ON ISOGENY GRAPHS OF SUPERSINGULAR ELLIPTIC CURVES OVER FINITE FIELDS

GORA ADJ, OMRAN AHMADI, AND ALFRED MENEZES

Abstract

We study the isogeny graphs of supersingular elliptic curves over finite fields, with an emphasis on the vertices corresponding to elliptic curves of j-invariant 0 and 1728.

1. Introduction

Let \mathbb{F}_{q} be the finite field of order q and characteristic $p>3$, and let $\overline{\mathbb{F}}_{q}$ denote its algebraic closure. Let ℓ be a prime different from p. The isogeny graph $\mathcal{H}_{\ell}\left(\overline{\mathbb{F}}_{q}\right)$ is a directed graph whose vertices are the $\overline{\mathbb{F}}_{q}$-isomorphism classes of elliptic curves defined over \mathbb{F}_{q}, and whose directed arcs represent degree- $\ell \overline{\mathbb{F}}_{q^{-}}$-isogenies (up to a certain equivalence) between elliptic curves in the isomorphism classes. See [10] and [15] for summaries of the theory behind isogeny graphs and for applications in computational number theory.

Every supersingular elliptic curve defined over $\overline{\mathbb{F}}_{p}$ is isomorphic to one defined over $\mathbb{F}_{p^{2}}$. Pizer [12] showed that the subgraph $\mathcal{G}_{\ell}\left(\overline{\mathbb{F}}_{p^{2}}\right)$ of $\mathcal{H}_{\ell}\left(\overline{\mathbb{F}}_{p^{2}}\right)$ induced by the vertices corresponding to isomorphism classes of supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ is an expander graph (and consequently is connected). This property of $\mathcal{G}_{\ell}\left(\overline{\mathbb{F}}_{p^{2}}\right)$ was exploited by Charles, Goren and Lauter [2] who proposed a cryptographic hash function whose security is based on the intractability of computing directed paths of a certain length between two vertices in $\mathcal{G}_{\ell}\left(\overline{\mathbb{F}}_{p^{2}}\right)$. In 2011, Jao and De Feo [8] (see also [4]) presented a key agreement scheme whose security is also based on the intractability of this problem for small ℓ (typically $\ell=2,3)$. There have also been proposals for related signature schemes $[19,6]$ and an undeniable signature scheme [9].

In this paper, we study the supersingular isogeny graph $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}\right)$ whose vertices are (representatives of) the $\mathbb{F}_{p^{2}}$-isomorphism classes of supersingular elliptic curves defined over $\mathbb{F}_{p^{2}}$, and whose directed arcs represent degree- $\ell \mathbb{F}_{p^{2}}$-isogenies between the elliptic curves. Observe that the difference between the definitions of $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}\right)$ and $\mathcal{G}_{\ell}\left(\overline{\mathbb{F}}_{p^{2}}\right)$ is that the isomorphisms and isogenies in the former are defined over $\mathbb{F}_{p^{2}}$ itself. This difference necessitates a careful treatment of the vertices corresponding to supersingular elliptic curves having j-invariant equal to 0 and 1728 . We note that the security of the aforementioned cryptographic schemes relies on the difficulty of constructing certain directed paths in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}\right)$. On the other hand, [2] and [4] state that security is based on the hardness of constructing certain directed paths in $\mathcal{G}_{\ell}\left(\overline{\mathbb{F}}_{p^{2}}\right)$. Thus, it is worthwhile to study the differences between $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}\right)$ and $\mathcal{G}_{\ell}\left(\overline{\mathbb{F}}_{p^{2}}\right)$. We also note that Delfs and Galbraith [3] studied supersingular isogeny graphs $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$, where the vertices are \mathbb{F}_{p}-isomorphism classes of supersingular elliptic curves defined over \mathbb{F}_{p} and the arcs are equivalence classes of degree- ℓ

Date: February 3, 2018; updated on October 16, 2018.
\mathbb{F}_{p}-isogenies. They observed that the graphs $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$ have similar 'volcano' structures as the ordinary subgraphs of $\mathcal{H}_{\ell}\left(\overline{\mathbb{F}}_{p}\right)$ [5].

The remainder of the paper is organized as follows. In $\S 2$ we provide a concise summary of the relevant background on elliptic curves and isogenies between them. Standard references for the material in $\S 2$ are the books by Silverman [14] and Washington [17]. The supersingular isogeny graph $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}\right)$ is defined in $\S 3$. In $\S 4$, we completely describe the three small subgraphs of $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}\right)$ whose vertices correspond to supersingular elliptic curves E over $\mathbb{F}_{p^{2}}$ with $t=p^{2}+1-\# E\left(\mathbb{F}_{p^{2}}\right) \in\{0,-p, p\}$; see Figure 1 . In $\S 5$, we study the two large subgraphs of $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}\right)$ whose vertices correspond to supersingular elliptic curves E over $\mathbb{F}_{p^{2}}$ with $t=p^{2}+1-\# E\left(\mathbb{F}_{p^{2}}\right) \in\{-2 p, 2 p\}$, and make some observations about the number of loops at the vertices corresponding to elliptic curves with j-invariant equal to 0 or 1728 . We make some concluding remarks in $\S 6$.

2. Elliptic curves

In the remainder of this paper, p will denote a prime greater than 3 . Let $k=\mathbb{F}_{q}$ be the finite field of order q and characteristic p. and let $\bar{k}=\cup_{n \geq 1} \mathbb{F}_{q^{n}}$ denote its algebraic closure. Let $\sigma: \alpha \mapsto \alpha^{q}$ denote the q-power Frobenius map. An elliptic curve E over k is defined by a Weierstrass equation $E / k: Y^{2}=X^{3}+a X+b$ where $a, b \in k$ and $4 a^{3}+27 b^{2} \neq 0$. The j-invariant of E is $j(E)=1728 \cdot 4 a^{3} /\left(4 a^{3}+27 b^{2}\right)$. One can easily check that $j(E)=0$ if and only if $a=0$, and $j(E)=1728$ if and only if $b=0$. For any extension K of k, the set of K-rational points on E is $E(K)=\left\{(x, y) \in K \times K: y^{2}=x^{3}+a x+b\right\} \cup\{\infty\}$, where ∞ is the point at infinity; we write $E=E(\bar{k})$. The chord-and-tangent addition law transforms $E(K)$ into an abelian group. For any $n \geq 2$ with $p \nmid n$, the group of n-torsion points on E is isomorphic to $\mathbb{Z}_{n} \oplus \mathbb{Z}_{n}$. In particular, if n is prime then E has exactly $n+1$ distinct order- n subgroups.
2.1. Isomorphisms and automorphisms. Two elliptic curves $E / k: Y^{2}=X^{3}+a X+b$ and $E^{\prime} / k: Y^{2}=X^{3}+a^{\prime} X+b^{\prime}$ are isomorphic over the extension field K / k if there exists $u \in K^{*}$ such that $a^{\prime}=u^{4} a$ and $b^{\prime}=u^{6} b$. If such a u exists, then the corresponding isomorphism $f: E \rightarrow E^{\prime}$ is defined by $(x, y) \mapsto\left(u^{2} x, u^{3} y\right)$. If E and E^{\prime} are isomorphic over K, then $j(E)=j\left(E^{\prime}\right)$. Conversely, if $j(E)=j\left(E^{\prime}\right)$, then E and E^{\prime} are isomorphic over \bar{k}. Elliptic curves $E_{1} / k, E_{2} / k$ that are isomorphic over $\mathbb{F}_{q^{d}}$ for some $d>1$, but are not isomorphic over any smaller extension of \mathbb{F}_{q}, are said to be degree- d twists of each other. In particular, a degree-2 (quadratic) twist of $E_{1} / k: Y^{2}=X^{3}+a X+b$ is $E_{2} / k: Y^{2}=X^{3}+c^{2} a X+c^{3} b$ where $c \in k^{*}$ is a non-square, and $\# E_{1}(k)+\# E_{2}(k)=2 q+2$. If $j \in \bar{k} \backslash\{0,1728\}$, then

$$
\begin{equation*}
E_{j}: Y^{2}=X^{3}+\frac{3 j}{1728-j} X+\frac{2 j}{1728-j} \tag{1}
\end{equation*}
$$

is an elliptic curve with $j\left(E_{j}\right)=j$. Also, $E: Y^{2}=X^{3}+1$ has $j(E)=0$ and $Y^{2}=X^{3}+X$ has $j(E)=1728$.

