
Non-adaptive Group-Testing Aggregate MAC
Scheme

Shoichi Hirose1 and Junji Shikata2

1 University of Fukui, Japan
2 Yokohama National University, Japan

Abstract. This paper applies non-adaptive group testing to aggregate
message authentication code (MAC) and introduces non-adaptive group-
testing aggregate MAC. After formalization of its syntax and security
requirements, simple and generic construction is presented, which can
be applied to any aggregate MAC scheme formalized by Katz and Lin-
dell in 2008. Then, two instantioations of the construction is presented.
One is based on the aggregate MAC scheme by Katz and Lindell and
uses addition for tag aggregate. The other uses cryptographic hashing
for tag aggregate. Provable security of the generic construction and two
instantiations are also discussed.

Keywords: Message authentication · Aggregate · Group testing · Prov-
able security

1 Introduction

Background. A message authentication code (MAC) is a tag attached to a mes-
sage to detect tampering of the message. The tag is computed with a crypto-
graphic symmetric key primitive called a MAC function such as HMAC [1, 5]
and CMAC [8, 13].

An aggregate MAC scheme allows one to aggregate multiple tags to multiple
messages into a shorter tag. It is possible to verify the validity of the multiple
messages only with the single tag. It is impossible in general, however, to identify
invalid messages once the multiple messages are judged invalid with respect to
the single tag.

It is expected that the problem above can be solved with group testing [3].
Group testing is a method to be able to verify if each sample is negative or
positive with a smaller number of tests than a naive method to test each sample
infividually on the assumption that the number of positive samples is at most a
constant. In group testing, each test involves a subset of the given samples. The
result of a test is negative if and only if all the involved samples are negative.
The group testing is called adaptive if one can choose samples to be tested after
one sees the result of the previous test and is called non-adaptive otherwise.

Contribution. This paper applies non-adaptive group testing to aggregate MAC
and introduces non-adaptive group testing aggregate MAC (GTA MAC).

First, GTA MAC and its security requirements are formalized. The security
requirements are unforgeability and identifiability. Unforgeability means that a
message is judged invalid by the group testing if the tag to the message is not
generated by a legitimate user. Identifiability is composed of completeness and
soundness. Completeness captures the notion that a group-testing for pairs of
a message and a tag should judge a pair valid if it is valid. Soundness captures
the notion that a group-testing should judge a pair invalid if it is invalid. Then,
simple and generic construction of a GTA MAC scheme is presented. It can be
applied to any aggregate MAC scheme formalized by Katz and Lindell [9]. The
generic construction produces a GTA MAC scheme satisfying unforgeability and
completeness from any unforgeable aggregate MAC scheme. Finally, two instan-
tiations are presented: One is from the Katz-Lindell aggregate MAC scheme [9]
and the other is from an aggregate MAC scheme using hashing for aggregate.
The former does not satisfy soundness. The latter is shown to satisfy soundness
if the underlying hash function is a random oracle.

Related Work. Aggregate MAC and its security requirement were first formalized
by Katz and Lindell [9]. They also proposed an aggregate MAC scheme and
proved its security on the assumption that the underlying MAC function is
unforgeable. Their scheme aggregates tags by their addition. The formalization
of GTA MAC in the paper is based on that of aggregate MAC by Katz and
Lindell.

Sequential aggregate MAC and its security requirement were formalized by
Eikemeier et al. [4]. They also presented a provably secure sequential aggregate
MAC scheme. Forward-secure sequential aggregate MAC was introduced by Ma
and Tsudik [10]. It was also discussed by Ma and Tsudik [11] and Hirose and
Kuwakado [7]. A typical application of the forward-secure sequential aggregate
MAC is secure audit log.

The group testing was already applied to MAC schemes by Goodrich et al. [6]
and Minematsu [12]. The major difference between their approach and ours is
that their schemes do not, precisely speaking, aggregate tags for messages. Their
schemes compute a tag of a subset of messages for each test in group testing.
Minematsu [12] proposed a scheme based on PMAC [2, 14] aiming at reduction
of amount of computation required to compute tags for group testing.

Organization. This paper is organized as follows. Section 2 gives notations and
introduces MAC functions and non-adaptive group testing. Section 3 introduces
the syntax and security requirement of aggregate MAC. It also describes the
aggregate MAC scheme proposed by Katz and Lindell. Section 4 formalizes the
syntax and security requirements of GTA MAC. Section 5 gives a method for
generic construction of GTA MAC schemes. It also describes provable security
for the generic construction. Section 6 presents a GTA MAC scheme based on
the Katz-Lindell aggregate MAC scheme. Section 7 presents another GTA MAC
scheme using a cryptographic hash function for aggregate. Section 8 gives a brief
concluding remark.

