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Abstract. Electronic voting is one of the most interesting application of modern cryptography, as it in-
volves many innovative tools (such as homomorphic public-key encryption, non-interactive zero-knowledge
proofs, and distributed cryptography) to guarantee several a priori contradictory security properties: the
integrity of the tally and the privacy of the individual votes. While many efficient solutions exist for
honest-but-curious voters, that follow the official procedure but try to learn more than just the public
result, preventing attacks from malicious voters is much more complex: when voters may have incentive to
send biased ballots, the privacy of the ballots is much harder to satisfy, whereas this is the crucial security
property for electronic voting.
We present a new technique to prove that an ElGamal ciphertext contains a message from a specific
subset (quasi-adaptive NIZK of subset membership), using linearly-homomorphic signatures. The proofs
are both quite efficient to generate, allowing the use of low-power devices to vote, and randomizable,
which is important for the strong receipt-freeness property. They are well-suited to prevent vote-selling
and replay attacks, which are the main threats against the privacy in electronic voting, with security proofs
in the generic group model and the random oracle model.

1 Introduction

With the all-digital society, and more recently with the pandemic and multiple lock-down periods,
democracy is moving towards remote electronic voting, a.k.a. internet voting. Several solutions have
been developed that all encrypt the ballot on the voter-side to guarantee the voter’s privacy. Thereafter,
two major approaches exist for counting the tally, according to the complexity of the election: either
one applies a mixing-network (mixnet), which permutes and randomizes the encrypted ballots, before
decryption of all the individual ballots to perform the counting in the clear, as one does with paper-
based voting systems when one opens the envelops after having mixed them to remove any link with
the voters; or one uses homomorphic encryption that allows to aggregate the encrypted ballots to get
the encrypted tally, that is the unique value eventually decrypted. The latter approach is definitely
the most appropriate for electronic voting, when the tally just consists in ranking the candidates w.r.t.
their number of votes, as it allows a fast publication of the results, while mixing the ballots in a
verifiable way is time-consuming for large scale elections. We will thus target this approach in the
following, with the ElGamal encryption scheme.

Replay Attacks and Vote-Selling. However, privacy is more complex than it appears: simple
encryption is indeed fine when all the voters are honest, and really cast their intended votes following
the official procedure. But voters might deviate from the honest behavior, for multiple reasons. Some
might even be ready to change their votes for money or to break privacy. Then, more advanced
protections have to be considered, to really achieve a high privacy level.

For example, as explained by Cortier and Smyth [CS11], if a coalition of voters really wants to know
Alice’s vote, they can duplicate her encrypted ballot and cast it in their names. Indeed, contrarily to
paper-based vote, cloning Alice’s vote is usually trivial in electronic voting, as encrypted ballots are
stored in the ballot-box, and should be public for verifiability. Therefore, if they are enough people,
the bias in the final tally will reveal Alice’s vote. The impact of such an attack has been analyzed
in [MMR22], and it can be devastating. To avoid such an attack (called the CS-attack), the ballot-box
can simply exclude multiple identical votes, but this is under the assumption that one cannot modify
Alice’s encrypted ballot without altering the content. This requires some non-malleability.

Vote-selling is another major threat, when some voters may have strong incentive (with a reward
or external pressures) to vote for someone when being able to prove it later on. Actually, any technique
that encrypts the ballot on the client-side, without any modification before storing it in the public
ballot-box, is subject to vote-selling attacks, and even at high scale: the client-side code can always be
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patched in order to reveal the randomness used during encryption, as a receipt to convince anybody
of the content of the vote. Similarly to the Benaloh challenge, where the randomness used during
encryption is given to the voter to let him verify the cast-as-intended, this randomness is indeed enough
to prove the content of the ballot sent and stored in the ballot-box to any other party. To avoid vote-
selling (called VS-attack), encrypted ballots must be randomized before storage, which needs them
to be malleable. This shows how electronic voting makes a priori contradictory requirements. In the
literature, receipt-freeness prevents VS-attacks, while strong receipt-freeness prevents both VS-attacks
and CS-attacks [CCFG16,CFL19].

Randomizable Encryption. The usual approach to get receipt-freeness, without additional interac-
tions, is thus to let the voter encrypt his choice with a randomizable encryption scheme, so that the
ballot-box can randomize it before storage/publication. This is possible with the ElGamal encryption
scheme. But the voter needs the guarantee that the ballot-box cannot alter his vote.

Signatures on randomizable ciphertexts [BFPV11] was the first attempt to provide non-interactive
receipt-freeness: the voter signs (using the Waters signature [Wat05]) his encrypted vote (under El-
Gamal encryption), and just sends it; then the ballot-box can randomize the ciphertext and adapt
the signature, without being able to alter the plaintext. But because of the randomizability of the
ballot, it does not preclude CS-attacks. This approach has been improved in [CCFG16,CFL19], with
an RCCA-secure encryption scheme, providing the strong receipt-freeness: the voter does not have any
receipt to sell his vote and the ballot cannot be replayed without being detectable, with an additional
proof of knowledge generated by the voter.

Instead of combining ElGamal encryption with Waters signature, [DPP22] uses the one-time
Linearly-Homomorphic Signature (OT-LH-Sign) from [LPJY13] to get a more efficient instanciation,
with Traceable-CCA security. This notion of signature has also been analyzed in [BF20]. We will use
a more compact OT-LH-Sign, consisting of a unique group element [HPP20], in the slightly stronger
generic bilinear group model (GGM) and algebraic group model (AGM).

Non-Interactive Zero-Knowledge Proofs. But this approach, with randomization of the ballots,
is more complex in the homomorphic case, where only the aggregated tally is decrypted. In such
a situation, ballots are never decrypted and cannot be individually checked in the clear, whereas a
unique fake ballot can make the entire election meaningless. To make them verifiable, in their encrypted
form, non-interactive zero-knowledge proofs (NIZKs) are required, to prove some specific properties
are satisfied by the text in the clear, without revealing any additional information.

Let us first consider a classical setting: a 1-out-of-N choice (either the choice of one candidate,
or one list, among N possibilities). To allow homomorphic tally, one usually encodes the vote into N
concatenated bits bi: M⃗ = (bi)i ∈ ZN

p . The vote M⃗ is then encrypted in a component-wise manner,
and one proves bi ∈ {0, 1}, for i = 1, . . . , N , and

∑
bi = 1. Such a validity proof is linear in N , for both

the size and the generation time. An alternative proof can be M⃗ ∈ S = {V⃗1, . . . V⃗N} ⊆ ZN
p , where V⃗i

is the vote for candidate i (bi = 1, and all other values are 0, to allow homomorphic encrypted tally):
this is a unique proof of N -subset membership. More proofs of subset membership, on Ak · M⃗ ∈ Sk
for multiple matrices Ak, can be combined to encompass more complex elections, thanks to the linear
property of the encryption scheme. NIZKs of subset membership are the core of homomorphic voting
systems, and the main goal of this work.

Such NIZKs exist on ElGamal ciphertexts in groups G, where the Diffie-Hellman assumption holds,
or Zp, when working in the exponents. The most famous use the Fiat-Shamir paradigm on Schnorr-like
proofs, to prove disjunctions (OR-proofs). It makes the ballot non-malleable, which helps to exclude
CS-attacks but, on the other hand, this is in favor of VS-attacks. The Groth-Sahai methodology [GS08]
provides another approach for non-interactive zero-knowledge proofs, that are randomizable, but this
is at a very high computational cost (see [CCFG16] for simple 0-1 proofs), which is not reasonable on
low-power devices. Most importantly, both previous techniques lead to proofs that have a size and a
generation-time linear in the size of the subset S. On the other hand, recent SNARGs (or SNARKs),
for Succinct Non-Interactive Arguments (of Knowledge) [PHGR13,GGPR13,BCC+16,Gro16], and their
zero-knowledge variants, lead to quite efficient proofs for algebraic circuits. However, they suffer two
main drawbacks in the setting of electronic voting: (i) while the resulting proofs are quite short and
fast to verify, their generation by the prover depends on the complexity of the algebraic circuit. And
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statements to be proven (as listed above, and in particular disjunctions such as range proofs or proofs
of subset membership) lead to quite large algebraic circuits: proof generation-time might get quite
high (at least linear in the size of the set S); (ii) the SNARGs methodology requires a complex
Common Reference String (CRS). This is a structured tuple that must be generated in a trusted way.
Because of the complex structure, it is quite hard to distribute the generation among the electoral
board members, and it is not verifiable. Such an approach has been proposed in [LCKO19], using the
Groth16 proofs [Gro16], which require a CRS with successive powers and inverses (that are inefficient to
distribute) applied on group elements. Without distributed generation, this excludes the fundamental
assumption in electronic voting: one only trusts the electoral board as a whole, not any individual
party.

Contributions. We exploit linearly-homomorphic signatures [LPJY13,HPP20,HP22,DPP22] to de-
sign short and efficient homomorphic quasi-adaptive NIZKs of subset membership on ElGamal cipher-
texts, where quasi-adaptive means that the CRS (or the setup) depends on the subset [JR13,KW15].
But contrarily to all the previous methods presented above, that were using signatures on random-
izable ciphertexts just for allowing randomization on the server-side, and thus for achieving (strong)
receipt-freeness for a mixnet-based system, we additionally use them on the client-side, from multi-
ple signatures generated at the setup phase, by the electoral board, to derive efficient proofs of valid
ballots. This can be seen in the same vein as [CFL19], with initial signatures on randomized ballots,
but that paper only focused on the cast-as-intended property, and not the validity proof of the bal-
lots, with a costly signature on randomizable ciphertexts, that cannot scale for elections with complex
ballots. Our NIZK of subset membership (which is also a signature) has a constant size and takes a
constant-time for generation on the voter device, whatever the size of the subset. We stress that when
the signing keys and the initial signatures can be efficiently generated in a distributed way, this avoids
the need of a trusted third party.

In order to get signatures on randomizable ciphertexts with unlinkability, from linearly-homo-
morphic signatures (LH-Sign) on ElGamal ciphertexts, we need full-fledge LH-Sign [LPJY13,KW15]
with tags, to have multiple vector sub-spaces, that cannot be combined. We also need randomizable tags
to make signatures unlinkable, whichever is the vector sub-space: Hence, we use Linearly-Homomorphic
Signatures with Randomizable Tags (LH-Sign-RTag), where the tags target the vector sub-spaces,
but still being randomizable and unlinkable, as in [FHS19,HPP20,HP22], in order to keep privacy of
the ciphertexts. Signatures for proofs can only be generated for valid ballots, without revealing any
information about the votes.

Our contribution is thus the use of LH-Sign-RTag [FHS19,HPP20,HP22] in order to build efficient
quasi-adaptive NIZKs of subset membership that are randomizable: they have constant generation-time
and constant proof-size. This approach excludes VS-attacks and is compatible with the other improve-
ments [CCFG16,CFL19,DPP22]. In particular, the voter can use a one-time linearly-homomorphic
signature (OT-LH-Sign) to trace and check his vote after randomization, and append a single Groth-
Sahai Diffie-Hellman proof to avoid CS-attacks. This provides strong receipt-freeness. We furthermore
finely-tune the SDH-based LH-Sign-RTag [HPP20,HP22] to avoid any unique trusted party, which is
hard to obtain with any other similar approach.

Technical Overview. Let us first briefly explain the global idea for proving an ElGamal ciphertext
(C0 = r · P, C⃗ = M⃗ + r · Z⃗) ∈ Gn+1 actually encrypts a plaintext M⃗ ∈ S ⊂ Gn, under the encryption
key Z⃗ ∈ Gn, where G = ⟨P ⟩ is a group spanned by a generator P , where the Diffie-Hellman assumption
holds.

