
1

rORAM: Efficient Range ORAM with O(log2N) Locality

Anrin Chakraborti∗, Adam J. Aviv†, Seung Geol Choi†, Travis Mayberry†, Daniel S. Roche†, Radu Sion∗

∗Stony Brook University, {anchakrabort, sion}@cs.stonybrook.edu
†United States Naval Academy, {aviv, choi, mayberry, roche}@usna.edu

Abstract—Oblivious RAM protocols (ORAMs) allow a client to
access data from an untrusted storage device without revealing to
that device any information about their access pattern. Typically
this is accomplished through random shuffling of the data such
that the storage device cannot determine where individual blocks
are located, resulting in a highly randomized access pattern.
Storage devices however, are typically optimized for sequential
access. A large number of random disk seeks during standard
ORAM operation induce a substantial overhead.

In this paper, we introduce rORAM, an ORAM specifically
suited for accessing ranges of sequentially logical blocks while
minimizing the number of random physical disk seeks. rORAM ob-
tains significantly better asymptotic efficiency than prior designs
(Asharov et al., ePrint 2017, Demertzis et al., CRYPTO 2018) re-
ducing both the number of seeks and communication complexity
by a multiplicative factor of O(logN). An rORAM prototype
is 30-50x times faster than Path ORAM for similar range-query
workloads on local HDDs, 30x faster for local SSDs, and 10x
faster for network block devices. rORAM’s novel disk layout
can also speed up standard ORAM constructions, e.g., resulting
in a 2x faster Path ORAM variant. Importantly, experiments
demonstrate suitability for real world applications – rORAM is
up to 5x faster running a file server and up to 11x faster running
a range-query intensive video server workloads compared to
standard Path ORAM.

I. INTRODUCTION

ORAM. An attacker viewing communications or tracking

accesses of a storage user can determine a wealth of private

information. Data encryption does not prevent this since access

patterns often reveal nearly as much as the data contents

themselves [28]. Oblivious RAM (ORAM) [27, 38, 41] aims

to solve this by making access patterns indistinguishable to an

adversary observing reads/writes to untrusted storage.

Typically, ORAM performance metrics have focused on

communication overhead, or bandwidth, loosely describing the

number of additional data reads/writes needed to perform a

single access [27]. More recently, other metrics have included

local computation complexity and round complexity. Numer-

ous ORAM constructions [10, 38, 40, 41, 42, 45] have been

proposed and studied optimizing these performance measures.

Data locality and range ORAM. One important measure,

so far largely overlooked, is data locality, the spatial locality

of data in storage, where related data is stored adjacent in

memory rows or blocks on disk. Due to caching effects

at all levels of the memory hierarchy, it has long been

understood that taking advantage of spatial locality can have

significant performance benefits. In particular, a single cache

miss overhead is more costly than executing 100 instructions.

Disk seek overhead costs (e.g., time) often exceed 10000 times

the bandwidth cost of reading a single sequential block from

that disk [17]. This observation has led to the development

of efficient data structures and algorithms which improve

performance by optimizing data locality in storage [18].

However, in the case of ORAMs, the randomization neces-

sary to ensure privacy seems to be in direct conflict with data

locality. Even for a single access, a typical ORAM requires

many non-sequential accesses to the untrusted data store. Even

worse, the upper-layer (e.g., file systems) generating optimized

accesses with high degree of locality to the underlying storage,

gains no benefit when using a standard ORAM to interface

with a physical store. This is because in ORAMs, the physical

locations have no correlation with their logical addresses.

To address this, recently, Demertzis et al. [21] considered

locality for ORAMs in the context of searchable encryption

and provided an ORAM construction with O(1) disk seeks and

O(N1/3 log2 N) blocks communication complexity. This is a

logarithmic improvement over Path ORAM in the number of

seeks (Table I), but the significant bandwidth blowup renders

the construction suitable only for very specific applications.

Further, in [21], range accesses – a key use case where

locality stemming from upper-layer accesses (e.g., in a file

system) should be heavily leveraged – are still inefficient. For

a range of size r, the number of disk seeks required is O(r)
(note the dependence on the range size).

Asharov et al. [9] specifically considered the issue of

supporting efficient range queries for ORAMs, by making disk

seeks independent of the range size. They show that ORAM

range query locality directly conflicts with standard ORAM

security requirements. By definition, a standard ORAM must

not reveal whether a client requests any r random items or

a contiguous region of length r. An ORAM protocol that

provides both locality and security must necessarily incur

prohibitive bandwidth overhead.

Asharov et al. further observed that carefully relaxing

the traditional ORAM security definition to match realistic

scenarios allows for significantly more efficient solutions.

Specifically, if leaking the rough size (i.e., ⌈log2 r⌉) of each

accessed range is acceptable, it is possible to design a range

ORAM construction with O(log3 N · (log logN)2) seeks per

operation, independent of the length r of the range (Table I).

For comparison, consider that Path ORAM needs O(r ·
log2 N) seeks for r sequential accesses, where the dependency

on r stems mainly from a lack of locality. [9] does better

asymptotically when r = Ω(logN · (log logN)2), at the cost

of O(logN) times higher communication complexity.

Our work. Unfortunately, this reduction in the number of

seeks comes at the cost of significant bandwidth overhead,

which is often times much more expensive, especially when

data is outsourced to remote servers.

To mitigate this, we ask the following important question:

Can we construct an efficient range ORAM scheme

with data locality, while ensuring that accesses to a

small range is asymptotically as fast as the traditional

ORAMs?

rORAM answers affirmatively and provides a highly effi-

cient range query mechanism with locality, with O(log2 N)
seek and O(r · log2 N) non-amortized communication com-

plexity, O(logN) times more efficient than existing work.

Importantly, note that for singleton ranges, rORAM has the

same asymptotic bandwidth requirements as standard Path

ORAM [41] with a server-side position map!

A. Security & Application Setting

Security of range ORAM. At first glance, it may seem that

allowing range size leaks seriously weakens ORAM security.

However, in most practical cases, this leak already exists

inherent to the deployment.

For example, a typical file system running on top of an

ORAM issues a majority of its accesses in tightly time-

adjacent bursts of sequential block ranges. This immediately

leaks the range sizes to any underlying untrusted storage. In

fact, explicitly hiding range sizes may be futile if the under-

lying storage is already aware that a file system runs on top

of it. In the following, we detail several other considerations

that strengthen the case for accepting range size leaks.

First, consider that rORAM leaks only the rough length

of a range, where the actually queried range size is always

a power of 2, i.e., i = ⌈log2 r⌉. Thus for any user-desired

range length, e.g, {1, 2, 3, . . . ,maxlen}, the leakage profile

will be {⌈log2 1⌉, ⌈log2 2⌉, ⌈log2 3⌉, . . . , ⌈log2 maxlen⌉}. This

leakage contains O(log2 N) different values and can be un-

derstood as O(log2 N) different possible padding lengths. Of

course, padding any arbitrary length r always to a fixed N
provides the best security, but it also greatly increases com-

munication costs. Having variable padding lengths provides a

tuning knob to trade off between efficiency and security.

More importantly, even with fixed-length padding (the most

secure option), standard ORAMs leak significant information,

mainly through the timing channel discussed above, not cap-

tured by the ORAM security definition. As discussed, for a

typical file system deployed on top of a standard ORAM block

device, accesses to different files/metadata/etc. are highly

correlated and can be determined accurately using timing

information on the number of blocks requested within a given

time window. No practically viable solution exists for this leak.

Application setting. Many applications, such as searchable

encryption, are well suited to less strict ORAM security

guarantees. Weaker ORAMs have been previously used to

design efficient dynamic searchable encryption schemes [32].

Range ORAMs are particularly useful in this setting [21].

Further, as shown by experiments (Section VII), rORAM

is extremely well suited for deployment with traditional file

systems (e.g., ext4 file server). File systems typically generate

requests of variable sizes for both reading/writing files and

updating metadata. To achieve acceptable I/O throughputs,

the underlying ORAM block device needs to support efficient

queries for arbitrarily-sized ranges of sequential blocks.

Accordingly, rORAM is designed to efficiently execute

range queries of variable sizes. This significantly speeds up

file system operation and for large file applications (e.g., a

video server), the gains are even more noticeable. For example,

rORAM features a 5x speedup over Path ORAM running a

typical file server and an 11x speedup for a video server

application running on a local HDD.

In summary, rORAM generalizes standard ORAMs that do

not specifically support range queries, and provides an easy-

to-tune tradeoff between performance and security:

Applications querying only singleton ranges achieve

the same security guarantees as on a traditional ORAM

at similar costs. Applications querying entire ranges get

significant performance increase at an easily quantifi-

able security cost, namely leaking the size of the range.

B. rORAM Highlights

Locality-aware disk layout and batch writes. As we will see

later, a main rORAM building block is a modified version of

Path ORAM. We first introduce a new technique for reducing

the number of seeks in a Path ORAM.

Tree-based ORAMs, such as Path ORAM, update data

in the server-side tree through an eviction operation, which

reads a specific path in its entirety and writes back as many

blocks as possible from the client-local stash along the path.

To prevent overflows, consecutive eviction paths are chosen

with minimum overlap, usually in bit-reversed lexicographical

ordering1 of the leaf identifiers [26].

However, this has a detrimental effect on the number of

seeks required when evictions are performed in batches, since

successively chosen eviction paths are topologically distant

from each other in the tree. Specifically, when tree nodes are

stored at random locations, the number of seeks required to

batch b evictions is O(b · logN) (note the dependence on b).
Since range queries write back multiple blocks to the tree,

a more efficient batching mechanism is desirable. By design,

rORAM enables many evictions to execute with very few

seeks – the number of seeks is independent of the number of

evictions performed. To this end, rORAM disk layout ensures

that tree nodes accessed in successive evictions are physically

located next to each other on the storage device.

In particular, the paths (i.e., corresponding to leaf nodes)

in the ORAM tree are labeled in bit-reversed lexicographic

ordering. Then, the physical buckets at each level of the tree

are stored adjacent to each other, following the same bit-

reversed ordering (see Figure 2 and Figure 3).

As a result, when performing b evictions together, buckets

can be fetched (and written back) level-by-level. Due to the

physical layout of the tree, the b mod 2i buckets required

from level i, will be adjacent to each other on physical storage

1In bit-reverse ordering, numbers are ordered by treating the leftmost bit as
the least significant bit. For example, the sequence of 3-bit-reversed number
ordering is 000, 100, 010, 110, . . ., 111; that is, 0, 4, 2, 6, . . ., 7 in decimal.

2

Seeks Bandwidth Server Space Client Storage Leakage

rORAM (this work) O(log2 N) O(r · log2 N) O(N logN) O(L · λ) ⌈log2 r⌉

Asharov et al. (Range ORAM) [9] O(log3 N · (log logN)2), amort. O(r · log3 N), amort. O(N logN) O(L · λ) ⌈log2 r⌉
Path ORAM (rec. PM) [41] O(r · log2 N) O(r · log2 N) O(N) O(λ) none

Path ORAM (local PM) [41] O(r · logN) O(r · logN) O(N) O(N) none

Demertzis et al. [21] O(r) O(r ·N1/3 · log2 N) O(N) O(N1/3 log2 N) none

TABLE I
PERFORMANCE COMPARISON FOR A CLIENT ACCESSING A REGION OF r CONTIGUOUS BLOCKS. L IS THE MAXIMUM RANGE SIZE SUPPORTED BY THE

RANGE ORAM SCHEMES AND λ IS THE SECURITY PARAMETER. ALL COMPLEXITIES ARE IN TERMS OF NUMBER OF BLOCKS.

and can be read with only 1 seek. Effectively, b evictions now

require in total O(logN) seeks, independent of b.

Interestingly, since rORAM applies this technique to Path

ORAM itself, it achieves better efficiency not only for range

query applications but also for standard Path ORAM perfor-

mance. Experiments show a 2x speedup for standard Path

ORAM equipped with the disk-aware layout and batched

evictions (Section VII).