An automorphism of E / k is an isomorphism from E to itself. The group of all automorphisms of E that are defined over K is denoted by $\operatorname{Aut}_{K}(E)$. If $j(E) \neq 0,1728$, then $\operatorname{Aut}_{\bar{k}}(E)$ has order 2 with generator $(x, y) \mapsto(x,-y)$. If $j(E)=1728$, then Aut $_{\bar{k}}$ is cyclic of order 4 with generator $\psi:(x, y) \mapsto(-x, i y)$ where $i \in \bar{k}$ is a primitive fourth root of
unity. If $j(E)=0$, then Aut $_{\bar{k}}$ is cyclic of order 6 with generator $\rho:(x, y) \mapsto(\eta x,-y)$ where $\eta \in \bar{k}$ is a primitive third root of unity.
2.2. Isogenies. Let E, E^{\prime} be elliptic curves defined over $k=\mathbb{F}_{q}$. An isogeny $\phi: E \rightarrow E^{\prime}$ is a non-constant rational map defined over \bar{k} with $\phi(\infty)=\infty$. An endomorphism on E is an isogeny from E to itself; the zero map $P \mapsto \infty$ is also considered to be an endomorphism on E. If the field of definition of ϕ is the extension K of k, then ϕ is called a K-isogeny. If such an isogeny exists, then E and E^{\prime} are said to be K-isogenous. Tate's theorem asserts that for finite K, E and E^{\prime} are K-isogenous if and only if $\# E(K)=\# E^{\prime}(K)$.

An isogeny ϕ is a morphism, is surjective, is a group homomorphism, and has finite kernel. Every K-isogeny ϕ can be represented as $\phi=\left(r_{1}(X), r_{2}(X) \cdot Y\right)$ where $r_{1}, r_{2} \in K(X)$ (see p. 51 of $[17]$). Let $r_{1}(X)=p_{1}(X) / q_{1}(X)$, where $p_{1}, q_{1} \in K[X]$ with $\operatorname{gcd}\left(p_{1}, q_{1}\right)=1$. Then the degree of ϕ is $\max \left(\operatorname{deg} p_{1}, \operatorname{deg} q_{1}\right)$. Also, ϕ is said to be separable if $r_{1}^{\prime}(X) \neq 0$; otherwise it is inseparable. In fact, ϕ is separable if and only if $\# \operatorname{Ker} \phi=\operatorname{deg} \phi$. Note that all isogenies of prime degree $\ell \neq p$ are separable.

For every $m \geq 1$, the multiplication-by- m map $[m]: E \rightarrow E$ is a k-isogeny of degree m^{2}. Every degree- m isogeny $\phi: E \rightarrow E^{\prime}$ has a unique dual isogeny $\hat{\phi}: E^{\prime} \rightarrow E$ satisfying $\hat{\phi} \circ \phi=[m]$ and $\phi \circ \hat{\phi}=[m]$. If ϕ is a K-isogeny, then so is $\hat{\phi}$. We have $\operatorname{deg} \hat{\phi}=\operatorname{deg} \phi$ and $\hat{\hat{\phi}}=\phi$. If $E^{\prime \prime}$ is an elliptic curve defined over k and $\psi: E^{\prime} \rightarrow E^{\prime \prime}$ is an isogeny, then $\widehat{\psi \circ \phi}=\hat{\phi} \circ \hat{\psi}$.
2.3. Vélu's formula. Let E be an elliptic curve defined over $k=\mathbb{F}_{q}$. Let $\ell \neq p$ be a prime, and let G be an order- ℓ subgroup of E. Let $G^{*}=G \backslash\{\infty\}$. Then there exists an elliptic curve E^{\prime} over \bar{k} and a degree- ℓ isogeny $\phi: E \rightarrow E^{\prime}$ with Ker $\phi=G$. The elliptic curve E^{\prime} and the isogeny ϕ are both defined over $K=\mathbb{F}_{q^{t}}$ where t is the smallest positive integer such that G is σ^{t}-invariant, i.e., $\left\{\sigma^{t}(P): P \in G\right\}=G$ where σ is the q-power Frobenius map (so $\sigma(P)=\left(x^{q}, y^{q}\right.$) if $P=(x, y)$ and $\left.\sigma(\infty)=\infty\right)$. Furthermore, ϕ is unique in the following sense: if $E^{\prime \prime}$ is an elliptic curve defined over K and $\psi: E \rightarrow E^{\prime \prime}$ is a degree- ℓK-isogeny with $\operatorname{Ker} \psi=G$, then there exists an isomorphism $f: E^{\prime} \rightarrow E^{\prime \prime}$ defined over K such that $\psi=f \circ \phi$.

Given the Weierstrass equation $Y^{2}=X^{3}+a X+b$ for E / k and an order- ℓ subgroup G of E, Vélu's formula yields an elliptic curve E^{\prime} defined over K and a degree- ℓK-isogeny $\phi: E \rightarrow E^{\prime}$ with Ker $\phi=G$.

Suppose first that $\ell=2$ and $G=\{\infty,(\alpha, 0)\}$. Then the Weierstrass equation for E^{\prime} is

$$
\begin{equation*}
E^{\prime}: Y^{2}=X^{3}-\left(4 a+15 \alpha^{2}\right) X+\left(8 b-14 \alpha^{3}\right) \tag{2}
\end{equation*}
$$

and the isogeny ϕ is given by

$$
\begin{equation*}
\phi=\left(X+\frac{3 \alpha^{2}+a}{X-\alpha}, Y-\frac{\left(3 \alpha^{2}+a\right) Y}{(X-\alpha)^{2}}\right) . \tag{3}
\end{equation*}
$$

Suppose now that ℓ is an odd prime. For $Q=\left(x_{Q}, y_{Q}\right) \in G^{*}$, define

$$
t_{Q}=3 x_{Q}^{2}+a, \quad u_{Q}=2 y_{Q}^{2}, \quad w_{Q}=u_{Q}+t_{Q} x_{Q} .
$$

Furthermore, define

$$
t=\sum_{Q \in G^{*}} t_{Q}, \quad w=\sum_{Q \in G^{*}} w_{Q},
$$

and

$$
\begin{equation*}
r(X)=X+\sum_{Q \in G^{*}}\left(\frac{t_{Q}}{X-x_{Q}}+\frac{u_{Q}}{\left(X-x_{Q}\right)^{2}}\right) \tag{4}
\end{equation*}
$$

Then the Weierstrass equation for E^{\prime} is

$$
\begin{equation*}
E^{\prime}: Y^{2}=X^{3}+(a-5 t) X+(b-7 w) \tag{5}
\end{equation*}
$$

and the isogeny ϕ is given by

$$
\begin{equation*}
\phi=\left(r(X), r^{\prime}(X) Y\right) \tag{6}
\end{equation*}
$$

We will henceforth denote the Vélu-generated elliptic curve E^{\prime} by E^{G}.
2.4. Modular polynomials. Let ℓ be a prime. The modular polynomial $\Phi_{\ell}(X, Y) \in$ $\mathbb{Z}[X, Y]$ is a symmetric polynomial of the form $\Phi_{\ell}(X, Y)=X^{\ell+1}+Y^{\ell+1}-X^{\ell} Y^{\ell}+$ $\sum c_{i j} X^{i} Y^{j}$, where the sum is over pairs of integers (i, j) with $0 \leq i, j \leq \ell$ and $i+j<2 \ell$. Modular polynomials have the following remarkable property.