2

2 Preliminaries

2.1 Notations

Selecting an element s uniformly at random from a set S is denoted by s� S.
For {0, 1}-sequences x and y, x‖y represents their concatenation.
Let v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) be vectors such that vi ∈

{0, 1} and wi ∈ {0, 1}l for 1 ≤ i ≤ n. Let x = (x1, x2, . . . , xn) ∈ Xn for some
set X. 〈v,w〉 represents inner product of v and w, that is, 〈v,w〉 =

⊕n
i=1 viwi.

Let 〈〈v,w〉〉 = wi1‖wi2‖ · · · ‖wid , and v � x = (xi1 , xi2 , . . . , xid), where 1 ≤ i1 <
i2 < · · · < id ≤ n, and vi = 1 if i ∈ {i1, i2, . . . , id} and vi = 0 otherwise.

For vectors v = (v1, v2, . . . , vn) and v′ = (v′1, v
′
2, . . . , v

′
n) in {0, 1}n, v � v′ if

vi ≤ v′i for 1 ≤ i ≤ n.

2.2 MAC Functions

A MAC function is defined to be a keyed function f : K ×M→ T , where K is
its key space, M is its messsage space, and T is its tag space. f(K, ·) is often
denoted by fK(·). The security requirement for a MAC function is unforgeability.
Let A be an adversary against f . A is given access to the tagging oracle fK and
the corresponding verification oracle VK , where K � K. The tagging oracle fK
returns fK(M) in reply to a query M ∈M. The verification oracle VK , in reply
to a query (M,T) ∈ M × T , returns > if fK(M) = T and ⊥ otherwise. It is
assumed that A does not make a query on (M,T) ∈M×T once it gets T from
fK as a reply to its query M . Let Forge(A) represent an event that A succeeds
in making a query to which VK returns >. The mac-advantage of A against f is
defined as

Advmac
f (A) , Pr [Forge(A)] .

2.3 Non-adaptive Group Testing

A non-adaptive group-testing algorithm with n samples and u tests can be rep-
resented by a u × n {0, 1}-matrix, which is called a group-testing matrix. For
1 ≤ i ≤ u and 1 ≤ j ≤ n, the i-th test involves the j-th sample if and only if
the (i, j)-th element of the corresponding group-testing matrix equals 1. Each
sample is either positive or negative. It is assumed that the result of a test is neg-
ative if all the samples involved in the test are negative and positive otherwise.
All of the positive samples can be detected by the following simple procedure:

1. J ← {1, 2, . . . , n}, where j ∈ {1, 2, . . . , n} represents the j-th sample.
2. For 1 ≤ i ≤ u, if the result of the i-th test is negative, then J ← J \
{ji,1, ji,2, . . . , ji,wi}, where {ji,1, ji,2, . . . , ji,wi} are all of the samples involved
in the i-th test.

3. Output J .

The output J of the procedure presented above includes all the positive samples.
It may also include (some of) the negative samples in general.

3

Definition 1 (d-disjunct). A {0, 1}-matrix G is said to be d-disjunct if, any d
columns of G do not cover any other column of G. Here, d columns gc

j1
, gc
j2
, . . . , gc

jd
are said to cover a column gc if gc � gc

j1
∨ gc

j2
∨ · · · ∨ gc

jd
, where ∨ is the

component-wise disjunction.

d-disjunct matrices are useful for group testing. If the group testing matrix
is d-disjunct and at most d of n samples are positive, then the set J computed
by the procedure above does not contain any negative samples.

3 Aggregate MAC

3.1 Syntax

An aggregate MAC scheme is composed of the following algorithms:

Key generation k ← KG(1p).
This algorithm takes as input a security parameter p and produces a secret
key k .

Tagging t← Tag(kid , id ,m).
This algorithm takes as input a pair of an ID and a message (id ,m) and a
secret key kid corresponding to id , and produces as output a tag t .

Aggregate T ← Agg((id1,m1, t1), . . . , (idn,mn, tn)).
This algorithm takes tuples of an ID, a message, and a tag (id i,mi, ti)’s as
input and produces an aggregate tag T as output. Notice that it is not given
secret keys used by the tagging algorithm Tag.

Verification d← Ver((k1, . . . , kn), ((id1,m1), . . . , (idn,mn)),T).
This algorithm takes pairs of an ID and a message (id i,mi)’s and an ag-
gregate tag T as input and checks their validity with respect to the keys
corresponding to the given IDs. Here, ki is a key corresponding to id i
for 1 ≤ i ≤ n. The decision d is either > or ⊥. If d = >, the pair
((id1,m1), . . . , (idn,mn)) and T are judged as valid with respect to (k1, . . . ,
kn). Othewise, they are judged invalid.

