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Onion-AE: Foundations of Nested Encryption
Abstract: Nested symmetric encryption is a well-known
technique for low-latency communication privacy. But
just what problem does this technique aim to solve?
In answer, we provide a provable-security treatment for
onion authenticated-encryption (onion-AE). Extending
the conventional notion for authenticated-encryption,
we demand indistinguishability from random bits and
time-of-exit authenticity verification. We show that the
encryption technique presently used in Tor does not
satisfy our definition of onion-AE security, but that a
construction by Mathewson (2012), based on a strong,
tweakable, wideblock PRP, does do the job. We go on
to discuss three extensions of onion-AE, giving defini-
tions to handle inbound flows, immediate detection of
authenticity errors, and corrupt ORs.
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1 Introduction
This paper is about formalizing one of the basic prob-
lems that underlie onion-routing and Tor [12, 16, 17, 31].
We call it the onion-encryption problem. Solutions to
this problem usually go like this. A user holds a key
k0 = (k1, . . . , kn) while each “onion router” ORi among
OR1, . . . ,ORn holds a key ki. The user encrypts a mes-
sage m for the circuit (OR1, . . . ,ORn) by iteratively en-
crypting it in kn, kn−1, . . . , k1. She provides the result-
ing ciphertext c0 to the “entry node” OR1. It decrypts
this using k1 and passes the result onto OR2, which de-
crypts using k2, and so on. At the end of the circuit,
the “exit node” ORn decrypts its input to obtain the
original message m. That message is usually imagined
to exit the onion-routing network at this point.

Despite an extensive history (for a glimpse, see the
“Related work” portion at the end of this introduc-
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tion), clean cryptographic foundations for this onion-
encryption problem do not exist. Most fundamentally,
there is no clear definition for the problem it aims to
solve. This paper aims to fill this gap, providing a self-
contained, game-based, provable-security treatment.

Our contributions. We begin with syntax, formal-
izing an onion-encryption scheme as a tuple of algo-
rithms Π = (K, E ,D). The key-distribution algorithm K
defines the joint distribution on who gets what keys,
(k0, k1, . . . , kn) ←← K(n). Key k0 will be held by the
user and key ki, for i ≥ 1, by ORi. How the cir-
cuit (OR1, . . . ,ORn) gets constructed and how keys get
where they need to be is, for us, conveniently out of
scope. The user will encrypt using E(k0, · · · ) while each
ORi will decrypt using D(ki, · · · ). Crucially, both algo-
rithms are stateful. This will be necessary for achieving
the stringent security requirements we seek. To satisfy
efficiency expectations reflected by Tor, we will insist
that ciphertexts be of fixed length, independent of the
circuit length n. This effectively means that plaintexts
too have some fixed length, message segmentation and
padding again being out-of-scope of our treatment.

While multiple security definitions could be given
for onion encryption, some of which we will briefly ex-
plore, we focus on a relatively simple notion, onion-AE
security, that guarantees indistinguishability from ran-
dom bits (sometimes called ind$-security) and time-of-
exit detection of authenticity errors (integrity, or un-
forgeability, of ciphertexts). Our definition is related to
that of authenticated encryption (AE) [4, 5, 23, 28], but
now we are in the stateful setting [3, 6, 24] and a chain
of parties must cooperate to decrypt. As with all treat-
ments of AE, the underlying attack model permits a
chosen-ciphertext attack (CCA): the adversary can ob-
tain the encryption of whatever it wants, and it can
experiment with compliant ORs, using them as decryp-
tion oracles.

To keep our definition simple we employ a new
technique, oracle silencing, advanced by the authors
in a separate paper [29]. To make our treatment self-
contained, the present paper will explain what we need
of the oracle-silencing technique.

Our definitional syntax is rich enough to describe
what goes on in Tor’s relay protocol [30], but that pro-
tocol, we will show, does not satisfy our definition of
onion-AE security. Its susceptibility to the tagging at-
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tack of Raymond [14, 27] already implies absence of
onion-AE security. (As will be explained later, this claim
says little or nothing about the actual security of Tor.)

