22a
2 − a22b

2 + a4 + b4)

(a1 − a2)2(a1 − b2)2(a22 − a2)2(a22 − b2)2
.

When this leading coefficient is 0, we get either

a1 = a2 + b2 − a22, or a1 =
a22(a

2 + b2)− a4 − b4

2a22 − a2 − b2
.

After replacing a1 with these expressions we get deg(S) = 4 and deg(T) = 0. In
the first case, we have T (x) = 1/((a22 − a2)(a22 − b2))2 and the polynomial S is
irreducible over Q(a1, a2, a, b)[x] that can be explicitly computed as

S(x) =
−1

(a22 − a2)2(a22 − b2)2

(
x4 − (a2 + b2)x2 + a2b2 − 2(a22 − a2)(a22 − b2)

)
.

Whereas in the second case we have T (x) ≡ 1/C, the polynomial S splits into
quadratic factors which, with aid of the expression for a1, is

S(x) = − 1

C

(
x2 − (a1 + a22 − a2)

)(
x2 − (a1 + a22 − b2)

)
,

and C =
(
(a22 − a2)(a22 − b2)(a2 − b2)/(2a22 − a2 − b2)

)2
. The reason why it splits

is due to where x2 − a2 and x2 − b2 is in the factorisation of f . Write f(x) =
h(x)2 −C = (h(x)−

√
C)(h(x)+

√
C) and note that (h(x)±

√
C) are both even

polynomials. In the first case (x2−a2)(x2−b2) is equal to either (h(x)±
√
C) (up

to the constant factor) and in the second case (x2−a2) divides one of (h(x)±
√
C)

and (x2 − b2) divides the other – thus explaining why S factors.
We assume that a1 = (a22(a

2+b2)−a4−b4)/(2a22−a2−b2) for the rest of this
exploration. For certain a2, a, b ∈ Q, these quadratic factors might be reducible.
If a1, a1 + a22 − a2, a1 + a22 − b2 are all squares, then the polynomial pair splits
completely with m1 = 12 – giving a PTE solution. As mentioned earlier there
are no known ideal PTE solutions of this type in the literature. Our experiments
did not find a2, a, b such that a1, a1 + a22 − a2, a1 + a22 − b2 are all squares.

We can relax the condition that a1, a1 + a22 − a2, a1 + a22 − b2 are all squares
to only require two of them to be squares. This results in polynomials pairs with
m1 = 10 and m2 = 1. Plenty of polynomial pairs of this type can be found. The
pair mentioned in Equation (1) would be found when a2 = 7/2, a = 1/2 and
b = 11/2 and is the example which features the smallest integer difference with
C = 1166400. The next smallest can be found when a2 = 8, a = 3 and b = 12
and, after applying the linear shift x 7→ x+ 24, results in the pair

f(x) = (x+ 2)(x+ 9)(x+ 18)(x+ 24)(x+ 33)(x+ 40)(x2 + 42x− 55), and

g(x) = x2(x+ 13)2(x+ 29)2(x+ 42)2,

13

which differ by C = 564537600.
We can relax this condition even further and only require one of these integers

to be a square. This gives polynomial pairs with m1 = 8 and m2 = 2. While the
smoothness probability could decrease by increasing m2, one can find instances
with a smaller C. Hence the smoothness probabilities are comparable to the
prior pairs. In particular when a2 = 3/2, a = 1/2, b = 5/2, one gets the pair

f(x) = (x+ 1)(x+ 3)(x+ 4)(x+ 6)(x2 + 7x− 2)(x2 + 7x+ 4), and

g(x) = x2(x+ 2)2(x+ 5)2(x+ 7)2,

which differ by C = 576. Moreover, for this specific polynomial pair, the evalu-
ation of each residue class modulo C is 0. So there is no additional probability
associated to the division by C when finding smooth twins from this pair.

Additionally, one example was found with either a, b = 0. This reduces m1

by 1 and increases the smoothness probability compared to other pairs with
m2 = 2. This occurs when a2 = 2, a = 0, and b = 3, resulting in the pair

f(x) = x(x+ 4)(x+ 7)2(x+ 10)(x+ 14)(x2 + 14x+ 9), and

g(x) = (x+ 5)2(x+ 9)2(x2 + 14x+ 4)2, with C = 32400.

k = 4. Now let h(x) = (x2−a1) and apply XGCD to F (x) = (x2−a2)(x2− b2)
and G(x) = h(x)4. This gives polynomials, S and T , with deg(S) = 4 and
deg(T) = 0 only when either 2a21−2a1a

2−2a1b
2+a4+b4 = (a1−a2)2+(a1−b2)2 =

0 or a1 = (a2 + b2)/2. The first case cannot happen by the coprimality of F and
G. So a1 = (a2 + b2)/2 and gives

S(x) = − 16

(a2 − b2)4

(
x4 − (a2 + b2)x2 +

a4 + b4

2

)
.

If it can be factored, then it will be either (x2−c)(x2−d) or (x2−cx+d)(x2+cx+
d) (up to the constant factor). By looking at the discriminant of the associated
quadratic the first case cannot happen, so suppose the latter. By comparing the
constant coefficients we have a4 + b4 = 2d2. As a consequence of Fermat’s last
theorem this equation has no rational solutions. Hence, for every a, b ∈ Q, the
evaluated polynomial S ∈ Q[x] will always be irreducible.