For (id1,m1), . . . , (idn,mn) and T , if tj = Tag(kj , id j ,mj) for 1 ≤ j ≤ n and
T = Agg((id1,m1, t1), . . . , (idn,mn, tn)), then Ver((k1, . . . , kn), ((id1,m1), . . . ,
(idn,mn)),T) = >.

3.2 Security Requirement

The security requirement of an aggregate MAC scheme AM , (KG,Tag,Agg,Ver)
is unforgeability. An adversary against AM is given access to the oracles listed
below:

Tagging The tagging oracle T G receives a pair of ID and a message (id ,m) as
a query and returns a tag t , where t ← Tag(kid , id ,m).

Key disclosure The key-disclosure oracle KD receives an ID id as a query and
returns the corresponding key kid .

4

Verification The verification oracle VR receives (((id1,m1), . . . , (idn,mn)),T)
as a query and returns d, where

d← Ver((k1, . . . , kn), ((id1,m1), . . . , (idn,mn)), T) .

Definition 2 (Unforgeability). Let A be an adversary against an aggregate
MAC scheme AM. A is given access to T G,KD,VR, and is allowed to make
multiple queries adaptively to each of them. Let Forge(A) be an event that A
succeeds in asking VR a query (((id1,m1), . . . , (idn,mn)), T) satisfying the fol-
lowing conditions:

– Ver((k1, . . . , kn), ((id1,m1), . . . , (idn,mn)), T) = >
– Before asking (((id1,m1), . . . , (idn,mn)), T), for some 1 ≤ j ≤ n, A asks

neither (id j ,mj) to T G nor id j to KD.

Then, the advantage of A against AM with respect to unforgeability is defined as

Advuf
AM(A) , Pr[Forge(A)] .

An aggregate MAC scheme AM is informally said to satisfy unforgeability if
Advuf

AM(A) is negligibly small for any adversary A with realistic computational
resources.

3.3 Katz-Lindell Aggregate MAC Scheme

An aggregate MAC scheme proposed by Katz and Lindell [9] is described in this
section. Here, their scheme is called KL-AM.

Scheme. Let F : K ×M→ T be a MAC function.

– The key generation algorithm just picks up a secret key uniformly at random
from K for each user.

– For an input (id ,m), the tagging algorithm returns t , F (kid ,m).

– For an input ((id1,m1, t1), . . . , (idn,mn, tn)), the aggregate algorithm re-
turns T = t1 ⊕ t2 ⊕ · · · ⊕ tn.

– For an input (((id1,m1), . . . , (idn,mn)),T), the verification algorithm re-
turns d such that

d =

{
> if T = F (k1,m1)⊕ · · · ⊕ F (kn,mn),

⊥ otherwise.

Security. Katz and Lindell [9] showed that their aggregate MAC scheme satisfies
unforgeability assuming a single query to the verification oracle. We show for
later use that their scheme satisfies unforgeability assuming multiple queries to
the verification oracle.

5

Theorem 1 (Unforgeability). For the Katz-Lindell aggregate MAC scheme
KL-AM, let ` be the number of the users. For any adversary A against KL-AM
running in time at most s, making at most qt queries to its tagging oracle, and
making at most qv queries to its verification oracle, there exists some adversary
B against F such that

Advuf
KL-AM(A) ≤ ` ·Advmac

F (B) ,

where B runs in time at most s + SF (qt + `qv), making at most qt queries to
its tagging oracle, and making at most qv queries to its verification oracle. SF
is time required to compute F .

Proof. The adversary B attacks F by making use of an adversary A against
KL-AM. B has oracle access to the tagging oracle FK and the verification oracle
VK , where K � K.

B first picks up a user idr uniformly at random among ` users. B also selects
a secret key uniformly at random from K for each of the other (` − 1) users.
Then, B runs A.

For a tagging query on the user idr made by A, B transfers it to FK and
returns the reply from FK to A. For a tagging query on a user other than idr
made by A, B computes the tag using the corresponding secret key chosen by
itself and returns it to A. If A makes a key-disclosure query on a user other
than idr, then B simply returns the corresponding secret key to A. If A makes
a key-disclosure query on idr, then B aborts.

Suppose that A succeeds in forgery. Then, A makes a verification query such
that the verification oracle returns > in reply to it and, for some (id ′,m′) in-
cluded in it, A asks neither (id ′,m′) to the tagging oracle nor id ′ to the key-
disclosure oracle prior to it. Let Hit be the event such that id ′ = idr. The
conditional probability that Hit occurs when A succeeds in forgery is at least
1/`.