Thereafter, by applying a matrix Ak on the second part of the ciphertext (C0, C⃗): C⃗ ′ = Ak · C⃗ =
Ak · M⃗ + r · Ak · Z⃗, one can see (C0, C⃗

′) as a ciphertext of M⃗ ′ = Ak · M⃗ under the encryption
key Z⃗ ′ = Ak · Z⃗. The matrix Ak can be a projection (to focus on some part of the vector) or an
aggregation (to sum some components of the vector). Hence, the subset S can be {0 · P, 1 · P} ⊂ G1,
a larger range {0 · P, . . . , k · P} ⊂ G1, or any list of vectors {M⃗1, . . . , M⃗N} ⊂ Gn that specifies the
admissible aggregations/sums. Multiple proofs can be combined, thanks to their high efficiency.

Let us target on one proof of subset membership, and thus on the set S = {M⃗1, . . . , M⃗N}. The
authority first generates LH-Sign-RTag signatures under a verification key VK: Σi,0 on (PS , 0, M⃗i) and
Σi,1 on (0, P, Z⃗), under the common tag τi, for i = 1, . . . , N . The first component PS is a fixed group
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element that depends on the set S. It can be set as PS = H(S) where the function H is assumed to
be a full-domain hash function that outputs independent group elements for any new query (modelled
as a random oracle onto G). For a choice j, a random combination of the two signatures leads to a
valid signature under VK on a ciphertext of M⃗ = M⃗j : Σ0 = Σj,0 + r · Σj,1 is a valid signature on
(PS , C0 = r·P, C⃗ = r·Z⃗+M⃗j) = (PS , 0, M⃗j)+r·(0, P, Z⃗) under τ = τj . Note that the first components PS
and 0, later checked with respect to PS for Σ0, imply the coefficient 1 on (PS , 0, M⃗j) in the combination.
We stress that without tags, one could not prevent someone to encrypt (K +1) · M⃗1−K · M⃗2, for any
K of its choice, which is not considered a legitimate ciphertext. One also keeps Σ1 = Σj,1 as a valid
signature on the randomizer (0, D0 = P, D⃗ = Z⃗) under the tag τ = τj , for further randomization.

We have dropped the index j in the signatures (Σ0, Σ1) and the tag τ , as there is a unique pair
of ciphertexts that remains: C = (C0, C⃗) of M⃗j and D = (D0, D⃗) of 0⃗. They do not reveal information
about j, under the DDH assumption (ElGamal encryption), but the signatures (Σ0, Σ1) are valid
under τj only, which reveals j. Hence the need of randomizable tags to make the final tag τ and the
signatures (Σ0, Σ1) unlinkable to τj , and thus independent from the choice j.

Linearly-Homomorphic Signature with Randomizable Tags.The rest of the paper will explain
how to modify the above (C,D) and (Σ0, Σ1, τ) before sending them in order to keep vote-privacy,
using the randomizable tags. There are two LH-Sign-RTag candidates in the literature.

First, the FHS signature [FHS19], in a type III pairing-friendly setting (G, Ĝ,GT , p, P, P̂ , e), also
presented as a signature on randomizable ciphertexts [BF20]: a tag is τ = (τ1 = 1/t·P, τ2 = 1/t·P̂ ), for
a scalar t $← Zp, the signature of M⃗ = (Mk) ∈ Gn is Σ = t·(

∑
sk ·Mk) ∈ G, under VK = (P̂k = sk ·P̂ )k,

that can both be verified by e(P, τ2) = e(τ1, P̂ ) and e(Σ, τ2) =
∏

e(Mk, P̂k). One can easily randomize
τ and adapt the signature Σ, in a perfectly unlinkable way. Hence, the privacy relies on the ElGamal
encryption scheme only. From a CRS of linear length in the size of the subset S (with the (Σi,0, Σi,1, τi)i
for all the M⃗i ∈ S), proofs of subset membership are thereafter both size and time efficient (independent
of the size of S) as the voter only has to generate C = (C0, C⃗) for appropriate choice M⃗j , and
to randomize (Σ0, Σ1, τ) ∈ G3 × Ĝ, keeping D = (P, Z⃗) unchanged. As the tags are self-verifiable
(without any additional proof) signatures are very compact.

While the CRS has a similar size to the one for SNARGs (linear in the size of the algebraic circuit),
SNARGs also have a linear generation-time of the proof, whereas ours is constant-time. Unfortunately,
the setup that generates the CRS suffers the same drawback of being hard to distribute, because of
the modular inverses to be computed.

Hence, in the following, we consider the second LH-Sign-RTag candidate, with Square Diffie-Hellman
tags τ = (P, t·P, t2 ·P ), for t $← Zp [HPP20,HP22]. The tags will need additional proofs to be verifiable,
but the CRS can be efficiently generated in a distributed way.

2 Preliminaries

Computational Assumptions.Our security analysis will be performed in the Generic Group Model
(GGM) and the Algebraic Group Model (AGM) [FKL18], where the adversary can only make generic
operations on the group (and pairing evaluations). Hence, any new generated group element comes as
a linear combination of the input group elements. The former GGM is a slightly stronger model than
the latter AGM, as encodings of group elements can even be chosen at random. But in both cases, any
group element provided by the adversary comes with the explicit coefficients of the linear combination
of the input elements. This will provide the simulation extractability of our proofs. We will use the
following classical assumptions in a group G of prime order p, for any P ∈ G:

Discrete Logarithm (DL) Assumption. Given (P,U = x · P ), for x
$← Zp, it is computationally

hard to recover x;
Decisional Diffie-Hellman (DDH) Assumption. For U

$← G and x, y
$← Zp, distributions Ddh =

{(P, x · P,U, x · U)} and G4
$ = {(P, x · P,U, y · U)} are computationally hard to distinguish;

Square Discrete Logarithm (SDL) Assumption. Given (P,U = x · P, V = x2 · P ), for x $← Zp, it
is computationally hard to recover x;
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Decisional Square Diffie-Hellman (DSDH) Assumption. For x, y
$← Zp, distributions Dsdh =

{(P, x · P, x2 · P )} and G3
$ = {(P, x · P, y · P )} are computationally hard to distinguish.

The SXDH assumption claims that the DDH assumption holds in both groups G and Ĝ, when we are
in a type III pairing-friendly setting (G, Ĝ,GT , p, P, P̂ , e), with e a bilinear map from G× Ĝ into the
target group GT .

Groth-Sahai Proofs. The Groth-Sahai methodology [GS08] is well-known for zero-knowledge and
randomizable proofs of pairing-product relations. It is not appropriate for complex relations, but
efficient enough for short statements, such as Diffie-Hellman tuples (H,U = t ·H,R, V = t ·R) ∈ G4,
or SDH tuples: one defines the CRS as a random tuple (V̂1,1, V̂1,2, V̂2,1, V̂2,2) ∈ Ĝ4, likely a non-Diffie-
Hellman tuple. From the witness t ∈ Zp, one commits it, for µ

$← Zp:

com = (Ĉ = t · V̂2,1 + µ · V̂1,1, D̂ = t · V̂2,2 + µ · V̂1,2),

and sets Θ = µ ·H and Ψ = µ ·R, which satisfy

e(H, Ĉ) = e(U, V̂2,1) · e(Θ, V̂1,1), e(H, D̂) = e(U, V̂2,2) · e(Θ, V̂1,2),

e(R, Ĉ) = e(V, V̂2,1) · e(Ψ, V̂1,1), e(R, D̂) = e(V, V̂2,2) · e(Ψ, V̂1,2).

The proof is thus proof = (Θ,Ψ) ∈ G2, on the tuple (H,U,R, V ) and the commitment com = (Ĉ, D̂).
To verify it, instead of checking the four equations independently, which require 12 pairing evaluations,
one can apply a batch verification [BFI+10] which just consists of 3 pairing evaluations. The soundness
is perfect, while the zero-knowledge property relies on the SXDH assumption.

SDH Tags and Properties.We first recall some properties for the SDH tuples: the unlinkability and
the non-miscibility studied in [HPP20, Full version]. As shown in [HPP20,HP22], the DSDH and the
DDH assumptions imply the unlinkability of two SDH tuples. Furthermore, under the SDL assumption,
SDH tuples with different scalars cannot be mixed under known linear combinations:

Proposition 1 (Unlinkability). For any P ∈ G, the DDH and DSDH assumptions imply the indis-
tinguishability of D0 and D1, whith U

$← G, x, y
$← Zp:

D0 = {(P, x · P, x2 · P,U, x · U, x2 · U)} D1 = {(P, x · P, x2 · P,U, y · U, y2 · U)}

Proposition 2 (Non-Miscibility). Given n SDH tuples (P,Ui = xi·P, Vi = xi·Ui), for any generator
P , but random xi

$← Zp, outputting (αi)i=1,...,n such that (H =
∑

αi ·P,U =
∑

αi ·Ui, V =
∑

αi · Vi)
is an SDH tuple, with at least two non-zero coefficients αi, is computationally hard under the SDL
assumption.

However, verifying an SDH tuple requires an additional proof, which can be done with the above Groth-
Sahai methodology, with the CRS (V̂1,1, V̂1,2, V̂2,1, V̂2,2). Given an SDH tuple (H,U = x ·H,V = x ·U)

in G, knowing the witness x ∈ Zp, one first commits it, for a random ν
$← Zp:

com = (Ĉ = x · V̂2,1 + ν · V̂1,1, D̂ = x · V̂2,2 + ν · V̂1,2),

and one sets proof = (Θ = ν ·H,Ψ = ν · U), which satisfies the four above equalities, where R = U .
This proven tuple (τ⃗ = (H,U, V ), com = (Ĉ, D̂), proof = (Θ,Ψ)), which consists of 5 elements in G
and 2 elements in Ĝ, is randomizable: one can publicly update H in both τ⃗ and proof (with a chosen
multiplicative factor), and ν in both com and proof (without knowing it, but just the additional value
ν ′), making the new proven tuple unlinkable to the initial one, from the unlinkablity of the tuples and
the zero-knowledge property of the proof.

But for correct combinations, we need a stricter notion of equivalent (valid) tags.

Definition 3 (Equivalent SDH Tags). An SDH tag will be a tuple Tag = (τ⃗ , proof, com), with valid
proof, and two tags will be said equivalent if they not only are for the same scalar x, but also for the
same commitment com.
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Proposition 4 (Linearity). Given n equivalent SDH tags, with τ⃗i = (Hi, Ui = x ·Hi, Vi = x2 ·Hi),
for the same x ∈ Zp, their proofs proofi = (Θi = ν · Hi, Ψi = ν · Ui), for the same ν, and thus the
common commitment com = (Ĉ = x · V̂2,1 + ν · V̂1,1, D̂ = x · V̂2,2 + ν · V̂1,2), for any linear combination
τ⃗ =

∑
αi · τ⃗i, proof = (Θ =

∑
αi ·Θi, Ψ =

∑
αi · Ψi) is a valid proof for com.

Actually, τ⃗ = (H,U, V ) with H =
∑

αi ·Hi, hence the validity of proof. The proof and the commitment
can thereafter be randomized, with a new ν

$← Zp.

3 Linearly-Homomorphic Signatures

Linearly-homomorphic signatures (LH-Sign) were introduced in [BFKW09], to sign vector sub-spaces.
They allow to combine any signatures on vectors, so that one can derive the signature of a linear
combination of the already signed vectors, but nothing else. Then, Libert et al. [LPJY13] proposed
a linearly-homomorphic signature scheme, that is furthermore structure-preserving. More recently,
Hébant et al. [HPP20] adapted their scheme for a simpler One-Time Linearly-Homomorphic signature
(OT-LH-Sign), proven in the GGM, together with the family of Square Diffie-Hellman tags, to provide
anonymity properties [HP22]. It can be seen as a Linearly-Homomorphic signature with Randomizable
Tags (LH-Sign-RTag), where multiple sub-spaces can be signed independently (from now, referred as
the SDH signature). Alternatively, the above Fuchsbauer et al. scheme [FHS19,BF20] can also be used
(later referred as the FHS signature). The latter provides better efficiency and compactness, but the
former allows efficient distributed generation of the CRS, which is more important for our voting
application.