Instead we revert back to F (x) = (x2 − a2) and G(x) = (x2 − a21)
4. This is a

special case of the computation from Example 1 with a2 = a1 and gives

S(x) = − 1

(a21 − a2)4

(
x2 − 2a21 + a2

)(
x4 − 2a21x

2 + 2a41 − 2a21a
2 + a4

)
.

When the quartic factors into a product of quadratics it gives pairs with m1 = 4
and m2 = 3. This occurs when a1 = 3/2 and a = 7/2.

5.3 Degree 10 Polynomials

Now we detail the search for degree 10 polynomial pairs.

14

k = 2. Let h(x) = x(x2 − a1)(x
2 − a22) and apply the XGCD algorithm to the

polynomials F (x) = (x2 − a2)(x2 − b2) and G(x) = h(x)2 to get polynomials, S
and T , with deg(S) = 8 and deg(T) = 2. The leading coefficient of S is 0 when

a1 =
a22(a

2 ± ab+ b2)− a4 ∓ a3b− a2b2 ∓ ab3 − b4

a22 − a2 ∓ ab− b2
.

With this choice of a1 we reduce deg(S) = 6 and deg(T) = 0. For simplicity, we
choose a sign for this expression. With this we get T (x) = 1/C and

S(x) = − 1

C

(
x3 + (a+ b)x2 + c1x+ c2

)(
x3 − (a+ b)x2 + c1x− c2

)
,

where c1, c2 ∈ Q(a2, a, b) are algebraically computable expressions and

C =

(
ab(a+ b)(a22 − a2)(a22 − b2)

a22 − a2 − ab− b2

)2

.

The cubic polynomials in the factorisation of S are irreducible over Q(a2, a, b)[x].
However they might be reducible after evaluating the variables a2, a, b. Note that
if one of them has a root α then the other polynomial must have a root −α.

When the cubics are reducible, the resulting polynomial pair has, at least,
m1 = 9 and m2 = 3. This occurs when a2 = 1, a = 4 and b = 6 giving

f(x) = x(x+ 1)(x+ 3)(x+ 11)(x+ 13)(x+ 14)(x2 + 11x+ 38)

(x2 + 17x+ 80), and

g(x) = (x+ 6)2(x+ 7)2(x+ 8)2(x2 + 14x+ 5)2, with C = 2822400.

One can ask when these quadratic factors reduce to linear factors. The case
when all quadratic factors can be factored gives a PTE solution of size 10. How-
ever, only one such solution exists in the literature which does not have repeated
factors. Additionally, when one (and hence both) of the quadratic factors in S is
reducible, it gives a PTE solution of size 5 that has repeated factors. Again such
solutions do not exist. The final case is the setting when a1 is a square. This can
happen and does so on many occasions, giving pairs with m1 = 11 and m2 = 2.
When a2 = 8, a = 1 and b = 7, we get such a pair and is

f(x) = (x+ 1)(x+ 4)(x+ 10)(x+ 12)(x+ 18)(x+ 21)(x2 + 20x− 9) (3)

(x2 + 24x+ 35), and

g(x) = x2(x+ 3)2(x+ 11)2(x+ 19)2(x+ 22)2, with C = 57153600.

k = 5. We make a few brief comments on the other setting with k = 5 and
choose F (x) = (x2 − a2) and G(x) = (x2 − a21)

5. XGCD gives polynomials with
deg(S) = 8 and deg(T) = 0. S is irreducible over Q(a1, a)[x] and, after evaluating
the variables a1, a, the best one can hope for is that S factors into two irreducible
quartic factors. However, we did not find any examples of this type.

15

5.4 Degree 12 Polynomials

We finally detail the search for degree 12 polynomial pairs. The exposition given
here is not thorough given the computations are more involved. We refer to
Appendix B of the auxilary material for more details.

k = 2. Apply XGCD to F (x) = (x2 − a2)(x2 − b2) and G(x) = h(x)2 with
h(x) = (x2 − a1)(x

2 − a22)(x
2 − a23), giving polynomials with deg(S) = 10 and

deg(T) = 2. Through similar computations as before, there are two expressions
for a1 in terms of a2, a3, a and b that reduce deg(S) = 8 and deg(T) = 0.

If S factors into a product of quadratic factors after evaluation then the
resulting pair has, at the very least, m1 = 8 and m2 = 5. Only four pairs were
found with m2 = 3. The one with the smallest integer C results in the pair

f(x) = (x+ 1)(x+ 3)(x+ 7)(x+ 10)(x+ 33)(x+ 36)(x+ 40)(x+ 42) (4)

(x2 + 43x− 24)(x2 + 43x+ 396), and

g(x) = x2(x+ 12)2(x+ 31)2(x+ 43)2(x2 + 43x+ 186)2.

Additionally, one pair, mentioned in Equation (2), was found with m2 = 2.

k = 3, 6. Applying XGCD to F (x) = (x2 − a2) and G(x) = h(x)3 with h(x) =
(x2 − a21)(x

2 − a22) (and the special case with a1 = a2) cannot give pairs with
mi = 0 for all i ≥ 3. Lots of pairs can be found with m4 > 0 but this gives an
extremely small smoothness probability.

k = 4. For this final choice, one applies XGCD to F (x) = (x2 − a2) and
G(x) = h(x)4 with h(x) = x(x2 − a21). Similar to the previous case, the best one
can expect after evaluating the variables is getting pairs with m4 > 0. However,
loosening h to h(x) = x(x2 − a1) can lead to polynomial pairs with mi = 0 for
i ≥ 3. With m1 = 3 and m2 = 6 for these pairs, they do not result in better
smoothness probabilities compared to the k = 2 pairs.