Theorem 1. Suppose that the characteristic of $k=\mathbb{F}_{q}$ is different from ℓ. Let E / k be an elliptic curve with $j(E)=j$. Let $G_{1}, G_{2}, \ldots, G_{\ell+1}$ be the order- ℓ subgroups of E. Let $j_{i}=j\left(E^{G_{i}}\right)$. Then the (possibly repeated) roots of $\Phi_{\ell}(j, Y)$ in \bar{k} are precisely $j_{1}, j_{2}, \ldots, j_{\ell+1}$.
2.5. Supersingular elliptic curves. Hasse's theorem states that if E is defined over \mathbb{F}_{q}, then $\# E\left(\mathbb{F}_{q}\right)=q+1-t$ where $|t| \leq 2 \sqrt{q}$. The integer t is called the trace of the q-power Frobenius map σ since the characteristic polynomial of σ acting on E is $Z^{2}-t Z+q$. If $p \mid t$, then E is called supersingular; otherwise it is said to be ordinary. Every supersingular elliptic curve E over $\overline{\mathbb{F}}_{q}$ is isomorphic to one defined over $\mathbb{F}_{p^{2}}$; in particular, $j(E) \in \mathbb{F}_{p^{2}}$. Henceforth, we shall assume that $q=p^{2}$ (and $p>3$).

Supersingularity of an elliptic curve depends only on its j-invariant. We say that $j \in \mathbb{F}_{p^{2}}$ is supersingular if there exists a supersingular elliptic curve $E / \mathbb{F}_{p^{2}}$ with $j(E)=j$; if this is the case, then all elliptic curves with j-invariant equal to j are supersingular. Note that $j=0$ is supersingular if and only if $p \equiv 2(\bmod 3)$, and $j=1728$ is supersingular if and only if $p \equiv 3(\bmod 4)$.

Schoof [13, Theorem 4.6] determined the number of isomorphism classes of elliptic curves over a finite field. In particular, the number of isomorphism classes of supersingular elliptic curves E over $\mathbb{F}_{p^{2}}$ with $\# E\left(\mathbb{F}_{p^{2}}\right)=p^{2}+1-t$ is

$$
N(t)= \begin{cases}\left(p+6-4\left(\frac{-3}{p}\right)-3\left(\frac{-1}{p}\right)\right) / 12, & \text { if } t= \pm 2 p \tag{7}\\ 1-\left(\frac{-3}{p}\right), & \text { if } t= \pm p \\ 1-\left(\frac{-1}{p}\right), & \text { if } t=0\end{cases}
$$

where $(\dot{\bar{p}})$ is the Legendre symbol. It follows that the total number of isomorphism classes of supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ is $\lfloor p / 6\rfloor+\epsilon$, where $\epsilon=0,6,3,9$ if $p \equiv 1,5,7,11$ $(\bmod 12)$ respectively. Furthermore, if $t=0,-p$ or p then $E\left(\mathbb{F}_{p^{2}}\right)$ is cyclic [13, Lemma 4.8].

3. SUPERSINGULAR ISOGENY GRAPHS

Let $k=\mathbb{F}_{q}$ where $q=p^{2}$, and let $\ell \neq p$ be a prime. Recall that σ is the q-th power Frobenius map. The supersingular isogeny graph $\mathcal{G}_{\ell}(k)$ is a directed graph whose vertex set $V_{\ell}(k)$ consists of representatives (chosen below) of the k-isomorphism classes of supersingular elliptic curves defined over k. The (directed) arcs of $\mathcal{G}_{\ell}(k)$ are defined as follows. Let $E_{1} \in V_{\ell}(k)$, and let G be a σ-invariant order- ℓ subgroup of E_{1}. Let $\phi: E_{1} \rightarrow E_{1}^{G}$ be the Vélu isogeny with kernel G (recall that E_{1}^{G} and ϕ are both defined over k), and let E_{2} be the representative of the k-isomorphism class of elliptic curves containing E_{1}^{G}. Then $\left(E_{1}, E_{2}\right)$ is an arc; we call E_{1} the tail and E_{2} the head of the arc. Note that $\mathcal{G}_{\ell}(k)$ can have multiple arcs (more than one arc $\left(E_{1}, E_{2}\right)$) and loops (arcs of the form $\left.\left(E_{1}, E_{1}\right)\right)$.

Remark 1. The definition of arcs is independent of the choice of isogeny with kernel G. This is because, as noted in $\S 2.3$, if $\phi^{\prime}: E_{1} \rightarrow E_{2}^{\prime}$ is any degree- ℓ isogeny with kernel G where both E_{2}^{\prime} and ϕ^{\prime} are defined over k, then E_{2}^{\prime} and E_{1}^{G} are isomorphic over k and consequently ϕ and ϕ^{\prime} yield the same $\operatorname{arc}\left(E_{1}, E_{2}\right)$.

Remark 2. The definition of $\mathcal{G}_{\ell}(k)$ is independent of the choice of representatives. Indeed, let $f: E_{1}^{\prime} \rightarrow E_{1}$ be a k-isomorphism of elliptic curves, and suppose that E_{1}^{\prime} was chosen as a representative instead of E_{1}. Let $\psi=\phi \circ f$. Then $\operatorname{Ker} \psi=f^{-1}(G)$, and thus the σ-invariant order- ℓ subgroup $f^{-1}(G)$ of E_{1}^{\prime} yields the $\operatorname{arc}\left(E_{1}^{\prime}, E_{2}\right)$. The claim now follows since f^{-1} yields a one-to-one correspondence between the σ-invariant order- ℓ subgroups of E_{1} and E_{1}^{\prime}.

A consequence of Tate's theorem is that the graph $\mathcal{G}_{\ell}(k)$ can be partitioned into subgraphs whose vertices are the k-isomorphism classes of supersingular elliptic curves E / k with trace $t=p^{2}+1-\# E(k) \in\{0,-p, p,-2 p, 2 p\}$; we denote these subgraphs by $\mathcal{G}_{\ell}(k, t)$. There are two such subgraphs $(t= \pm 2 p)$ when $p \equiv 1(\bmod 12)$, four subgraphs $(t= \pm p, \pm 2 p)$ when $p \equiv 5(\bmod 12)$, three subgraphs $(t=0, \pm 2 p)$ when $p \equiv 7(\bmod 12)$, and five subgraphs $(t=0, \pm p, \pm 2 p)$ when $p \equiv 11(\bmod 12)$. These subgraphs are further studied in $\S 4$ and $\S 5$. We first fix the representatives of the k-isomorphism classes of supersingular elliptic curves over k.

Suppose that $p \equiv 3(\bmod 4)$, and let w be a generator of k^{*}. Munuera and Tena [11] showed that the representatives of the four isomorphism classes of elliptic curves E / k with $j(E)=1728$ can be taken to be

$$
\begin{equation*}
E_{1728, w^{i}}: Y^{2}=X^{3}+w^{i} X \text { for } i \in[0,3] . \tag{8}
\end{equation*}
$$

Of these curves, $E_{1728, w}$ and $E_{1728, w^{3}}$ have $p^{2}+1 \mathbb{F}_{p^{2}}$-rational points, and so we choose them as the vertices of $\mathcal{G}_{\ell}(k, 0)$. Furthermore, $\# E_{1728,1}\left(\mathbb{F}_{p^{2}}\right)=p^{2}+1+2 p$ and $\# E_{1728, w^{2}}\left(\mathbb{F}_{p^{2}}\right)=$ $p^{2}+1-2 p$; hence, we select $E_{1728,1}$ and $E_{1728, w^{2}}$ as the vertices of $\mathcal{G}_{\ell}(k,-2 p)$ and $\mathcal{G}_{\ell}(k, 2 p)$, respectively.