Suppose that A succeeds in forgery and that Hit occurs. For a verification
query from A not related to idr, B verifies it by itself and returns the result. For
a verification query from A including (idr,mr), B computes a tag tr for (idr,mr)
from the query and the secret keys of the other users and asks (mr, tr) to its
verification query. Then, B makes at most qv queries to its verification oracle,
which returns > for at least one of them. Thus,

Pr[Forge(B)] = Pr[Forge(A) ∩ Hit]

= Pr[Hit |Forge(A)] Pr[Forge(A)]

≥ 1

`
Pr[Forge(A)]

and Advuf
KL-AM(A) ≤ ` ·Advmac

F (B). ut

6

4 Group-Testing Aggregate MAC

4.1 Syntax

A group-testing aggregate MAC (GTA MAC) scheme consists of the following
algorithms:

Key generation k ← KG(1p).
This algorithm takes as input a security parameter p and produces a secret
key k .

Tagging t← Tag(kid , id ,m).
This algorithm takes as input a pair of an ID and a message (id ,m) and a
secret key kid corresponding to id , and produces as output a tag t .

Group-testing aggregate This algorithm GTA takes tuples of an ID, a mes-
sage, and a tag (id j ,mj , tj)’s as input and produces a tuple of aggregate tags
T1, . . . ,Tu as output:

(T1, . . . , Tu)← GTA((id1,m1, t1), . . . , (idn,mn, tn)) .

Notice that it is not given secret keys used by the tagging algorithm.
Group-testing verification This algorithm GTV takes pairs of an ID and a

message (id j ,mj)’s and a tuple of aggregate tags Ti’s as input and tries to
identify invalid pairs of an ID and a message using the corresponding keys:

J ← GTV((k1, . . . , kn), ((id1,m1), . . . , (idn,mn)), (T1, . . . , Tu)) .

The output J of this algorithm is a set of (id j′ ,mj′)’s which are judged
invalid.

For ((id1,m1), . . . , (idn,mn)) and (T1, . . . ,Tu), if tj = Tag(kj , id j ,mj) for
1 ≤ j ≤ n and (T1, . . . , Tu) = GTA((id1,m1, t1), . . . , (idn,mn, tn)), then
GTV((k1, . . . , kn), ((id1,m1), . . . , (idn,mn)), (T1, . . . , Tu)) = ∅.

4.2 Security Requirement

The security requirements of a GTA MAC scheme GTAM , (KG,Tag,GTA,GTV)
are unforgeability and identifiability. An adversary against GTAM is given access
to the oracles listed below:

Tagging This oracle T G receives a pair of ID and a message (id ,m) as a query
and returns a tag t ← Tag(kid , id ,m), where kid is the secret key of the user
id .

Key disclosure This oracle KD receives an ID id as a query and returns the
corresponding secret key kid .

Group-testing verification Given ((id1,m1), . . . , (idn,mn)), (T1, . . . ,Tu)) as
a query, this oracle GT V returns

J ← GTV((k1, . . . , kn), ((id1,m1), . . . , (idn,mn)), (T1, . . . ,Tu)) .

7

Unforgeability. Let A be an adversary against a GTA MAC scheme GTAM. A
is given access to the oracles T G, KD, GT V, and is allowed to make multiple
queries adaptively to each of them. Let GTForge(A) be an event that A succeeds
in asking GT V a query (((id1,m1), . . . , (idn,mn)), (T1, . . . ,Tu)) satisfying the
following conditions: There exists some 1 ≤ j ≤ n such that

– (id j ,mj) 6∈ GTV((k1, . . . , kn), ((id1,m1), . . . , (idn,mn)), (T1, . . . ,Tu)),
– Before asking (((id1,m1), . . . , (idn,mn)), (T1, . . . ,Tu)), A asks neither (id j ,

mj) to T G nor id j to KD.

Then, the advantage of A against GTAM with respect to unforgeability is defined
as

Advuf
GTAM(A) , Pr[GTForge(A)] .

GTAM is informally said to satisfy unforgeability if Advuf
GTAM(A) is negligibly

small for any adversary A with realistic computational resources.

Identifiability. For identifiability, completeness and soundness are introduced.
Let A be an adversary for identifiability. Let us consider the experiments pre-
sented in Fig. 1 and in Fig. 2 for completeness and soundness, respectively. Steps
from 1 to 4 are identical in both of the experiments. The adversary A is given
access to the tagging oracle T G and the key-disclosure oracle KD. Then, A out-
puts tuples ((id j1 ,mj1 , tj1), . . . , (id jn ,mjn , tjn)), and the group testing is applied
to them. Completeness requires that any valid tuple (id jv ,mjv , tjv) is judged
valid by the group testing. On the other hand, soundness requires that any in-
valid tuple is judged invalid. The advantage of A against GTAM with respect to
completeness and soundness is defined as

Advid-c
GTAM(A) , Pr

[
Expid-cGTAM(A) = 1

]
,

and

Advid-s
GTAM(A) , Pr

[
Expid-sGTAM(A) = 1

]
,

respectively.