Multiple sub-ORAMs with different data locality. rORAM

deploys O(logN) separate Path ORAM based sub-ORAMs,

each of which contains a copy of the same data at all times.

Further, each sub-ORAM is optimized to serve a different

range size with minimal disk seeks.

Specifically, the ith sub-ORAM is optimized for access to

a contiguous range of length r where ⌈log2 r⌉ = i. This leaks

the rough size of the given range, but it allows the sub-ORAM

to be highly efficient in serving the query.

Locality-sensitive mapping. The locality-aware disk layout

only ensures that multiple batched evictions incur a small

number of disk seeks independent of the batch size. However

the layout does not provide any seek-related guarantees when

querying for multiple blocks from different random paths in a

Path ORAM tree. This is because Path ORAMs place blocks

along random tree paths, regardless of the block address. As a

result, fetching a logically related range of blocks still requires

fetching multiple random paths from the tree, unavoidably

incurring a large number of seeks. Specifically, if each node

of the tree is stored at a random location on disk, fetching a

range of size r requires O(r · logN) seeks.

To mitigate this, rORAM introduces a novel block mapping

scheme consistent with the locality-aware disk layout. In

particular, the scheme places the first block in a range onto a

random path in the tree, and all subsequent blocks in the range

are placed along paths that are stored adjacent to each other

on disk. Now, reading a range of size r requires only O(logN)
seeks! Critically, as we will show, with an appropriately-sized

stash, the mapping provides standard privacy assurances.

Efficient management of multiple position maps. Note that

since rORAM duplicates data across multiple sub-ORAMs,

updates to a block in one sub-ORAM should be reflected to

the other sub-ORAMs as well to ensure consistency. This is

challenging because the sub-ORAMs are initialized with their

own random seeds, and hence the location of a particular block

in one sub-ORAM does not immediately provide its location

in the other sub-ORAMs.

Further, in the presence of a stateless or limited-storage

client, the position maps associating logical to physical ad-

dresses in each of the sub-ORAM trees must also be stored

obliviously on the server. This is a well-known problem with

tree-based ORAMs like Path ORAM. Locating and updating

a block in all the sub-ORAMs using their corresponding

position maps will unfortunately result in O(log3 N) seeks

and communication overhead.

To tackle this, rORAM introduces a new distributed position

map. First, each block in each sub-ORAM stores additional

information allowing rORAM to immediately look up the

physical location of that same block in the other ORAMs,

not unlike the case of pointer-based oblivious data structures

[44]. Second, note that if a client accesses a range using the ith
sub-ORAM, the positions of the blocks in the accessed range

need to be updated only in the ith sub-ORAM. The range needs

to be evicted to the other trees as well, but there is no need

to refresh the positions in the other sub-ORAMs since they

are still hidden and look random to the adversary – the range

has not been read from those trees, and the (deterministic)

eviction schedule is independent of the positions.

As a result, rORAM needs only O(log2 N) seeks for the

position map accesses and updates per operation, matching

the asymptotic cost of the data access itself.

Simplicity of construction & evaluation. A key advantage of

rORAM is the simplicity of implementation and deployment.

Prior solutions [9] are amortized and use complex building

blocks (such as locality-friendly oblivious sort etc.)

rORAM mechanisms can be implemented with simple yet

effective modifications to existing tree-based ORAM designs.

rORAM is evaluated in detail for real workloads, and com-

pared against standard ORAMs. rORAM is 30-50x times faster

than Path ORAM for similar range query workloads on local

HDDs, 30x faster for local SSDs, and 10x faster for network

block devices. Further, the rORAM locality-aware physical

layout can be deployed independently to speed-up standard

Path ORAM by a factor of 2x. Finally, application benchmarks

demonstrate that rORAM is up to 5x faster running a file server

and up to 11x faster running a range-query intensive video

server workloads compared to Path ORAM.

C. Summary

Based on the construction presented herein, rORAM makes

the following contributions:

1) A new oblivious range ORAM construction that opti-

mizes data locality and is faster by a factor of O(logN)
over previous results [9] (Table I).

2) A new locality-preserving sub-ORAM design based on

bit-reversed lexicographic ordering that achieves: i) a

highly-optimized physical disk layout for efficiently

batching evictions, and ii) an efficient tree paths mapping

mechanism for ensuring data locality in range queries.

3

3) A new distributed position map construction for effi-

ciently locating block replicas in multiple ORAMs.

4) An open-source implementation of rORAM. To the best

of our knowledge, rORAM is the first implementation of

a Range ORAM construction.

5) Micro-benchmarks showing significant performance in-

crease for range-query workloads compared to standard

ORAMs. For example, rORAM is 30-50x faster than Path

ORAM for range queries of size ≥ 210 blocks on local

HDDs, 30x faster for local SSDs, and 10x faster for

network block devices.

6) Application benchmarks showing suitability for real

world applications: rORAM is up to 5x faster running

a file server and up to 11x faster running a range-query

intensive video server across several platforms.

II. PRIOR WORK

Oblivious RAM (ORAM) and applications. ORAM protects

the access pattern so that it is infeasible to guess which oper-

ation is occurring and on which item. Since the seminal work

by Goldreich and Ostrovsky [27], many works have focused

on improving ORAM efficiency (e.g., [10, 34, 38, 42, 45]).

ORAM plays as an important tool to achieve secure cloud

storage [31, 39] and secure multi-party computation [22, 30,

42] and secure processors [24, 29]. There also have been works

to hide the access pattern of protocols accessing individual

data structures, e.g., maps, priority queues, stacks, and queues

and graph algorithms on the cloud server [35, 44].

Locality in searchable encryption. Data locality has been a

useful metric for evaluating searchable symmetric encryption

[8, 14, 19]. In these models, the client stores their data

remotely and encrypted, but the server can perform searches

upon the data (e.g., a keyword search) without revealing the

plain text. While related, searchable symmetric encryption

does not protect against access patterns, e.g., revealing whether

the same data item has been accessed multiple times.

ORAMs with locality. In the closest related work to this

one, Asharov et al. [9] first introduced the weaker security

model for range ORAMs by which the size of the range is

leaked to provide data locality. Their construction, built on

top of a hierarchical ORAM construction [27], also makes use

O(logN) series of ORAMs by which each ORAM forms the

layer in the tree. Locality is achieved by storing the ranges on

each level as increasingly larger blocks of size 2i. They show

that the number of seeks per access is O(log3 N ·(log logN)2).
Further, [9] proposes a more relaxed definition for File

ORAMs where the sizes of individual files are revealed per

access. This results in better asymptotic performance at the

cost of less access flexibility. First, File ORAMs do not

provide any opportunity for padding accesses in contrast to the

variable-length padding options available for range ORAMs –

access to individual files/metadata of different sizes are always

distinguishable and multiple accesses to the same file can be

linked using the file size. Second, File ORAMs cannot support

efficient arbitrary-sized reads/edits to portions of large files –

files are always accessed in their entirety. In this work, we

adapt the security setting and flexibility of range ORAMs but

with a more efficient construction. We primarily compare our

work against the range ORAM construction in [9].

Data locality has been used previously as a performance

metric in the setting of write-only ORAMs. In this security

model, reads are assumed to be unobservable by an attacker,

but writes to data can be observed and must be obfuscated.

First introduced by Blass et al. [11] in the context of protecting

hidden volumes, a randomized procedure was used to achieve

obliviousness. Later, Roche et al. [36] showed that write-

obliviousness can be achieved with deterministic, sequential

writing patterns. However, the data locality of reads was not

evaluated, and depends largely on the write pattern itself.

Improvements for the position map have been produced by

using temporal locality. FreeCursive [24] employs a PosMap

Lookaside Buffer (PLB) to reduce the overhead of using

a position map. While leveraging temporal locality in the

position map, this work does not provide spatial data locality.

ORAMs have also been used to expand searchable encryp-

tion with locality. Work by Demertzis et al. [21] proposed a

hierarchical square-root ORAM [27] to support searchable en-

cryption. This scheme makes use of locality-preserving version

of Melbourne Shuffle [33] to achieve O(1) seeks, but requires

O(N1/3 log2 N) communication and local storage with higher

server storage. It also does not support range queries naturally,

which adds a multiplicative cost to communications and seeks.

III. BACKGROUND & SECURITY DEFINITIONS

ORAM. An Oblivious RAM (ORAM) protocol allows a client

to store and manipulate an array of N blocks on an untrusted,

honest-but-curious server without revealing the data or access

patterns to the server. Specifically, the logical array of N
blocks is indirectly stored into a specialized back-end data

structure on the server, and an ORAM scheme specifies an

access protocol that implements each logical access with a

sequence of physical accesses to that back-end structure. An

ORAM scheme is secure if for any two sequences of logical

accesses of the same length, the physical accesses produced

by the protocol are computationally indistinguishable.

More formally, let ~y = (y1, y2, . . .) denote a sequence of

operations, where each yi is a Read(ai) or a Write(ai, di);
here, ai ∈ [0, N) denotes the logical address of the block

being read or written, and di denotes a block of data being

written. For an ORAM scheme Π, let AccessΠ(~y) denote the

physical access pattern that its access protocol produces for

the logical access sequence ~y. We say the scheme Π is secure

if for any two sequences of operations ~x and ~y of the same

length, it holds

AccessΠ(~x) ≈c AccessΠ(~y),

where ≈c denotes computational indistinguishability (with

respect to the security parameter λ).

A. Range ORAM and Locality

In this work, we study ORAMs specifically suited for

accessing sequential ranges of data. This requires a slightly

different security definition to capture the fact that range

ORAMs access ranges of blocks instead of just single blocks.

4

Let let ~y = (y1, y2, . . .) denote a sequence of opera-

tions, where each yi represents an access to a range of

sequential blocks. Let yi be either ReadRange(ai, ℓi) or

WriteRange(ai, ℓi, d1, . . . , dℓi). Here, ai refers to a logical

block as before, but additionally ℓi indicates the number of

sequential blocks to access starting with ai. d1, . . . , dℓi are

the blocks of data to be written to the logical addresses

ai, ai + 1, . . . , ai + ℓi.
Let len(yi) signify the length ℓi for of the range access yi.

A Range ORAM scheme Π is secure if for any two sequences

of operations ~x and ~y of the same length, subject to the

following constraint:

∀i : ⌈log2(len(yi))⌉ = ⌈log2(len(xi))⌉

it holds that

AccessΠ(~x) ≈c AccessΠ(~y),

where ≈c denotes computational indistinguishability (with

respect to the security parameter λ).

Informally, this means that a Range ORAM can leak the

rough size of the ranges that are being accessed by each

operation. That is, the length of two accesses only needs

to be within (2k, 2k+1] for some k in order for them to be

indistinguishable. In other words, O(log ℓi) bits are leaked per

access, which is the order of magnitude of the range.

Locality and seeks. Locality of an algorithm is well defined

in prior works [9, 19]. Informally, this is the number of seeks

required on the storage medium during the execution of that

algorithm. If an ORAM algorithm performs accesses to the

physical storage at the addresses ~z = (z1, z2, . . .), in that order,

then a seek is defined as an index i such that zi+1 6= zi+1. The

total number of seeks across ~z is the locality of the algorithm.

B. Path ORAM

One of the most efficient ORAM constructions currently

known is Path ORAM, presented in the seminal work of

Stefanov et al. [41]. Path ORAM works by storing data blocks

in a complete binary tree with N leaf nodes (or buckets).

Each bucket in the tree has space for a small constant number

of blocks, denoted Z . During initialization, leaf buckets are

numbered 0 to N − 1 and blocks are each given random tags

(or positions) from the range [0, N). In addition, there is a

single small stash area which holds some blocks temporarily.

The tree maintains an invariant that if a block has tag p, it will

exist either in the stash or somewhere along the path from the

root of the tree to the pth leaf node.