Suppose that $p \equiv 2(\bmod 3)$, and let w be a generator of k^{*}. Munuera and Tena [11] also showed that the representatives of the six isomorphism classes of elliptic curves E / k with $j(E)=0$ can be taken to be

$$
\begin{equation*}
E_{0, w^{i}}: Y^{2}=X^{3}+w^{i} \text { for } i \in[0,5] \tag{9}
\end{equation*}
$$

Of these curves, $E_{0, w}$ and $E_{0, w^{5}}$ have $p^{2}+1+p \mathbb{F}_{p^{2}}$-rational points, and so we choose them as the vertices of $\mathcal{G}_{\ell}(k,-p)$. Similarly, $E_{0, w^{2}}$ and $E_{0, w^{4}}$ have $p^{2}+1-p \mathbb{F}_{p^{2}}$-rational points, and so we choose them as the vertices of $\mathcal{G}_{\ell}(k, p)$. Finally, $\# E_{0,1}\left(\mathbb{F}_{p^{2}}\right)=p^{2}+1+2 p$ and $\# E_{0, w^{3}}\left(\mathbb{F}_{p^{2}}\right)=p^{2}+1-2 p$; hence, we select $E_{0,1}$ and $E_{0, w^{3}}$ as the vertices of $\mathcal{G}_{\ell}(k,-2 p)$ and $\mathcal{G}_{\ell}(k, 2 p)$, respectively.

If $j \neq 0,1728$ is supersingular, then E_{j} (defined in (1)) and a quadratic twist \tilde{E}_{j} are representatives of the two isomorphism classes of elliptic curves with j-invariant equal to j. Furthermore, $\# E_{j}\left(\mathbb{F}_{p^{2}}\right) \in\left\{p^{2}+1-2 p, p^{2}+1+2 p\right\}$ and $\# \tilde{E}_{j}\left(\mathbb{F}_{p^{2}}\right)=2 p^{2}+2-\# E_{j}\left(\mathbb{F}_{p^{2}}\right)$. We select E_{j} as a vertex in either $\mathcal{G}_{\ell}(k,-2 p)$ or $\mathcal{G}_{\ell}(k, 2 p)$ depending on whether $\# E_{j}\left(\mathbb{F}_{p^{2}}\right)=$ $p^{2}+1+2 p$ or $p^{2}+1-2 p$, and \tilde{E}_{j} as a vertex in the other graph.
4. The subgraphs $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}, 0\right)$ and $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}} \pm p\right)$

Figure 1. The small subgraphs of $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}\right), p \equiv 11(\bmod 12)$.
For a supersingular elliptic curve E defined over a finite field \mathbb{F}_{q} of characteristic >3, we denote by $\operatorname{End}(E)$ the ring of endomorphisms of E defined over \mathbb{F}_{q} and by $K=$ $\operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$ the corresponding endomorphism algebra. We will use the following classical result of Waterhouse [18] (see also Theorem 2.1 in [3]) to describe the arcs in the subgraphs $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}, 0\right)$ and $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}} \pm p\right)$ as depicted in Figure 1.

Theorem 2. Let E be a supersingular elliptic curve defined over $\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$ with $p>3$, and let $t=q+1-\# E\left(\mathbb{F}_{q}\right)$. Then one of the following holds:
(i) n is even and $t= \pm 2 \sqrt{q}$;
(ii) n is even, $p \equiv 2(\bmod 3)$ and $t= \pm \sqrt{q}$;
(iii) n is even, $p \equiv 3(\bmod 4)$ and $t=0$;
(iv) n is odd and $t=0$.

Let σ be the q-power Frobenius endomorphism of E. In case (i), K is a quaternion algebra over \mathbb{Q}, σ is a rational integer, and $\operatorname{End}(E)$ is a maximal order in K. In cases (ii), (iii) and (iv), $K=\mathbb{Q}(\sigma)$ is an imaginary quadratic number field and $\operatorname{End}(E)$ is an order in K with conductor coprime to p.
4.1. The subgraph $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}, 0\right)$. Let $q=p^{2}$ where $p \equiv 3(\bmod 4), w$ is a generator of \mathbb{F}_{q}^{*}, and $\ell \neq p$ is a prime. The graph $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}, 0\right)$ has two vertices, $E_{1728, w}$ and $E_{1728, w^{3}}$; to ease the notation we will call them E_{w} and $E_{w^{3}}$ in this section.
Theorem 3. Let $p>3$ and ℓ be primes with $p \equiv 3(\bmod 4)$ and $\ell \neq p$.
(i) $\mathcal{G}_{2}\left(\mathbb{F}_{p^{2}}, 0\right)$ has exactly two arcs, one loop at each of its two vertices.
(ii) If $\ell \equiv 3(\bmod 4)$, then $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}, 0\right)$ has no arcs.
(iii) If $\ell \equiv 1(\bmod 4)$, then $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}, 0\right)$ has exactly four arcs, two loops at each of its two vertices.

Proof. We describe the arcs originating at E_{w}. Notice that these arcs are exactly the degree- ℓ endomorphisms of E_{w}, i.e., the non-unit factors of ℓ in $\operatorname{End}\left(E_{w}\right)$. The case $E_{w^{3}}$ case is similar.

Since $t=0$, by Theorem $2, \operatorname{End}\left(E_{w}\right)$ is an order in $K=\mathbb{Q}(\sigma)$ with conductor c coprime to p. The characteristic polynomial of the p^{2}-power Frobenius map σ is $Z^{2}+p^{2}$, and so we have $K=\mathbb{Q}\left(\sqrt{-p^{2}}\right)=\mathbb{Q}(i)$ whose maximal order is $\mathbb{Z}[i]$, the Gaussian integers. Since σ and multiplication by integers are in $\operatorname{End}\left(E_{w}\right)$, we have

$$
\mathbb{Z}[\sigma]=\mathbb{Z}[i p] \subseteq \operatorname{End}\left(E_{w}\right) \subseteq \mathbb{Z}[i]
$$

Thus, the conductor c of $\operatorname{End}\left(E_{w}\right)$ divides the conductor p of $\mathbb{Z}[\sigma]$, whence $c=1$ and $\operatorname{End}\left(E_{w}\right)=\mathbb{Z}[i]$. We have the following cases.
(i) If $\ell=2$, then ℓ factors as $2=i(i-1)^{2}$. Hence, since $\mathbb{Z}[i]$ is a unique factorization domain, there is a unique degree- ℓ endomorphism of E_{w}.
(ii) If $\ell \equiv 3(\bmod 4)$, then ℓ is prime in $\mathbb{Z}[i]$. Thus, there are no degree- ℓ endomorphisms.
(iii) If $\ell \equiv 1(\bmod 4)$, then ℓ splits as $\ell=\alpha \bar{\alpha}$ for some Gaussian prime α. Hence, there are exactly two degree- ℓ endomorphisms of E_{w}.
4.2. The subgraphs $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}, \pm p\right)$. Let $q=p^{2}$ where $p \equiv 2(\bmod 3), w$ is a generator of \mathbb{F}_{q}^{*}, and $\ell \neq p$ is a prime. The graph $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-p\right)$ has two vertices, $E_{0, w}$ and $E_{0, w^{5}}$; to ease the notation we will call them E_{w} and $E_{w^{5}}$ in this section.