1: b← 0
2: ((id j1 ,mj1 , tj1), . . . , (id jn ,mjn , tjn))← AT G,KD

3: (T1, . . . , Tu)← GTA((id j1 ,mj1 , tj1) . . . , (id jn ,mjn , tjn))
4: J ← GTV((kj1 , . . . , kjn), (id j1 ,mj1) . . . , (id jn ,mjn), (T1, . . . , Tu))
5: if J ∩ {(id jv ,mjv) | tjv = Tag(kjv , id jv ,mjv)} 6= ∅ then
6: b← 1
7: end if
8: return b

Fig. 1: Experiment Expid-cGTAM(A)

8

1: b← 0
2: ((id j1 ,mj1 , tj1), . . . , (id jn ,mjn , tjn))← AT G,KD

3: (T1, . . . , Tu)← GTA((id j1 ,mj1 , tj1) . . . , (id jn ,mjn , tjn))
4: J ← GTV((kj1 , . . . , kjn), (id j1 ,mj1) . . . , (id jn ,mjn), (T1, . . . , Tu))
5: if {(id jv ,mjv) | tjv 6= Tag(kjv , id jv ,mjv)} \ J 6= ∅ then
6: b← 1
7: end if
8: return b

Fig. 2: Experiment Expid-sGTAM(A)

5 Generic Construction of GTA MAC Scheme

This section first presents generic construction of a GTA MAC scheme from
an aggregate MAC scheme and a group-testing matrix. Then, it discusses the
security of the GTA MAC scheme.

5.1 Generic Construction

Let AM = (KG,Tag,Agg,Ver) be an aggregate MAC scheme. Let G be a u × n
group-testing matrix, where G = (gi,j) for 1 ≤ i ≤ u and 1 ≤ j ≤ n and
gi = (gi,1, . . . , gi,n) ∈ {0, 1}n is the i-th row of G for 1 ≤ i ≤ u. A GTA MAC
scheme GTAMg = (KGg,Tagg,GTAg,GTVg) is constructed from AM and G as
follows:

– KGg , KG.

– Tagg , Tag.
– (T1, . . . , Tu) ← GTAg((id1,m1, t1), . . . , (idn,mn, tn)). where, for 1 ≤ i ≤ u,

Ti ← Agg(gi � ((id1,m1, t1), . . . , (idn,mn, tn))).
– J ← GTVg((k1, . . . , kn), ((id1,m1), . . . , (idn,mn)), (T1, . . . , Tu)), where

1. J ← {(id1,m1), . . . , (idn,mn)}.
2. For 1 ≤ i ≤ u, if

Ver(gi � (k1, . . . , kn), gi � ((id1,m1, t1), . . . , (idn,mn, tn)),Ti) = > ,

then

J ← J \ {(id j ,mj) | 1 ≤ j ≤ n ∧ gi,j = 1} .

5.2 Unforgeability

The following theorem says that generic construction produces an unforgeable
GTA MAC scheme from any unforgeable aggregate MAC scheme.

Theorem 2. For the GTA MAC scheme GTAMg, let ` be the number of the
users. For any adversary A against GTAMg running in time at most s, making

9

at most qt queries to its tagging oracle, making at most qk queries to its key-
disclosure oracle, and making at most qv queries to its group-testing verification
oracle, there exists some adversary B against AM with ` users such that

Advuf
GTAMg

(A) ≤ Advuf
AM(B) ,

where B runs in time at most s, making at most qt queries to its tagging oracle,
making at most qk queries to its key-disclosure oracle, and making at most u qv
queries to its verification oracle.

Proof. The adversary B against AM tries forgery by making use of the adversary
A against GTAMg. B has oracle access to the tagging oracle, the key-disclosure
oracle, and the verification oracle.

B simply runs A. For a tagging query made by A, B transfers it to its tagging
oracle and returns the reply to A. For a key-disclosure query made by A, B also
transfers it to its key-disclosure oracle and returns the reply to A. For a group-
testing verification query made by A, B executes GTVg using its verification
oracle u times.

Suppose that A succeeds in forgery and (((id1,m1), . . . , (idn,mn)), (T1, . . . ,
Tu)) is a successful forgery. Then, there exists some 1 ≤ j ≤ n such that

– (id j ,mj) 6∈ GTVg((k1, . . . , kn), ((id1,m1), . . . , (idn,mn)), (T1, . . . ,Tu)), and
– Before asking ((id1,m1), . . . , (idn,mn)), (T1, . . . ,Tu)), A asks neither (id j ,

mj) to its tagging oracle nor id j to its key-disclosure oracle.

It implies that there exists some 1 ≤ i ≤ u such that the i-th test involves
(id j ,mj) and passes the verification. Thus, the i-th test is a successful query
made by B to its verification oracle. ut

5.3 Identifiability

An adversary A is said to be d-dishonest if A outputs ((id1,m1, t1), . . . , (idn,mn,
tn)) such that |{(id j ,mj) | tj 6= Tagg(kj , id j ,mj)}| ≤ d in Expid-cGTAMg

or Expid-sGTAMg
.