Despite the above, we show that schemes secure
in the sense of onion-AE are easy to construct if one
starts from a strong enough tool: a wideblock blockci-
pher that’s secure as a strong, tweakable PRP (pseudo-
random permutation). The protocol we analyze, LBE
(large-block encryption), is one of two suggested by
Mathewson in a specification document [25] for improv-
ing Tor’s relay protocol. We adapt his construction to
our syntax and prove it secure. Our security notion thus
provides a cryptographic foundation for showing Math-
ewson’s construction to be sound.

Following our provable-security treatment of
onion-AE, we outline three different extensions. The
first extension, a straightforward one, is to deal with in-
bound communication along the circuit. This is needed
for a user’s communication target to be able to return
messages to him/her. Our second extension is an alter-
native to onion-AE in which one aims to immediately
detect forged ciphertexts (onions), rather than detect-
ing them at the circuit’s endpoint. If bogus ciphertexts
should be quashed immediately after their insertion,
significantly different mechanisms and definitions must
be used. Our third extension acknowledges the possibil-
ity of adversarially controlled relays and defines security
despite them. It provides the adversary the ability to
corrupt and control ORs along a circuit without com-
promising the circuit’s overall utility (beyond what is
inherently lost).

Limitations. Our aim in this work is intentionally lim-
ited: to provide and explore a self-contained game-based
security notion for the sort of nested encryption used in
onion routing. Our work is primarily theoretical, with
little to say about the security of Tor.

Our work leaves many directions unexplored. For
example: (1) We effectively disallow the early exit
(“leaky pipe”) possibility permitted by Tor—that a mes-
sage employing circuit (OR1, . . . ,ORn) might exit prior
to ORn. (2) The protocol we analyze, LBE, ignores the
encryption and authentication between consecutive ORs
achieved in Tor by its use of the TLS record layer. (3) We
omit the inclusion of associated data (AD) in our treat-
ment of onion-AE, despite this having been important
for the utility of AE. Extensions in all of these directions
would be worthwhile. None of the them are explored in
depth, which would require fully specified protocols and
proofs.

Oracle silencing. A conventional game-based defi-
nition for onion-AE turns out to be rather complex;
look ahead to Fig. 11. Most of the complexity stems
from having to specify exactly when a decryption query
should be disallowed (or, alternatively, its answer sup-
pressed, or the game declared a loss). While complicated
game-based definitions do appear in the literature, our
own view is that when game code gets as complex as
what is seen in Fig. 11, it is too hard to understand
what is happening, and too easy to make mistakes.

To address this problem, related and concurrent
work by the same authors develops a concept we call
oracle silencing [29] and applies it to settings simpler
than those of this paper. Oracle silencing can be used to
simplify some definitions, including those for onion-AE.
Our general treatment of oracle silencing is still evolv-
ing.

In a nutshell, oracle silencing works as follows. First,
a utopian pair of games is given—games that are simple
and capture what you might wish you could achieve. But
the games don’t actually “work,” as the adversary has
an attack that can trivially distinguish between them.
One therefore passes from the pair of utopian games to
a pair of silenced games, which the adversary cannot
trivially distinguish. In the silenced games, certain or-
acle queries are effectively ignored: the oracle responds
with an indication that it refuses to answer. Whether or
not silencing happens is determined automatically, us-
ing the protocol’s own correctness condition (formally,
the class C of valid protocols). We use oracle silencing
to define onion-AE, and various extensions of onion-AE,
via simple utopian games.

Related work. Much work on onion routing focuses
on anonymity and key distribution, often employing ap-
proaches rooted in the UC framework or information
theory. Our work is quite different, focusing on the se-
mantic security of the symmetric encryption itself.

The intellectual roots for onion routing trace back
to Chaum’s concept of a mixnet [10]. In a mixnet, keys
are asymmetric instead of symmetric and the routers,
called mixes, are expected to buffer some number of in-
coming ciphertexts before passing them on to the next
mix in line. Mixnets are intended for high-latency pri-
vate communication; onion routing, for the low-latency
setting. Despite these differences, the customary solu-
tions are similar, using nested encryption.