Theorem 4. Let $p>3$ and ℓ be primes with $p \equiv 2(\bmod 3)$ and $\ell \neq p$.
(i) $\mathcal{G}_{3}\left(\mathbb{F}_{p^{2}},-p\right)$ has exactly two arcs, one loop at each of its two vertices.
(ii) If $\ell \equiv 2(\bmod 3)$, then $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-p\right)$ has no arcs.
(iii) If $\ell \equiv 1(\bmod 3)$, then $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-p\right)$ has exactly four arcs, two loops at each of its two vertices.

Proof. We describe the arcs originating at E_{w}. Notice that these arcs are exactly the degree- ℓ endomorphisms of E_{w}, i.e., the non-unit factors of $\ell \operatorname{in} \operatorname{End}\left(E_{w}\right)$. The $E_{w^{5}}$ case is similar.

Since $t=-p$, by Theorem $2, \operatorname{End}\left(E_{w}\right)$ is an order in $K=\mathbb{Q}(\sigma)$ with conductor c coprime to p. The characteristic polynomial of the p^{2}-power Frobenius map σ is $Z^{2}+p Z+p^{2}$, and thus we have $K=\mathbb{Q}(\sqrt{-3})$. Hence, the maximal order of K is Eisentein integers $\mathbb{Z}[\lambda]$ where $\lambda=(-1+\sqrt{3}) / 2$. Since σ and multiplication by integers are in $\operatorname{End}\left(E_{w}\right)$, we have

$$
\mathbb{Z}[\sigma]=\mathbb{Z}[\lambda p] \subseteq \operatorname{End}\left(E_{w}\right) \subseteq \mathbb{Z}[\lambda]
$$

Thus, the conductor c of $\operatorname{End}\left(E_{w}\right)$ divides the conductor p of $\mathbb{Z}[\sigma]$, whence $c=1$ and $\operatorname{End}\left(E_{w}\right)=\mathbb{Z}[\lambda]$. We have the following cases.
(i) If $\ell=3$, then ℓ factors as $3=-\lambda^{2}(1-\lambda)^{2}$. Hence, since $\mathbb{Z}[\lambda]$ is a unique factorization domain, there is a unique degree- ℓ endomorphism of E_{w}.
(ii) If $\ell \equiv 2(\bmod 3)$, then ℓ is prime in $\mathbb{Z}[\lambda]$. Thus there are no degree- ℓ endomorphisms.
(iii) If $\ell \equiv 1(\bmod 3)$, then ℓ splits as $\ell=\alpha \bar{\alpha}$ for some Eisentein prime α. Hence, there are exactly two degree- ℓ endomorphisms of E_{w}.

The proof of Theorem 5 is similar to that of Theorem 4.
Theorem 5. Let $p>3$ and ℓ be primes with $p \equiv 2(\bmod 3)$ and $\ell \neq p$.
(i) $\mathcal{G}_{3}\left(\mathbb{F}_{p^{2}}, p\right)$ has exactly two arcs, one loop at each of its two vertices.
(ii) If $\ell \equiv 2(\bmod 3)$, then $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}, p\right)$ has no arcs.
(iii) If $\ell \equiv 1(\bmod 3)$, then $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}, p\right)$ has exactly four arcs, two loops at each of its two vertices.

5. The subgraphs $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}, \pm 2 p\right)$

As noted in $\S 3$, the vertices in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ have distinct j-invariants. Moreover, there is a one-to-one correspondence between the vertices in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ and the vertices in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}, 2 p\right)$; namely, if E is a vertex in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ then the chosen quadratic twist \tilde{E} is a vertex in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}, 2 p\right)$. Now, the characteristic polynomial of the q-power Frobenius map σ acting on any vertex E in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ is $Z^{2}+2 p Z+p^{2}=(Z+p)^{2}$, so $(\sigma+[p])^{2}=0$. Since nonzero endomorphisms are surjective, we must have $\sigma+[p]=0$. Hence $\sigma=[-p]$ and all order- ℓ subgroups of E are σ-invariant. It follows that every vertex in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ has outdegree $\ell+1$. Similarly, every vertex in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}, 2 p\right)$ has outdegree $\ell+1$.

By Theorem 1, the j-invariants of the heads of arcs with tail E in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ are precisely the roots of $\Phi_{\ell}(j(E), Y)$ (all $\ell+1$ of which lie in $\mathbb{F}_{p^{2}}$). These roots are also the j-invariants of the heads of arcs with tail \tilde{E} in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}, 2 p\right)$. Hence the directed graphs $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ and $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}, 2 p\right)$ are isomorphic.

Sutherland [15] defines the isogeny graph $\mathcal{H}_{\ell}\left(\overline{\mathbb{F}}_{p^{2}}\right)$ to have vertex set $\overline{\mathbb{F}}_{p^{2}}$ and $\operatorname{arcs}\left(j_{1}, j_{2}\right)$ present with multiplicity equal to the multiplicity of j_{2} as a root of $\Phi_{\ell}\left(j_{1}, Y\right)$ in $\overline{\mathbb{F}}_{p^{2}}$. The
following folklore result shows that $\mathcal{G}_{\ell}\left(\overline{\mathbb{F}}_{p^{2}}\right)$, the supersingular component of $\mathcal{H}_{\ell}\left(\overline{\mathbb{F}}_{p^{2}}\right)$, is isomorphic to $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$.
Theorem 6. $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ and $\mathcal{G}_{\ell}\left(\overline{\mathbb{F}}_{p^{2}}\right)$ are isomorphic.
Proof. Recall that every supersingular elliptic curves over $\overline{\mathbb{F}}_{p^{2}}$ is isomorphic to one defined over $\mathbb{F}_{p^{2}}$. Hence the map $\beta: E \mapsto j(E)$ is a bijection between the vertex sets of $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ and $\mathcal{G}_{\ell}\left(\overline{\mathbb{F}}_{p^{2}}\right)$. Now, let $\left(E_{1}, E_{2}\right)$ be an arc of multiplicity $c \geq 0$ in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$. By Theorem 1, $j\left(E_{2}\right)$ is a root of multiplicity c of $\Phi_{\ell}\left(j\left(E_{1}\right), Y\right)$. Hence $\left(j\left(E_{1}\right), j\left(E_{2}\right)\right)$ is an arc of multiplicity c in $\mathcal{G}_{\ell}\left(\overline{\mathbb{F}}_{p^{2}}\right)$. Thus, β preserves arcs and $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right) \cong \mathcal{G}_{\ell}\left(\overline{\mathbb{F}}_{p^{2}}\right)$.
5.1. Indegree. Suppose that p is prime and let E be a vertex in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$. Then all automorphisms of E are defined over $\mathbb{F}_{p^{2}}$; we denote the group of all automorphisms of E by $\operatorname{Aut}(E)$. Recall from $\S 2.1$ that $\# \operatorname{Aut}(E)=4,6$ or 2 depending on whether $j(E)=1728$, $j(E)=0$ or $j(E) \neq 0,1728$.