Data access and eviction. In order to retrieve a block, the

client must first determine the path position tag t for the block.

This is done by maintaining a map, called the position map,

that relates logical block addresses to their random positions.

Once the tag t has been found, the client retrieves the entire

path from root to the tth leaf node and stores the buckets

on this path locally. The requested logical block is accessed

by scanning the retrieved buckets. The chosen block is then

assigned to a new random leaf node (i.e. a tag), and its tag

is updated accordingly and stored back in the position map.

Finally the updated block itself is appended to the stash area.

Note that this occurs invariably as the tag is reassigned for

every access in order to hide the access pattern.

Because the stash has a fixed size, eventually it is necessary

to evict blocks from the stash back to the tree buckets.

In the simplest setting, every data access (which involves

appending one new block to stash) is followed immediately

by rewriting, or evicting, along a single path in the tree. In

this step, the client picks a path in the tree (either randomly

or deterministically using bit-reversed ordering [26, 41]) and

retrieves the buckets for that path from the storage device. The

existing blocks in that path are then re-ordered, along with the

blocks in stash, so that every block is stored as far down in

the path as it can go, subject to the invariant and the size of

the buckets. Any block which still does not fit in the path is

stored back to the stash area.

Bucket and stash size. Because each bucket has a fixed

size, as does the stash area, it is possible for the scheme

to “break” by running out of room in the stash, a situation

referred to as stash overflow. The original Path ORAM used

a random eviction strategy and showed that if the bucket

size is at least Z ≥ 5, the probability of stash overflow

decreases exponentially in the stash size [41]. The Ring

ORAM construction improved this further, demonstrating that

Z ≥ 3 is sufficient with a deterministic eviction strategy [34].

Position map. The map storing each block’s tag can be quite

large; it is N log2 N bits long. If the client is not capable of

storing the map locally, it can be stored recursively in a series

of O(logN) smaller ORAMs on the server. Alternatively,

one can use an oblivious data structure (more specifically, an

oblivious trie [36, 41]) to store the position map. In either

solution, the total communication overhead for a single access

with Path ORAM is O(log2 N).
Access Complexity. ORAMs are typically evaluated in

terms of bandwidth – the number of data blocks that are

downloaded/uploaded in order to complete one logical request.

Path ORAM features an overall bandwidth of O(logN) data

blocks, where N is the total number of blocks in the ORAM.

This asymptotic bound holds only under the large block size

assumption when the data blocks size is Ω(log2 N) bits.

rORAM has the same large block size assumption and all

access complexities reported in this paper indicate the number

of physical blocks that are accessed overall for fulfilling a

particular logical request.

Seeks. If Path ORAM is used as a Range ORAM to retrieve

a sequential range of blocks, each block is stored along a

random path, and it would require O(r · logN) seeks to fetch

data blocks, where r is the number of blocks in the range. If

the position map is stored server-side recursively, the position

map access will additionally require O(r · log2 N) seeks. A

locality-friendly ORAM, as we achieve here, should require a

number of seeks independent of the range size r.

IV. RORAM CONSTRUCTION OVERVIEW

In this section, we describe the basic, core construction

details for rORAM. We start with multiple Path ORAM trees

as building blocks, designating each ORAM for range queries

of a specific size. This allows us to design and optimize a

particular sub-ORAM for range queries of a given size.

5

To this end, we show how to achieve data locality for both

queries and evictions for each of the sub-ORAMs. This is

the result of two key insights – i) using a locality-aware disk

layout that dramatically reduces the number of seeks required

for performing multiple evictions in batches, and ii) a novel

locality-sensitive block mapping mechanism which reduces

seeks when querying for blocks in a range.

Finally, we describe a novel distributed position map scheme

for efficient query and update of the multiple sub-ORAMs.

A. Core Construction

Multiple ORAMs each covering a subset of ranges. We use

multiple sub-ORAMs to store ranges of a specific length, as

with the prior work [9]. Let N be the total number of blocks

stored in the rORAM, and L ≤ N be a parameter indicating

the maximum range size that will be supported. Then the

rORAM construction makes use of ℓ+1 Path ORAMs, where

ℓ = ⌈log2 L⌉; these individual Path ORAMs are labeled

R0, R1, . . . , Rℓ. An access on ORAM Ri will always access

exactly 2i blocks (see Figure 1) which are logically sequential

in the range. Note that R0 is a Path ORAM as it would

normally be constructed, with a range size of just one block.

Within a given ORAM Ri, N data blocks are partitioned

into ranges of length 2i, and let rji denote the jth range in Ri,

i.e., rji := [j · 2i, (j + 1) · 2i). Each ORAM Ri is specifically

tailored so that contiguous ranges of length 2i are located

close to each other on storage. The tradeoff is that ranges can

only be queried in their entirety, consequently ℓ + 1 separate

ORAMs: to support any size range with low overhead.

If the client requests a range that is exactly rij , this could

be fulfilled with a single access on Ri by requesting range

j. However, we must consider a client requesting an arbitrary

range, which may not start on a power-of-two boundary. One

strategy for fulfilling such requests in a single access would

be to upgrade the query to the next, larger-range ORAM until

rij ∈ ri
′

j′ , but there is an issue with this approach. In particular,

even for a small range, as small as size 2, it is sometimes

impossible to cover the range with a single access, unless the

length of ranges of an ORAM is N . For example, suppose

N = 64 and consider a range [31, 33). No range of the form

[a · 2i, (a+ 1) · 2i) can cover [31, 33).
Fortunately, there exists a solution [9, 20, 23]. If a range

overlaps a boundary, we can fulfill the request with two

accesses of the same power-of-two size. For example, access to

the range [15, 22) of length 7 would be covered by accessing

ORAM R3 (i.e., ⌈log2 7⌉ = 3) with two ranges [8, 16) and

[16, 24). We stress that so as not to leak information about

the range boundaries, we should always perform two accesses

even if the entire request fits within a single range; note that

whether a range query is handled by a single access or two is

indeed leaks information about the range.

Comparison with [9]. One crucial difference here compared

to the prior work [9] that similarly uses sub-ORAMs to

duplicate data and serve range queries of different sizes, is

that the sub-ORAMs R0, . . . , Rℓ in rORAM have the same

physical block size regardless of the served range size. This

means that a single access in a given sub-ORAM Ri occurs

on 2i blocks and is completed as a single batched operation.

R0 R1 ... Rℓ

supports: length 20 length 21 length 2ℓ

Fig. 1. rORAM Organization. rORAM storing N blocks and support-
ing ranges up to 2ℓ consists of ℓ+1 tree-based ORAMs R0, . . . , Rℓ.
Each component ORAM Ri contains N blocks and supports ranges
of size 2i. All ORAMs have the same block size.

In contrast, sub-ORAMs in [9] have different physical

block sizes; a range is effectively stored and accessed as a

large physical block (called a superblock), concatenating the

content of the regular blocks in the range. We will see that

retaining the same block size for all sub-ORAMs is the key

to making rORAM more efficient. For this, we first introduce

the operations supported by each sub-ORAM.

Operations for Ri. Recall Ri supports range queries of length

2i. This requires two operations:

• ReadRange(a): Takes as input a logical address a and

returns the 2i blocks in the range [a, a + 2i) from the

ORAM. Here a must be a multiple of 2i, as in a = b ·2i.
• BatchEvict(k, stash): Perform k evictions as a batch

to write back multiple blocks to the ORAM from the

stash for each of the k evicted paths. Evictions occur

in a deterministic order, and a global counter is used to

maintain this order.

Remarks about BatchEvict. Now, recall that in rORAM (and

also in [9]), all sub-ORAMs should consistently maintain the

same data. By implication, updates in any ORAM Rj , must

be followed by updates to every other Ri for i 6= j.

Specifically, a ReadRange operation on sub-ORAM Rj will

be followed by a BatchEvict(2j , stash) to all ℓ + 1 sub-

ORAMs. Therefore, we cannot assume that evictions to sub-

ORAM Rk will always in be in batches of 2k blocks.

With different physical block sizes (superblocks) in [9], it

is difficult to perform eviction of a small range in a larger-

block ORAM efficiently. Intuitively, in order to update a single

block out of the several blocks that constitute a superblock, the

entire superblock needs to be refreshed lest it leaks privacy.

This becomes a significant overhead with larger superblocks.

To overcome this, [9] relies on amortizing the cost using

a hierarchical ORAM [27]. In this amortized construction,

eviction is significantly slower (by a factor of O(logN))
than standard tree-based ORAMs, In contrast, by maintaining

the same physical block size across all sub-ORAMs, rORAM

can perform non-amortized evictions to each sub-ORAM with

the same asymptotic complexity as the underlying tree-based

ORAM. This is critical for ensuring that singleton range

queries in rORAM can be performed with the same asymptotic

complexity as standard tree-based ORAM queries.

Operations on rORAM. rORAM operations are internally

composed of operations on each sub-ORAM Ri. For rORAM,

we have the following operation:

• Access(id, r): Given a range of size r beginning at logical

identifier id, with ⌈log2 r⌉ = i, run Ri.ReadRange(a1)
and Ri.ReadRange(a2) with a1 = ⌊id/2i⌋ and a2 =
(a1 + 2i) mod N .

6

The updated data blocks are then appended to the stash

of all ℓ + 1 sub-ORAMs. Then, for each Rj , call

Rj .BatchEvict(2
i+1, stash).

As mentioned previously, an Access requires two ReadRange’s

to occur (to avoid leaking properties of the range) resulting

in 2i+1 data blocks. For every Access, we need to perform

the same magnitude of BatchEvict’s for all ℓ + 1 ORAMs,

updating the data which is duplicated in each tree.

Remark about Choosing L. The choice of an appropriate

max range size, L primarily depends on the application. How-

ever, the trade-off is that a larger L requires a larger client-side

storage. This is because an L-size query necessitates the local

storage of L blocks. This is reflected in the rORAM stash size

bound (Table I). One thing to note here is that due to rORAM’s

O(log2 N) bandwidth overhead, for query sizes ≥ N
log2 N

,

downloading the entire database is faster than accessing the

range from an ORAM. Consequently, an appropriate upper

bound is L < N
log2 N

, thus ensuring that the rORAM stash

size is sub-linear in N .

More importantly, applications rarely access very large

ranges all at once, possibly to reduce the overall access latency.

Instead, a typical application e.g., a file system breaks down

a large access into multiple smaller sequential accesses, often

not exceeding 1MB in size. In this case, it suffices to initialize

rORAM with L = 28 blocks. In general, for almost all

applications, a reasonable value of L = O(
√
N) blocks with

O(
√
N) client-side storage. Larger range queries (if any) can

be broken down into smaller range queries of appropriate size.

B. Insight 1: Locality-aware Physical Layout

A common extension to Path ORAM is to use a determin-

istic eviction strategy using bit-reversed ordering of the paths,

as described by Gentry et. al [26]. In bit-reverse ordering,

counting occurs with the least significant bit on the left, as

compared to natural ordering, where the most significant bit

is to the left and the least significant is the right. For example,

counting in 3-bits, the number to follow 000 is not 001 but

rather 100, leading to the sequence of 3-bit-reversed number

ordering as 000 (0), 100 (4), 010 (2), 110 (6), 001 (1), 101

(5), 011 (3), 111 (7) — with the decimal value in parenthesis.

Each bucket of the tree is now labeled with both its level in the

tree and its bit-reversed ordering in that level, as in Figure 2.

That is, a bucket labeled as vji signifies the jth bucket among

those at level i.
Evicting paths in this order ensures a good “spread” over the

tree, making it less likely that any blocks get stuck, by chance,

in the higher buckets of the tree and cause an overflow. But as

we will show, the bit-reverse ordering can also be leveraged

for the physical layout of the tree to achieve data locality.