Completeness. The theorem below says that the GTA MAC scheme GTAMg sat-
isfies completeness against any d-dishonest adversary if the group-testing matrix
is d-disjunct.

Theorem 3 (Completeness). For the GTA MAC scheme GTAMg, suppose
that the group-testing matrix G is d-disjunct. Then, for any d-dishonest adver-
sary A,

Advid-c
GTAMg

(A) = 0 .

Proof. Let A be any d-dishonest adversary. Suppose that A outputs ((id1,m1, t1),
. . . , (idn,mn, tn)) in Expid-cGTAMg

(A) and let V = {(id j ,mj) | tj = Tagg(kj , id j ,mj)}.
Since the group-testing matrix G is d-disjuct and A is d-dishonest, for any
(id ,m) ∈ V , there exists some test in G involving (id ,m) and no invalid pairs.
Thus, V ∩ J = ∅, where J is the set computed in Expid-cGTAMg

(A). ut

10

Soundness. The GTA MAC scheme GTAMg may not satisfy soundness. It de-
pends on how to aggregate tags.

Let us consider the following adversary Ã in Expid-sGTAMg
. Ã first obtains valid

(id j ,mj , tj) such that tj = Tagg(kj , id j ,mj) using its tagging oracle for 1 ≤ j ≤
n. Let Ti = Agg(gi � ((id1,m1, t1), . . . , (idn,mn, tn))) for 1 ≤ i ≤ u. Suppose
that Ã succeeds in finding ((id1,m1, t̃1), . . . , (idn,mn, t̃n))) such that, for some
i∗, gi∗ � ((id1,m1, t̃1), . . . , (idn,mn, t̃n)) 6= gi∗ � ((id1,m1, t1), . . . , (idn,mn, tn))
and Ti∗ = Agg(gi∗� ((id1,m1, t̃1), . . . , (idn,mn, t̃n))). Then, the result of the i∗-
th test gi∗ is valid, and there exists some j∗ such that t̃j∗ 6= Tag(kj∗ , id j∗ ,mj∗)
and (id j∗ ,mj∗) 6∈ J .

6 GTA MAC Scheme Based on Katz-Lindell Aggregate
MAC

From the generic construction, it is straightforward to obtain a GTA MAC sheme
based on the Katz-Lindell aggregate MAC scheme. Let us call it GTAMX.

GTAMX is unforgeable if the underlying MAC function is unforgeable. For
identifiability, GTAMX satisfies completeness, while it does not satisfy soundness.

6.1 Scheme

Let F : K ×M → {0, 1}τ be a MAC function. The key generation and tagging
algorithms of GTAMX are identical to those of the Katz-Lindell scheme. It is
assumed that the group-testing aggregate algorithm of GTAMX is based on a
pre-specified u × n group-testing matrix G. Let G = (gi,j) for 1 ≤ i ≤ u and
1 ≤ j ≤ n and gi = (gi,1, . . . , gi,n) ∈ {0, 1}n be the i-th row of G for 1 ≤ i ≤ u.

– The key generation algorithm just picks up a secret key uniformly at random
from K for each user.

– For an input (id ,m), the tagging algorithm returns t , F (kid ,m).
– For an input ((id1,m1, t1), . . . , (idn,mn, tn)), the group-testing aggregate al-

gorithm returns (T1, . . . ,Tu), where Ti , 〈gi, (t1, t2, . . . , tn)〉 for 1 ≤ i ≤ u.
– For an input (((id1,m1), . . . , (idn,mn)), (T1, . . . ,Tu)), the verification algo-

rithm returns J computed in the following way:

1. J ← {(id1,m1), . . . , (idn,mn)}.
2. For 1 ≤ i ≤ u, if Ti = 〈gi, (F (k1,m1), . . . , F (kn,mn))〉, then

J ← J \ {(id j ,mj) | 1 ≤ j ≤ n ∧ gi,j = 1} .

6.2 Unforgeability

The following theorem says that GTAMX is unforgeable if the underlying MAC
function is unforgeable. It directly follows from Theorems 1 and 2, and the proof
is omitted.

11

Theorem 4 (Unforgeability). For GTAMX, let ` be the number of the users.
For any adversary A against GTAMX running in time at most s, making at most
qt queries to its tagging oracle, making at most qk queries to its key-disclosure
oracle, and making at most qv queries to its group-testing verification oracle,
there exists some adversary B against F such that

Advuf
GTAMX

(A) ≤ ` ·Advmac
F (B) ,

where B runs in time at most s + SF (qt + unqv), making at most qt queries to
its tagging oracle, and making at most u qv queries to its verification oracle. SF
is time required to compute F .