3.1 One-Time Linearly-Homomorphic Signature (OT-LH-Sign)

We first recall the simplified OT-LH-Sign, derived from Libert et al. [LPJY13], proven secure in the
GGM [FHS19,HPP20,BF20], with messages inM = Gn:

Setup(1κ): Given a security parameter κ, it outputs the global parameter param, that contains a
pairing-friendly setting (G, Ĝ,GT , p, P, P̂ , e);

Keygen(param, n): Given param and an integer n, it generates sk = s⃗
$← Zn

p , sets vk = s⃗ · P̂ = (P̂i =

si · P̂ )i ∈ Ĝn, and outputs the key pair (sk, vk);
Sign(sk, M⃗): Given a signing key sk = s⃗ and a vector-message M⃗ = (Mi)i ∈ Gn, it outputs the

signature σ = ⟨s⃗, M⃗⟩ =
∑

si ·Mi ∈ G;
DerivSign(vk, (wi, M⃗i, σi)

ℓ
i=1): Given a public key vk and ℓ tuples of weights wi ∈ Zp and signed

messages M⃗i in σi, it outputs the signature σ =
∑ℓ

i=1wi · σi of the vector M⃗ =
∑ℓ

i=1wi · M⃗i;
Verif(vk, M⃗ , σ): Given a verification key vk, a vector-message M⃗ and a signature σ, it outputs 1 if

e(σ, P̂ ) =
∏

e(Mi, P̂i), and 0 otherwise.

The correctness can be easily checked, thanks to the bilinearity of pairing e. Unforgeability holds in
the GGM [FHS19,HPP20]: one can only derive signatures on messages in the span of the already
signed messages. The GGM provides the simulator with the coefficients of the linear combination,
while the programmable encodings allow to answer signing queries, in the chosen-message scenario. To
allow multiple subspaces, one uses tags. Combinations should then only be possible between messages
signed under the same tag.

3.2 SDH-Based Linearly-Homomorphic Signature

Thanks to the non-miscibility of the SDH tags (see Proposition 2), one can transform any One-Time
Linearly-Homomorphic signature (OT-LH-Sign) into a (full-fledge) Linearly-Homomorphic Signature.
The unlinkability of the SDH tags (see Proposition 1) make them randomizable tags (LH-Sign-RTag).
But let us directly describe our signature scheme with messages inM = Gn:

Setup(1κ): Given κ, it outputs param, that contains a pairing-friendly setting (G, Ĝ,GT , p, P, P̂ , e) and
a random tuple (V̂1,1, V̂1,2, V̂2,1, V̂2,2)

$← Ĝ4;
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Keygen(param, n): Given param and an integer n, it generates sk = s⃗
$← Zn+3

p , sets vk = s⃗ · P̂ = (P̂i =

si · P̂ )n+3
i=1 ∈ Ĝn+3, and outputs the key pair (sk, vk);

NewTag(param): Generates a verifiable tag Tag = (τ⃗ = (P, t ·P, t2 ·P ), proof, com), for random scalars
t, ν

$← Zp, used in proof and com;
Sign(sk,Tag, M⃗): Given a signing key sk, a verifiable tag Tag = (τ⃗ , proof, com), and a vector-message

M⃗ = (Mi)i ∈ Gn, it outputs the signature σ = ⟨s⃗, M⃗∥τ⃗⟩ ∈ G, where the full message is M⃗∥τ⃗ =
(M1, . . . ,Mn, τ1, τ2, τ3) ∈ Gn+3;

DerivSign(vk, (wi,Tagi, M⃗i, σi)
ℓ
i=1): Given a public key vk and ℓ tuples of weights wi ∈ Zp and signed

messages M⃗i in σi, under equivalent tags Tagi, it outputs the signature σ =
∑

wi ·σi, on the vector
M⃗ =

∑ℓ
i=1wi · M⃗i, valid under the equivalent tag Tag′ with τ⃗ ′ =

∑
wi · τ⃗i, and adapted proof

proof ′, but the same commitment com;
Verif(vk,Tag, M⃗ , σ): Given a verification key vk, a verifiable tag Tag, a vector-message M⃗ and a

signature σ, it outputs 1 if e(σ, P̂ ) =
∏n

i=1 e(Mi, P̂i) ×
∏3

i=1 e(τi, P̂n+i) and the tag Tag is valid,
and 0 otherwise.

3.3 Distributed Generation

The main advantage of our proofs using SDH signatures, compared to the FHS signatures or SNARGs,
is the possible distributed setup, key generation, tag generation, and signatures, among multiple users
(Uk)k:
Setup(1κ, k): They all agree on the bilinear setting (G, Ĝ,GT , p, P, P̂ , e). User Uk chooses and sends

random points V̂1,1,k, V̂1,2,k, V̂2,1,k, V̂2,2,k
$← Ĝ. This leads to the global verification points V̂1,1 =∑

k V̂1,1,k, V̂1,2 =
∑

k V̂1,2,k, V̂2,1 =
∑

k V̂2,1,k, V̂2,2 =
∑

k V̂2,2,k, to complete param.
Keygen(param, n, k): Given the public parameters param, Uk randomly chooses si,k

$← Zp, for i =

1, . . . , n+3. Uk computes and sends vkk = (P̂i,k = si,k · P̂ )n+3
i=1 . This leads to the global verification

key vk =
∑

k vkk, while Uk keeps its signing key share skk = (ski,k = si,k)
n+3
i=1 .

NewTag(param): each user Uk chooses random tk, νk
$← Zp:

1. Uk computes and sends comk = (Ĉk = tk ·V̂2,1+νk ·V̂1,1, D̂k = tk ·V̂2,2+νk ·V̂1,2), and Uk = tk ·P ,
Θk = νk · P ;

2. Uk computes U =
∑

k Uk, Θ =
∑

k Θk, and sends Vk = tk · U , Ψk = νk · U .
This allows to compute V =

∑
k Vk, Ψ =

∑
k Ψk, and Ĉ =

∑
k Ĉk, D̂ =

∑
k D̂k. This leads to

Tag = (τ⃗ = (P,U, V ), proof = (Θ,Ψ), com = (Ĉ, D̂)), on t =
∑

tk and ν =
∑

νk.
Sign(skk,Tag, M⃗ = (Mi)i): Given a signing key share skk = (si,k)i, a tag Tag = (τ⃗ , proof, com) and a

vector-message M⃗ = (Mi)i ∈ Gn, one outputs the signature share σk =
∑n

i=1 si,k ·Mi+
∑3

i=1 sn+i,k ·
τi ∈ G. From those shares, one can compute σ =

∑
k σk.

The correctness can easily be verified, and parallelizing some steps, to generate the global parameters
param, several tags, and signatures on pre-determined messages, a three-round protocol is enough,
with public communications, in the honest-but-curious setting. No additional proofs are required in
the malicious setting, as each step is already verifiable: (Θk, Ψk) is a DH proof on (P,Uk, U, Vk) for
the commitment comk, and σk is a valid signature of (Tag, M⃗) under vkk. Additional extractable
commitments on every sent value allows perfect simulation even against adaptive adversaries: from
the committed values, the simulator can generate all the contributions of the honest players so that
the final outcome corresponds to any pre-defined values. Such an extractable commitment on a value
x can be done with H(x, r), for a large enough random r, in the random oracle model. Because of the
linearity of the operations, they essentially all run a full setup on their own. This is a quite simple
interactive process.

4 New Efficient NIZK of Subset Membership

We now detail how one can generate efficient randomizable NIZK of subset membership on ElGamal
ciphertexts, using SDH signatures, following the general approach presented in the technical overview,
with some optimizations due to the SDH tags. We thereafter detail how to adapt [CCFG16,DPP22]
to get strong receipt-freeness.
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4.1 Proof of Subset Membership for ElGamal Ciphertexts

We first focus on the setup and then on the ciphertext generation with the proof that the plaintext M⃗ is
in the subset S = {M⃗1, . . . , M⃗N} ⊂ Gn: we use a type III pairing-friendly setting (G, Ĝ,GT , p, P, P̂ , e),
with an ElGamal encryption key Z⃗ = z⃗ · P (note that z⃗

$← Zn
p can also be generated in a distributed

way).

Setup: CRS Generation. Using the above distributed algorithms, one generates signature keys,
SK = s⃗

$← Zn+4
p and VK =

⃗̂
S ← s⃗ · P̂ ∈ Ĝn+4, as well as N tags Tagi = (τ⃗i, proofi, comi), for

τ⃗i = (τi,1 = P, τi,2 = ti · P, τi,3 = t2i · P ), with ti
$← Z∗

p, for i = 1, . . . , N , with the validity proofs
proofi ∈ G2 and commitments comi ∈ Ĝ2 (on ti, for random νi), and N pairs of signatures, for
M⃗i ∈ S:

Σi,0 = Sign(SK,Tagi, (PS , 0, M⃗i)) = ⟨(PS , 0, M⃗i, τi,2, τi,3), SK⟩ ∈ G

Σi,1 = Sign(SK,Tagi, (0, P, Z⃗)) = ⟨(0, P, Z⃗, τi,2, τi,3),SK⟩ ∈ G

We note the optimization, where τi,1 = P is a known constant, so there is no need to provide it: the
length of the vectors is n+4 only. The verification key VK, the tags (Tagi)i and the pairs of signatures
(Σi,0, Σi,1)i constitute the CRS.

Proven Ciphertext Generation. The encryptor can generate a random ciphertext of M⃗j as C =

(C0, C⃗) = (r · P, M⃗j + r · Z⃗) = (0, M⃗j) + r · (P, Z⃗), and the random randomizer D = (D0, D⃗) =

(s·P, s·Z⃗) = s·(P, Z⃗), for random r, s
$← Zp, together with the associated signatures Σ0 = Σj,0+r×Σj,1

of (PS , C0, C⃗) and Σ1 = s ·Σj,1 of (0, D0, D⃗) under the equivalent tags τ⃗ ′0 = (r+ 1) · τ⃗j and τ⃗ ′1 = s · τ⃗j
for the key VK. The tags have already been randomized, and one can randomize com′ and adapt
proof ′0, proof

′
1, with an additional random ν

$← Zp. It then sends the twin-ciphertexts (C,D) ∈ G2n+2,
the twin-signatures (Σ0, Σ1) ∈ G2 and the twin-tags (τ⃗ ′0, proof

′
0, τ⃗

′
1, proof

′
1, com

′) ∈ G8 × Ĝ2. The first
components of the tags are C0 + P and D0 respectively, there is no need to duplicate them.

Randomization. The receiver can randomize the ciphertext into C′ = (C ′
0, C⃗

′) = C + r′ · D, with
r′

$← Zp, adapt the tag τ⃗ ′ = τ⃗ ′0 + r′ · τ⃗ ′1, and randomize it with ν ′
$← Zp in proof ′, com′, and adapt

the signature Σ′ = Σ0 + r′ · Σ1. In the end, one only stores C′ = (C ′
0, C⃗

′) ∈ Gn+1 and the proof
(Σ′,Tag′ = (τ⃗ ′, proof ′, com′)) ∈ G5 × Ĝ2, which is independent of N .

Verifiable Tally.The valid ballots can be aggregated by summing component-wise all the ciphertexts
{(C ′

0, C⃗
′)} from the public ballot-box into a global ciphertext T = (T0, T⃗ ), which decrypts to the tally

using the decryption key z⃗, with zero-knowledge proofs of valid decryption (à la Schnorr with the
Fiat-Shamir paradigm).