An artifact like Tor does far more than nested en-
cryption, including router discovery, the distribution of
symmetric keys along a circuit, and provisioning of pri-
vate channels between nodes using TLS. Due to such
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complexity, most definitional and analytical work on
onion routing either abstracts away some protocol de-
tails or focuses only on a single aspect, like the key-
distribution phase. Feigenbaum et al. [13] give an anal-
ysis of Tor based on a black-box modelling in UC frame-
work [7]. Backes et al. [1] provide a complete UC def-
inition for the ideal functionality they want an onion-
routing protocol to realize. There is a considerable body
of further work that focus on aspects of onion routing
other than nested-encryption [8, 9, 15, 21, 22].

We ourselves find the approach of modeling onion
routing as a piece of ideal functionality and then in-
voking UC heavy. We prefer to work more bottom-up,
giving a precise and self-contained (so UC-free) defini-
tion for a lightweight primitive. Our emphasis on the
encryption-scheme “detail” is shared with Möller [26]
and Danezis and Goldberg [11]. But both of these deal
with mixnets, not onion routing, and neither tries to
bring forward a new and general kind of cryptographic
object.

Bellare, Kohno, and Namprempre [3] were the first
to introduce a notion of stateful authenticated en-
cryption. Building on this and other intervening work,
Boyd et al. [6] provide a framework for multiple notions
of stateful AE, all in the game-based tradition. It is
this branch of work to which our own is most closely
related, despite these works having nothing to do with
onion routing. In fact, the strongest definition in the
hierarchy of Boyd et al. (level 4: no forgeries, replays,
reordering, or dropped messages) can be viewed as a
special case of onion-AE where only one OR is present.

2 Syntax of Onion-AE
Conventions. We use lowercase letters to denote
strings, integers and one-dimensional vectors (m, k,
etc.), while uppercase letters to denote two-dimensional
vectors, or matrices (S, D, etc.). We use uppercase
letters of different fonts to refer to different objects
(K,M,C for sets; and E ,D,A for algorithms and ad-
versaries) and sans-serif words for formal symbols and
predicates (Enc, Dec, Fixed, etc.). For a one-dimensional
vector s, we denote its length by |s|, its i-th element
by si (first index 1). For a matrix S we use brackets
to index its element like S[i][j]. We also use variables
with fields named by keywords, like x.type, the dot sep-
arating the variable name and the keyword. We use the
word “tuple” as a synonym to “one-dimensional vector”
and use parentheses-enclosed notation to explicitly de-

note a vector’s elements, so k = (k1, k2, . . . , k|k|). For a
string s, we denote by s[i..j] the substring of s starting
from index i and ending with index j (both inclusive).
When both a and b are strings, we use a || b to denote
their concatenation. We write ε for the empty string.
We use a← b to denote an assignment of b’s value to a
and a←←B to denote a random assignment that assigns
to a a value drawn from B (when B is a distribution) or
uniformly sampled from B (when B is a set). When n

is a positive integer we use [n] to denote {1, 2, . . . , n}.
For an algorithm, by convention it always outputs ♦
whenever it takes an input outside its domain.

Syntax. An onion-encryption (OE) scheme is a tuple
Π = (K, E ,D) where
– K: N → K∗ is a probabilistic algorithm that, given

a circuit size n ≥ 1, outputs a list of n+ 1 strings
in the key space K ⊆ {0, 1}∗. We write K(n) for
the distribution on vectors that K induces when its
input is n.

– E : K ×M × U → C × U is a deterministic function
that takes in a user key k0 ∈ K, a plaintext m ∈M

(the message space) and a user state u ∈ U (the user
state space). It outputs a ciphertext (an outermost
onion) c ∈ C (the ciphertext space) and an updated
user state u′ ∈ U.

– D: K× C× S→ (M∪ C∪ {♦})× S is a deterministic
function. It takes in a key k ∈ K, an input onion
c ∈ C, and an OR state s ∈ S (the OR state space).
It returns a decrypted result d and an updated OR
state s′ ∈ S.

We assume that for all n ∈ N, c ∈ C, and s ∈ S, we
have that (k0, k1, . . . , kn)←← K(n) implies D(ki, c, s) is
in C × S when 1 ≤ i < n, while in (M ∪ {♦}) × S when
i = n. For simplicity, and to match efficiency expec-
tations associated to Tor, and to avoid issues of length
revelation, we assume that M = {0, 1}l1 and C = {0, 1}l2
with 1 ≤ l1 < l2.