Locality-aware physical layout of Ri. An important obser-

vation is that the the path eviction schedule also implies the

deterministic ordering in which data is evicted to nodes within

levels of the tree; in particular:

The nodes at the same level are ALSO evicted accord-

ing to the bit-reversed order.

Let P (p) be a path from the root to a leaf with position p.

For example, in the tree in Figure 2, the three consecutive

v00

v01

v02

v03 v43

v22

v23 v63

v11

v12

v13 v53

v32

v33 v73

Fig. 2. Labeling of ORAM tree buckets. A bucket label v
j
i signifies the

jth bucket among those at level i in bit-reversed order.

v00

v01 v11

v02 v12 v22 v32

v03 v13 v23 v33 v43 v53 v63 v73

Fig. 3. Physical disk storage of ORAM Ri. Buckets at each level are
stored sequentially according to the bit-reversed order.

eviction paths P (v23), P (v33), P (v43) visits buckets v22 , v
3
2 , v

0
2 at

level 2, v01 , v
1
1 , v

0
1 at level 1, and v00 , v

0
0 , v

0
0 . At each level, the

buckets are accessed according to the bit-reversed order (with

wraparound).

If the ORAM stores each level sequentially on the storage

device, according to the bit-reversed eviction ordering of the

level (see Figure 3), evictions can be done with optimal

number of seeks. Consecutive evictions, as is the case for

BatchEvict, occur in bit-reverse order sequentially for each

level in the tree. To the best of our knowledge, rORAM is the

first construction that considers the physical layout to improve

efficiency of ORAM performance.

O(logN) seeks independent of range size. With a sequential

layout of buckets on disk that matches the bit-reversed order at

each level x in the Rj sub-ORAM tree, Rj .BatchEvict(k) will

visit min(k, 2x) buckets, stored physically adjacent to each

other, at level x sequentially. Thus, reading and writing back

to each level requires at most 2 seeks, with wraparounds, and

the ORAM tree has logN + 1 levels. The total number of

seeks performed for Rj .BatchEvict(k) is therefore O(logN).
Note that the number of seeks is independent of k, the number

of eviction operations performed as a batch. Updating (ℓ+ 1)

sub-ORAMs will require O(ℓ+1 · logN) = O(log2 N) seeks.

C. Insight 2: Locality-sensitive Mapping

Tree-based ORAM schemes map logical addresses to paths

in the ORAM tree, along which the block corresponding to the

logical address is placed. For Path ORAM, a logical address

is mapped to a new random path every time the corresponding

block is accessed.

Recall that ReadRange on ORAM Ri reads exactly 2i

blocks. Using the traditional mapping mechanism (i.e., assign-

ing a random path for each block) will not provide locality,

resulting in O(2i · logN) seeks to read 2i random paths.

However, random block placement is critical for the security

(and also correctness) of tree-based ORAMs. Designing a new

mapping scheme requires careful analysis, in order to both

achieve better locality and maintain acceptable security.

7

Our approach. rORAM uses a hybrid of random and

deterministic placement policies for mapping blocks to paths:

• For blocks that do not belong to the same range, a

purely random strategy can be applied since no locality

guarantees are required.

• For blocks that belong to the same range, it is desirable

to place these blocks along paths that are stored close to

each other on disk.

The first requirement implies that blocks in different ranges

can be mapped to random paths in the tree, independent

of each other. While allowing better locality, the second

requirement has implications on the security of the scheme.

Specifically, blocks that belong to the same range will not

be mapped independently to paths. Accessing a range of a

particular size will be clearly observable based on the paths

read. Since we allow the size of queried ranges to be leaked

anyway, this does not actually reveal any further information.

Locality-sensitive mapping. Keeping the locality-aware

physical layout in mind, we map the blocks in the same range

in Ri to paths that occur successively in the bit-reversed

ordering of their leaf identifiers. Then, the blocks in the range

will appear physically adjacent to each other across levels, and

we can reduce the number of seeks required to read the range.

In particular, consider logical addresses in [j ·2i, (j+1) ·2i)
in Ri. Letting a = j · 2i, the addresses are mapped to paths

in the tree as follows:

• Address a: Address a is mapped to a random path, i.e.,

P (vrh) where r is chosen at random and h = logN .

• Adresss a + j: For j = 1, . . . , 2i − 1, address a + j is

mapped to a path P (vr+j mod N
h).

This ensures that Ri.ReadRange requires O(logN) disk

seeks: sequentially scan 2i buckets from each level of the

tree (with wraparound), that are invariably adjacent to each

other on storage. Note that the number of seeks required is

independent of the range size, 2i.

D. Insight 3: Distributed Position Map

Although, the above techniques can achieve the desired

O(logN) seeks for ReadRange and O(log2 N) seeks for

BatchEvict’s, a critical challenge we are yet to address is

optimizing the cost of multiple position map lookups while

updating ℓ + 1 sub-ORAMs. We detail our solution by first

describing the challenges involved.

Challenges of naı̈ve position map construction. In rORAM,

each of the sub-ORAMs is uniquely addressed for the blocks

they store, even though the same data blocks are duplicated

across all ORAMs. As a result, a separate position map has

to be maintained for each sub-ORAM. If stored locally, this

extra data is handled at no added cost, but typically the size

of the position map would exceed local storage requirements,

and would need to be stored securely in the remote storage.

Typically this requires a recursive ORAM or an oblivious

trie [36, 41] to store the position map obliviously – both

data a p0 p1 · · · pℓ

Fig. 4. The structure of a physical block. In addition to data, the block
contains the logical address a and the path locations p0, . . . , pℓ of
the block in ORAMs R0 . . . , Rℓ respectively.

solutions require O(logN) disk seeks and bandwidth for a

position map query 2.

Recall that an Access operation executes ReadRange once

and BatchEvict (ℓ + 1) times. Each operation needs to look

up the corresponding position-map in order to translate a

logical address to a tree path, which increases both seeks and

bandwidth for Ri.BatchEvict from O(logN) to O(log2 N).
Consequently, Access requires O(ℓ · log2 N) = O(log3 N)
seeks and bandwidth.

The goal is to reduce the overall number of seeks and

bandwidth from O(log3 N) to O(log2 N) for Access in rO-

RAM, and the key to achieving this is to reduce the number

of expensive position-map look-ups to just one.

Reusing physical paths in unread Path ORAMs. A key

observation is that since ReadRange reads paths corresponding

to a range from only one of the sub-ORAMs, say Ri, the

locations of these blocks in the other ORAMs, Rj 6= Ri still

remain hidden. Recall that while data is duplicated across the

ORAMs, the paths (or sometimes called tag hereafter) along

which the same logical data blocks are placed in the different

sub-ORAMs are independently assigned. Thus, the location

of blocks in the queried range in Ri, does not reveal any

information about their location in the other sub-ORAMs.

After the ReadRange the data blocks may be updated,

and these updates must propagate to all the other ORAMs

through a commensurate number of BatchEvict’s. During a

BatchEvict to sub-ORAM Rj 6= Ri, the queried blocks can

be written back along the same paths to which they are already

mapped, effectively reusing their tags. This eliminates the

expensive position map updates for these ORAMs. Reusing the

tags in all the other sub-ORAMs is an important stepping stone

for achieving better efficiency, because the (ℓ+1) BatchEvict’s
will now only need to update the position map for Ri. We note

that a similar observation has been made in a different context

of constructing a PIR-based 2-server ORAM [43].

Unfortunately, this is not enough to reduce the position map

lookups because while tags are only being updated in one of

the sub-ORAMs, a position map look up is required in all

the other sub-ORAMs to determine the existing tags of the

data being evicted as part of the BatchEvict. As a result, the

number of seeks and communication remain O(log3 N).

Pointer-based oblivious data structures. To solve the prob-

lem of updating multiple ORAMs where data may be dupli-

cated, we propose a new distributed position map construction

leveraging pointer-based oblivious data structure techniques,

initially introduced by Wang et al. [44] and subsequently used

by several ORAM solutions [15, 35, 36, 44]. In particular,

2Note that the position map for each of the range ORAMs only needs to
store the start position of the range as subsequent positions can be calculated
by incrementing in bit-reversed order. As a result, larger range ORAMs have
significantly smaller position maps that may not need to be stored recursively,
but the position maps of small range ORAMs are the worst case in the analysis.

8

alongside each physical block we store the path tag of that

block in all ORAMs, as shown in Figure 4.

As an example, to query a a range of length 2 at logical

addresses a and b = a+ 1 the following procedure is used:

1) Refer to the position map of R1 and obtain the path tag

p1 of a in R1.

2) Read the two consecutive physical paths (according to

the reversed-bit order) based on p1 in R1. Let

(da, a, p0, p1, . . . , pℓ), (db, b, q0, q1, . . . , qℓ)

be the two physical blocks retrieved in this stage. Here

pj (resp., qj) denotes the path tag for address a (resp., b)
in ORAM Rj .

3) Choose p′1 at random. Compute q′1 to be next to p′1
according to the reversed-bit order. Let d′a, d

′
b be the

updated data.

4) Update the position map of R1 so that the path tag of a
should be p′1.

5) For i = 0, . . . , ℓ:
Push the following two blocks in the stash for Ri:

(d′a, a, p0, p
′
1, p2 . . . , pℓ), (d′b, b, q0, q

′
1, q2 . . . , qℓ).

Then, execute Ri.BatchEvict(2).

Note that the above procedure uses only a single position-

map access (i.e., for R1) in order to identify the path tag p1,

which needs O(log2 N) seeks. The path tags in other ORAMs

were obtained from the retrieved physical blocks and then

reused in BatchEvict, which requires O(log2 N) seeks as well.

Consequently, rORAM only requires O(log2 N) seeks in total.

Handling duplicates. One thing to note here is that after the

required range has been read from Ri, it is evicted back to

all ORAMs R0, . . . , Rℓ and so there must be a process for

handling duplicates. Since we do not read blocks in the range

from Rj but add copies during the batched eviction, a block

may have multiple copies in the tree that need to be removed

during subsequent evictions.

This, however, is not a problem. Since the path tag will be

reused in Rj , its old copy will also be along the same path

that includes a newer copy and will be lower down in the

tree. Thus, when the path is retrieved during an eviction the

duplicate blocks in the lower level would be recognized as

older and safely overwritten.

V. FORMAL DESCRIPTION

Position map and stash. rORAM requires two supporting

data structures, the position map and the stash, similar to

Path ORAM. Each sub-ORAM in rORAM has a position map

similar to the position map for existing tree-based ORAMs

with a couple of modifications:

• Instead of mapping a block ID (i.e., logical address) to

a leaf identifier (i.e., physical location), a range ID is

mapped to a leaf label.

• The leaf label stored for a range corresponds to the leaf

to which the first block in the range is mapped. This

is enough since once the leaf label of the first block is

known, the leaf labels for the remaining blocks can be

easily determined due to the locality-sensitive mapping.

Depending on the setting, each position map is stored either

on the client-side or on the server side (in a recursive ORAM

or in an oblivious trie). rORAM also stores a stash for each

ORAM on the client-side to handle overflows from the tree.

Notations and parameters. Let N be the number of logical

blocks that rORAM stores, and L be the maximum range size

the rORAM needs to support. Let ℓ = ⌈log2 L⌉. Then, rORAM

has ℓ+ 1 ORAMs R0, R1, . . . , Rℓ.

Let h = ⌈log2 N⌉ denote the height of each ORAM tree Ri.

A bucket label vri signifies the rth bucket among those at level

i in bit-reversed order. In an ORAM tree T , let PT (v
r
h) be a

path from the root to a leaf vrh; we will often omit subscript T
if obvious from the context. Note that the following property

holds in an ORAM tree:

P (vrh) = {vr mod 2j

j : j = 0, . . . , h}.

In the algorithm descriptions, we use Vj to refer to the set of

nodes on level j among the currently-considered paths.

Let PMi and stashi denote the position map and stash

for ORAM Ri. Let cnt be a global integer variable, initially

0, which is used to track the deterministic eviction schedule

according to the bit-reversed order.