More Constraints. Our approach is thus quite efficient for a subset constraint, whatever the size of
the subset. And multiple constraints on ciphertexts (C0,Ak · C⃗) under the keys Z⃗k = Ak · Z⃗ in sets
Sk can be combined: each one needs twin-tags and twin-signatures, sent by the voter (10 elements of
G and 2 elements of Ĝ), but only one tag and one signature stored in the ballot-box (5 elements of G
and 2 elements of Ĝ). More complex formats of the ballots can be modelled as subset constraints. One
just has to take care of the first component PSk

that must be specific to Sk, to avoid combinations
between elements in the CRS that are for different proofs. Any successful illegal combination would
break the DL assumption in the algebraic group model and the random oracle model

Examples. The 0-1 choices (each i-th box must be a 0-1 choice) is a subset constraint, with Si =
{0 ·P, 1 ·P} ⊂ G1, for each i. This allows to prove the validity of the 0-1 encryption in (C0, Ci) under
the ElGamal key Zi. However, this requires n subset membership proofs, for sets of size 2. And the
less constraints there are, the more interesting is our approach, even if the sets get larger. Hence, one
can consider S = {0, 1}n, and thus only one subset membership proof, with a set of size 2n, if n is
not too large. But then the setup becomes exponential in n. One can also split n to have k parallel
subset membership proofs of length 2n/k. We however stress that even for any quite large (possibly
exponential) CRS, the generation of the proof by the encryptor is constant-time.
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For a more complex election, where one can check at most K boxes among N , when all boxes being
0-1, as above, one can consider the additional proof of subset membership with S = {0 ·P, . . . ,K ·P} ⊂
G1 for the ciphertext (C0,

∑
Ci) under the key Z =

∑
Zi.

4.2 Proofs on Randomizable Ciphertexts

Interestingly, this approach is compatible with [CCFG16,DPP22] to get strong receipt-freeness: an
encryptor can restrict transformations on his ElGamal ciphertext thanks to an OT-LH-Sign in Gn+2, for
a personal verification key vk, by signing both the ciphertext (P,C0, C⃗) and the randomizer (0, D0, D⃗)
in (σ0, σ1), without any need of tags, as this is the only vector sub-space with this signing key sk: any
new signature σ on some (P,C ′

0, C⃗
′), valid under vk, is necessarily a randomization of (C0, C⃗). This

provides receipt-freeness. We stress that (sk, vk) is an individual pair of keys that is owned by the
signer, contrarily to (SK,VK) that was generated during the setup for the CRS.

According to [CCFG16], one can add a Groth-Sahai proof of Diffie-Hellman tuple for (P, T =
H(vk), C0 = r ·P,W0 = r ·T ), as suggested in [CCFG16]. But in our case, the RCCA-security requires
the AGM to extract r from such a valid Diffie-Hellman tuple with a truly random T . The randomness
r then allows the decryption. We also have to do it for (P, T = H(vk), D0 = s ·P,W1 = s ·T ), for future
randomization: for random ν0, ν1, one generates com0 = (Ĉ0 = r · V̂ ′

2,1+ν0 · V̂ ′
1,1, D̂0 = r · V̂ ′

2,2+ν0 · V̂ ′
1,2),

com1 = (Ĉ1 = s·V̂ ′
2,1+ν1 ·V̂ ′

1,1, D̂1 = s·V̂ ′
2,2+ν1 ·V̂ ′

1,2), and the proofs proof0 = (Θ0 = ν0 ·P, Ψ0 = ν0 ·T ),
proof1 = (Θ1 = ν1 · P, Ψ1 = ν1 · T ), that can later be combined by into com = com0 + r′ · com1 and
proof = proof0 + r′ · proof1 by the receiver(s) to verify W = W0 + r′ ·W1 = r′′ · T , with unknown
scalars r′′ = r+ r′s and ν ′′ = ν0 + r′ν1, after having also randomized the ciphertext C ′

0 = C0 + r′ ·D0

and C⃗ ′ = C⃗ + r′ · D⃗. We stress that an independent CRS (V̂ ′
1,1, V̂

′
1,2, V̂

′
2,1, V̂

′
2,2) is used here. The same

as for the SDH proofs could be used, but the separation will clarify the security analysis.

5 Homomorphic Voting System: Efficiency and Security

We first recap the communications and computations, in the N -subset case, for ballots where n boxes
could be checked: M⃗ ∈ S ⊂ Gn. Thereafter, we explain the security properties. We stress that we
target a homomorphic voting system.

Communication. The full public information generated at the setup time, in a possibly distributed
way, consists of VK ∈ Ĝn+4, (Σi,0, Σi,1)i ∈ G2N , with the tags, but without the constant P , (τi,2, τi,3)i ∈
G2N , together with their proofs and commitments in (G2 × Ĝ2)N , and the two Groth-Sahai CRS in
Ĝ4. The CRS thus consists of 6N elements from G and n+ 2N + 12 elements from Ĝ.

From the CRS, the voter sends the twin-ciphertexts (C,D) ∈ G2n+2, the twin-validity-proofs
(Σ0, Σ1, τ⃗

′
0, proof

′
0, τ⃗

′
1, proof

′
1, com

′) ∈ G10 × Ĝ2, the twin-signatures (vk, σ0, σ1) ∈ Ĝn+2 × G2, and
the twin-user-proofs (W0,W1, proof0, proof1, com0, com1) ∈ G6 × Ĝ4, using above notations. We thus
globally have 2n+ 20 elements from G and n+ 8 elements from Ĝ in the twin-ballot.

The ballot-box stores the randomized ciphertext C′ ∈ Gn+1, together with the validity proof
(Σ′′, τ⃗ ′′, proof ′′, com′′) ∈ G5 × Ĝ2, as well as the user-signature (vk, σ) ∈ Ĝn+2 × G, and the user-
proof (W ′′, proof, com) ∈ G3 × Ĝ2. We thus globally have n+ 10 elements from G and n+ 6 elements
from Ĝ for each randomized ballot.

We can use the type III pairing-friendly curve BLS12-381 [BLS03], as in all the zk-SNARKs ap-
plications: G group elements are encoded on 48 bytes, while Ĝ group elements are encoded on 96
bytes. For N = n = 25 (in the 1-out-of-n case), the public information is a bit more than 15KB, the
twin-ballot is 6.5KB, while the ballot is 4.6KB. Which is quite reasonable in size.

Computations. We have implemented the voting process with both FHS and SDH signatures (cen-
tralized setup, twin-ballot generation, randomization and ballot-extraction, together with verification)
in Rust, using https://github.com/zkcrypto/bls12_381 library, with the two additional enhance-
ments for Strong Receipt-Freeness, but without any implementation optimizations. On Figure 1, we
deal with the 1-out-of-25 ballot case. The most important for practical use is the quite efficient gen-
eration of the full twin-ballots, with cross-compiled applications on mobile phones (see Figure 2, for

https://github.com/zkcrypto/bls12_381
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param Twin-ballot Ballot
Generate Verify Generate Verify Rand-Extract Verify

SDH 1225ms 4062ms 179ms 390ms 66ms 211ms
FHS 1019ms 3710ms 142ms 339ms 49ms 241ms

Fig. 1. Implementation of 1-out-of-25 Ballots (Rust on Macbook Pro 2021 – M1 Pro)

the 1-out-of-n case). Encryption, signing key generation, and signature are all linear in n. The proof
of validity (for one constraint) is almost constant. If we approximate the time as an affine function in
a × n + b, the time for each proof of subset membership is thus b: not much more than 100ms on a
6-year-old smartphone.

n = 5 n = 10 n = 25 a b

Using Linearly-Homomorphic Proofs, cross-compiled from Rust
2017 – SnapDragon 835 (Android) 243ms 375ms 710ms 23.1ms 134.5ms
2019 – Intel i9-9880H (MacOS) 91ms 134ms 261ms 8.5ms 48.8ms
2021 – iPhone 13 A15 Bionic (iOS) 43ms 63ms 125ms 4.1ms 22.2ms

Fig. 2. Voting time (encrypt, prove, generate keys, and sign) for 1-out-of-n Choices

Privacy of the Votes.The first important property in electronic voting is the privacy of the vote. The
voter derives the twin-ciphertexts (C0, C⃗) = (r ·P, M⃗j+r · Z⃗) and (D0, D⃗) = (s ·P, s · Z⃗), the twin-tags
τ⃗ ′0 = (r+1) · τ⃗j , τ⃗ ′1 = s · τ⃗j , and randomized proofs proof ′0, proof

′
1, com

′, for random r, s, ν ′
$← Zp, which

are unlinkable to M⃗j .
In order to show it, let us denote (τ⃗ = (P,U = x · P, V = x2 · P ), proof = (Θ = ν · P, Ψ =

ν ·U), com = (Ĉ = x · V̂2,1+ ν · V̂1,1, D̂ = x · V̂2,2+ ν · V̂1,2)) the proven SDH tag for M⃗j . Using random
r, s, ν ′

$← Zp, the voter generates

(C0, C⃗) = r · (P, Z⃗) + (0, M⃗j) (D0, D⃗) = s · (P, Z⃗)

τ⃗ ′0 = (r + 1) · (P,U, V ) τ⃗ ′1 = s · (P,U, V )

proof ′0 = (r + 1) · [(Θ,Ψ) + ν ′ · (P,U)] proof ′1 = s · [(Θ,Ψ) + ν ′ · (P,U)]

com′ = (Ĉ, D̂) + ν ′ · (V̂1,1, V̂1,2) = x · (V̂2,1, V̂2,2) + (ν + ν ′) · (V̂1,1, V̂1,2)

One can indeed note that

proof ′0 = (r + 1) · [(Θ,Ψ) + ν ′ · (P,U)] proof ′1 = s · [(Θ,Ψ) + ν ′ · (P,U)]

= (r + 1) · [ν · (P,U) + ν ′ · (P,U)] = s · [ν · (P,U) + ν ′ · (P,U)]

= (ν + ν ′) · [(r + 1) · (P,U)] = (ν + ν ′) · [s · (P,U)]

are valid proofs for τ⃗ ′0 and τ⃗ ′1 with com′.
Let us replace the CRS (V̂1,1, V̂1,2, V̂2,1, V̂2,2) with a Diffie-Hellman tuple (V̂1,1, V̂1,2, V̂2,1 = α ·

V̂1,1, V̂2,2 = α · V̂1,2). This is indistinguishable under the DDH assumption in Ĝ. Then com′ = (αx +
(ν + ν ′)) · (V̂1,1, V̂1,2).

If we define com′ = β · (V̂1,1, V̂1,2), for a random β
$← Zp, which implicitly and randomly defines ν ′,

and if we denote, for random r, s
$← Zp,

(P0, U0, V0, Z⃗0) = (r + 1) · (P,U, V, Z⃗) (P1, U1, V1, Z⃗1) = s · (P,U, V, Z⃗)

(C0, C⃗) = (P0 − P, Z⃗0 − Z⃗) + (0, M⃗j) (D0, D⃗) = (P1, Z⃗1)

τ⃗ ′0 = (P0, U0, V0) τ⃗ ′1 = (P1, U1, V1)

proof ′0 = (ν + ν ′) · (P0, U0) proof ′1 = (ν + ν ′) · (P1, U1)

= (β − αx) · (P0, U0) = (β − αx) · (P1, U1)

= β · (P0, U0)− α · (U0, V0) = β · (P1, U1)− α · (U1, V1)
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Let us replace (P0, U0, V0, Z⃗0) and (P1, U1, V1, Z⃗1) by random tuples, which is indistinguishable under
the DDH assumption in G. This is also under the organizational assumption that the scalars in the tags
generated during the setup are really private. As Z⃗0 is random, we can note (C0, C⃗) = (P0 − P, Z⃗0).