Remark 3. This strategy can be applied to find larger even degree pairs. For
instance, to find degree 14 polynomials, one computes the XGCD of F (x) =
(x2 − a2)(x2 − b2) and G(x) = x2(x2 − a1)

2(x2 − a22)
2(x2 − a23)

2. Then find
algebraic expressions for a1 to reduce deg(S) = 10 and deg(T) = 0 and factor
S. Such polynomials could be useful when finding much larger twins.

6 Experimental Results: Concrete Smooth Sandwiches

We conducted experiments to find 256, 384 and 512-bit primes p (giving 128, 192
and 256-bits of security) such that p2−1 is smooth using these new polynomials
and the strategy from §4.1. We use Table 2 to choose appropriate smoothness
bounds for these searches. Table ?? records the results from these experiments.

16

Method Where ⌈log2(p)⌉ (B, ⌈log2(B)⌉)

XGCD over Z [4, App. A] 256 (6548911, 23)

Cyclotomic

factors

[13, Ex.5] 247 (652357, 20)

[13, Ex.8] 250 (486839, 19)

[18, §6.2] 388 (20884693, 25)

PTE sieve

[14, p240] 240 (54503, 16)

[14, p241] 241 (32039, 15)

[14, p243] 243 (56711, 16)

[14, p245] 245 (49711, 16)

[14, p246] 246 (40151, 16)

[14, p247] 247 (40289, 16)

[14, p249] 249 (38119, 16)

[14, p250] 250 (32191, 15)

[14, p252] 252 (35291, 16)

[14, p255] 255 (52069, 16)

[14, p257] 257 (42979, 16)

[14, p376] 376 (1604719, 21)

[14, p384] 384 (3726773, 22)

[14, p512] 512 (238733063, 28)

Method Where ⌈log2(p)⌉ (B, ⌈log2(B)⌉)

XGCD over

Q[x]

10622157951 XGCD8
7 239 (69833, 17)

2944237003 XGCD8
2 241 (103001, 17)

4187092101 XGCD8
5 242 (95441, 17)

13024987664 XGCD8
6 250 (77029, 17)

19371175757 XGCD8
6 255 (77687, 17)

49076211087 XGCD8
7 257 (88897, 17)

38295031104 XGCD8
6 263 (42577, 16)

1473704676325530 XGCD8
9 370 (1723177, 21)

670305535922892 XGCD8
6 375 (826069, 20)

1543959040318783 XGCD8
7 376 (1742497, 21)

479638273270508 XGCD8
4 377 (1137329, 21)

567277683164610 XGCD8
5 378 (1812263, 21)

2054426379410766 XGCD8
7 379 (1502581, 21)

647738699898325 XGCD8
4 380 (1640941, 21)

1213633306317077 XGCD8
6 382 (1445533, 21)

491954219730809 XGCD8
1 383 (1749091, 21)

1471680421245912 XGCD8
6 384 (1140157, 21)

2062439636622939 XGCD8
6 388 (1733527, 21)

1290853259901 XGCD10
2 378 (1766099, 21)

12538742222491880 XGCD10
2 511 (34102657, 26)

64343906330928 XGCD12
5 510 (42485491, 26)

188327931771336 XGCD12
8 511 (24984383, 25)

192093987758508 XGCD12
8 512 (20003833, 25)

Table 3: Cryptographic-sized primes p such that p2 − 1 is B-smooth. The full list of
polynomial pairs can be found in Appendix C of the auxilary material.

We use the C implementation of the sieve of Eratothenes from the PTE
Python3 code3 as a starting point for our implementation. We include sieves
with multiple polynomial pairs (for the degree 8 pairs) as well as sieves with a
single pair (for the degree 10 and 12 pairs). We chose to implement Step 5a, to
deal with the smooth evaluations of the quadratic factors and implemented this
in Magma to benefit from fast factoring algorithms. This strategy is particular
effective when m2 ≤ 2 and also the search using the degree 12 pair with m2 = 3.
The other pairs might benefit from using either Step 5b or Step 5c for this
post-processing – this is left as an avenue for future work.

We ran these experiments on a server (featuring a total of 96 parallel threads)
with a Xeon E7-4850v2 2.30GHz, 1007GB of RAM. The timings for the exper-
iments depends on the interval size and m2. It took 5-6 days to do the sieve of
Eratothenes and took 30-60 minutes (around a day) to do the post processing
with m2 = 1 (m2 = 2 resp.) when searching an interval of size 248.

b = 256. Finding 256-bit primes with our polynomials imposes a reduced search
space. For instance, using the degree 8 pairs, the interval [231, 237] scans all 256-
bit primes and the probability of finding 216-smooth twins is at most 2−38.3.
This suggests that a search with this B would be unsuccessful. So we ran our
code in this interval with B = 217. Despite the low probability, one prime was
found with p2 − 1 being 216-smooth which is

p = 2

(
ℓ(ℓ+ 6)(ℓ+ 13)(ℓ+ 19)

1080

)2

− 1, with ℓ = 38295031104.