A physical bucket (d, a, p0, . . . , pℓ) is valid if every pj falls

in the valid range [0, N). Let Z be the number of physical

blocks that a bucket vji contains. Dummy (invalid) blocks

are used to pad buckets to approriate size in case the bucket

contains less than Z real data blocks.

ReadRange. The ReadRange operation for ORAM Ri is

described in Algorithm 1, and it returns the result set of

blocks with position meta-data as well as a new path position,

p′ for the start address a. The operations performs three tasks:

1) Query the position map to determine the leaf label to

which the first block in the range is mapped (Step 3).

2) Update the position map with a new leaf label for the

first block in the range (Steps 4-5).

3) Retrieve the buckets along the paths to which the blocks

of the range are mapped, level by level while scanning for

the required blocks (Steps 6–9). Note that the if-statement

on Step 9 handles the duplicates by ignoring older blocks

on lower levels.

Algorithm 1 Ri.ReadRange(a)

1: Let U := [a, a + 2i).
2: result← Scan stashi for blocks in range U .
3: p← PMi.query(a) // Get the leaf label p for address a
4: p′← [0, N) // random leaf label p′

5: PMi.update(a, p
′) // Update the position map for address a

6: for j = 0, . . . , h do

7: Read the ORAM buckets V = {vt mod 2
j

j : t ∈ [p, p + 2i)}.
8: for each valid block B = (d, a, p0, . . . , pℓ) in V do

9: if B.a ∈ U and B 6∈ result then result← result ∪ {B}

10: return (result, p′)

BatchEvict. The BatchEvict operation is described in Algo-

rithm 2. The operation performs three tasks:

1) Read the buckets from the server along the next k eviction

paths level by level (Steps 1-5).

2) Evict blocks locally to the eviction paths (Steps 6-11).

9

Algorithm 2 Ri.BatchEvict(k)
// cnt: a global integer variable tracking the eviction schedule
// h = logN : the height of the ORAM tree.
// Fetch buckets from server

1: for j = 0, . . . , h do

2: Read ORAM buckets Vj = {vt mod 2
j

j : t ∈ [cnt, cnt + k)}.
3: for each valid block B = (d, a, p0, . . . , pℓ) in V do
4: if stashi has no block with address B.a then

5: stashi ← stashi ∪ {B}

// Evict paths and write buckets back to server
6: for j = h, . . . , 0 do // Evicting paths: bottom-up, level-by-level
7: for r ∈ {t mod 2j : t ∈ [cnt, k + cnt)} do // For each path
8: S′ ← {(d, a, p0, . . . , pℓ) ∈ stashi : pi ≡ r (mod 2j)}
9: S′ ← Select min(|S′|, Z) blocks from S′

10: stashi ← stashi / S′

11: vr mod 2
j

j ← S′.

// Write back buckets to server
12: for j = 0, . . . , h do

13: Write the ORAM buckets {vt mod 2
j

j : t ∈ [cnt, cnt + k)}.

3) Write back the updated buckets read to the tree in the

level-by-level manner (Steps 12-13).

Access protocol in rORAM. We are ready to give the formal

description of the Access protocol of rORAM. The protocol

supports any range of size r ≤ L starting at any given addres

a ∈ [0, N − r). As explained in Section IV, this will be

partitioned into two ranges of size ⌈log2 r⌉.

The Access protocol, described in Algorithm 3, takes the

following input: a the start address of the range; r is the size

of the range; op is the operation, either read or write; and D∗

the new data, optionally, to be updated during a write for data

in the range. The operation is performed in two main tasks,

each performed twice to cover arbitrary ranges obliviously:

1) Perform two ReadRanges on the first/second half of the

range, retrieve data, and update positions (Steps 4–7).

2) Perform a BatchEvict by updating the each ORAM’s

stash with the new data (Steps 10-13). Note that Step

11 is necessary to first remove any old “stale” data from

the stash with the same address as one in the range.

On a write, the data is updated between these steps (Steps 8–

9). On a read, the values fetched within the requested range

are returned at the end (Step 15).

Algorithm 3 Access(a, r, op,D∗)

1: Let i ∈ [0, ℓ) such that 2i−1 < r ≤ 2i

2: Let a0 = ⌊a/2i⌋ · 2i

3: D← {}
// Perform two ReadRanges to cover the range [a, a+ r)

4: for a′ ∈ {a0, a0 + 2i} do
5: (Ba′ , . . . , Ba′+2i−1, p

′)← Ri.ReadRange(a′)
6: for j ∈ [0, 2i) do

7: Ba′+j .pi ← p′ + j // update positions for all blocks

// Update data if writing
8: if op = “write” then

9: for j ∈ [a, a+ r) do Bj .d← D∗

j

// Update stashes and evict in each tree
10: for j = 0, . . . , ℓ do
11: stashj ← stashj \ {B ∈ stashj : a0 ≤ B.a < a0 + 2i+1}
12: stashj ← stashj ∪ {Ba0

, . . . , Ba0+2i+1
−1}

13: Rj .BatchEvict(2i+1)

14: cnt← cnt + 2i+1

15: if op = “read” then return D

VI. ANALYSIS

Correctness and obliviousness. Correctness of our protocol

follows by inspection. Obliviousness, with leakage of the

length of the given range, holds from the following facts:

• All data items exchanged over the network are encrypted

with IND-CPA secure encryption.

• ReadRange: We choose ORAM Ri based only on the

length of the range. In ORAM Ri, the paths selected for

reading do not reveal any information to the adversary

other than the fact that two ReadRange operations oc-

curred on Ri.

• BatchEvict has a deterministic schedule.

Only the second item, on ReadRange, warrants some addi-

tional explanation. Recall that every read in ORAM Ri will be

a block of 2i consecutive positions in the bit-reversed order.

An adversary therefore learns from each ReadRange on Ri the

first position of the range. But this first position is chosen at

random, then invalidated and re-assigned randomly after each

time it is revealed. Therefore the adversary learns nothing from

this observation.

Bandwidth and locality. Note each Access(a, r, op,D∗)
performs ReadRange twice and BatchEvict (ℓ + 1) times.

• ReadRange: The position map access (Steps 3-5) needs

O(log2 N) seeks and bandwidth. As to reading the paths

(Steps 6-9), we need O(r logN) bandwidth, since O(r)
paths are retrieved with each path having O(logN) buck-

ets. For locality, thanks to the bit-reversed disk layout,

reading buckets in a given level (Step 7) takes at most 2

seeks, which implies that O(logN) seeks are necessary

in total. Overall, we have

– Bandwidth: O(log2 N + r logN)
– Locality: O(log2 N + logN) = O(log2 N).

• BatchEvict: It performs reading and writing O(r) paths.

By applying the argument right above, we have:

– Bandwidth: O(r logN)
– Locality: O(logN).

Access has bandwidth O(r log2 N) and locality O(log2 N).
Stash analysis. Consider ORAM Ri in our construction and

let Li be the length of a range in Ri; that is, we have Li =
2i ≤ N . The following theorem shows that the size of stash

is stabilized around Li · λ, where λ is the security parameter.

We note that this bound is essentially the same as that in

the previous work [9], where ORAM Ri is a usual tree-based

ORAM whose block size is large enough for a block to contain

a range of size Li entirely; therefore, the size of the stash for

Ri therein has the same bound.

Theorem 1. Suppose ORAM Ri has bucket size Z ≥ 3. Let

st(Ri) be the number of blocks in the stash after a sequence

of operations in ORAM Ri. Then, for Li ≤ N/4,

Pr[st(Ri) > Li · (λ + 1)] < 3.5 · Li · Z−λ.

Since Li ≤ N/4 is independent of λ, the probability above

decreases exponentially in λ.

Proof intuition. Observing Figure 2, we can identify an

interesting property:

10

All labels with an even (resp., odd) number belong to

the left (resp., right) half.

Going further, let T0, T1, T2, T3 be subtrees in Figure 2, each

containing two leaf nodes such that Tk is rooted with node

vk2 . Observe that each subtree Tk contains all leaf nodes vj3
such that j ≡ k (mod 4).

This property provides the ORAM with an interesting

partitioning power. In particular, consider a length-4 range

(a, a + 1, a + 2, a + 3); this range will be assigned some

leaf labels (r, r + 1, r + 2, r + 3), where r is chosen ran-

domly. Then, blocks a, a + 1, a + 2, a + 3 will belong to

Tr mod 4, T(r+1) mod 4, T(r+2) mod 4, T(r+3) mod 4 respectively.

In other words, each Tk will have exactly one block, no more

or no less, from the range.

Therefore, in general, in ORAM Ri, we will have 2i

subtrees, each of which behaves as a single block ORAM. A

union bound over these 2i subtrees proves the above theorem.

The complete proof is found in Appendix XI.

VII. EMPIRICAL MEASUREMENT

A. Implementation Details

rORAM is implemented on top of a publicly available Java

library [2, 10] that provides optimized implementations of

several well-known ORAM schemes, including Path ORAM.

The implementation requires about 2000 LOC and is publicly

available on github [4] (currently redacted for submission).

First range ORAM implementation. To the best of our

knowledge, this is the first implementation and evaluation of a

range ORAM construction since previous theoretical construc-

tions [9, 21] are non-trivial to implement and have not been

empirically verified. More importantly, these constructions are

asymptotically less efficient (by a factor of O(logN)) for both

seeks and bandwidth compared to rORAM (Table I).

In fact, notwithstanding the complexity of implementation,

due to the high bandwidth overhead (which is often times more

expensive than seeks), it is not immediately clear whether

these construction provide any real speedup over bandwidth-

optimized standard ORAMs on hardware.

Instead, we use Path ORAM as a comparison point. While

Path ORAM is not optimized for seek performance, it does

provide a good baseline and the addition of the locality-aware

physical layout with a relaxed security definition does indeed

result in a more efficient native Path ORAM construction.

Data layout. The layout of data on disk requires careful

consideration in the measurements. Prior work primarily fo-

cused on performance metrics related to communication and

computation, and as such, may have used layouts that failed

to expose the costs of disk seeks. For example, a standard data

layout for evaluation is to store tree-based ORAM’s in a series

of individual, smaller files, e.g., one bucket per file. While

this layout eliminates the costs of seeks within files—each

file/bucket is read in a single seek access—the measurement of

a query time will then mostly capture the costs of computation

and accesses of local memory but not the costs of seeks.

Additionally, this storage technique is prohibitively expensive

or impossible for larger databases. A 4 TB ORAM (including

the position map) would require more than 232 files, exceeding

the number of that can be allocated in a ext4 file system

with 32-bit inode labeling [3]. To better capture the impact of

seeks using a more realistic setup, we store the entire rORAM

in multiple 1GB files.

Platform. All benchmarks were performed on Linux installa-

tion with Intel Core i7-3520M processors running at 2.90GHz

and 8GB+ of DDR3 DRAM. The devices of choice were:

1) Local Hard Drive: 1TB IBM 43W7622 SATA HDD run-

ning at 7200 RPM. The average seek time and rotational

latency of the disk is 9ms and 4.17ms respectively. The

data transfer rate is 300MB/s.

2) Local Solid State Drive: 1 TB Samsung-850 Evo SSD.

3) Network Block Device: 1TB Amazon EBS [1] volume

(cold storage HDD) mounted as an iSCSI device [5].

The network bandwidth between the local client and the

t2.large Amazon instance hosting the EBS volume is

measured to be around 40 - 60MBps using iperf [6].

B. Measurement Techniques

Setup. A 16GB database size is used for evaluation (222

blocks of 4KB each). We instantiate Path ORAM with a

recursively stored position map and a locally stored stash of

size set for 128-bits of security according to [25]. The rORAM

setup supports a maximum range size of L = 214. Each

test comprises of 5 trials with a new random permutation

to initialize the ORAMs. Results are collected with a 95%

confidence interval.