For a new random y
$← Zp, we can go back to (P0, U0, V0) = (r + 1) · (P, y · P, y2 · P ) and

(P1, U1, V1, Z⃗1) = s · (P, y · P, y2 · P, Z⃗), which is indistinguishable under the DDH and the SDH
assumptions in G. This then allows to honestly generate the proofs using y, even for a valid CRS
(V̂1,1, V̂1,2, V̂2,1, V̂2,2) that is no longer a Diffie-Hellman tuple. The proven twin-tags are thus unlinkable
to τ⃗j , and the ciphertext (C0, C⃗) encrypts a random plaintext. This is perfectly private.

We can stress that the ballot privacy (in the above honest-but-curious setting) is achieved in the
standard model, under the SXDH assumption and the SDH assumption in G.

Strong Receipt-Freeness. But we need stronger privacy properties, by preventing malicious voter
behaviors, with replay and vote-selling attacks. When the voter has sent the ciphertext (C0, C⃗), he
can open it with his randomness r. But the ciphertext in the public ballot-box is (C ′

0, C⃗
′) that has

been randomized with an unknown r′: this excludes VS-attacks. We stress that the receiver must
first check D0 ̸= 0 for randomization to be effective. The additional Diffie-Hellman proof for (P, T =
H(vk), C ′

0,W ) avoids replay attacks under a different signing key vk′. Excluding multiple ballots with
the same vk then avoids replay attacks, and thus CS-attacks. But here, both GGM and ROM are
needed.

To assess strong receipt-freeness, we can follow a similar path as in [CCFG16, Theorem 3 – Figure
1], with their security game for the strong receipt-freeness (a stronger privacy notion, against malicious
voters). The proof is performed in two mains steps, with first the RCCA-security for our encryption
scheme, thanks to the additional Diffie-Hellman proof, and then the privacy of the ciphertexts. But we
cannot use the same approach as they do, for simulating the decryption oracle, as we take advantage of
the compact randomness-reuse version of ElGamal. However, we can exploit the GGM/AGM extractor:
any adversarially-generated Diffie-Hellman tuple (P,H(vk), C0,W0), for a truly random T = H(vk),
as we are in the ROM, allows to extract r such that C0 = r · P . This thus allows to simulate the
decryption of any ballot with a valid signature under a fresh vk. Let us now simulate the public view
of an adversary against the strong receipt-freeness:

1. in the initial security game, honest published ballots are generated as fresh ciphertexts, and all
the adversarial ballots are honestly randomized before publication. Final tally decryption uses the
decryption key and the Schnorr proof is performed honestly;

2. the Schnorr proof of correct tally decryption is simulated (by programming the random oracle used
to derive the challenge);

3. the adversarial Groth-Sahai proofs of Diffie-Hellman tuples are additionally checked knowing the
discrete logarithm of H values (by programming the random oracle);

4. the adversarial twin-ballots, with fresh vk, are decrypted using the above RCCA-security: valid
fresh Diffie-Hellman tuples (P, T = H(vk), C0,W0) and (P, T = H(vk), D0,W1) come with r and s,
such that C0 = r · P and D0 = s · P , respectively, which allows to decrypt, using the GGM/AGM
extractor. A ballot with a replayed vk or invalid W0, W1 is rejected. The tally is computed on clear
data, which does not impact the proof of correct decryption, that was already simulated;

5. from r and s, in the adversarial twin-ballots with fresh vk, one can recompute the tags τ⃗ ′0 and τ⃗ ′1.
If these tags are not the expected ones, the ballots are rejected;

6. the simulator learns the users’ signing keys sk associated to each sent vk, using the GGM/AGM
extractor for adversarially generated vk, and keeps the signing keys SK generated during the setup;

7. for published ballots, the Groth-Sahai proofs of SDH tuples are simulated using a Diffie-Hellman
CRS (V̂1,1, V̂1,2, V̂2,1, V̂2,2) and signatures are generated using the signing keys;

8. for published ballots, fresh random ciphertexts and random tags are generated (proofs are simulated
and signatures use the signing keys).

We have built a simulator that generates views indistinguishable from real executions, without leaking
any information about the votes. We stress that this stronger privacy in the malicious setting relies
on the GGM and the random oracle model. They are widely admitted, in particular for efficient
constructions.
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Strong Verifiability.From the unforgeability under chosen-message attacks of the OT-LH-Sign in the
GGM, and the non-miscibility of the SDH-tags (Proposition 2), the validity of signatures on (PS , C0, C⃗),
(0, D0, D⃗) or (PS , C ′

0, C⃗
′) under the key VK (and a valid tag) implies that they are linear combinations

of some (PS , 0, M⃗j) and (0, P, Z⃗), again under the assumption that the scalars in the tags generated
during the setup are really private, and even destroyed after use. Hence, no new signature can be
generated by anybody, excepted under linear combinations on equivalent tags. Because of the first
component PS (specific to S) in (PS , C

′
0, C⃗

′), this is necessarily for a valid ballot, but not necessarily
for the same j as in (PS , C0, C⃗): C0 = r ·P and C⃗ = r · Z⃗ + M⃗j , and C ′

0 = r′ ·P and C⃗ ′ = r′ · Z⃗ + M⃗k.
Anyway, they are both valid ballots. Furthermore, the decryption of the tally is given with a proof of
correct decryption, which provides the universal verifiability of ballots and tally.

However, the voter needs the additional guarantee of no modification of his initial choice M⃗j in
(C0, C⃗) after randomization in (C ′

0, C⃗
′), by the receiver: the voter, who has kept T = H(vk), can ask

for his vote, and check the validity of σ′ with respect to (P,C ′
0, C⃗

′) under vk. This implies (C ′
0, C⃗

′) can
only be a randomization of the initial ciphertext (C0, C⃗): M⃗k = M⃗j , under the unforgeability of the
OT-LH-Sign, as vk is specific to a voter and used only once. This individual verifiability convinces
every voter of the integrity of the ballot-box, with the presence of his vote.
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A Complete Protocol for Proof of Subset Membership on ElGamal Ciphertexts

In this appendix, we describe how to use Linearly-Homomorphic Signatures with Randomizable Tags
(LH-Sign-RTag) for zero-knowledge proofs of subset membership on ElGamal ciphertexts. We propose
additional, but optional, steps to make them non-malleable and traceable by the prover. Then, com-
binations of such proofs can be used for any kind of election, in order to prove the validity of the
ballot, with randomizability to provide receipt-freeness (to exclude VS-attacks), and non-malleability
to provide the strong receipt-freeness (to exclude CS-attacks). The process involves

– an authority (possibly distributed among several parties), that generates the global parameters;
– a sender, that generates the ciphertext with a (non-malleable) proof of subset membership;
– a receiver, that (randomizes and) stores the final ciphertext.

We will use a pairing-friendly setting (G, Ĝ,GT , p, P, P̂ , e), where the SXDH assumption holds, for the
ElGamal encryption privacy.

We thus consider the set S = {x⃗1, . . . , x⃗N} ⊆ Zn
p of the N authorized plaintexts, and denote

PS ∈ G, an element that characterizes the proof on S (in case of multiple concurrent proofs, on the
same ciphertext). It can be PS = H(S), where H is a full-domain hash function into G.

A.1 Generic Approach

We first present the generic approach, with an LH-Sign-RTag used in black box. This illustrates the
main steps, that are required or optional, according to the needs. We ignore here some classical steps
for Groth-Sahai proofs, of Diffie-Hellman tuples.

Initialisation. The authority generates

Encryption Keys: A pair of ElGamal encryption keys (DK,EK) for plaintexts in Gn: the private
decryption key is DK = z⃗

$← Zn
p , and the public encryption key is EK = Z⃗ = z⃗ · P ∈ Gn;

Signature Keys: A pair of LH-Sign-RTag signing keys (SK,VK) for messages in Gn+2;
Verifiable Tags: N verifiable tags Tagj , for j = 1, . . . , N ;
Initial Signatures: N pairs of signatures (Σj,0, Σj,1), for j = 1, . . . , N , on M⃗j = x⃗j · P ∈ Gn, with

two additional components:

Σj,0 = Sign(SK,Tagj , (PS , 0, M⃗j)) Σj,1 = Sign(SK,Tagj , (0, P, Z⃗))

https://eprint.iacr.org/2019/1270
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The public parameters thus consist of EK,VK, and (Tagj , x⃗j , Σj,0, Σj,1) for j = 1, . . . , N . The signing
key SK and the random values must be forgotten, except the decryption key DK, that must be kept
for the final tally.

Ciphertext with Proof of Subset Membership. From the above public elements, the sender
generates

Ciphertext : The ElGamal ciphertext (C0, C⃗) for his authorized plaintext x⃗ = x⃗j ∈ S ⊆ Zn
p , which

determines the by-now fixed index j, with a random scalar r
$← Zp:

C0 = r · P C⃗ = r · Z⃗ + M⃗ with M⃗ = M⃗j = x⃗j · P ∈ Gn

Proof of Subset Membership: The proof, from Tagj and Σj,0, Σj,1:

Σ0 = Σj,0 + r ·Σj,1 Σ1 = Σj,1 (optional for further randomization)

which are valid signatures of (PS , C0, C⃗) and (0, P, Z⃗), respectively, under VK for the unlinkable tag
Tag = Tagj . Granted the property of LH-Sign-RTag, with randomizable tags, one can randomize
Tag into Tag′ and adapt Σ0 and Σ1 into Σ′

0 and Σ′
1, respectively for this new tag: Σ′

0 and Σ′
1 are

valid signatures of (PS , C0, C⃗) and (0, P, Z⃗), respectively, under VK for the tag Tag′.
Individual Verifiability (optional for further randomization): A pair of OT-LH-Sign signing

keys (sk, vk) for messages in Gn+2, and the signatures

σ0 = Sign(sk, (P,C0, C⃗)) σ1 = Sign(sk, (0, P, Z⃗))

Non-Malleability (optional): The Diffie-Hellman value W = r · T , for T = H(vk) ∈ G, together
with a Groth-Sahai proof π of Diffie-Hellman tuple for (P, T,C0,W ).

The sender then outputs the ciphertext (C0, C⃗), together with the proof that consists of (Tag′, Σ′
0, Σ

′
1),

and (optionally) the signatures (vk, σ0, σ1) and (W,π).

Randomization. Before storing the ciphertext, the receiver may (optionally) randomize it, after
having verified all the values (C0, C⃗), (Tag′, Σ′

0, Σ
′
1), (vk, σ0, σ1), and (W,π):

Verification: The receiver verifies
– vk is fresh (no repetition)
– the validity of Tag′

– the validity of the signatures Σ′
0 and Σ′

1 on (PS , C0, C⃗) and (0, P, Z⃗), respectively, under VK
for the tag Tag′;

– the validity of the signatures σ0 and σ1 on (P,C0, C⃗) and (0, P, Z⃗), respectively, under vk;
– the validity of the Diffie-Hellman proof π on the tuple (P, T = H(vk), C0,W ).

Ciphertext : The receiver randomizes the ElGamal ciphertext (C0, C⃗) using a random scalar s $← Zp

C ′
0 = C0 + s · P C⃗ ′ = C⃗ + s · Z⃗

Signatures: The receiver adapts the signatures for this new ciphertext

Σ′ = Σ′
0 + s ·Σ′

1 σ = σ0 + s · σ1

Then, Σ′ is a valid signature of (PS , C ′
0, C⃗

′) under VK for the tag Tag′, and σ is a valid signature
of (P,C ′

0, C⃗
′) under vk. Granted the property of LH-Sign-RTag, with randomizable tags, one can

randomize Tag′ into Tag′′ and adapt Σ′ into Σ′′ for this new tag: Σ′′ is a valid signature of
(PS , C

′
0, C⃗

′) under VK for the tag Tag′′.
Diffie-Hellman Proof : The receiver adapts the Groth-Sahai proof π of the Diffie-Hellman tu-

ple (P, T = H(vk), C0,W ), into a randomized proof π′ of the Diffie-Hellman tuple (P, T =
H(vk), C ′

0,W
′), using s, for W ′ = W + s · T .