Explanation. See Fig. 1 for naming conventions and
an illustration of an OE scheme’s usage. After a user
has constructed a circuit of n ORs and generated keys,
he adopts some method to distribute to each ORi the
key ki. He keeps for himself the key k0. The user ap-
plies E to encrypt his message into an outermost onion
(ciphertext) c0 and sends that to the first OR (entry
guard). Each OR in the circuit, upon receiving an in-
coming onion, applies D to get a decrypted result. The
result might be a plaintext, a ciphertext, or an indica-
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E D D D

k0 k1 k2 k3

m c3 = mc 2c1c0

User OR1 OR2 OR3

procedure CorrectΠ(k,m)
(k0, k1, . . . , kn)← k; (m1, . . . ,m`)← m

u, s1, . . . , sn ← ε

for i← 1 to ` do
(ci

0, u)← E(k0,mi, u)
for j ← 1 to n do (ci

j , sj)← D(kj , c
i
j−1, sj)

return
∧

1≤i≤`

(mi = ci
n)

Fig. 1. Labeling conventions and basic correctness. Top: A user
encrypts a message to get a ciphertext that, when iteratively
decrypted, yields the original message. Bottom: Formalizing this
correctness condition.

tion of invalidity. Authentication failures result in the
last possibility.

For simplicity, we assume a fixed point of exit: the
only position where a message is imagined to egress and
be routed to its ultimate destination is the last OR (the
exit relay). This is in contrast to what the Tor designers
called a leaky pipe topology [12], which allows the user
to choose the exit position on a per-message basis. The
feature is little used in Tor [25, line 196–199] and would
significantly complicate our treatment of onion-AE.

An implication of the fixed-exit-point assumption is
that the exit node is the only point where authenticity
checking is needed or expected. If an onion should get
forged at an intermediate point in the circuit, we do
not expect to detect the problem until the correspond-
ing onion reaches the exit node. Such an approach is
called end-to-end integrity checking [12] and is adopted
by Tor’s relay protocol. An alternative approach would
be to have intermediate routers detect forgeries right
away (see the threads following [32] for a discussion
of this), which we call eager authentication. In fact,
Tor’s use of TLS channels between adjacent ORs should
provide for eager authentication. Still, our initial treat-
ment of onion-AE ignores this TLS-induced aspect of
Tor, and eager authentication more broadly. In this way
we more closely model Tor’s relay protocol, which sits
above TLS. See Section 8 for a formalization of eager au-
thentication using oracle silencing. The treatment could
serve as a starting point for modelling this TLS-based
aspect of Tor.

Correctness. Let Π = (K, E ,D) be an OE scheme with
message space M and ciphertext space C. We say that
Π is correct if, for any n ≥ 1, k ∈ K(n), and m ∈ M∗,
the predicate CorrectΠ(k,m) defined in Fig. 1 returns
true. Informally, the correctness condition just says that
if values are relayed in the manner of a wire, the last
OR always outputs what it should.

3 Oracle Silencing
Before we define onion-AE, we need to describe the idea
of oracle silencing. This technique starts from the fol-
lowing intuitive idea: if an adversary knows the answer
it will receive in response to some oracle query, that
answer need not be returned—it can be suppressed, in-
stead. If you automatically suppress oracle responses in
this way, then giving definitions can be simplified.

We work in the game-based formulation of security
notions. We treat a game G as a function that takes
in the adversary’s previous queries and the game’s un-
derlying randomness, and returns the response of the
last query in the input. That is, given a sequence of
queries (x1, x2, . . . , xi) ∈ {0, 1}∗∗ and a string of coins
Γ ∈ {0, 1}∞, we let G(x1, x2, . . . , xi; Γ) = yi be the re-
sponse to xi. Here we assume some standard encoding
of the queries. The game function is deterministic and
defined by the game’s code.