3 https://github.com/microsoft/twin-smooth-integers

17

https://github.com/microsoft/twin-smooth-integers

In contrast, the PTE sieve [14] produced smaller smoothness bounds. There they
used degree 6 pairs that split completely into linear factors some of which are
repeated – giving a larger smoothness probablity to search space size ratio.

b = 384. When searching for larger primes, the search space limitations become
less of an issue with our polynomials. The search with B = 222 using our degree
8 pairs found plenty of primes p with p2 − 1 being 222-smooth. Many of these
221-smooth – surpassing the smoothness bounds found with the PTE sieve. One
prime was found with p2 − 1 being 220-smooth which is

p = 2

(
ℓ(ℓ+ 6)(ℓ+ 13)(ℓ+ 19)

1080

)2

− 1, with ℓ = 670305535922892.

We also searched with the degree 10 pairs with B = 222. This produced fewer
primes compared to the degree 8 search but one was found that is 221-smooth.

b = 512. This final setting will give the most gain in reducing the smoothness
bound. The searches with the PTE sieve found a few primes with p2 − 1 being
228-smooth. The probabilities from Table 2 suggests the degree 10 and 12 pairs
should plenty of primes with B = 228. So we used B = 226 for our searches.
Among our degree 10 pairs, the best prime found from these searches is

p = 2

(
ℓ(ℓ+ 3)(ℓ+ 11)(ℓ+ 19)(ℓ+ 22)

7560

)2

− 1, with ℓ = 14334163549504404.

We also searched with the degree 12 pairs with m2 ≤ 3. The pair from Equa-
tion (2) with m2 = 2 gave two primes with 225-smooth p2 − 1. The larger is

p = 2

(
ℓ(ℓ+ 14)(ℓ+ 39)(ℓ+ 67)(ℓ+ 92)(ℓ+ 106)

791683200

)2

− 1,

with ℓ = 192093987758508.

Protocol specific polynomials. None of our primes have direct impact on an
isogeny-based cryptosystem. They were initially proposed for B-SIDH [13] which
was broken by the recent polynomial time attacks [10,23,27] on SIDH [21]. Our
primes can be used in countermeasures to these attacks have been proposed [20,2]
but much larger primes are required. So further experiments are needed.

The signature scheme SQIsign [19] requires primes p with a smooth divisor
2fT | p2 − 1 with T ≈ p5/4 and f as large as possible. The smoothness bound of
T and the size of f controls the performance of signing. Our primes do not have
a large power of two so would not improve the state-of-the-art. However, given
the general idea from §4.1 one does not have to use the polynomial pairs found in
Section 5 and one could construct pairs that can guarantee a large power of two.
This is the case for the pair (xn − 1, xn) [7,11] since one can get a large power

18

of two from a small power of two in x which is boosted with the nth power. The
trouble is the degree of the largest factor of xn − 1 grows with n which does not
aid the smoothness probability. Alternatively, one could construct pairs with a
smaller power of x that gives better smoothness probabilities.

As mentioned in the introduction, this work focuses on simply reducing this
smoothness bound and seeing how small it could be. As a result we did not
conduct these application ideas and are left as future work.

Concluding remarks. These experimental results shows that our polynomials
scale better compared to prior polynomials – in the sense that, when searching for
larger primes and twins, our polynomials produce smaller smoothness bounds.
This is relevant in the context of isogeny-based cryptosystems using finite fields
of much larger characteristic and wish to benefit from these sorts of primes.

Despite all of this work, we have not answered the underlying question of
finding cryptographic sized smooth twins with an optimally small smoothness
bound. Given the probabilistic nature of the method, one has to sacrifice the
smoothness bound and not make it as small as possible. Improving these ap-
proaches is left open to the reader.

Acknowledgements. This work was supported by the HYPERFORM consor-
tium funded by France through Bpifrance and l’Agence nationale de la recherche
through a Plan France 2030 grant (ANR-22-PETQ-0008 PQ-TLS). The author
thanks Maria Corte-Real Santos, Craig Costello, Jonathan Komada Eriksen and
Robert Granger for valuable discussions that helped shape the work; Michael
Meyer for his insights to the PTE experiments; Benjamin Smith for his assis-
tance running the experiments and comments to drafts of the work; as well as
the anonymous reviews for their constructive feedback.

References

1. K. Ahrens. Sieving for large twin smooth integers using single solutions to prouhet-
tarry-escott. Cryptology ePrint Archive, Paper 2023/219, 2023. https://eprint.
iacr.org/2023/219.

2. A. Basso and T. B. Fouotsa. New sidh countermeasures for a more efficient key
exchange. In ASIACRYPT, volume 14445 of Lecture Notes in Computer Science,
pages 208–233. Springer, 2023.

3. D. J. Bernstein. How to find smooth parts of integers. URL: http://cr. yp.
to/papers. html# smoothparts. ID 201a045d5bb24f43f0bd0d97fcf5355a. Citations
in this document, 20, 2004.

4. D. J. Bernstein, L. De Feo, A. Leroux, and B. Smith. Faster computation of
isogenies of large prime degree. Open Book Series, 4(1):39–55, 2020.

5. P. Borwein, P. Lisoněk, and C. Percival. Computational investigations of the
prouhet-tarry-escott problem. Mathematics of computation, 72(244):2063–2070,
2003.

6. G. Bruno, L. Batina, and W. Bosma. Crypto security optimizations. Radboud
University Nijmegen: Nijmegen, The Netherlands, 2021.

19

https://project.inria.fr/hyperform
https://eprint.iacr.org/2023/219
https://eprint.iacr.org/2023/219

7. G. Bruno, M. Corte-Real Santos, C. Costello, J. K. Eriksen, M. Meyer, M. Naehrig,
and B. Sterner. Cryptographic smooth neighbors. In ASIACRYPT, volume 14444
of Lecture Notes in Computer Science, pages 190–221. Springer, 2023.