6.3 Identifiability

Completeness. Theorem 3 applies to GTAMX, and it satisfies completeness against
any d-dishonest adversary if G is d-disjunct.

Soundness. GTAMX does not satisfy soundness. Let us consider an adversary Ã
behaving in Expid-sGTAMg

(Ã) in the following way. Ã obtains valid (id1,m1, t1), . . . ,

(idn,mn, tn) using its tagging oracle, that is, tj = F (kj ,mj) for 1 ≤ j ≤ n. Then,

Ã can easily compute (t̃1, . . . , t̃n) such that 〈gi∗ , (t̃1, . . . , t̃n)〉 = 〈gi∗ , (t1, . . . , tn)〉
and gi∗ � (t̃1, . . . , t̃n) 6= gi∗ � (t1, . . . , tn) for some i∗. Then, there exists some j∗

such that t̃j∗ 6= F (kj∗ ,mj∗) and (id j∗ ,mj∗) 6∈ J .

7 GTA MAC Scheme Using Hashing for Aggregate

7.1 Scheme

Let F : K ×M → {0, 1}τ be a MAC function. Let H : {0, 1}∗ → {0, 1}τ be a
cryptographic hash function. The proposed GTA MAC scheme GTAMH uses the
hash function H for aggregate. The key generation and tagging algorithms of
GTAMH are identical to those of GTAMX. The group-testing aggregate algorithm
of GTAMH is also assumed to be based on a pre-specified u × n group-testing
matrix G = (gi,j).

– The key generation algorithm just picks up a secret key uniformly at random
from K for each user.

– For an input (id ,m), the tagging algorithm returns t , F (kid ,m).
– For an input ((id1,m1, t1), . . . , (idn,mn, tn)), the group-testing aggregate al-

gorithm returns (T1, . . . ,Tu), where Ti , H(〈〈gi, (t1, t2, · · · , tn)〉〉). To make
each aggregate tag unique, it is assumed that ((id1,m1, t1), . . . , (idn,mn, tn))
is ordered in a lexicographic order.

– For an input (((id1,m1), . . . , (idn,mn)), (T1, . . . ,Tu)), the verification algo-
rithm returns J computed in the following way:
1. J ← {(id1,m1), . . . , (idn,mn)}.
2. For 1 ≤ i ≤ u, if Ti = H(〈〈gi, (F (k1,m1), . . . , F (kn,mn))〉〉), then

J ← J \ {(id j ,mj) | 1 ≤ j ≤ n ∧ gi,j = 1} .

12

7.2 Unforgeability

The following theorem says that GTAMH is unforgeable if the underlying MAC
function F is unforgeable and the underlying hash function H is a random oracle.

Theorem 5 (Unforgeability). For the GTA MAC scheme GTAMH, let ` be
the number of the users. For any adversary A against GTAMH running in time at
most s, making at most qh queries to H, making at most qt queries to its tagging
oracle, making at most qk queries to its key-disclosure oracle, and making at most
qv queries to its group-testing verification oracle, there exists some adversary B
against F such that

Advuf
GTAMH

(A) ≤ ` ·Advmac
F (B) +

uqv
2τ

+
(qh + uqv)2

2τ+1
,

where B runs in time at most s+SF (qt+unqv), making at most qh+uqv queries
to H, making at most qt queries to its tagging oracle, and making at most qv
queries to its verification oracle. SF is time required to compute F .

Proof. Let Coll(H) be the event that a collision is found for H. Then,

Advuf
GTAMH

(A) = Pr[GTForge(A)]

≤ Pr[GTForge(A) ∩ Coll(H)] + Pr[Coll(H)]

≤ Pr[GTForge(A) ∩ Coll(H)] + (qh + uqv)2/2τ+1 .

Let GTF(A) ⊆ GTForge(A) ∩ Coll(H) be the event that there exists some suc-
cessful group-testing verification query without a query of correct tags to H.
Then,

Pr[GTF(A)] ≤ uqv/2τ ,

Similarly to the proof of Theorem 1, it can be shown that there exists some
adversary B against F such that

Pr
[(
GTForge(A) ∩ Coll(H)

)
∩ GTF(A)

]
≤ ` ·Advmac

F (B) .

ut

7.3 Identifiability

Completeness. Theorem 3 also applies to GTAMH, and it satisfies completeness
against any d-dishonest adversary if G is d-disjunct.

Soundness. The following theorem says that GTAMH satisfies soundness for any
d-dishonest adversary if G is d-disjunct on the assumption that H is a random
oracle.

13

Theorem 6 (Soundness). For the GTA MAC scheme GTAMH, suppose that
the hash function H is a random oracle and that the group-testing matrix G is
d-disjunct. Then, for any d-dishonest adversary A making at most qh queries to
H,

Advid-s
GTAMH

(A) ≤ (qh + 2u)2

2τ+1
.