Let $\ell \neq p$ be a prime. Let E_{1}, E_{2} be two vertices in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$, and let $\phi_{1}, \phi_{2}: E_{1} \rightarrow$ E_{2} be two degree- $\ell \mathbb{F}_{p^{2}}$-isogenies. We say that ϕ_{1} and ϕ_{2} are equivalent if they have the same kernel, or, equivalently, if there exists $\rho_{2} \in \operatorname{Aut}\left(E_{2}\right)$ such that $\phi_{2}=\rho_{2} \circ \phi_{1}$. Thus, the $\operatorname{arcs}\left(E_{1}, E_{2}\right)$ in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ can be seen as the classes of equivalent degree- $\ell \mathbb{F}_{p^{2}}$-isogenies from E_{1} to E_{2}. We define ϕ_{1} and ϕ_{2} to be automorphic if there exists $\rho_{1} \in \operatorname{Aut}\left(E_{1}\right)$ such that ϕ_{2} and $\phi_{1} \circ \rho_{1}$ are equivalent. Hence, if ϕ_{1} and ϕ_{2} are automorphic then there exist $\rho_{1} \in \operatorname{Aut}\left(E_{1}\right)$ and $\rho_{2} \in \operatorname{Aut}\left(E_{2}\right)$ such that $\phi_{2}=\rho_{2} \circ \phi_{1} \circ \rho_{1}$. Since $\hat{\phi}_{2}=\rho_{1}^{-1} \circ \hat{\phi}_{1} \circ \rho_{2}^{-1}$, it follows that the duals of automorphic isogenies are automorphic.
Theorem 7. Let E be a vertex in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ and let $n=\# \operatorname{Aut}(E) / 2$. Let a and b denote the number of $\operatorname{arcs}\left(E, E_{1728}\right)$ and $\operatorname{arcs}\left(E, E_{0}\right)$ in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$, respectively. Then the indegree of E is $(\ell+a+2 b+1) / n$.

Proof. Let E_{1}, E_{2} be two vertices in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$, and let $\operatorname{Aut}\left(E_{i}\right)=\left\langle\rho_{i}\right\rangle$ and $n_{i}=$ $\# \operatorname{Aut}\left(E_{i}\right) / 2$ for $i=1,2$. Let $\phi: E_{1} \rightarrow E_{2}$ be a degree- $\ell \mathbb{F}_{p^{2}}$-isogeny.

Suppose first that the kernel of ϕ is not an eigenspace of ρ_{1}. Consider the set

$$
\mathcal{A}=\left\{\rho_{2}^{j} \circ \phi \circ \rho_{1}^{i}: 0 \leq i<2 n_{1}, 0 \leq j<2 n_{2}\right\}
$$

of isogenies automorphic to ϕ. Since $\rho_{i}^{n_{i}}=-1$ for $i \in\{1,2\}$, we have

$$
\mathcal{A}=\left\{\rho_{2}^{j} \circ \phi \circ \rho_{1}^{i}: 0 \leq i<n_{1}, 0 \leq j<2 n_{2}\right\} .
$$

One can check that if $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$ where $0 \leq i, i^{\prime}<n_{1}$ and $0 \leq j, j^{\prime}<2 n_{2}$, then $\rho_{2}^{j} \circ \phi \circ \rho_{1}^{i}=\rho_{2}^{j^{\prime}} \circ \phi \circ \rho_{1}^{i^{\prime}}$ implies that the kernel of ϕ is an eigenspace of ρ_{1}. Hence the set \mathcal{A} has size exactly $2 n_{1} n_{2}$ and the isogenies in \mathcal{A} can be partitioned into n_{1} classes of equivalent isogenies, each class comprised of $2 n_{2}$ isogenies. Similarly, the set

$$
\hat{\mathcal{A}}=\left\{\rho_{1}^{i} \circ \hat{\phi} \circ \rho_{2}^{j}: 0 \leq i<2 n_{1}, 0 \leq j<2 n_{2}\right\}
$$

of dual isogenies can be partitioned into n_{2} classes of equivalent isogenies, each class comprised of $2 n_{1}$ isogenies. Consequently, ϕ generates n_{1} different $\operatorname{arcs}\left(E_{1}, E_{2}\right)$ and $\hat{\phi}$ generates n_{2} different $\operatorname{arcs}\left(E_{2}, E_{1}\right)$. Because duals of automorphic isogenies are automorphic, if there is another degree- $\ell \mathbb{F}_{p^{2}}$-isogeny ψ from E_{1} to E_{2} not automorphic to ϕ, then $\psi($ resp. $\hat{\psi})$ generates a set of n_{1} (resp. $\left.n_{2}\right) \operatorname{arcs}\left(E_{1}, E_{2}\right)$ (resp. $\left.\left(E_{2}, E_{1}\right)\right)$ disjoint from those generated by ϕ (resp. $\hat{\phi}$). Therefore, the number $r_{\text {out }}$ of $\operatorname{arcs}\left(E_{1}, E_{2}\right)$ generated
by isogenies whose kernels are not eigenspaces of ρ_{1} and the number $r_{\text {in }}$ of $\operatorname{arcs}\left(E_{2}, E_{1}\right)$ generated by their duals are multiples of n_{1} and n_{2}, respectively. Moreover, we have

$$
\begin{equation*}
r_{\mathrm{in}}=\frac{n_{2} \cdot r_{\mathrm{out}}}{n_{1}} \tag{10}
\end{equation*}
$$

Suppose now that the kernel of ϕ is an eigenspace of ρ_{1}. This scenario occurs only if E_{1} has j-invariant 1728 or 0 . Suppose E_{1} has j-invariant 1728 , and let ρ_{1} be the automorphism $(x, y) \mapsto(-x, i y)$ where $i \in \mathbb{F}_{p^{2}}$ satisfies $i^{2}=-1$. Denote by G the kernel of ϕ, and let $\phi^{\prime}: E_{1} \rightarrow E_{1}^{G}$ denote the Vélu isogeny. By (5), E_{1}^{G} has equation $Y^{2}=X^{3}+a X-7 w$ for some $a \in \mathbb{F}_{p^{2}}$ and $w=\sum_{Q \in G^{*}}\left(5 x_{Q}^{3}+3 x_{Q}\right)$. Since $\rho_{1}(G)=G$, if $(x, y) \in G$ then $(-x, i y) \in G$. Hence $w=0$ and we conclude that E_{1}^{G} is isomorphic to E_{1} over $\mathbb{F}_{p^{2}}$, i.e., $E_{2}=E_{1}$. A similar argument using the automorphism $(x, y) \mapsto(\eta x,-y)$ with $\eta \in \mathbb{F}_{p^{2}}$ satisfying $\eta^{2}+\eta+1=0$ shows that we also have $E_{2}=E_{1}$ when the j-invariant of E_{1} is 0 . Thus, if the kernel of ϕ is an eigenspace of ρ_{1}, the arcs generated by ϕ are loops at E_{1}. Therefore, we can generalize (10) to the total number $t_{\text {out }}$ of $\operatorname{arcs}\left(E_{1}, E_{2}\right)$ and the total number $t_{\text {in }}$ of arcs $\left(E_{2}, E_{1}\right)$ and obtain

$$
\begin{equation*}
t_{\mathrm{in}}=\frac{n_{2} \cdot t_{\mathrm{out}}}{n_{1}} \tag{11}
\end{equation*}
$$

Now, let E be a vertex in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ and $n=\# \operatorname{Aut}(E) / 2$. Denote by E_{j} the vertex in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ having j-invariant $j \in \mathbb{F}_{p^{2}}$. Let a be the number of $\operatorname{arcs}\left(E, E_{1728}\right)$ and b the number of $\operatorname{arcs}\left(E, E_{0}\right)$. Note that the number of $\operatorname{arcs}\left(E, E_{j}\right), j \notin\{0,1728\}$, is $c=\ell-a-b+1$. From (11) we have

$$
\operatorname{indegree}(E)=\frac{c}{n}+\frac{2 a}{n}+\frac{3 b}{n},
$$

whence

$$
\operatorname{indegree}(E)=\frac{\ell+a+2 b+1}{n}
$$

5.2. Loops. Let E_{1728} and E_{0} denote the vertices in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ with j-invariants 1728 and 0 . In $\S 5.2 .1$ and $\S 5.2 .2$ we investigate the number of loops at E_{1728} and E_{0} in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$. In particular, we determine upper bounds on p for which E_{0} and E_{1728} have unexpected loops, i.e., loops not arising from eigenspaces of the primitive automorphisms of E_{0} and E_{1728}.
5.2.1. E_{1728} loops. We begin by noting that

$$
\Phi_{2}(X, 1728)=(X-1728)(X-287496)^{2} .
$$

Since 287496-1728 = $2^{3} \cdot 3^{6} \cdot 7^{2}$, we see that 1728 is a triple root of $\Phi_{2}(X, 1728)$ in $\mathbb{Z}_{p}[X]$ if $p=7$ and a single root if $p>7$. Hence the number of loops at E_{1728} in $\mathcal{G}_{2}\left(\mathbb{F}_{p^{2}},-2 p\right)$ is three if $p=7$ and one if $p>7($ and $p \equiv 3(\bmod 4))$.
Lemma 8. Let $p \equiv 3(\bmod 4)$ be a prime, and let $\ell \neq p$ be an odd prime. Then the number of loops at E_{1728} is even. Moreover, if $\ell \equiv 1(\bmod 4)$ then there are at least two loops at E_{1728}.

Proof. Let ρ denote the automorphism $(x, y) \mapsto(-x, i y)$ of E_{1728} where $i \in \mathbb{F}_{p^{2}}$ satisfies $i^{2}=-1$. Since $\# \operatorname{Aut}\left(E_{1728}\right) / 2=2$ we have from the first part of the proof of Theorem 7 that the number of loops at E_{1728} generated by isogenies whose kernels are not eigenspaces of ρ is even.

The characteristic polynomial $Z^{2}+1$ of ρ splits modulo ℓ if and only if $\ell \equiv 1(\bmod 4)$. Hence, if $\ell \equiv 3(\bmod 4)$ then all the loops at E_{1728} are generated by isogenies whose kernels are not eigenspaces of ρ and thus the number of loops is even. Now suppose that $\ell \equiv 1(\bmod 4)$. The eigenspaces of ρ modulo ℓ are two different order- ℓ subgroups of E_{1728}. The second part of the proof of Theorem 7 shows that the arcs generated by these subgroups are loops at E_{1728}.

Let p be a prime and let $B_{p, \infty}$ denote the quaternion algebra over \mathbb{Q} ramified at p and ∞ with trace Tr and norm N. From [7, Lemma 2.1.1], we have the following result.
Lemma 9. Let R be a maximal order of $B_{p, \infty}$, and let K_{1}, K_{2} be distinct imaginary quadratic subfields of $B_{p, \infty}$. Furthermore, suppse that there exist $k_{i} \in R, i=1,2$, such that $\left\{1, k_{i}\right\}$ is a \mathbb{Q}-basis for K_{i}. Then $p \leq 4 \mathrm{~N}\left(k_{1}\right) \mathrm{N}\left(k_{2}\right)$.

Theorem 10. Let ℓ be a fixed prime, and let $p \equiv 3(\bmod 4)$ be a prime distinct from ℓ. Suppose that E_{1728} has at least one loop in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ when $\ell \equiv 3(\bmod 4)$, and at least three loops when $\ell \equiv 1(\bmod 4)$. Then $p<4 \ell$.
Proof. Let $\operatorname{End}\left(E_{1728}\right)$ be the endormorphism ring of E_{1728}. It is known that $\operatorname{End}\left(E_{1728}\right)$ is a maximal order in $B_{p, \infty}[18]$. Since $\operatorname{End}\left(E_{1728}\right)$ contains the order-4 automorphism ρ : $(x, y) \mapsto(-x, i y)$, where $i \in \mathbb{F}_{p^{2}}$ satisfies $i^{2}=-1$, we have $\mathbb{Q}(\rho)=\mathbb{Q}(\sqrt{-1}) \subset \operatorname{End}\left(E_{1728}\right)$. Suppose that E_{1728} has a loop in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$, whence there exists $\alpha \in \operatorname{End}\left(E_{1728}\right)$ such that $\mathrm{N}(\alpha)=\ell$. If $\ell \equiv 3(\bmod 4)$, then $\alpha \notin \mathbb{Q}(\rho)$ since ℓ is prime in $\mathbb{Z}[\rho]$. On the other hand, if $\ell \equiv 1(\bmod 4)$, then ℓ splits uniquely in $\mathbb{Z}[\rho]$ up to multiplication by units as $\ell=\delta \bar{\delta}$. If E_{1728} has at least three loops in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$, then we can further assume that $\alpha \neq u \delta$ for all units $u \in \mathbb{Z}[\rho]$ and again we conclude that $\alpha \notin \mathbb{Q}(\rho)$.

Every element $b \in B_{p, \infty}$ satisfies $b^{2}-\operatorname{Tr}(b) b+\mathrm{N}(b)=0$. Now, let $\gamma=2 \alpha-\operatorname{Tr}(\alpha)$. Since $\operatorname{Tr}(\gamma)=0$, we have $\gamma^{2}=-N(\gamma)<0$. Hence $\mathbb{Q}(\alpha)=\mathbb{Q}(\gamma)$ is an imaginary quadratic field different from $\mathbb{Q}(\rho)$. Considering the bases $\{1, \rho\},\{1, \alpha\}$ for $\mathbb{Q}(\rho), \mathbb{Q}(\alpha)$, respectively, Lemma 9 yields $p \leq 4 \ell$, and as p is a prime number, we conclude that $p<4 l$.
5.2.2. E_{0} loops. We have

$$
\Phi_{2}(X, 0)=\left(X-2^{4} \cdot 3^{3} \cdot 5^{3}\right)^{3}
$$

whence 0 is a triple root of $\Phi_{2}(X, 0)$ in $\mathbb{Z}_{p}[X]$ if $p=5$ and not a root if $p>5$. Hence the number of loops at E_{0} in $\mathcal{G}_{2}\left(\mathbb{F}_{p^{2}},-2 p\right)$ is three if $p=5$ and zero if $p>5$ (and $p \equiv 2$ $(\bmod 3))$. Similarly, since

$$
\Phi_{3}(X, 0)=X\left(X-2^{15} \cdot 3 \cdot 5^{3}\right)^{3}
$$

we conclude that the number of loops at E_{0} in $\mathcal{G}_{3}\left(\mathbb{F}_{p^{2}},-2 p\right)$ is four if $p=5$ and one if $p>5($ and $p \equiv 2(\bmod 3))$.

Lemma 11. Let $p \equiv 2(\bmod 3)$ be a prime, and let $\ell \neq 3, p$ be an odd prime. If $\ell \equiv 2$ $(\bmod 3)$, then the number of loops at E_{0} is $\equiv 0(\bmod 3)$. If $\ell \equiv 1(\bmod 3)$, then the number of loops at E_{0} is $\equiv 2(\bmod 3)$.

Proof. Similar to the proof of Lemma 8.
Theorem 12. Let ℓ be a fixed prime. Let $p \equiv 2(\bmod 3), p \neq \ell$, be a prime for which E_{0} has at least one loop in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$ if $\ell \equiv 2(\bmod 3)$ or at least three loops if $\ell \equiv 1$ $(\bmod 3)$. Then $p<4 \ell$.

Proof. Similar to the proof of Theorem 10.

For primes $\ell \equiv 1(\bmod 4)($ resp. $\ell \equiv 3(\bmod 4))$, let $p_{1728}^{1}(\ell)\left(\right.$ resp. $\left.p_{1728}^{3}(\ell)\right)$ denote the largest prime $p \equiv 3(\bmod 4), p \neq \ell$, for which E_{1728} has at least three loops (resp. at least one loop) in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$. Similarly, for odd primes $\ell \equiv 1(\bmod 3)($ resp. $\ell \equiv 2$ $(\bmod 3))$, let $p_{0}^{1}(\ell)\left(\right.$ resp. $\left.p_{0}^{2}(\ell)\right)$ denote the largest prime $p \equiv 2(\bmod 3), p \neq \ell$, for which E_{0} has at least three loops (resp. at least one loop) in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$. Table 1 lists $p_{1728}^{1}(\ell)$, $p_{1728}^{3}(\ell), p_{0}^{1}(\ell), p_{0}^{2}(\ell)$ for all primes $\ell \leq 283$. These values were obtained by factoring the relevant values of the modular polynomial Φ_{ℓ}; the modular polynomials were obtained from Sutherland's database [1, 16]. For example, $p_{1728}^{3}(\ell)$ is the largest prime factor of $\Phi_{\ell}(1728,1728)$ that is congruent to 3 modulo 4 . Table 1 indicates that the bounds $p_{1728}^{1}(\ell)<4 \ell$ and $p_{1728}^{3}(\ell)<4 \ell$ are tight, and suggests a tighter upper bound of 3ℓ for $p_{0}^{1}(\ell)$ and $p_{0}^{2}(\ell)$.

ℓ	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53
$p_{1728}^{1}(\ell)$		19			47	67			107		139	163	-		211
$p_{1728}^{3}(\ell)$	11	-	23		-	-	71	83	-	107	-	-	167	179	-
$p_{0}^{1}(\ell)$	-	-	17		23	-	53	-	-	89	107	-	113	-	-
$p_{0}^{2}(\ell)$	-	11	-	-	-	47	-	53	83	-	-	107	-	137	131
ℓ	59	61	67	71	73	79	83	89	97	101	103	107	109	113	127
$p_{1728}^{1}(\ell)$	-	239	-	-	283	-	-	347	383	379	-		431	443	
$p_{1728}^{3}(\ell)$	227	-	263	239	-	311	331		-	-	383	419	-		503
$p_{0}^{1}(\ell)$	-	179	197	${ }^{-}$	191	233	-	-	263	-	293	${ }^{-}$	311	-	353
$p_{0}^{2}(\ell)$	173	-	-	197	-	-	233	263	-	251	-	317	-	311	-
ℓ	131	137	139	149	151	157	163	167	173	179	181	191	193	197	199
$p_{1728}^{1}(\ell)$	-	547	-	587	-	619	-	-	691	-	719	-	743	787	-
$p_{1728}^{3}(\ell)$	523	-	547	-	599	-	647	659	-	691	-	751	-	-	787
$p_{0}^{1}(\ell)$	-	-	401	-	449	467	461	-	-		491		563	-	593
$p_{0}^{2}(\ell)$	389	383	-	443	-	-	-	449	503	521	-	569	-	587	-
ℓ	211	223	227	229	233	239	241	251	257	263	269	271	277	281	283
$p_{1728}^{1}(\ell)$	-	-	-	911	919	-	947	-	1019	-	1063	-	1103	1123	-
$p_{1728}^{3}(\ell)$	839	887	907	-	-	947	-	991	-	1051	-	1039	-	-	1123
$p_{0}^{1}(\ell)$	617	653	-	683	-	-	719	-	-	-	-	809	827	-	821
$p_{0}^{2}(\ell)$	-	-	677	-	683	701	-	701	743	773	743	-	-	839	-

TABLE 1. The values $p_{1728}^{1}(\ell), p_{1728}^{3}(\ell), p_{0}^{1}(\ell), p_{0}^{2}(\ell)$ for all odd primes $\ell \leq 283$.

6. Concluding remarks

We defined the supersingular isogeny graph $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}\right)$, and described the arcs of its small subgraphs $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}, 0\right)$ and $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}}, \pm p\right)$. We also investigated the existence of loops at vertices E_{0} and E_{1728} in the large subgraph $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$, and determined upper bounds on primes p for which E_{0} and E_{1728} have unexpected loops in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{2}},-2 p\right)$.

Acknowledgements

We are grateful the anonymous referees for their comments, one of which led to simplified proofs of Theorems 3 and 4, and another which yielded tighter bounds in Theorems 10 and 12 .

References

[1] R. Bröker, K. Lauter and A. Sutherland, "Modular polynomials via isogeny volcanoes", Mathematics of Computation, 278 (2012), 1201-1231.
[2] D. Charles, E. Goren and K. Lauter, "Cryptographic hash functions from expander graphs", Journal of Cryptology, 22 (2009), 93-113.
[3] C. Delfs and S. Galbraith, "Computing isogenies between supersingular elliptic curves over \mathbb{F}_{p} ", Designs, Codes and Cryptography, 78 (2016), 425-440.
[4] L. De Feo, D. Jao and J. Plût, "Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies", Journal of Mathematical Cryptology, 8 (2014), 209-247.
[5] M. Fouquet and F. Morain, "Isogeny volcanoes and the SEA algorithm", Algorithmic Number Theory - ANTS 2002, LNCS 2369 (2002), 276-291.
[6] S. Galbraith, C. Petit and J. Silva, "Identification protocols and signature schemes based on supersingular isogeny problems", Advances in Cryptology - ASIACRYPT 2017, LNCS 10624 (2017), 3-33.
[7] E. Goren and C. Lauter, "Class invariants for quartic CM fields", Annales de l'Institut Fourier, 57 (2007), 457-480.
[8] D. Jao and L. De Feo, "Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies", Post-Quantum Cryptography - PQCrypto 2011, LNCS 7071 (2011), 19-34.
[9] D. Jao and V. Soukharev, "Isogeny-based quantum-resistant undeniable signatures", Post-Quantum Cryptography - PQCrypto 2014, LNCS 8772 (2014), 160-179.
[10] D. Kohel, "Endomorphism rings of elliptic curves over finite fields", Ph.D. thesis, UC Berkeley, 1996.
[11] C. Munuera and J. Tena, "An algorithm to compute the number of points on elliptic curves of j invariant 0 or 1728 over a finite fields", Rendiconti Del Circolo Matematico Di Palermo, Serie II, XLII (1993), 106-116.
[12] A. Pizer, "Ramanujan graphs and Hecke operators", Bulletin of the American Mathematical Society, 23 (1990), 127-137.
[13] R. Schoof, "Nonsingular plane cubic curves over finite fields", Journal of Combinatorial Theory, Series A, 46 (1987), 183-211.
[14] J. Silverman, The Arithmetic of Elliptic Curves, Springer, second edition, 2009.
[15] A. Sutherland, "Isogeny volcanoes", Algorithmic Number Theory - ANTS 2013, MSP Open Book Series, 1 (2013), 507-530.
[16] A. Sutherland, "Modular polynomials", math.mit.edu/~drew/ClassicalModPolys.html.
[17] L. Washington, Elliptic Curves: Number Theory and Cryptography. Chapman \& Hall/CRC, second edition, 2008.
[18] W. Waterhouse, "Abelian varieties over finite fields", An.. Sci. Ecole Norm. Sup., 2 (1969), 521-560.
[19] Y. Yoo, R. Azarderakhsh, A. Jalali, D. Jao and V. Soukharev, "A post-quantum digital signature scheme based on supersingular isogenies", Financial Cryptography and Data Security - FC 2017, LNCS 10322 (2018), 163-181.

Department of Combinatorics \& Optimization, University of Waterloo, Canada
E-mail address: gora.adj@gmail.com
Institute for Research in Fundamental Sciences, Iran
E-mail address: oahmadid@gmail.com
Department of Combinatorics \& Optimization, University of Waterloo, Canada
E-mail address: ajmeneze@uwaterloo.ca