To define oracle silencing, we start from a pair of
utopian games G and H. These correspond to the real
and ideal worlds in a typical indistinguishability-based
notion. Usually, the two games depend on some under-
lying cryptographic scheme Π ∈ C, where C denotes
the class of all correct schemes. We use GΠ to de-
note the specific instantiation of G with the underly-
ing scheme Π. Given G and C, oracle silencing defines a
binary predicate SILENCE on the set of query histories
(x1, y1, x2, y2, . . . , xi). See Fig. 2 for its formula.

The SILENCE predicate depends on a predicate Fixed
that describes all query histories for which all schemes
in C will generate fixed responses, regardless of the ran-
domness. In addition, SILENCE requires that the history
must be generable by some scheme Π ∈ C under some
randomness, a condition we call the nondegeneracy con-
dition (expressed by the predicate Nondegenerate).

More specifically, Fixed is defined as all schemes
Π ∈ C satisfying a Silence predicate, which in turn is
defined, for a particular scheme, as all game random-
ness giving identical responses to the current query xi

when the game randomness can make the history pre-
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SILENCEG,C(x1, y1, . . . , xj) =
111 FixedG,C(x1, y1, . . . , xj)

∧
112 NondegenerateG,C(x1, y1, . . . , xj−1, yj−1)

FixedG,C(x1, y1, . . . , xj) =
113 ∀Π ∈ C [SilenceG,Π,C(x1, y1, . . . , xj)]

NondegenerateG,C(x1, y1, . . . , xj−1, yj−1) =
114 ∃Π ∈ C ∃Γ ∈ {0, 1}∞

[GivesG,Π,C(x1, y1, . . . , xj−1, yj−1; Γ)]

SilenceG,Π,C(x1, y1, . . . , xj) =
121 ∀Γ1,Γ2 ∈ {0, 1}∞

122
[
GivesG,Π,C(x1, y1, . . . , xj−1, yj−1; Γ1)∧

123 GivesG,Π,C(x1, y1, . . . , xj−1, yj−1; Γ2)
]
⇒

124 GΠ(x1, x2, . . . , xj ; Γ1) = GΠ(x1, x2, . . . , xj ; Γ2)

GivesG,Π,C(x1, y1, . . . , xj , yj ; Γ) =
131 GivesG,Π,C(x1, y1, . . . , xj−1, yj−1; Γ)

∧
132

[
yj = GΠ(x1, x2, . . . , xj ; Γ)

133 ∨(yj =⊥ ∧ SILENCEG,C(x1, y1, . . . , xj))
]

GivesG,Π,C(ε; Γ) = true

Fig. 2. Definition of SILENCE, used for defining oracle silenc-
ing. The definitions are recursive.

fix (x1, y1, . . . , xi−1, yi−1) occur. The “make the history
prefix occur” idea is again formalized as a Gives pred-
icate, recursively calling SILENCE for those already si-
lenced responses.

With SILENCE defined we can easily map a tu-
ple (G,H,C) to a pair of silenced games (G,H),
where G and H are identical to G and H except
that before each query response yi is returned, if
SILENCEG,C(x1, y1, . . . , xi) is true then yi is replaced
by the symbol ⊥. Neither G nor H are themselves al-
lowed to return that symbol. The definitional paradigm
has one provide explicit utopian games G (the “real”
utopian game) and H (the “ideal” utopian game), along
with a class of schemes C. One then inherits the silenced
games G and H. Security (more precisely, insecurity) is
measured by an adversary’s ability to distinguish be-
tween the silenced games.

There are a variety of related but alternative ways to
define games (G,H) from (G,H,C). We continue to in-
vestigate them, in search of the cleanest approach [29].

4 Defining Onion-AE
To define onion-AE we give the adversary access to
two oracles, Enc and Dec, that model, respectively, the
user’s encryption and any chosen OR’s decryption. We
describe real and ideal worlds for instantiating these or-
acles. In the former, the Enc oracle takes in a message
and outputs the result of running E . The Dec oracle
takes in an input onion and an OR index. It outputs
the result obtained by running D. In contrast, for the
ideal world, both the Enc oracle and the Dec oracle
output independent random strings in C except for the
case of a Dec query pointing to the exit OR. For that
case ♦ is returned. See Fig. 3.