The receiver then stores the ciphertext (C ′
0, C⃗

′), together with the proof that consists of (Tag′′, Σ′′),
the signature (vk, σ), and (W ′, π′), which can be publicly verified:
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– Tag′′ is a valid tag;
– Σ′ is a valid signature on (PS , C

′
0, C⃗

′), under VK for the tag Tag′′. This proves the plaintext must
be in S;

– σ is a valid signature on (P,C ′
0, C⃗

′) under vk. This ensures the sender that (C ′
0, C⃗

′) contains the
same plaintext as his initial ciphertext (C0, C⃗), but without knowing the actual randomness, which
excludes VS-attacks;

– π′ is a valid Diffie-Hellman proof on the tuple (P, T = H(vk), C ′
0,W

′). This ensures that only the
owner of vk can have initiated the ciphertext, which excludes malleability or repetition, and thus
CS-attacks.

Some Details. First, for the OT-LH-Sign, one can use sk = s⃗
$← Zn

p and vk = s⃗ · P̂ . Then, σ =

Sign(sk, M⃗) = ⟨s⃗, M⃗⟩ =
∑

si ·Mi ∈ G can be verified as e(σ, P̂ ) =
∏

e(Mi, vki). Below, we instantiate
LH-Sign-RTag from this OT-LH-Sign, with two different kinds of verifiable tags.

For Groth-Sahai proofs, we need a random tuple (V̂1,1, V̂1,2, V̂2,1, V̂2,2) ∈ Ĝ4, and the proof π =
(com, proof), consists of a commitment com of the secret witness known by the prover, and a proof
proof, both being additively homomorphic, and publicly verifiable. We will not detail the properties
and the computations for those proofs, as they are classical. But we stress they can be randomized.

A.2 FHS Instantiation

The FHS LH-Sign-RTag (which stands for Fuchsbauer-Hanser-Slamanig [FHS19]) uses tags of the form
Tag = (τ1 = 1/t ·P, τ2 = 1/t · P̂ ) ∈ G× Ĝ, for a scalar t $← Zp. It is self-verifiable as one can check that
e(P, τ2) = e(τ1, P̂ ). The signature of M⃗ = (Mi) ∈ Gn is Σ = t ·(

∑
si ·Mi) ∈ G, under VK = s⃗ · P̂ ∈ Ĝn,

that can be verified by e(Σ, τ2) =
∏

e(Mi,VKi).
One can easily randomize Tag and adapt the signature Σ, in a perfectly unlinkable way: Tag′ =

1/t′ · Tag = (τ ′1 = 1/t′ · τ1, τ ′2 = 1/t′ · τ2), for a scalar t′
$← Zp, and Σ′ = t′ ·Σ.

Granted the self-verifiable tags, this approach is quite efficient, from both the computation and
communication points of view. However, the initialisation cannot efficiently be distributed among
multiple users, to avoid a unique trusted party. The verifiable tags and the initial signatures must be
generated on a secure device. But the process is quite close to the above generic one.

Initialisation. The authority generates

Encryption Keys: A pair of ElGamal encryption keys (DK,EK) for plaintexts in Gn: the private
decryption key is DK = z⃗

$← Zn
p , and the public encryption key is EK = Z⃗ = z⃗ · P ∈ Gn;

Signature Keys: A pair of FHS LH-Sign-RTag signing keys SK = s⃗
$← Zn+2

p , and VK = s⃗ · P̂ ∈ Ĝn+2;
Verifiable Tags: N verifiable tags Tagj = (τj,1 = 1/tj · P, τj,2 = 1/tj · P̂ ), with tj

$← Zp, for
j = 1, . . . , N ;

Initial Signatures: N pairs of signatures, for j = 1, . . . , N , on M⃗j = x⃗j ·P = (Mj,1, . . . ,Mj,n) ∈ Gn:

Σj,0 = tj · (s1 · PS +

n∑
i=1

si+2 ·Mj,i) Σj,1 = tj · (s2 · P +

n∑
i=1

si+2 · Zi)

The public parameters thus consist of EK,VK, and (Tagj , x⃗j , Σj,0, Σj,1) for j = 1, . . . , N . The signing
key SK and the random values must be forgotten, except the decryption key DK.

Ciphertext with Proof of Subset Membership. From the above public elements, the sender
generates

Ciphertext : The ElGamal ciphertext (C0, C⃗) for his authorized plaintext x⃗ = x⃗j ∈ S ⊆ Zn
p , which

determines the by-now fixed index j, with a random scalar r
$← Zp:

C0 = r · P C⃗ = r · Z⃗ + M⃗ with M⃗ = M⃗j = x⃗j · P ∈ Gn
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Proof of Subset Membership: The proof, from Tagj and Σj,0, Σj,1:

Σ0 = Σj,0 + r ·Σj,1 Σ1 = Σj,1

which are valid signatures of (PS , C0, C⃗) and (0, P, Z⃗), respectively, under VK for the tag Tag =
Tagj . Granted the property of LH-Sign-RTag, with randomizable tags, one can randomize Tag =

(τ1, τ2) into Tag′ = (τ ′1, τ
′
2), for a random t′

$← Zp, and adapt Σ0 and Σ1 into Σ′
0 and Σ′

1, respectively
for this new tag:

Tag′ = (τ ′1 = 1/t′ · τ1, τ ′2 = 1/t′ · τ2) Σ′
0 = t′ ·Σ0 Σ′

1 = t′ ·Σ1

Individual Verifiability : A pair of OT-LH-Sign signing keys sk = (ski)i
$← Zn+2

p , and vk = sk · P̂ =

(vki)i ∈ Ĝn+2, and the signatures

σ0 = sk1 · P + sk2 · C0 +
n∑

i=1

ski+2 · Ci σ1 = sk2 · P +
n∑

i=1

ski+2 · Zi

Non-Malleability : The Diffie-Hellman value W = r · T , for T = H(vk) ∈ G, together with a Groth-
Sahai proof π = (com, proof) of Diffie-Hellman tuple for (P, T,C0,W ).

The sender then outputs the ciphertext (C0, C⃗), together with the proof that consists of (Tag′, Σ′
0, Σ

′
1),

the signatures (vk, σ0, σ1), and (W,π).

Randomization. Before storing the ciphertext, the receiver randomizes it, after having verified all
the values (C0, C⃗), (Tag′, Σ′

0, Σ
′
1), (vk, σ0, σ1), and (W,π):

Verification: The receiver verifies

vk is fresh (no repetition)

The tag Tag′ = (τ ′1, τ
′
2) e(P, τ ′2) = e(τ ′1, P̂ )

The signature Σ′
0 e(Σ′

0, τ
′
2) = e(PS ,VK1) · e(C0,VK2) ·

n∏
i=1

e(Ci,VKi+2)

The signature Σ′
1 e(Σ′

1, τ
′
2) = e(P,VK2) ·

n∏
i=1

e(Zi,VKi+2)

The signature σ0 e(σ0, P̂ ) = e(P, vk1) · e(C0, vk2) ·
n∏

i=1

e(Ci, vki+2)

The signature σ1 e(σ1, P̂ ) = e(P, vk2) ·
n∏

i=1

e(Zi, vki+2)

and the validity of the Diffie-Hellman proof π = (com, proof) on the tuple (P, T = H(vk), C0,W ).
Ciphertext : The receiver randomizes the ElGamal ciphertext (C0, C⃗) using a random scalar s $← Zp

C ′
0 = C0 + s · P C⃗ ′ = C⃗ + s · Z⃗

Signatures: The receiver randomizes the tag, with t′′
$← Zp, and adapts the signatures to the new

ciphertext and the new tag

Tag′′ = (τ ′′1 = 1/t′′ · τ ′1, τ ′′2 = 1/t′′ · τ ′2) Σ′′ = t′′ · (Σ′
0 + s ·Σ′

1) σ = σ0 + s · σ1

Diffie-Hellman Proof : The receiver adapts the Groth-Sahai proof π of the Diffie-Hellman tu-
ple (P, T = H(vk), C0,W ), into a randomized proof π′ of the Diffie-Hellman tuple (P, T =
H(vk), C ′

0,W
′), using s, for W ′ = W + s · T .

The receiver then stores the ciphertext (C ′
0, C⃗

′), together with the proof that consists of (Tag′′, Σ′′),
the signature (vk, σ), and (W ′, π′), which can be publicly verified.
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B SDH Instantiation

The SDH LH-Sign-RTag (which stands for Square Diffie-Hellman) uses tags of the form (τ1 = U, τ2 =

t · U, τ3 = t2 · U), for U ∈ Zp and t
$← Zp, which require additional validity proofs, in order to

be verifiable. This can be done with a Groth-Sahai proof of Diffie-Hellman tuple for (τ1, τ2, τ2, τ3),
with a commitment com ∈ Ĝ2 and a pair of proofs proof ∈ G2. Hence, a verifiable SDH tag is
Tag = (τ1, τ2, τ3, π = (com, proof)) ∈ G5 × Ĝ2.

The signature of M⃗ = (Mi) ∈ Gn is Σ = (
∑

si · Mi) + sn+1 · τ1 + sn+2 · τ2 + sn+3 · τ3 ∈ G,
under VK = (VKi = si · P̂ )n+3

i=1 , that can be verified by e(Σ, P̂ ) =
∏n

i=1 e(Mi,VKi)×
∏3

i=1 e(τi,VKn+i).
Actually, τ1 will always have a particular form, we will be able to ignore it, reducing the dimension to
n+ 2.

However, when combining two signatures Σ0 and Σ1 on two messages M⃗ and M⃗ ′, with coefficient
α and α′ under the same (or equivalent) tags Tag and Tag′, one gets a signature on α · M⃗ + α′ · M⃗ ′

under the equivalent tag (τ ′′1 , τ
′′
2 , τ

′′
3 ) = α · (τ1, τ2, τ3) + α′ · (τ ′1, τ ′2, τ ′3). The proof can be adapted and

randomized (if they both have the same com).
Because of the need of additional proofs of validity for the tags, this approach is a bit less efficient

than the previous one, while still constant-time for the generation of the proofs of subset membership
(independently of the size of the subset). However, the initialisation can efficiently be distributed
among multiple users, which avoids a unique trusted party. Furthermore, the randomisation can also
be distributed among multiple players.

The global process is a bit different from the above generic one, because of the evolution of the tag
in case of combinations. We are thus more exhaustive for this description, for a later security analysis.