Proof. For Expid-sGTAMH
(A), let ((id1,m1, t̃1), . . . , (idn,mn, t̃n)) be the output of A

and tj = Fkj (mj) for 1 ≤ j ≤ n. Expid-sGTAMH
(A) = 1 only if there exists some

i∗ such that gi∗ � (t̃1, . . . , t̃n) 6= gi∗ � (t1, . . . , tn) and H(〈〈g, (t̃1, . . . , t̃n)〉〉) =
H(〈〈g, (t1, . . . , tn)〉〉), which implies a collision for H. H is called (qh + 2u) times
in total. ut

8 Conclusion

The paper has formalized the syntax and security requirements of GTA MAC
schemes and presented their generic construction. Then, it has also presented
two instantiations with distinct aggregate methods. One is based on the Katz-
Lindell aggregate MAC scheme and aggregates tags with addition for group
testing. The other aggregates tags with hashing. The paper has analyzed the
provable security of the proposed schemes. Future work includes design of an
efficient algorithm to verify whether a given group-testing matrix is d-disjunct
or not.

References

1. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO. Lecture Notes in Computer Science, vol.
1109, pp. 1–15. Springer (1996)

2. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) Advances in Cryptology - EUROCRYPT
2002, International Conference on the Theory and Applications of Cryptographic
Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings.
Lecture Notes in Computer Science, vol. 2332, pp. 384–397. Springer (2002), http:
//dx.doi.org/10.1007/3-540-46035-7_25

3. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications. Series
on Applied Mathematics: Volume 12, World Scientific, 2nd edn. (2000)

4. Eikemeier, O., Fischlin, M., Götzmann, J.F., Lehmann, A., Schröder, D., Schröder,
P., Wagner, D.: History-free aggregate message authentication codes. In: Garay,
J.A., Prisco, R.D. (eds.) SCN. Lecture Notes in Computer Science, vol. 6280, pp.
309–328. Springer (2010)

5. FIPS PUB 198-1: The keyed-hash message authentication code (HMAC) (2008)
6. Goodrich, M.T., Atallah, M.J., Tamassia, R.: Indexing information for data foren-

sics. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) Applied Cryptography
and Network Security, Third International Conference, ACNS 2005, New York,
NY, USA, June 7-10, 2005, Proceedings. Lecture Notes in Computer Science, vol.
3531, pp. 206–221 (2005), https://doi.org/10.1007/11496137_15

14

7. Hirose, S., Kuwakado, H.: Forward-secure sequential aggregate message authenti-
cation revisited. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S. (eds.) Provable
Security - 8th International Conference, ProvSec 2014, Hong Kong, China, Octo-
ber 9-10, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8782, pp.
87–102. Springer (2014), http://dx.doi.org/10.1007/978-3-319-12475-9_7

8. Iwata, T., Kurosawa, K.: OMAC: One-key CBC MAC. In: Johansson, T. (ed.)
FSE. Lecture Notes in Computer Science, vol. 2887, pp. 129–153. Springer (2003),
an updated version is “Cryptology ePrint Archive: Report 2002/180” at http:

//eprint.iacr.org/

9. Katz, J., Lindell, A.Y.: Aggregate message authentication codes. In: Malkin,
T. (ed.) CT-RSA. Lecture Notes in Computer Science, vol. 4964, pp. 155–169.
Springer (2008)

10. Ma, D., Tsudik, G.: Extended abstract: Forward-secure sequential aggregate au-
thentication. In: IEEE Symposium on Security and Privacy. pp. 86–91. IEEE Com-
puter Society (2007), also published as IACR Cryptology ePrint Archive: Report
2007/052 at http://eprint.iacr.org/

11. Ma, D., Tsudik, G.: A new approach to secure logging. ACM Transactions on
Storage 5(1), 2:1–2:21 (2009)

12. Minematsu, K.: Efficient message authentication codes with combinatorial group
testing. In: Pernul, G., Ryan, P.Y.A., Weippl, E.R. (eds.) Computer Security -
ESORICS 2015 - 20th European Symposium on Research in Computer Security,
Vienna, Austria, September 21-25, 2015, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 9326, pp. 185–202. Springer (2015), https://doi.org/10.
1007/978-3-319-24174-6_10

13. NIST Special Publication 800-38B: Recommendation for block cipher modes of
operation: The CMAC mode for authentication (2005)

14. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) Advances in Cryptology - ASIACRYPT
2004, 10th International Conference on the Theory and Application of Cryptology
and Information Security, Jeju Island, Korea, December 5-9, 2004, Proceedings.
Lecture Notes in Computer Science, vol. 3329, pp. 16–31. Springer (2004), https:
//doi.org/10.1007/978-3-540-30539-2_2

15