8. J. Buzek, J. Hasan, J. Liu, M. Naehrig, and A. Vigil. Finding twin smooth integers
by solving pell equations. 2022.

9. T. Caley. The prouhet-tarry-escott problem. 2013.
10. W. Castryck and T. Decru. An efficient key recovery attack on SIDH. In EU-

ROCRYPT, volume 14008 of Lecture Notes in Computer Science, pages 423–447.
Springer, 2023.

11. J. Chavez-Saab, M. Corte-Real Santos, L. De Feo, J. K. Eriksen, B. Hess, D. Kohel,
A. Leroux, P. Longa, M. Meyer, L. Panny, et al. SQIsign, 2023. https://sqisign.
org.

12. J. B. Conrey, M. A. Holmstrom, and T. L. McLaughlin. Smooth neighbors. Ex-
perimental Mathematics, 22(2):195–202, 2013.

13. C. Costello. B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion. In
ASIACRYPT, volume 12492 of Lecture Notes in Computer Science, pages 440–463.
Springer, 2020.

14. C. Costello, M. Meyer, and M. Naehrig. Sieving for twin smooth integers with
solutions to the Prouhet-Tarry-Escott problem. In EUROCRYPT, volume 12696
of Lecture Notes in Computer Science, pages 272–301. Springer, 2021.

15. R. Crandall and C. Pomerance. Prime numbers. Springer, 2001.
16. N. G. de Bruijn. On the number of positive integers ≤ x and free of prime factors

> y, ii. Indag. Math, 38:239–247, 1966.
17. K. Dickman. On the frequency of numbers containing prime factors of a certain

relative magnitude. Arkiv for matematik, astronomi och fysik, 22(10):A–10, 1930.
18. L. De Feo, C. Delpech de Saint Guilhem, T. B. Fouotsa, P. Kutas, A. Leroux,

C. Petit, J. Silva, and B. Wesolowski. Séta: Supersingular encryption from torsion
attacks. In ASIACRYPT, volume 13093 of Lecture Notes in Computer Science,
pages 249–278. Springer, 2021.

19. L. De Feo, D. Kohel, A. Leroux, C. Petit, and B. Wesolowski. SQISign: compact
post-quantum signatures from quaternions and isogenies. In ASIACRYPT, volume
12491 of Lecture Notes in Computer Science, pages 64–93. Springer, 2020.

20. T. B. Fouotsa, T. Moriya, and C. Petit. M-SIDH and MD-SIDH: Countering sidh
attacks by masking information. In EUROCRYPT, volume 14008 of Lecture Notes
in Computer Science, pages 282–309. Springer, 2023.

21. D. Jao and L. De Feo. Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. In PQCrypto, volume 7071 of Lecture Notes in
Computer Science, pages 19–34. Springer, 2011.

22. D. H. Lehmer. On a problem of Störmer. Illinois Journal of Mathematics, 8(1):57–
79, 1964.

23. L. Maino, C. Martindale, L. Panny, G. Pope, and B. Wesolowski. A direct key
recovery attack on SIDH. In EUROCRYPT, volume 14008 of Lecture Notes in
Computer Science, pages 448–471. Springer, 2023.

24. G. Marsaglia, A. Zaman, and J.C.W. Marsaglia. Numerical solution of some clas-
sical differential-difference equations. Mathematics of Computation, 53(187):191–
201, 1989.

25. G. Martin. An asymptotic formula for the number of smooth values of a polyno-
mial. Journal of Number Theory, 93:108–182, 1999.

26. P. L. Montgomery. Speeding the pollard and elliptic curve methods of factorization.
Mathematics of computation, 48(177):243–264, 1987.

20

https://sqisign.org
https://sqisign.org

27. D. Robert. Breaking SIDH in polynomial time. In EUROCRYPT, volume 14008
of Lecture Notes in Computer Science, pages 472–503. Springer, 2023.

28. V. Shoup. A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, USA, 2 edition, 2009.

29. C. Størmer. Quelques théorèmes sur l’équation de Pell x2 − dy2 = ±1 et leurs
applications. Christiania Videnskabens Selskabs Skrifter, Math. Nat. Kl, (2):48,
1897.

30. The National Institute of Standards and Technology (NIST). Submission require-
ments and evaluation criteria for the post-quantum cryptography standardization
process, December, 2016.

31. The National Institute of Standards and Technology (NIST). Call for additional
digital signature schemes for the post-quantum cryptography standardization pro-
cess, October, 2022.

32. J. van de Lune and E. Wattel. On the numerical solution of a differential-
difference equation arising in analytic number theory. Mathematics of Compu-
tation, 23(106):417–421, 1969.

21

Auxilary Material
A Constructive Methods Summary

The methods presented here find all or almost all B-smooth twins for a fixed
an integer B. It turns out that the set of B-smooth twins is finite for a fixed B.
Thus it makes sense to try and enumerate all or almost all B-smooth twins.