The two games are utopian in that an adversary
can easily distinguish them: it simply forwards an onion
along the circuit and observes whether the last Dec

query returns a message (real world) or ♦ (ideal world).
For the rest of the paper, we call such a trivial kind
of game interaction an honest execution and the oracle
queries corresponding to it honest queries.

We apply oracle silencing to games OE1, OE0, and
the class of correct OE schemes C. The resulting pair
of silenced games is denoted OE1 and OE0. An ad-
versary A’s advantage in breaking an onion encryption
scheme Π is defined as Advoe

Π (A) = Pr[AOE1Π → 1] −
Pr[AOE0Π → 1]. Informally, the scheme Π is onion-AE
secure if for all A employing a reasonable amount of
resource the advantage Advoe

Π (A) is small.

Implications of onion-AE. Formalizing a notion
of indistinguishability from random bits, onion-AE
directly captures privacy. It also captures an
“authenticity-at-exit” notion: whenever an adversary
tries to deviate from an honest execution, the silencing
does not occur and the last Dec oracle outputs ♦ with
overwhelming probability.

Onion-AE also formalizes one form of anonymity.
We give an informal argument for this (no other being
possible in the absence of first providing a definition for
the anonymity of an OE scheme). Assume first an inac-
tive adversary: it does not modify any onions (cipher-
texts). We demanded that all intermediate ciphertexts
be indistinguishable from random bits (ind$-security),
whence the ciphertexts produced by any one party, no
matter what it is encrypting, must be indistinguishable
from the ciphertexts produced by any other party (Re-
call that our ciphertexts all have the same length.). So
passive-adversary anonymity seems clear.
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Key(n′)
Game OE1
(Real)

211 if n 6=⊥ then return Err
212 n← n′

213 (k0, . . . , kn)←←K(n)
Enc(m)

221 if n =⊥ then return Err
222 (c, u)← E(k0,m, u)
223 return c
Dec(c, i)

231 if n =⊥ then return Err
232 (d, si)← D(ki, c, si)
233 return d

Key(n′)
Game OE0
(Ideal)

311 if n 6=⊥ then return Err
312 n← n′

Enc(m)

321 if n =⊥ then return Err
322 c←← C

323 return c
Dec(c, i)

331 if n =⊥ then return Err
332 if i = n then d← ♦
333 else d←← C

334 return d

Fig. 3. Utopian games used for defining onion-AE. The real game OE1 executes real encryption and decryption while the ideal
game OE0 samples fresh random strings for encryption and decryption, except for a decryption at the exit, in which case ♦ is returned.

Now suppose that the adversary goes in and mucks
with some ciphertexts in an attempt to garner identity-
related information. This will fail because, regardless
of identities, the same thing happens when onions are
mauled. Namely, the modified onion continues to tra-
verse the onion-routing network towards the exit node,
with each new intermediate onion being indistinguish-
able from random bits, and therefore uncorrelated to
any player identities. Then, at the exit node, an authen-
tication failure will occur: in our model, an indication
of failure almost always happens (up to the advantage
bound proven by the protocol). So the behavior is, yet
again, independent of player identities.

In short, the combination of indistinguishability
from random bits for all onions and unforgeability of
ciphertexts, enforced at a single, determinate place,
dooms all tagging attacks (see Section 5) and, more
broadly, all other approaches that might expose iden-
tity information yet fall within the scope of the onion-
encryption model. We emphasize, however, that the
above arguments do not apply to attacks that leverage
timing information, say traffic confirmation, because our
model does not express anything about time.

5 Tor’s Relay Protocol Does Not
Achieve Onion-AE Security

We now recast the Tor relay protocol in terms of our
syntax, and show that it does not achieve onion-AE se-
curity. In particular, we argue that the technique used
in a tagging attack is enough to violate the onion-AE
security notion. For more on tagging attacks, see [14]
for a real-world experiment and [27] for a summary of
related attacks.