Metrics. The main metrics for evaluation are query access

time and overall query throughput. As noted in [10], high

query access times for logically related queries (such as a

range) is the major bottleneck for synchronous ORAMs. This

forces applications to wait indefinitely while multiple logically

related blocks are fetched individually, one at a time. rORAM

solves this problem by allowing range queries for multiple

logically related data blocks.

Traditionally, ORAMs are evaluated based on the average

time required to complete a query (query access/response

time). The query access time is measured as the time elapsed

between the time when a query (for any range size) was

initiated and the time when the query was finally completed.

For tests, we generate random queries (of different sizes) at a

steady rate and measure the clock-time required to complete

these queries. The next query is issued only when the previous

one has completed. Note by design Path ORAM supports only

synchronous query processing. Asynchronous versions of Path

ORAM [37] can easily replace the synchronous versions used

in our implementation.

C. Query Access Time

Locality-aware disk layout and batched evictions. Batching

evictions for standard Path ORAM equipped with the locality-

aware disk layout, improves performance even without the

addition of range functionality. We evaluate the average query

access time for Path ORAM with a deterministic eviction

schedule (based on the locality-aware disk layout) performed

in batches. The results are presented in Figure 5. As expected,

optimizing total number of seeks reduces query access times.

11

 2

 4

 6

 8

 10

 12

 14

 16

Network HDD SSD

Q
ue

ry
 A

cc
es

s
T

im
e

(in
 s

ec
on

ds
)

Platform

No Batching
batchsize=8

batchsize=16
batchsize=32

Fig. 5. Average query access time per block (lower is better) for
Path ORAM with batched evictions based on the locality-aware
disk layout. The no batching Path ORAM is the standard algorithm
whereby only one eviction occurs per access. The batched Path
ORAM is where b evictions (the batch size) are all done together and
deterministically following b queries. We obtain 2x improvement in
average query response times for HDDs. Similar improvements are
observed for SSDs and network devices.

For the local HDD, the locality-aware physical layout results

in a 2x improvement in average query response times. Inter-

estingly, batching evictions is helpful even for local SSDs and

network devices since it optimizes I/O requests/round-trips.

Range queries. As a measurement of the range functionality,

we measure the query access time to query ranges of varying

sizes for regular Path ORAM, Path ORAM with batched

evictions (batch size = 32) and rORAM (Figure 6). Note that

the values on the X-axis are range size exponents. The query

access time for a range of size 2x can be determined by

multiplying the Y-axis value corresponding to x with 2x. E.g.,

the total query time for a range of size 26 for Path ORAM

on the local HDD (Figure 6 (a)) is around 10 × 26 seconds.

For all cases, the query access time for Path ORAM and

Path ORAM with batched evictions increases linearly with the

range size. Batching evictions generally improves performance

by reducing the overall number of seeks.

For smaller ranges, Path ORAM performs better than rO-

RAM, since the cost of rORAM dealing with multiple sub-

ORAMs is dominant in this regime. For all platforms, rORAM

performs better than Path ORAM for ranges of size 25 and

more. For the local HDD, rORAM is almost 30x faster than

Path ORAM for range sizes ≥ 210 (which corresponds to 4MB

of logically sequential data) and 50x faster than Path ORAM

for even larger ranges of size > 212 (16MB of sequential data).

This is the result of optimizing seeks and reducing overall I/O

since rORAM accesses larger chunks of data with a single

request compared to a large number of requests generated in

case of Path ORAM.

In fact, the reduction in I/O requests makes rORAM faster

than Path ORAM even for SSDs (around 30x) and network

block devices (around 10x). As noted previously [36], ensuring

locality of accesses improves performance on SSDs while the

reduced number of round-trips required to fetch all blocks in

a range makes rORAM faster for network block devices.

D. Query Throughput & Application Benchmarks

Although rORAM is primarily designed for range query

applications, the construction can also be used to speedup

applications that have largely sequential access patterns. Logi-

cally sequential blocks can be fetched as a range. Specifically,

the application, e.g., a file system generates requests specifying

the total number of bytes/blocks it wants to consecutively

access from the memory. This is translated into a range query

of appropriate size rounding up to a power of 2.

To measure this effect, we assess query throughput for

several real world workloads. Specifically, similar to [10],

we replay access traces of several applications – sequen-

tial reads, file server and video server workloads used by

FileBench version 1.4.9.1 – and measure the corresponding

query throughput. To generate the trace, we first log all

requests generated by FileBench and replay these requests to

both Path ORAM and rORAM. Since file systems typically

break down an access to a large sequential chunk accesses

into smaller sequential chunks not exceeding 1MB in size it

suffices to initialize rORAM with L = 28 blocks.

Sequential reads. The sequential read workload generates

requests for sequential reads of size 8MB over a large (10GB)

file, interleaving a small number of random reads/writes in

between3. For the local HDD (Figure 7 (a)) and the local SSD

(Figure 7 (b)), rORAM can support up to 10 and 21 queries per

second respectively. This is almost 20x improvement over the

query throughput of Path ORAM. Note that the overall query

throughput of Path ORAM and Path ORAM with batched

evictions remains largely unaffected by sequential accesses

since each query is treated as a query for a random block,

regardless of sequentiality. For the network block device,

the overall query throughput increases but plateaus as larger

ranges throttle the available bandwidth.

File server. In order to evaluate rORAM for real world

applications, we used the file server workload of FileBench.

The workload generates accesses similar to a regular file

system and closely resembles the SPECFsfs benchmark suite

[7]. In particular, read and write requests are generated for files

of variables sizes, while also updating corresponding metadata.

rORAM handles accesses of variable sizes well and shows a

5x increase in overall throughput compared to Path ORAM for

the local HDD (Figure 7 (b)). Similar trends are observable for

both the SSD and network device scenarios (Figure 7 (b,c)).

Video server. A more appropriate benchmark for range

ORAM applications is a video server that deploys multiple

threads to fetch large sequential chunks of streaming data. In

this case, the large sequential requests can be performed as

range queries. Additionally, the application performs writes of

variable size to metadata and inactive video files. Note that a

naive solution of storing and accessing files in large sequential

chunks, to ensure small number of seeks, will waste significant

I/O while updating the metadata (often small in size) well.

Since, rORAM allows range queries of arbitrary sizes,

variable-sized sequential accesses are handled well. As as

result, rORAM features a 11x increase in query throughput

over Path ORAM for the local HDD (Figure 7 (a)), an 8x

increase in throughput for the SSD (Figure 7(b)), and 4x

increase in throughput for the network device (Figure 7(c)).

Client-side storage. For the storage configurations used in

our experiments, rORAM will require (in the worst-case)

3Since reads and writes are equivalent for ORAMs, we expect similar results
for sequential writes as well

12

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14Q
ue

ry
 A

cc
es

s
T

im
e

(y
*2

x s
ec

on
ds

)

Range Size (2x Blocks)

rORAM
PathORAM

Batched Eviction

(a) Query access time on local SSD

 0.1

 1

 10

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14Q
ue

ry
 A

cc
es

s
T

im
e

(y
*2

x
se

co
nd

s)

Range Size (2x Blocks)

rORAM
PathORAM

Batched Eviction

(b) Query access time on local HDD

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14Q
ue

ry
 A

cc
es

s
T

im
e

(y
*2

x s
ec

on
ds

)

Range Size (2x Blocks)

rORAM
PathORAM

Batched Eviction

(c) Query access time on Network disk

Fig. 6. Average query access time per block (lower is better). Database size = 222 4kB blocks (16GB). ”Batched Evictions” refers to a Path
ORAM variant equipped with the locality-aware layout for efficiently batching evictions. For the local HDD, rORAM is 30-50x faster than
Path ORAM for ranges sizes ≥ 210. rORAM is faster by almost 20-30x for local SSDs and 10x faster for network block devices.

 0

 2

 4

 6

 8

 10

SeqRead FileServer VideoServer

T
hr

ou
gh

pu
t (

Q
ue

rie
s/

se
c)

Benchmark

Path ORAM
Batched Evictions

rORAM

(a) Query Throughput (HDD)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

SeqRead FileServer VideoServer

T
hr

ou
gh

pu
t (

Q
ue

rie
s/

se
c)

Benchmark

Path ORAM
Batched Evictions

rORAM

(b) Query Throughput (SSD)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

SeqRead FileServer VideoServer

T
hr

ou
gh

pu
t (

Q
ue

rie
s/

se
c)

Benchmark

Path ORAM
Batched Evictions

rORAM

(c) Query Throughput (Network)

Fig. 7. Query throughput (higher is better). Database size = 222 4kB blocks (16GB). ”Batched Evictions” refers to a Path ORAM variant
equipped with the locality-aware layout for efficiently batching evictions. For purely sequential workloads, rORAM is 10-15x faster than
Path ORAM for the local HDD and SSD. rORAM is almost 6x faster for network block devices. rORAM is up to 5x faster running a file
server and up to 11x faster running a video server compared to Path ORAM.

approximately 8GB of client-side stash when L = 214 blocks

(combined stash size for all 15 sub-ORAMs) and 128MB

when L = 28 blocks (Section VI). Note that the stash size

only depends on L and is independent of the total outsourced

storage size. Empirical observations show that in the average-

case, a smaller stash size may suffice in practice. E.g., in

our experiments, the maximum observed stash occupancy was

around 214 blocks (64MB) and 210 blocks (4MB) for L = 214

and L = 28 blocks respectively.

VIII. SYSTEM TWEAKS AND OPTIMIZATIONS

The described Range ORAM construction is designed with

the main goal of minimizing the number of disk seeks per

operation in the general setting of client/server ORAMs with

limited client storage. In practice, there are a number of other

parameters or settings which the client may alter to allow

further improvements. In this section, we briefly outline a few

of these alternations and tweaks.

A. Parallel Seeks with Multiple Heads or Disks

Modern storage systems may have multiple read/write heads

(a high-capacity HDD disk has up to 8) or use arrays of high

capacitive disks that may be striped (e.g., using a RAID). Such

configurations, where seeks can occur in parallel, can lead to

significant performance gains, and rORAM can leverage these

situations with limited modification.

Assume that if the server’s storage is partitioned into k
equal-sized parts (disk platters or cluster nodes), and that each

part can be read or written separately in parallel, it can be

shown that the number of parallel seeks per access is

O

(

logN ·
(

1 + logN
k

))

. That is, perfect parallel speedup

in the number of seeks is possible for k ≤ logN . This

improvement is achieved by observing that an access for a

range of length r consists of essentially three stages:

1) 2 position map accesses in the target ORAM tree

2) 2 range-r read operations in the target ORAM tree

3) r batch evictions in each of the O(logN) ORAM trees.

Step 2 already incurs only O(logN) seeks which fits the

bound stated above. For Step 3, roughly (logN)/k ORAM

trees are stored on each of the k disks which allows for batch

evictions to occur in parallel, meeting the stating bound.

The position map access (Step 1) is more challenging

due to the recursion which must occur sequentially because

the path to access in the next smaller recursive ORAM is

only revealed once the path in the larger ORAM has been

accessed, leading to O(log2 N) seeks. However, retrieving

each of the buckets along the path is deterministic and can

be completed using parallel seeks by distributing the levels of

the recursive ORAMs across k disks. Fetching a single path

at a single recursive level incurs O((logN)/k) parallel seeks,

and repeating this sequentially for each of the recursive levels

gives the cost stated above.

B. Reducing position map costs

Parallel seeks can improve the performance of the position

map, but there are other optimizations for decreasing the cost

of the position map and increasing the overall performance of

the rORAM if we consider larger client storage scenarios.

O(logN) seeks with larger block sizes. First observe that

larger block sizes improve the performance of a position map

13

because the number of seeks for a single position map access

is only O(log2 N/ logB), where B is the size of a block.

For example, with 4KB blocks and 1GB total storage, the

number of recursive levels in any position map is just 2. More

generally, if the block size B is large enough to store Nα

pointers for some constant 0 < α < 1, then the number of

seeks per position map operation is only O(logN). In this

setting, there are O(1) levels of recursion for the position map

and the total cost is O(1) with parallel seeks across levels.

Locally-stored position map optimizations. If the position

map can be stored locally in persistent storage, it does afford

a number of optimizations. The most obvious of these is that

a single global position map suffices, rather than one for each

tree. The second optimization is that locally-stored position

maps can be reduced if smaller ranges are not supported.

A position map for all the O(logN) ORAM trees could

require O(N) local storage for the position map, but many

of those stored positions are a result of tracking locations in

the smaller range trees. The position maps in the larger sub-

ORAMs are significantly smaller since only the position of

the first block in the range is required to reveal the other

blocks due to the bit-reversed position ordering within a

range. By eliminating a small portion of the smaller range

trees, the position map size is dramatically reduced without

greatly effecting the functionality of the system. For example,

in the situation with 1GB total data split into 4KB blocks,

the total storage for a local position map is roughly 11MB.

Removing the bottom 3 sub-ORAMs, reasonably requiring that

all accesses are on ranges of at least 8 blocks, reduces the

global position map size to less than 1MB.

C. Revealing operation type

The security definition for range ORAM requires that any

two access patterns with the same range sizes are indistin-

guishable, hiding the contents, addresses, and operation type

of each access. Only the size of the range is leaked. An in-

teresting security/performance tradeoff to consider is relaxing

the definition to reveal the operation type (read or write) to

an observer in addition to the range. Roughly speaking, such

a security definition allows for leakage of the direction of

information flow which may be acceptable in some situations.

If operation type is leaked, we claim that the number of

seeks per operation can be reduced to just O(logN) without

affecting the bandwidth under the following conditions.

1) The position map seek cost is O(logN) using some ideas

from the previous subsection.

2) The operation type (read or write) is revealed.

3) Each write operation is for a single block at a time.

In particular, such a construction still reads ranges, but only

writes single blocks. We argue this scenario is actually quite

common and useful; for example, revealing the operation type

and limiting updates to one block at a time are quite common

in searchable symmetric encryption (SSE) scenarios [13, 16].

O(logN) seeks per read. For reading a range of size r = 2i,
two accesses occur on the ORAM tree Ri and r batch evictions

in every tree, but for a read operation the data is not actually

modified. If the operation type is revealed, batch evictions on

the other Rj where j 6= i other ORAM trees does not need to

occur because there is no update to the data blocks, reducing

the seek cost to O(logN).
O(logN) seeks per write. Consider first that while writing

a single item, the R0 ORAM tree needs to be updated, at a

cost of O(logN) seeks, and the modified item must also be

updated in all the other ORAM trees. If those evictions are

performed immediately, the cost would be O(log2 N) seeks.

However, because the write was only to a single block, we can

delay those evictions by simply appending the updated block

to each stash and only performing a single batch eviction on

one other tree, deterministically. With single item writes, i.e.,

no range writes, we can achieve O(logN) seeks.

Specifically, say the construction contains ℓ ∈ O(logN)
ORAM trees. Then each single block write always updates the

R0 tree, appends the updated block to all ℓ− 1 other stashes,

and then performs a batch eviction of size (ℓ−1) for tree index

(i mod (ℓ−1))+1. All three steps — updating R0, appending

to ℓ− 1 other stashes, and performing a single batch eviction

— require O(logN) seeks. Furthermore, because each stash

is cleared out after O(logN) updates, the size of stash for

each ORAM tree no more than doubles.

D. Malicious security

The rORAM construction, as described, is secure against an

honest-but-curious adversary who always follows the protocols

correctly, but may observe and remember all communication

and past states of the remote storage. Achieving a higher level

of security against a malicious adversary who may actually

change the contents of remote storage or otherwise disobey

the protocol requires relatively straightforward techniques for

ensuring integrity [12, 41].

As in prior works, a Merkle tree can be embedded within

each individual ORAM trees to ensure integrity. However,

there is one important difference which is critical for minimiz-

ing the number of disk seeks. In a typical Merkle tree, each

node stores a combined hash of its two children. However,

doing this would require doubling the number of seeks because

updating a single tree path requires reading all sibling nodes

in the path as well.

Instead, each ORAM tree node stores a separate hash

of each child node so that updating a path in any of the

ORAM trees only requires reading and re-writing the nodes

in that path. The extra hashes introduce a (small) constant

factor increase in the bandwidth and remote storage size but

does not change the number of seeks. The hashes are stored

contiguously with the data.

Finally, the individual hashes of all O(logN) ORAM trees

are collected into a single “root block” of hashes, which is

stored contiguously with the root node of any one of the

ORAM trees. Reading the root block on every access does

not introduce any extra seeks, and the client only needs to

store the hash of this root block locally in persistent storage.

IX. CONCLUSION

rORAM is an ORAM specifically suited for accessing

ranges of sequential logical blocks while minimizing the

14

number of random physical disk seeks. rORAM is significantly

more efficient than prior designs [9], reducing a O(logN)
multiplicative factor both in the number of seeks and in

communication complexity.

A rORAM implementation is 30-50x times faster than Path

ORAM for similar range-query workloads on local HDDs, 30x

faster for local SSDs, and 10x faster for network block devices.

rORAM’s novel disk layout can also speed up standard ORAM

constructions, e.g., resulting in a 2x faster Path ORAM variant.

rORAM’s novel disk layout can also speed up standard ORAM

constructions, e.g., resulting in a 2x faster Path ORAM variant.

Importantly, experiments demonstrate suitability for real world

applications – rORAM is up to 5x faster running a file server

and up to 11x faster running a range-query intensive video

server workloads compared to standard Path ORAM.

rORAM raises the significant practical issue of data locality

as an important factor in ORAM design. Even for ORAMs

that do not naturally support range queries, locality can have

a large impact on performance and seek optimization should

be a design criteria for future ORAM technology.

X. ACKNOWLEDGMENTS

This work is supported by the National Science Foundation
under awards 1526707, 1526102, 1319994, 1406177, 1618269
and by the Office of Naval Research. We thank our shepherd,
Dimitrios Papadopoulos and the anonymous reviewers for their
valuable suggestions and comments.

REFERENCES

[1] “Amazon elastic block storage,” April, 23 2018, https://aws.amazon.com/ebs/.

[2] “Home of the curious framework,” April, 23 2018, http://seclab.soic.indiana.edu/

curious/.

[3] “Ext4 disk layout,” April, 23 2018, https://ext4.wiki.kernel.org/index.php/Ext4

Disk Layout.

[4] “roram implementation on github,” https://github.com/anrinch/rORAM.

[5] “Linux-iscsi project,” April, 23 2018, http://linux-iscsi.sourceforge.net/.

[6] “iperf,” April, 23 2018, https://iperf.fr/.

[7] “Specsfs benchmark suite,” https://www.spec.org/sfs2014/.

[8] G. Asharov, M. Naor, G. Segev, and I. Shahaf, “Searchable symmetric encryption:

optimal locality in linear space via two-dimensional balanced allocations,” in 48th

ACM STOC, D. Wichs and Y. Mansour, Eds. Cambridge, MA, USA: ACM Press,

Jun. 18–21, 2016, pp. 1101–1114.

[9] G. Asharov, T.-H. H. Chan, K. Nayak, R. Pass, L. Ren, and E. Shi, “Oblivious

computation with data locality,” Cryptology ePrint Archive, Report 2017/772, 2017,

http://eprint.iacr.org/2017/772.

[10] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang, “Practicing oblivious

access on cloud storage: the gap, the fallacy, and the new way forward,” in ACM

CCS 15. ACM Press, Oct. 12–16, 2015, pp. 837–849.

[11] E.-O. Blass, T. Mayberry, G. Noubir, and K. Onarlioglu, “Toward robust hidden

volumes using write-only oblivious ram,” in CCS, 2014, pp. 203–214.

[12] E.-O. Blass, T. Mayberry, and G. Noubir, “Multi-client oblivious RAM secure

against malicious servers,” in ACNS 17, ser. LNCS, vol. 10355. Springer,

Heidelberg, Germany, 2017, pp. 686–707.

[13] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably secure

searchable encryption,” ACM Comput. Surv., vol. 47, no. 2, pp. 18:1–18:51, Aug.

2014.

[14] D. Cash and S. Tessaro, “The locality of searchable symmetric encryption,” in

EUROCRYPT 2014, ser. LNCS, vol. 8441. Copenhagen, Denmark: Springer,

Heidelberg, Germany, May 11–15, 2014, pp. 351–368.

[15] A. Chakraborti, C. Chen, and R. Sion, “DataLair: Efficient block storage with

plausible deniability against multi-snapshot adversaries,” Proceedings on Privacy

Enhancing Technologies, vol. 2017, pp. 175–193, Jul. 2017.

[16] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric

encryption: improved definitions and efficient constructions,” in ACM CCS 06,

A. Juels, R. N. Wright, and S. Vimercati, Eds. Alexandria, Virginia, USA: ACM

Press, Oct. 30 – Nov. 3, 2006, pp. 79–88.

[17] J. Dean, “Latency numbers every programmer should know,” Online, 2018,

https://gist.github.com/jboner/2841832.

[18] E. D. Demaine, “Cache-oblivious algorithms and data structures,” in Lecture Notes

from the EEF Summer School on Massive Data Sets, 2002, http://erikdemaine.org/

papers/BRICS2002/.

[19] I. Demertzis and C. Papamanthou, “Fast searchable encryption with tunable

locality,” in SIGMOD, 2017, pp. 1053–1067.
[20] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, and M. Garo-

falakis, “Practical private range search revisited,” in SIGMOD ’16, 2016, pp. 185–

198.

[21] I. Demertzis, D. Papadopoulos, and C. Papamanthou, “Searchable encryption

with optimal locality: Achieving sublogarithmic read efficiency,” in Advances in

Cryptology – CRYPTO 2018, 2018, pp. 371–406.

[22] J. Doerner and A. Shelat, “Scaling ORAM for secure computation,” in ACM CCS

17, B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, Eds. Dallas, TX,

USA: ACM Press, Oct. 31 – Nov. 2, 2017, pp. 523–535.

[23] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M.-C. Rosu, and M. Steiner,

“Rich queries on encrypted data: Beyond exact matches,” IACR Cryptology ePrint

Archive, vol. 2015, p. 927, 2015.

[24] C. W. Fletcher, L. Ren, A. Kwon, M. van Dijk, and S. Devadas, “Freecursive

ORAM: [nearly] free recursion and integrity verification for position-based obliv-

ious RAM,” in ASPLOS, 2015, pp. 103–116.

[25] C. W. Fletcher, L. Ren, A. Kwon, M. van Dijk, E. Stefanov, D. N. Serpanos,

and S. Devadas, “A low-latency, low-area hardware oblivious ram controller,”

2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom

Computing Machines, pp. 215–222, 2015.

[26] C. Gentry, K. A. Goldman, S. Halevi, C. S. Jutla, M. Raykova, and D. Wichs,

“Optimizing ORAM and using it efficiently for secure computation,” in PETS,

2013, pp. 1–18.

[27] O. Goldreich, “Towards a theory of software protection and simulation by oblivious

RAMs,” in 19th ACM STOC, A. Aho, Ed. New York City, NY, USA: ACM Press,

May 25–27, 1987, pp. 182–194.

[28] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure on

searchable encryption: Ramification, attack and mitigation,” in in Network and

Distributed System Security Symposium (NDSS, 2012.

[29] C. Liu, A. Harris, M. Maas, M. W. Hicks, M. Tiwari, and E. Shi, “Ghostrider: A

hardware-software system for memory trace oblivious computation,” in ASPLOS,

2015, pp. 87–101.