B.1 Description

Initialisation. The authority generates

Independent Generators: Four random independent generators (V̂1,1, V̂1,2, V̂2,1, V̂2,2) ∈ Ĝ4, that is
likely a non-Diffie-Hellman tuple, for the Groth-Sahai proofs;

Encryption Keys: A pair of ElGamal encryption keys (DK,EK) for plaintexts in Gn: the private
decryption key is DK = z⃗

$← Zn
p , and the public encryption key is EK = Z⃗ = z⃗ · P ∈ Gn;

Signature Keys: A pair of SDH LH-Sign-RTag signing keys SK = s⃗
$← Zn+4

p , and VK = s⃗ · P̂ ∈ Ĝn+4;
Verifiable Tags: N verifiable tags (τj,1 = P, τj,2 = tj ·P, τj,3 = t2j ·P ), with tj

$← Zp, for j = 1, . . . , N ,
with their validity proofs πj = (comj , proofj):
– commitment of the witness tj , comj = (Ĉj = tj · V̂2,1 + µj · V̂1,1, D̂j = tj · V̂2,2 + µj · V̂1,2), for

µj
$← Zp,

– and the pair of proofs proof = (Θj = µj · P, Ψj = µj · τj,2), which satisfy1

e(P, Ĉj) = e(τj,2, V̂2,1) · e(Θj , V̂1,1) e(P, D̂j) = e(τj,2, V̂2,2) · e(Θj , V̂1,2)

e(τj,2, Ĉj) = e(τj,3, V̂2,1) · e(Ψj , V̂1,1) e(τj,2, D̂j) = e(τj,3, V̂2,2) · e(Ψj , V̂1,2)

The verifiable tags thus consist of Tagj = (τj,2, τj,3, comj = (Ĉj , D̂j), proofj = (Θj , Ψj)) ∈ G4× Ĝ2,
as τj,1 = P ;

Initial Signatures: N pairs of signatures, for j = 1, . . . , N , on (PS , 0, M⃗j) for M⃗j = x⃗j · P and
(0, P, Z⃗), respectively, under VK and tag Tagj :

Σj,0 = s1 · PS +
n∑

i=1

si+2 ·Mj,i + sn+3 · τj,2 + sn+4 · τj,3

Σj,1 = s2 · P +

n∑
i=1

si+2 · Zi + sn+3 · τj,2 + sn+4 · τj,3

1 We stress that the four equations can be checked all at once, with three pairings only [BFI+10].
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which satisfy

e(Σj,0, P̂ ) = e(PS ,VK1) ·
n∏

i=1

e(Mj,i,VKi+2) · e(τj,2,VKn+3) · e(τj,3,VKn+4)

e(Σj,1, P̂ ) = e(P,VK2) ·
n∏

i=1

e(Zi,VKi+2) · e(τj,2,VKn+3) · e(τj,3,VKn+4)

The public parameters thus consist of (V̂i,j),EK,VK, and (Tagj , x⃗j , Σj,0, Σj,1) for j = 1, . . . , N . The
signing key SK and the random values must be forgotten, except the decryption key DK.

Ciphertext with Proof of Subset Membership. From the above public elements, the sender
generates

Ciphertext : The ElGamal ciphertext (C0, C⃗) for his authorized plaintext x⃗ = x⃗j ∈ S ⊆ Zn
p , which

determines the by-now fixed index j, with a random scalar r
$← Zp:

C0 = r · P C⃗ = r · Z⃗ + M⃗ with M⃗ = M⃗j = x⃗j · P ∈ Gn

Randomizer (optional for further randomization): The randomizer (P, Z⃗) is randomized with
a random scalar r′

$← Zp:

D0 = r′ · P D⃗ = r′ · Z⃗

Proof of Subset Membership: The proof, from Tagj and Σj,0, Σj,1:

Σ′
0 = Σj,0 + r ·Σj,1 Σ′

1 = r′ ·Σj,1 (optional for further randomization)

which are valid signatures of (PS , C0, C⃗) and (0, D0, D⃗), respectively, under VK for the tags Tag′0 =
(r + 1) · Tagj and Tag′1 = r′ · Tagj , respectively. Note that using r and r′, the validity proof πj =
(comj , proofj) of Tagj can be converted and randomized for Tag′0 and Tag′1, into π′

0 = (com′, proof ′0)
and π′

1 = (com′, proof ′1), both with the same com′ part (with a new random µ′):

τ ′0,1 = (r + 1) · P = C0 + P τ ′1,1 = r′ · P = D0

τ ′0,2 = (r + 1) · τj,2 τ ′1,2 = r′ · τj,2
τ ′0,3 = (r + 1) · τj,3 τ ′1,3 = r′ · τj,3
Ĉ ′ = Ĉj + µ′ · V̂1,1 D̂′ = D̂j + µ′ · V̂1,2

Θ′
0 = (r + 1) · (Θj + µ′ · P ) Θ′

1 = r′ · (Θj + µ′ · P )

Ψ ′
0 = (r + 1) · (Ψj + µ′ · τj,2) Ψ ′

1 = r′ · (Ψj + µ′ · τj,2)

Individual Verifiability (optional for further randomization): A pair of OT-LH-Sign signing
keys sk = (ski)

$← Zn+2
p , and vk = sk · P̂ = (vki)i ∈ Ĝn+2, and the signatures

σ0 = sk1 · P + sk2 · C0 +

n∑
i=1

ski+2 · Ci σ1 = sk2 ·D0 +

n∑
i=1

ski+2 ·Di

which satisfy

e(σ0, P̂ ) = e(P, vk1) · e(C0, vk2) ·
n∏

i=1

e(Ci, vki+2) e(σ1, P̂ ) = e(D0, vk2) ·
n∏

i=1

e(Di, vki+2)

Non-Malleability (optional): The Diffie-Hellman values W = r·T and W ′ = r′ ·T , for T = H(vk) ∈
G, together with Groth-Sahai proofs π = (com, proof) and π′ = (com′, proof ′) of Diffie-Hellman
tuple for (P, T,C0,W ) and (P, T,D0,W

′) respectively:
– π = (com, proof):
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• commitment of the witness r, com = (Ĉ = r · V̂2,1 + ν · V̂1,1, D̂ = r · V̂2,2 + ν · V̂1,2), for
ν

$← Zp,
• and the pair of proofs proof = (Θ = ν · P, Ψ = ν · T ), which satisfy

e(P, Ĉ) = e(C0, V̂2,1) · e(Θ, V̂1,1) e(P, D̂) = e(C0, V̂2,2) · e(Θ, V̂1,2)

e(T, Ĉ) = e(W, V̂2,1) · e(Ψ, V̂1,1) e(T, D̂) = e(W, V̂2,2) · e(Ψ, V̂1,2)

– and π′ = (com′, proof ′):
• commitment of the witness r′, com′ = (Ĉ ′ = r′ · V̂2,1 + ν ′ · V̂1,1, D̂

′ = r′ · V̂2,2 + ν ′ · V̂1,2), for
ν ′

$← Zp,
• and the pair of proofs proof ′ = (Θ′ = ν ′ · P, Ψ ′ = ν ′ · T ), which satisfy

e(P, Ĉ ′) = e(D0, V̂2,1) · e(Θ′, V̂1,1) e(P, D̂′) = e(D0, V̂2,2) · e(Θ′, V̂1,2)

e(T, Ĉ ′) = e(W ′, V̂2,1) · e(Ψ ′, V̂1,1) e(T ′, D̂′) = e(W ′, V̂2,2) · e(Ψ ′, V̂1,2)

The sender then outputs the ciphertext (C0, C⃗) ∈ Gn+1, the randomizer (D0, D⃗) ∈ Gn+1, together
with the proof that consists of (Tag′0,Tag

′
1, Σ

′
0, Σ

′
1) ∈ G10 × Ĝ4 (as we can again omit τ ′0,1 = C0 + P

and τ ′1,1 = D0), the signatures (vk, σ0, σ1) ∈ Ĝn+2 ×G2, and (W,W ′, π, π′) ∈ G6 × Ĝ4.

Randomization. Before storing the ciphertext, the receiver (optionally) randomizes it, after having
verified all the values (C0, C⃗), (D0, D⃗), (Tag′0,Tag

′
1, Σ

′
0, Σ

′
1), (vk, σ0, σ1), and (W,W ′, π, π′):

Verification: The receiver verifies
– vk is fresh (no repetition)
– D0 ̸= 0
– the tags Tag′0 and Tag′1 are valid;
– the signature Σ′

0 is valid on the message (PS , C0, C⃗) and tag Tag′0 under VK;
– the signature Σ′

1 is valid on the message (0, D0, D⃗) and tag Tag′1 under VK;
– the signature σ′

0 is valid on the message (P,C0, C⃗) under vk;
– the signature σ′

1 is valid on the message (0, D0, D⃗) under vk;
– the Diffie-Hellman proofs π and π′ are valid on the tuples (P, T,C0,W ) and (P, T,D0,W

′),
respectively.

Ciphertext : The receiver randomizes the ElGamal ciphertext (C0, C⃗) using a random scalar s $← Zp,
and the randomizer (D0, D⃗)

C ′
0 = C0 + s ·D0 C⃗ ′ = C⃗ + s · D⃗

Signatures: The receiver randomizes and adapts the tags/signatures:

τ ′′1 = τ ′0,1 + s · τ ′1,1 = P + C0 + s ·D0 τ ′′2 = τ ′0,2 + s · τ ′1,2 τ ′′3 = τ ′0,3 + s · τ ′1,3
Ĉ ′′ = Ĉ + µ′′ · V̂1,1 D̂′′ = D̂ + µ′′ · V̂1,2

Θ′′ = Θ0 + s ·Θ1 + µ′′ · τ ′′1 Ψ ′′ = Ψ0 + s · Ψ1 + µ′′ · τ ′′2
Σ′′ = Σ′

0 + s ·Σ′
1 σ = σ0 + s · σ1

Diffie-Hellman Proof : The receiver adapts the Groth-Sahai proofs π and π′, using s, for W ′′ =
W + s ·W ′, into a randomized π′′, with a new ν ′′

$← Zp: π′′ = (com′′, proof ′′):

com′′ = ( Ĉ ′′ = Ĉ + s · Ĉ ′ + ν ′′ · V̂1,1, D̂′′ = D̂ + s · D̂′ + ν ′′ · V̂1,2 )

proof ′′ = ( Θ′′ = Θ + s ·Θ′ + ν ′′ · P, Ψ ′′ = Ψ + s · Ψ ′ + ν ′′ · T )

The receiver then stores the ciphertext (C ′
0, C⃗

′), together with the proof that consists of (Tag′′, Σ′′),
the signature (vk, σ), and (W ′′, π′′), which can be publicly verified.

B.2 Correctness

In this section, we show that all the steps are correct.
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Initialisation. The tags (τj,1 = P, τj,2 = tj ·P, τj,3 = t2j ·P ), with tj
$← Zp, for j = 1, . . . , N , are made

verifiable with πj = (comj , proofj), for comj = (Ĉj = tj · V̂2,1 + µj · V̂1,1, D̂j = tj · V̂2,2 + µj · V̂1,2), for
µj

$← Zp, and proof = (Θj = µj · P, Ψj = µj · τj,2):

e(P, Ĉj) = e(P, tj · V̂2,1 + µj · V̂1,1) = e(P, tj · V̂2,1) · e(P, µj · V̂1,1)

= e(tj · P, V̂2,1) · e(µj · P, V̂1,1) = e(τj,2, V̂2,1) · e(Θj , V̂1,1)

e(P, D̂j) = e(P, tj · V̂2,2 + µj · V̂1,2) = e(P, tj · V̂2,2) · e(P, µj · V̂1,2)

= e(tj · P, V̂2,2) · e(µj · P, V̂1,2) = e(τj,2, V̂2,2) · e(Θj , V̂1,2)

e(τj,2, Ĉj) = e(τj,2, tj · V̂2,1 + µj · V̂1,1) = e(τj,2, tj · V̂2,1) · e(τj,2, µj · V̂1,1)

= e(tj · τj,2, V̂2,1) · e(µj · τj,2, V̂1,1) = e(τj,3, V̂2,1) · e(Ψj , V̂1,1)

e(τj,2, D̂j) = e(τj,2, tj · V̂2,2 + µj · V̂1,2) = e(τj,2, tj · V̂2,2) · e(τj,2, µj · V̂1,2)

= e(tj · τj,2, V̂2,2) · e(µj · τj,2, V̂1,2) = e(τj,3, V̂2,2) · e(Ψj , V̂1,2)

That can be verified by four non-zero random scalars u1 = αγ, u2 = αδ, u3 = βγ, u4 = βδ:

e(P, Ĉj)
u1 = e(P, Ĉj)

αγ = e(Pα, Ĉγ
j ) = e(τj,2, V̂2,1)

αγ · e(Θj , V̂1,1)
αγ = e(ταj,2, V̂

γ
2,1) · e(Θ

α
j , V̂

γ
1,1)

e(P, D̂j)
u2 = e(P, D̂j)

αδ = e(Pα, D̂δ
j ) = e(τj,2, V̂2,2)