Mechanism. Tor attaches several header fields to a mes-
sage before it applies AES counter mode multiple times
to encrypt it. Decryption correspondingly peels off one
layer of encryption from an input onion and bases its
decision on the value of two fields: a 2-byte recognized
field and a 4-byte digest field. At the time of a user’s en-
cryption, it sets the recognized field to all-zeros and the
digest field to the first four bytes of a running digest of
all the bytes that have been destined for this OR, seeded
from the symmetric key between them [30]. At the time
of an OR’s decryption, the OR checks if the recognized
field is all-zero. If it is, the OR regards that as a signal
of having been chosen as the desired point of exit. It
then checks whether the digest matches and treats the
decrypted result as the plaintext message if it does. It
reports an authentication failure otherwise. Conversely,
the OR treats a non-zero recognized field as indicating
that there are further layers of encryption in the onion,
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K(n)

411 for i← 1 to n do
412 ki.key←←K

413 ki.exit← 0
414 kn.exit← 1
415 k0 ← (k1, . . . , kn)
416 return (k0, . . . , kn)

E(k,m, u)

421 n← |k|
422 c← m || 0l2−l1

423 for i← n downto 1 do
424 c← E(ki.key, ui, c)
425 ui ← ui || c
426 u← (u1, u2, . . . , un)
427 return (c, u)

D(k, c, s)

431 c′ ← D(k.key, s, c)
432 s← s || c
433 if k.exit = 1 and
434 c′[l1 + 1..l2] = 0l2−l1 then
435 return (c′[1..l1], s)
436 if k.exit = 1 then
437 return (♦, s)
438 return (c′, s)

Fig. 4. Definition of the scheme LBE, adapted from Mathewson [25]. The construction depends on a parameter l1 (the message
length) and a tweakable wideblock blockcipher E operating on l2-bit blocks (the onion length), where l1 < l2.

so it forwards the decrypted result as an onion to the
OR’s successor—assuming there is one.

For the sake of brevity, we have omitted several de-
tails that are irrelevant to our current purpose. For ex-
ample, the seed of the hash digest is not the key itself
but something derived from it.

As just explained, an OR might regard itself as the
final hop for some cell despite not being the circuit’s
last node [12]. This supports Tor’s leaky pipe design,
but falls out-of-scope of our own formalization. In the
current section we ignore this possibility, as Tor’s relay
mechanism does not achieve onion-AE security even if
we insist that packets exit at the final OR.

Tagging attacks break onion-AE. Let us translate
what happens with a tagging attack into our framework,
showing that it violates onion-AE security for the Tor
relay protocol. Specifically, consider an onion-AE adver-
sary performing the following queries:
1. Key(3). The adversary chooses a circuit size of 3.
2. Enc(m)→ c1. The adversary asks the user to en-

crypt an arbitrary message m. He sees c1 as the
returned string.

3. Dec(c1, 1)→ c2. An honest execution of OR’s de-
cryption. The adversary sees c2 as the decrypted
result.

4. Dec(c2 ⊕ tag, 2)→ c3. The adversary xors in a self-
composed string tag 6= 0 before handing c2 to OR2.

5. Dec(c3 ⊕ tag, 3) → m′. The adversary xors in tag

to c3 before forwarding it to OR3, and checks
whether the returned result m′ equals to m. If yes,
the adversary outputs 1 otherwise 0.

As the last query is not silenced (which is true when
tag 6= 0), the adversary sees m in the real world and ♦
in the ideal world, so the attack always succeeds. We

conclude that the Tor relay protocol does not satisfy
onion-AE security.

Significance for Tor. The attack above does not
demonstrate that the Tor relay protocol is broken in
any meaningful sense. To begin with, it has been much
debated if tagging attacks ever matter, and if they ac-
complish more than timing attacks do. (We don’t know,
but see reference [32] for an argument that they do.) Be-
yond this, however, Tor communication between succes-
sive ORs is provisioned using TLS, whose record layer
provides AE. A complete description of how cells get
encrypted in Tor would have to fold in this extra en-
cryption, and the extra keys associated to it (between
each ORi and ORi+1). Once this is accounted for, the
attack above fails to work, and it is possible that the
enlarged protocol actually is secure, although under a
definition (see Section 8) that demands early detection
of authenticity errors. The most one can conclude from
what we have shown is that the standard way of draw-
ing abstraction boundaries for Tor leaves one with a
mechanism whose cryptographic security is both weak
(since the notion of onion-AE is not all that strong) and
unformalized.