[30] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “ObliVM: A programming

framework for secure computation,” in 2015 IEEE Symposium on Security and

Privacy. San Jose, CA, USA: IEEE Computer Society Press, May 17–21, 2015,

pp. 359–376.

[31] T. Mayberry, E.-O. Blass, and A. H. Chan, “Efficient private file retrieval by

combining ORAM and PIR,” in NDSS 2014. San Diego, CA, USA: The Internet

Society, Feb. 23–26, 2014.

[32] I. Miers and P. Mohassel, “IO-DSSE: scaling dynamic searchable encryption to

millions of indexes by improving locality,” in NDSS, 2017.

[33] O. Ohrimenko, M. T. Goodrich, R. Tamassia, and E. Upfal, “The melbourne shuffle:

Improving oblivious storage in the cloud,” in ICALP, 2014, pp. 556–567.

[34] L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, and S. Devadas,

“Constants count: Practical improvements to oblivious RAM,” in USENIX Security

15, 2015, pp. 415–430.

[35] D. S. Roche, A. J. Aviv, and S. G. Choi, “A practical oblivious map data structure

with secure deletion and history independence,” in 2016 IEEE Symposium on

Security and Privacy. San Jose, CA, USA: IEEE Computer Society Press, May 22–

26, 2016, pp. 178–197.

[36] D. S. Roche, A. J. Aviv, S. G. Choi, and T. Mayberry, “Deterministic, stash-free

write-only ORAM,” in ACM CCS 17, B. M. Thuraisingham, D. Evans, T. Malkin,

and D. Xu, Eds. Dallas, TX, USA: ACM Press, Oct. 31 – Nov. 2, 2017, pp.

507–521.

[37] C. Sahin, V. Zakhary, A. E. Abbadi, H. Lin, and S. Tessaro, “Taostore: Overcoming

asynchronicity in oblivious data storage,” in 2016 IEEE Symposium on Security and

Privacy (SP), May 2016, pp. 198–217.

[38] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious RAM with O((logN)3)
worst-case cost,” in ASIACRYPT 2011, ser. LNCS, vol. 7073. Springer, Heidelberg,

Germany, Dec. 4–8, 2011, pp. 197–214.

[39] E. Stefanov and E. Shi, “ObliviStore: High performance oblivious distributed cloud

data store,” in NDSS 2013. San Diego, CA, USA: The Internet Society, Feb. 24–27,

2013.

[40] E. Stefanov, E. Shi, and D. X. Song, “Towards practical oblivious RAM,” in

NDSS 2012. San Diego, CA, USA: The Internet Society, Feb. 5–8, 2012.

[41] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and S. Devadas,

“Path ORAM: an extremely simple oblivious RAM protocol,” in ACM CCS 13.

Berlin, Germany: ACM Press, Nov. 4–8, 2013, pp. 299–310.

[42] X. Wang, T.-H. H. Chan, and E. Shi, “Circuit ORAM: On tightness of the

Goldreich-Ostrovsky lower bound,” in ACM CCS 15. Denver, CO, USA: ACM

Press, Oct. 12–16, 2015, pp. 850–861.

[43] X. Wang, D. Gordon, and J. Katz, “Simple and efficient two-server oram,” in

Asiacrypt, 2018, pp. 141–157.

[44] X. S. Wang, K. Nayak, C. Liu, T.-H. H. Chan, E. Shi, E. Stefanov, and Y. Huang,

“Oblivious data structures,” in ACM CCS 14. Scottsdale, AZ, USA: ACM Press,

Nov. 3–7, 2014, pp. 215–226.

[45] P. Williams and R. Sion, “Single round access privacy on outsourced storage,” in

ACM CCS 12, T. Yu, G. Danezis, and V. D. Gligor, Eds. Raleigh, NC, USA:

ACM Press, Oct. 16–18, 2012, pp. 293–304.

XI. PROOF OF THEOREM 5.1

As in the previous work [34, 41], we use ∞-ORAM, where

each node in the tree has infinite capacity. It receives the same

input request sequence as Ri.

A rooted subtree is a subtree which contains the parent

of every node in the subtree; in particular every non-empty

15

rooted subtree contains the root. For any rooted subtree T ,

let X(T) be a random variable denoting the number of non-

stale blocks stored in the nodes in T in ∞-ORAM. Let

n(T) denote the number of nodes in T . Then, by letting

p(γ) = Pr[∃T : X(T) > Z ·n(T)+γ], we have the following

consequence of Lemma 2 in [41]:

Pr[st(Ri) > Li · (λ + 1)] = p(Li · (λ + 1)).

Partition of a rooted subtree. Consider the ORAM tree Ri,

which we partition into S−1, S0, . . . , SLi−1 as follows:

• Let S−1 be a subtree containing all the nodes at levels

0, 1, . . . , i− 1.

• For j = 0, 1, . . . , Li − 1, let Sj be a subtree rooted with

vji (i.e., a node at level i) that has all the descendants of

vji as well.

So the entire tree consists of the first i levels in S−1 and then

the 2i disjoint subtrees S0, . . . , SLi−1 going from level i down

to the leaves.

Then, for any rooted subtree T , we have

X(T) = X(T∩S−1)+X(T∩S0)+X(T∩S1)+· · ·+X(T∩SLi−1).

Let E(T, γ) denote an event that X(T) > n(T) · Z + γ and

Ej(T, γ) denote an event that X(T ∩Sj) > n(T ∩Sj) ·Z+γ.

Then, by the pigeon-hole principle, we have:

E(T, Li(λ+ 1)) ⇒ E−1(T, Li) ∨

Li−1
∨

j=0

Ej(T, λ)

 .

Let pj(γ) = Pr[∃T : Ej(T, γ)]. The union bound gives:

p(Li · (λ+ 1)) = Pr[∃T : E(T, Li(λ + 1)]

≤ Pr[∃T : E−1(T, Li)] +

Li−1
∑

j=0

Pr[∃T : Ej(T, λ)]

= p−1(Li) +

Li−1
∑

j=0

pj(λ).

Bounding p−1(Li).. We first argue that p−1(Li) = 0. This is

because our deterministic eviction schedule ensures that after

every Li = 2i evictions, all blocks are pushed down at or

below level i in ∞-ORAM. Therefore, only at most Li blocks

must remain in S−1.

Chernoff-like bound. We would like to bound pj(λ). Fix

some rooted subtree T . We start our analysis by relying on

the paritioning effect that is explained in Section VI. That is,

each Sj will have at most one non-stale block for each range,

which implies that T ∩ Sj will have at most one block for

each range. Let Rangei be the set of all logical ranges for

Ri; each range has length 2i, and its starting logical label is a

multiple of 2i. Let Y (T) denote the number of different ranges

to which the blocks in T belong. Then, due to the partitioning

effect, we have

X(T ∩ Sj) = Y (T ∩ Sj).

That is, every block in T ∩ Sj belongs to a unique logical

range of Ri.

In our construction, a logical range [a · 2i, (a + 1) · 2i) is

assigned physical labels [r, r+2i), where r is chosen at random

from [0, N). As observed in [9, Claim 3.2], this implies that

the event that a range will be in Sj is independent of the

event that other ranges will be in Sj . Therefore, we can apply

the Chernoff-like bound given in [34, Section 4.3] where we

denote Yj = Y (T ∩ Sj):

E
[

et·Yj
]

≤ e(e
t−1)E[Yj].

Denote Xj = X(T ∩ Sj). Since we have Xj = Yj , we have:

E
[

et·Xj
]

≤ e(e
t−1)E[Xj].

Bounding E[Xj]. The same analysis as in [34, Lemma 3]

with A = 1 applies, and we get

E[Xj] ≤ n(T ∪ Sj).

This is because dependency (among the blocks in the same

range) becomes irrelevant, when we consider the expectation

due to linearity of expectation. Nevertheless, we give the proof

for completeness.

For each node v of the ORAM tree, we define a random

variable χv to be the number of blocks in v after the last

eviction. Note that we have

E[Xj] =
∑

v∈T∩Sj

E[χv].

So, it is sufficient to show that E[χv] ≤ 1 for any node v.

For our analysis, given a node v and a logical block with ad-

dress x, we define an indicator random variable χx,v ∈ {0, 1}
for the event that a logical block with address x is located in

node v at the end of the last eviction. Let qx,v = Pr[χx,v = 1].
If v is a leaf node, a fresh record corresponding to logical

address x can be stored in that bucket if x is mapped to v and

there was some evict operation that puts x in v. Since a block

x is mapped to a random leaf, the probability that a block x is

mapped to v is 1/N , which implies qx,v ≤ 1/N and thereby

E[χx,v] ≤ 1/N . Since there are at most N logical blocks, by

taking the linearity of expectation, we have

E[χv] ≤ E

∑

x∈[0,N)

χx,v

 =
∑

x∈[0,N)

E[χx,v] ≤
∑

x∈[0,N)

(1/N) ≤ 1.

Suppose v is a non-leaf node at level ℓ. Consider the last

two evictions paths p1 and p2 that touch v, where p2 takes

place later. Say that the second path p2 goes through v and

some child c of v. Then, our deterministic scheduling makes

sure that p1 goes through v and the other child c′. Note:

• Blocks coming before the time of p1 will never be in v,

since two eviction paths p1 and p2 will push all blocks

down at or below level ℓ+ 1.

• Blocks coming after time of p2 will never be in v, since

p2 is the last eviction that touches v.

This means that the only blocks that entered between p1 and

p2 can possibly remain in v. Let Between be the set of such

blocks. Our deterministic scheduling ensures that the time span

between p1 and p2 is exactly 2ℓ, implying that |Between| ≤ 2ℓ

(one can make a similar argument if there is only one eviction

path that touches v throughout the entire access sequence).

16

Moreover, if a block in Between remains in v after p2, it

must be the case that the block must have been mapped to

a physical leaf label from the descendant of c′; otherwise,

p2 will push it down to at or below c. Since the number

descendant leaves of c′ is N/2ℓ+1, for a block x ∈ Between,

the probability that x is randomly assigned to one of such

leaves is 1/2ℓ+1. Therefore, we have

E[χv] ≤ E

[

∑

x∈Between

χx,v

]

=
∑

x∈Between

E[χx,v]

=
∑

x∈Between

1/2ℓ+1 ≤ 1/2.

Let n = n(T ∩ Sj) for simplicity. As long as Li ≤ N/4
which ensures that |Sj | ≥ 7, we have at most 4

7 · n leaves.

Therefore, we have:

E[Xj] ≤
∑

v∈leaves

E[χv] +
∑

v∈internal

E[χv]

≤ 4n

7
· 1 + 3n

7
· 1
2

≤ 11

14
· n

Putting them all together.. Now, we are ready to bound

pj(λ). Consider a subtree T and recall n = n(T ∩ Sj). Then

we have

Pr[Ej(T, λ)] = Pr[Xj > Zn+ λ]

= Pr[etXj > e−t(Zn+λ)]

≤ E
[

etXj
]

· e−t(Zn+λ)

≤ e(e
t−1) 11n

14 · e−t(Zn+λ)

≤ e−tλ · e(et−1−tZ)n

= Z−λ · e−n(Z lnZ− 11
14

(Z−1))

We took t such that et = Z in the last line in the above.

Let q = Z lnZ − 11
14 (Z − 1) − ln 4. We assume Z ≥ 3.

Note, then we have 1
1−e−q < 3.5. Finally, we have

pj(λ) = Pr[∃T : Ej(T, λ)] ≤
∑

n≥1

4n · max
T :n(T∩Sj)=n

Pr[Ej(T, λ)]

≤
∑

n≥1

4n · Z−λ · e−n(Z lnZ− 11
14

(Z−1))

=
∑

n≥1

Z−λ · e−nq

<
Z−λ

1− e−q

< 3.5 · Z−λ

In summary, we have:

p(Li · (λ+ 1)) = p−1(Li) +

Li−1
∑

j=0

pj(λ) ≤ 3.5 · Li · Z−λ.

17