Solving Pell equations. Let PB := {2, 3, . . . , q} be the set of primes up to
B with cardinality π(B). Suppose that (r, r + 1) is a B-smooth twin and let
x = 2r+1 so that, as mentioned in the introduction, x−1 and x+1 are B-smooth.
Decompose their product x2−1 into its squarefree part,D, and its square part, y.
Thus the pair (x, y) is a solution to the Pell equationX2−DY 2 = 1. Additionally,
Dy2 is B-smooth, which means D = 2α2 · 3α3 · · · · · qαq with αi ∈ {0, 1} for
each i ∈ PB . For each of the 2π(B) squarefree choices for D, Størmer [29] (and
later improved algorithmically by Lehmer [22]) reverses the above argument and
proposes to solve the 2π(B) Pell equations

X2 −DY 2 = 1,

to find solutions (x, y) such that y is B-smooth. Størmer showed that this set of
solutions is finite and thus finds the complete set of B-smooth twins (r, r + 1).

Solving all 2π(B) Pell equations is computationally infeasible for large4 B but
is practical for small B. For instance, with B = 5 (B = 7 resp.) solving all 2π(B)

Pell equations gives 10 (23 resp.) B-smooth twins. To date, the largest run of
this algorithm was done by Costello [13] with B = 113 – the complete number
of 113-smooth twins is 33,233.

The Conrey-Holmstrom-McLaughlin algorithm. Start with an initial set
of integers S(0) = {1, 2, · · · , B − 1} that represent the B-smooth twins (1, 2),
(2, 3), · · · , (B−1, B). The algorithm by Conrey-Holmstrom-McLaughlin (CHM)
proposes to iteratively add to this initial set with new integers that represent
B-smooth twins. For each r, s ∈ S(i) with r < s compute the following expression

t

t′
=

r

r + 1
· s+ 1

s
,

where t/t′ is written in lowest order terms. Thus one forms a new set of integers
S(i+1) to be the set S(i) coupled with the set of integer solutions t where t′ = t+1
and are not in S(i). Since the set of B-smooth twins is finite, we must have
S(d+1) = S(d) for some integer d. At this point the algorithm terminates.

In practice, this algorithm finds either all or a majority of B-smooth twins.
For instance, with B = 5 the algorithm finds all 5-smooth twins while with B = 7

4 Recent work [8] modifies this approach for large B. Instead of collating all B-smooth
twins for a smoothness bound B, they find B-smooth twins in a large interval.

22

the algorithm finds all 7-smooth twins except for the largest twin (4374, 4375).
The original authors of the algorithm [12] ran it with B = 200 to obtain a total
of 346,192 pairs of 200-smooth twins. As a smoothness bound, this is larger than
the computations with the Pell equation. More recently, Bruno et al. [7] made
improvements to the algorithm and ran it with B = 547 to obtain a total of
82,026,426 pairs of 547-smooth twins. An additional 2,649 pairs of 200-smooth
twins were found from this computation – proving the point that one does not
find all smooth twins. The only way to know this exact number is to solve
2π(200) = 246 Pell equations which is beyond our current computing resources.

B Detailed computations for the degree 12 polynomials

Here we describe the concrete computations necessary for the degree 12 search as
mentioned in §5.4. Recall that we start with h(x) = (x2−a1)(x

2−a22)(x
2−a23) and

apply XGCD to F (x) = (x2−a2)(x2− b2) and G(x) = h(x)2 giving polynomials
with deg(S) = 10 and deg(T) = 2. When the leading coefficient of S and T is 0,
then deg(S) = 8 and deg(T) = 0. This occurs when either

a1 =
(a22 + a23)(a

2 + b2)− (a22a
2
3 + a4 + a2b2 + b4)

a22 + a23 − a2 − b2
, or

a1 =
a22a

2
3(a

2 + b2)− (a22 + a23)(a
4 + b4) + a6 + b6

2a22a
2
3 − (a22 + a23)(a

2 + b2) + a4 + b4
.

This choice of expression for a1 results in different a factorisation structure for
the polynomial S. For the first choice, the polynomial S splits as S = S2·S6 where
S2 is an irreducible quadratic and S6 is an irreducible degree 6 polynomial over
Q(a2, a3, a, b)[x]. Moreover, the polynomial S as well as its irreducible factors
are even polynomials and T (x) = 1/C where

C =

(
(a22 − a2)(a22 − b2)(a23 − a2)(a23 − b2)

a22 + a23 − a2 − b2

)2

.

Now the question is when does S factorise into a product of at most quadratic
factors after variable evaluation. Since S2 is automatically quadratic, this only
depends on the S6. One can factor S6 for each variable evaluation but it is more
economical to only factor S6 when the associated cubic S′

3 where S6(x) = S′
3(x

2)
has roots. This cubic can either be factored directly or use known root tests to
determine if it has roots.

When a2 = 1/2, a3 = 13/2, a = 5/2 and b = 7/2 it gives polynomial pairs
with m2 = 4 which is

f(x) = (x+ 1)(x+ 3)(x+ 4)(x+ 9)(x+ 10)(x+ 12)(x2 + 13x− 3)

(x2 + 13x+ 6)(x2 + 13x+ 45), and

g(x) = x2(x+ 6)2(x+ 7)2(x+ 13)2(x2 + 13x+ 21)2.

23

with C = 10497600. Additionally choosing a2 = 19/2, a3 = 43/2, a = 23/2 and
b = 29/2 gives the polynomial pair mentioned in Equation (4) with m2 = 3.

For the second choice, S = S4 · S′
4 splits into a product of two distinct

irreducible quartics over Q(a2, a3, a, b)[x]. Once again, each polynomial S, S4, S
′
4

are even polynomials and T (x) = 1/C where

C =

(
(a22 − a2)(a22 − b2)(a23 − a2)(a23 − b2)(a2 − b2)

2a22a
2
3 − (a22 + a23)(a

2 + b2) + a4 + b4

)2

.

Now one has to check when the polynomials S4 and S′
4 factorise into quadratic

polynomials. Since these polynomials are even, this can be done with no polyno-
mial arithmetic. This was discussed towards the end of §5.2 and the idea is that
any polynomial of the form x4 +Ax2 +B factorises either into (x2 −α)(x2 − β)
or (x2−αx+β)(x2+αx+β) for some α and β. Note that these quadratic factors
might not be irreducible but the point is that if the quartic can be factored then
it has must have at most quadratic factors. The first case can be checked by
doing some discriminant calculation, namely whether A2 − 4B is a square. In
the second case, there are a few arithmetic checks needed: firstly B must be a
square and then either 2β −A or −2β −A must be a square.

When a2 = 3, a3 = 4, a = 1 and b = 2 it gives polynomial pairs with m2 = 5
which is

f(x) = (x+ 2)(x+ 3)(x+ 5)(x+ 6)(x2 + 8x− 1)(x2 + 8x+ 2)

(x2 + 8x+ 4)(x2 + 8x+ 10), and

g(x) = x2(x+ 1)2(x+ 7)2(x+ 8)2(x2 + 8x+ 14)2.

with C = 14400. Additionally, choosing a2 = 14, a3 = 39, a = 3 and b = 31
gives the pair mentioned in Equation (2) with m2 = 2.

24

C List of Polynomial Pairs

Here we list all polynomal pairs PTEn
i and XGCDn

j that were used in Table 2
and Table ?? for computing the smoothness probabilities and presenting the
resulting smooth twins (resp.). We first list some polynomial pairs that were
found in [14].

PTE6
1 =

{
f(x) = x(x + 3)(x + 5)(x + 11)(x + 13)(x + 16), and
g(x) = (x + 1)2(x + 8)2(x + 15)2.

PTE6
2 =

{
f(x) = x(x + 5)(x + 6)(x + 16)(x + 17)(x + 22), and
g(x) = (x + 1)(x + 2)(x + 10)(x + 12)(x + 20)(x + 21).

PTE8
1 =

{
f(x) = x(x + 4)(x + 9)(x + 23)(x + 27)(x + 41)(x + 46)(x + 50), and
g(x) = (x + 1)(x + 2)(x + 11)(x + 20)(x + 30)(x + 39)(x + 48)(x + 49).

PTE8
2 =

{
f(x) = x(x + 9)(x + 10)(x + 29)(x + 38)(x + 57)(x + 58)(x + 67), and
g(x) = (x + 2)(x + 3)(x + 18)(x + 22)(x + 45)(x + 49)(x + 64)(x + 65).

PTE8
3 =

{
f(x) = x(x + 14)(x + 19)(x + 43)(x + 57)(x + 81)(x + 86)(x + 100), and
g(x) = (x + 1)(x + 9)(x + 30)(x + 32)(x + 68)(x + 70)(x + 91)(x + 99).

PTE10
=


f(x) = x(x + 12)(x + 125)(x + 213)(x + 214)(x + 412)(x + 413)(x + 501)(x + 614)

(x + 626), and
g(x) = (x + 5)(x + 6)(x + 133)(x + 182)(x + 242)(x + 384)(x + 444)(x + 493)

(x + 620)(x + 621).

PTE12
=


f(x) = x(x + 11)(x + 24)(x + 65)(x + 90)(x + 129)(x + 173)(x + 212)(x + 237)

(x + 278)(x + 291)(x + 302), and
g(x) = (x + 3)(x + 5)(x + 30)(x + 57)(x + 104)(x + 116)(x + 186)(x + 198)(x + 245)

(x + 272)(x + 297)(x + 299).

Now we list the pairs XGCDn
j found in this work and give only a small sam-

ple of such polynomial pairs compared to the total number. This additionally
includes an example that can be found from a degree 6 search which can be used
to compare with the degree 6 PTE polynomials.

XGCD6
=

{
f(x) = x(x + 1)(x + 2)(x + 4)(x + 5)(x + 6), and
g(x) = (x + 3)2(x2 + 6x + 2)2.

XGCD8
1 =

{
f(x) = (x + 1)(x + 3)(x + 4)(x + 6)(x2 + 7x − 2)(x2 + 7x + 4), and
g(x) = x2(x + 2)2(x + 5)2(x + 7)2.

XGCD8
2 =

{
f(x) = x(x + 1)(x + 3)(x + 5)(x + 7)(x + 8)(x2 + 8x − 8), and
g(x) = (x + 2)2(x + 6)2(x2 + 8x − 5)2.

XGCD8
3 =

{
f(x) = x(x + 7)(x2 + 2x + 5)(x2 + 7x + 20)(x2 + 12x + 40), and
g(x) = (x + 2)4(x + 5)4.

XGCD8
4 =

{
f(x) = x(x + 4)(x + 7)2(x + 10)(x + 14)(x2 + 14x + 9), and
g(x) = (x + 5)2(x + 9)2(x2 + 14x + 4)2.

XGCD8
5 =

{
f(x) = (x + 1)(x + 4)(x + 9)(x + 12)(x2 + 13x − 6)(x2 + 13x + 18), and
g(x) = x2(x + 3)2(x + 10)2(x + 13)2.

XGCD8
6 =

{
f(x) = (x + 1)(x + 4)(x + 9)(x + 10)(x + 15)(x + 18)(x2 + 19x − 12), and
g(x) = x2(x + 6)2(x + 13)2(x + 19)2.