Given that tagging attack might not be a severe
practical issue, one could fairly argue that the onion-AE
notion is not that meaningful. To some extent, we agree,
yet we would like to defend the soundness of onion-AE
as follows: it serves as a simple way to instantiate our
general definitional idea, that users and ORs are treated
as stateful entities and that onion-AE in such a model
essentially becomes a generalization of stateful AE. This
idea, when instantiated differently, can bring upon dif-
ferent extensions of onion-AE that deal with inbound di-
rections, eager authentication, and so on. See Section 7,
8 and 9 for details.



Onion-AE 8

6 Achieving Onion-AE
In this section we analyze the OE scheme LBE pro-
posed by Mathewson [25] (“Design 1: Large-block en-
cryption”) and prove its onion-AE security. LBE’s high-
level idea is to employ a tweakable wideblock blockci-
pher E : K×{0, 1}∗×C→ C and use the tweak to encode
the ciphertext history so far. In this way, any mauling of
onions will pollute the tweak and result in garbage for
the result, which will almost certainly trigger an authen-
tication failure at the exit-OR (assuming the difference
l2−l1 is large). When we say that E : K×{0, 1}∗×C→ C

is a tweakable blockcipher (TBC) we mean that E(k, t, ·)
is a permutation on C for all k and t in its domain. Let
D = E−1 denote the inverse of E, meaning that D(k, t, y)
is the unique x such that E(k, t, x) = y.

Algorithm LBE [E, l1] is described in Fig. 4. The
user’s state is a vector of strings, one for each OR. The
innermost layer appends an all-zero string, the redun-
dancy, to the input message. The outer layers apply
the blockcipher directly to the input onion. Decryption
applies D and returns a decrypted result based on the
key’s exit-node flag. This flag, dropped into an OR’s
key by the key-generation algorithm, tells the OR if it
is the exit node. When the flag is one, it is, and the de-
cryption algorithm performs the needed integrity check;
otherwise, the check is skipped.

The original construction proposed by Mathewson
does not have the exit-node flag, and for any OR, as long
as the redundancy field is all zero, the OR will process
the message as a recipient. This is for compatibility with
the existing leaky-pipe design. For our definitions and
algorithm, we need the flag for satisfying correctness.

We now define security for a TBC in the sense of
a strong, tweakable PRP. The “strong” refers to the
adversary having both forward and backward access to
the primitive. Let CCAE denote the following game for
a TBC E: K × {0, 1}∗ × C → C. The game runs as fol-
lows. First a bit b ←← {0, 1} is flipped, a key k ←← K

is selected, and a function π : K × {0, 1}∗ × C → C is
chosen uniformly at random such that π(k, t, ·) is a per-
mutation for all k and t. An adversary is provided ora-
cles Encipher and Decipher that behave as follows.
If b = 1 then Encipher realizes E(k, ·, ·) and Deci-
pher realizes its inverse. If b = 0 then Encipher re-
alizes π(k, ·, ·) and Decipher realizes its inverse. When
the adversary is done it outputs a bit b′ and wins—
the game outputs 1—if b′ = b. We define the strong,
tweakable PRP-advantage of an adversary A attack-
ing E as Advsprp

E (A) := 2 Pr[CCAAE →1]− 1.

The following theorem states that LBE[E, l1] is
onion-AE secure if E is secure in the sense just defined
and l2− l1 is substantial (like 64–128 bits). The proof is
made more complex because a fundamental component
of the security definition (the SILENCE predicate) does
not have a computational specification. To get around
this we transform the abstractly defined games, OE1
and OE0, into equivalent but more complicated con-
cretely defined games, cOE1 and cOE0 (look ahead to
Fig. 11). See Appendix B for the proof.

Theorem 6.1. Fix 1 ≤ l1 < l2 and M = {0, 1}l1
and C = {0, 1}l2 . Fix a TBC E : K× {0, 1}∗ × C→ C.
Let Π = LBE [E, l1] and let A be an adversary attack-
ing Π. Suppose its running time is t and it asks at most
qE encryption queries and qD decryption queries. Sup-
pose A calls Key with input n. Then the proof of this
theorem specifies, in a black-box manner, an adversary B
that attacks E and whose advantage satisfies

Advsprp
E (B) ