Paper 2018/247

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset

Thang Hoang, Muslum Ozgur Ozmen, Yeongjin Jang, and Attila A. Yavuz

Abstract

The ability to query and update over encrypted data is an essential feature to enable breach- resilient cyber-infrastructures. Statistical attacks on searchable encryption (SE) have demonstrated the importance of sealing information leaks in access patterns. In response to such attacks, the community has proposed the Oblivious Random Access Machine (ORAM). However, due to the logarithmic communication overhead of ORAM, the composition of ORAM and SE is known to be costly in the conventional client-server model, which poses a critical barrier toward its practical adaptations. In this paper, we propose a novel hardware-supported privacy-enhancing platform called Practical Oblivious Search and Update Platform (POSUP), which enables oblivious keyword search and update operations on large datasets with high efficiency. We harness Intel SGX to realize efficient oblivious data structures for oblivious search/update purposes. We implemented POSUP and evaluated its per- formance on a Wikipedia dataset containing ≥ 229 keyword-file pairs. Our implementation is highly efficient, taking only 1 ms to access a 3 KB block with Circuit-ORAM. Our experiments have shown that POSUP offers up to 70× less end-to-end delay with 100× reduced network bandwidth consump- tion compared with the traditional ORAM-SE composition without secure hardware. POSUP is also at least 4.5× faster for up to 99.5% of keywords that can be searched compared with state-of-the-art Intel SGX-assisted search platforms.

Metadata
Available format(s)
PDF
Publication info
Published elsewhere. The 19th Privacy Enhancing Technologies Symposium (PETS 2019)
Keywords
Secure EnclavesIntel SGXOblivious Data StructuresOblivious SearchUpdate
Contact author(s)
hoangmin @ oregonstate edu
History
2018-10-02: last of 3 revisions
2018-03-07: received
See all versions
Short URL
https://ia.cr/2018/247
License
Creative Commons Attribution
CC BY

BibTeX

@misc{cryptoeprint:2018/247,
      author = {Thang Hoang and Muslum Ozgur Ozmen and Yeongjin Jang and Attila A.  Yavuz},
      title = {Hardware-Supported {ORAM} in Effect: Practical Oblivious Search and Update on Very Large Dataset},
      howpublished = {Cryptology {ePrint} Archive, Paper 2018/247},
      year = {2018},
      url = {https://eprint.iacr.org/2018/247}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.