XGCD8
7 =

{
f(x) = (x + 2)(x + 9)(x + 18)(x + 24)(x + 33)(x + 40)(x2 + 42x − 55), and
g(x) = x2(x + 13)2(x + 29)2(x + 42)2.

XGCD8
8 =

{
f(x) = x(x + 7)(x + 9)(x + 38)(x + 40)(x + 47)(x2 + 47x + 622), and
g(x) = (x + 2)2(x + 19)2(x + 28)2(x + 45)2.

XGCD8
9 =

{
f(x) = x(x + 9)(x + 10)(x + 31)(x + 34)(x + 55)(x + 56)(x + 65), and
g(x) = (x + 20)2(x + 45)2(x2 + 65x + 154)2.

25

XGCD10
1 =

 f(x) = x(x + 1)(x + 3)(x + 11)(x + 13)(x + 14)(x2 + 11x + 8)
(x2 + 17x + 80), and

g(x) = (x + 6)2(x + 7)2(x + 8)2(x2 + 14x + 5)2.

XGCD10
2 =

 f(x) = (x + 1)(x + 4)(x + 10)(x + 12)(x + 18)(x + 21)(x2 + 20x − 9)
(x2 + 24x + 35), and

g(x) = x2(x + 3)2(x + 11)2(x + 19)2(x + 22)2.

XGCD10
3 =

 f(x) = (x + 1)(x + 7)(x + 8)(x + 14)(x + 15)(x + 21)(x2 + 19x − 10)
(x2 + 25x + 56), and

g(x) = x2(x + 11)2(x + 22)2(x2 + 22x + 77)2.

XGCD10
4 =


f(x) = (x + 2)(x + 18)(x + 22)(x + 36)(x + 40)(x + 56)

(x2 + 49x − 60)(x2 + 67x + 462), and
g(x) = x2(x + 12)2(x + 29)2(x + 46)2(x + 58)2.

XGCD10
5 =


f(x) = (x + 6)(x + 20)(x + 22)(x + 40)(x + 42)(x + 56)

(x2 + 57x − 90)(x2 + 67x + 220), and
g(x) = x2(x + 12)2(x + 31)2(x + 50)2(x + 62)2.

XGCD12
1 =

 f(x) = (x + 2)(x + 3)(x + 5)(x + 6)(x2 + 8x − 1)(x2 + 8x + 2)
(x2 + 8x + 4)(x2 + 8x + 10), and

g(x) = x2(x + 1)2(x + 7)2(x + 8)2(x2 + 8x + 14)2.

XGCD12
2 =

 f(x) = (x + 1)(x + 3)(x + 4)(x + 9)(x + 10)(x + 12)(x2 + 13x − 3)
(x2 + 13x + 6)(x2 + 13x + 45), and

g(x) = x2(x + 6)2(x + 7)2(x + 13)2(x2 + 13x + 21)2.

XGCD12
3 =

 f(x) = x(x + 3)(x + 6)(x + 8)(x + 11)(x + 14)(x2 + 14x + 9)
(x2 + 14x + 15)(x2 + 14x + 39), and

g(x) = (x + 2)2(x + 5)2(x + 9)2(x + 12)2(x2 + 14x + 3)2.

XGCD12
4 =

 f(x) = (x + 1)(x + 6)(x + 7)(x + 9)(x + 10)(x + 15)(x2 + 16x − 6)
(x2 + 16x + 18)(x2 + 16x + 84), and

g(x) = x2(x + 3)2(x + 13)2(x + 16)2(x2 + 16x + 78)2.

XGCD12
5 =


f(x) = (x + 1)(x + 3)(x + 7)(x + 10)(x + 33)(x + 36)(x + 40)(x + 42)

(x2 + 43x − 24)(x2 + 43x + 396), and
g(x) = x2(x + 12)2(x + 31)2(x + 43)2(x2 + 43x + 186)2.

XGCD12
6 =


f(x) = x(x + 9)(x + 20)(x + 30)(x + 59)(x + 69)(x + 80)(x + 89)

(x2 + 89x + 330)(x2 + 89x + 2100), and
g(x) = (x + 14)2(x + 44)2(x + 45)2(x + 75)2(x2 + 89x + 120)2.

XGCD12
7 =


f(x) = x(x + 21)(x + 60)(x + 69)(x + 71)(x + 80)(x + 119)(x + 140)

(x2 + 140x − 99)(x2 + 140x + 2301), and
g(x) = (x + 20)2(x + 63)2(x + 77)2(x + 120)2(x2 + 140x − 51)2.

XGCD12
8 =


f(x) = (x + 4)(x + 7)(x + 22)(x + 50)(x + 56)(x + 84)(x + 99)(x + 102)

(x2 + 75x − 136)(x2 + 137x + 3150), and
g(x) = x2(x + 14)2(x + 39)2(x + 67)2(x + 92)2(x + 106)2.

XGCD12
9 =

 f(x) = x(x + 43)(x + 52)(x + 138)(x + 147)(x + 190)(x2 + 97x + 810)
(x2 + 190x + 2856)(x2 + 283x + 18480), and

g(x) = (x + 3)2(x + 28)2(x + 70)2(x + 120)2(x + 162)2(x + 187)2.

26

	Towards Optimally Small Smoothness Bounds for Cryptographic-Sized Smooth Twins and their Isogeny-based Applications