αδ · e(Θj , V̂1,2)
αδ = e(ταj,2, V̂

δ
2,2) · e(Θα

j , V̂
δ
1,2)

e(τj,2, Ĉj)
u3 = e(τj,2, Ĉj)

βγ = e(τβj,2, Ĉ
γ
j ) = e(τj,3, V̂2,1)

βγ · e(Ψj , V̂1,1)
βγ = e(τβj,3, V̂

γ
2,1) · e(Ψ

β
j , V̂

γ
1,1)

e(τj,2, D̂j)
u4 = e(τj,2, D̂j)

βδ = e(τβj,2, D̂
δ
j ) = e(τj,3, V̂2,2)

βδ · e(Ψj , V̂1,2)
βδ = e(τβj,3, V̂

δ
2,2) · e(Ψ

β
j , V̂

δ
1,2)

Hence

e(Pα, Ĉγ
j D̂

δ
j ) = e(ταj,2, V̂

γ
2,1V̂

δ
2,2) · e(Θα

j , V̂
γ
1,1V̂

δ
1,2)

e(τβj,2, Ĉ
γ
j D̂

δ
j ) = e(τβj,3, V̂

γ
2,1V̂

δ
2,2) · e(Ψ

β
j , V̂

γ
1,1V̂

δ
1,2)

Which means

e(Pατβj,2, Ĉ
γ
j D̂

δ
j ) = e(ταj,2τ

β
j,3, V̂

γ
2,1V̂

δ
2,2) · e(Θα

j Ψ
β
j , V̂

γ
1,1V̂

δ
1,2)

Ciphertext with Proof of Subset Membership. On M⃗ = M⃗j = x⃗j · P ∈ Gn, the ciphertext and
the randomizer admit valid signatures, for random r, r′

$← Zp:

C0 = r · P + 0 D0 = r′ · P
C⃗ = r · Z⃗ + M⃗ D⃗ = r′ · Z⃗
Σ′

0 = r ·Σj,1 +Σj,0 Σ′
1 = r′ ·Σj,1

under VK for the equivalent tags (for the same tj), granted linearity

τ ′0,1 = (r + 1) · P = C0 + P τ ′1,1 = r′ · P = D0

τ ′0,2 = (r + 1) · τj,2 = (r + 1) · tj · P = tj · τ ′0,1 τ ′1,2 = r′ · τj,2 = r′ · tj · P = tj · τ ′1,1
τ ′0,3 = (r + 1) · τj,3 = (r + 1) · t2j · P = t2j · τ ′0,1 τ ′1,3 = r′ · τj,3 = r′ · t2j · P = t2j · τ ′1,1

that admit validity proofs, for a random µ′ $← Zp

Ĉ ′ = Ĉj + µ′ · V̂1,1 D̂′ = D̂j + µ′ · V̂1,2

= tj · V̂2,1 + (µj + µ′) · V̂1,1 = tj · V̂2,2 + (µj + µ′) · V̂1,2

Θ′
0 = (r + 1) · (Θj + µ′ · P ) Θ′

1 = r′ · (Θj + µ′ · P )

= (r + 1) · (µj + µ′) · P = r′ · (µj + µ′) · P
= (µj + µ′) · τ ′0,1 = (µj + µ′) · τ ′1,1

Ψ ′
0 = (r + 1) · (Ψj + µ′ · τj,2) Ψ ′

1 = r′ · (Ψj + µ′ · τj,2)
= (r + 1) · (µj + µ′) · τj,2 = r′ · (µj + µ′) · τj,2
= (µj + µ′) · τ ′0,2 = (µj + µ′) · τ ′1,2
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Randomization. During randomization, the receiver uses a random scalar s
$← Zp:

C ′
0 = C0 + s ·D0 = (r + sr′) · P = r′′ · P C⃗ ′ = C⃗ + s · D⃗ = (r + sr′) · Z⃗ + M⃗ = r′′ · Z⃗ + M⃗

and can adapt the signatures:

Σ′′ = Σ′
0 + s ·Σ′

1 σ = σ0 + s · σ1

for the tags:

τ ′′1 = τ ′0,1 + s · τ ′1,1 = P + C0 + s ·D0 = P + C ′
0

τ ′′2 = τ ′0,2 + s · τ ′1,2 = t · (τ ′0,1 + s · τ ′1,1) = t · τ ′′1 τ ′′3 = τ ′0,3 + s · τ ′1,3 = t · (τ ′0,2 + s · τ ′1,2) = t · τ ′′2
Ĉ ′′ = Ĉ + µ′′ · V̂1,1 = t · V̂2,1 + (µ+ µ′′) · V̂1,1 D̂′′ = D̂ + µ′′ · V̂1,2 = t · V̂2,2 + (µ+ µ′′) · V̂1,2

Θ′′ = Θ0 + s ·Θ1 + µ′′ · τ ′′1 Ψ ′′ = Ψ0 + s · Ψ1 + µ′′ · τ ′′2
= µ(τ ′0,1 + s · τ ′1,1) + µ′′ · τ ′′1 = (µ+ µ′′) · τ ′′1 = µ(τ ′0,2 + s · τ ′1,2) + µ′′ · τ ′′2 = (µ+ µ′′) · τ ′′2

About the final Diffie-Hellman Proof, first, using s, for W ′′ = W + s ·W ′, for a new ν ′′
$← Zp:

Ĉ ′′ = Ĉ + s · Ĉ ′ + ν ′′ · V̂1,1 = (r + sr′) · V̂2,1 + (ν + sν ′ + ν ′′) · V̂1,1 = r′′ · V̂2,1 + ν̃ · V̂1,1

D̂′′ = D̂ + s · D̂′ + ν ′′ · V̂1,2 = (r + sr′) · V̂2,2 + (ν + sν ′ + ν ′′) · V̂1,2 = r′′ · V̂2,2 + ν̃ · V̂1,2

Θ′′ = Θ + s ·Θ′ + ν ′′ · P = (ν + sν ′ + ν ′′) · P = ν̃ · P
Ψ ′′ = Ψ + s · Ψ ′ + ν ′′ · T = (ν + sν ′ + ν ′′) · T = ν̃ · T

which is thus valid for T = H(vk) and W ′′ = (r + sr′) · T = r′′ · T .

B.3 Soundness

Let us now show the soundness.

Initialisation.The tags (τj,1 = P, τj,2 = tj ·P, τj,3 = t2j ·P ), with tj
$← Zp, for j = 1, . . . , N , are made

verifiable with πj = (comj , proofj), for comj = (Ĉj = tj · V̂2,1 + µj · V̂1,1, D̂j = tj · V̂2,2 + µj · V̂1,2), for
µj

$← Zp, and proof = (Θj = µj · P, Ψj = µj · τj,2), where the verification checks for four independent
tuples (u1, u2, u3, u4)

e(P, Ĉj)
u1 · e(P, D̂j)

u2 · e(τj,2, Ĉj)
u3 · e(τj,2, D̂j)

u4

= (e(τj,2, V̂2,1) · e(Θj , V̂1,1))
u1 · (e(τj,2, V̂2,2) · e(Θj , V̂1,2))

u2

· (e(τj,3, V̂2,1) · e(Ψj , V̂1,1))
u3 · (e(τj,3, V̂2,2) · e(Ψj , V̂1,2))

u4

linear algebra leads to the four individual above equalities.
Knowing that V̂1,2 = u · V̂1,1 and V̂2,2 = v · V̂2,1 for u ̸= v,

e(P, Ĉj)
−u · e(P, D̂j) = e(τj,2, V̂2,1)

−u · e(Θj , V̂1,1)
−u · e(τj,2, V̂2,2) · e(Θj , V̂1,2)

e(τj,2, Ĉj)
−u · e(τj,2, D̂j) = e(τj,3, V̂2,1)

−u · e(Ψj , V̂1,1)
−u · e(τj,3, V̂2,2) · e(Ψj , V̂1,2)

so

e(P, D̂j − u · Ĉj) = e(τj,2, V̂2,2 − u · V̂2,1) · e(Θj , V̂1,2 − u · V̂1,1)

e(τj,2, D̂j − u · Ĉj) = e(τj,3, V̂2,2 − u · V̂2,1) · e(Ψj , V̂1,2 − u · V̂1,1)

hence, for V̂ = V̂2,2 − u · V̂2,1 ̸= 0 and R̂j = D̂j − u · Ĉj ,

e(P, R̂j) = e(τj,2, V̂ ) e(τj,2, R̂j) = e(τj,3, V̂ )

which shows that the discrete logarithm of τj,2 in basis P is the same as the discrete logarithm of τj,3
in basis τj,2: (P, τj,2, τj,3) is an SDH tuple.
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Ciphertext with Proof of Subset Membership. Before randomization, the receiver verifies

– vk is fresh (no repetition), so T = H(vk) is truly random in G;
– D0 ̸= 0, which will be important for the receipt-freeness;
– the tags Tag′0 and Tag′1 are valid, with a common com′ = (Ĉ ′, D̂′): they are equivalent, with

τ ′0,1 = C0 + P and τ ′1,1 = D0;
– the signature Σ′

0 is valid on the message (PS , C0, C⃗) and tag Tag′0 under VK: granted the un-
forgeability of the signature, (PS , C0, C⃗) necessarily comes from the combination of messages
signed under equivalent tags under VK, which are only the pairs in the initial public parame-
ters, (PS , 0, M⃗j) and (0, P, Z⃗), for each j, and possibly multiple PS (if multiple subsets S). This is
thus α · (PS′ , 0, M⃗j) + β · (0, P, Z⃗). Necessarily, PS = α · PS′ , where PS = H(S) and PS′ = H(S ′)
with a random oracle H, the extractability property of the signature breaks the discrete logarithm
problem, unless PS = PS′ and α = 1. Then (C0, C⃗) is a ciphertext of M⃗j = x⃗j · P , for x⃗j ∈ S. We
can thus use (C0, C⃗) = (r · P, r · Z⃗ + M⃗);

– the signature Σ′
1 is valid on the message (0, D0, D⃗) and tag Tag′1 under VK, the same analysis

holds: because of the 0 in the first components, (D0, D⃗) is necessarily a randomization of (P, Z⃗).
We can thus use (D0, D⃗) = (r′ · P, r′ · Z⃗). Furthermore, as D0 ̸= 0, r′ ̸= 0;

– the signature σ′
0 is valid on the message (P,C0, C⃗) under vk, which holds by construction;

– the signature σ′
1 is valid on the message (0, D0, D⃗) under vk, which holds by construction;

– the Diffie-Hellman proofs π and π′ are valid on the tuples (P, T,C0,W ) and (P, T,D0,W
′), respec-

tively, which means that W and W ′ are correct Diffie-Hellman values: in the AGM, one needs to
know r and r′ to compute W = r ·T and W ′ = r′ ·T , for a fresh T . Only the current voter can do.
One cannot replay another vote, with unknown randomness.

Randomization. After randomization, the receiver outputs (C ′
0, C⃗

′) and (Tag′′, Σ′′) and (vk, σ). The
latter σ being valid on (P,C ′

0, C⃗
′) under vk means that (P,C ′

0, C⃗
′) can only be on a linear combina-

tion of (P,C0, C⃗) and (0, P, Z⃗) signed by the voter. Because of P in the first component, under the
unforgeability of the signature scheme, (C ′

0, C⃗
′) is a randomization of (C0, C⃗).

The former signature Σ′′ being valid on (PS , C
′
0, C⃗

′) under VK and a valid tag convinces everybody
the plaintext is in S.

The validity of π′′ means that W ′′ is correct Diffie-Hellman value: in the AGM, one needs to know
r′′ to compute W ′′ = r′′ · T , for a fresh T , which is only possible for the voter (with r and r′) and
the receiver (with s) together. Another voter cannot have helped the receiver to generate such a valid
W ′′.
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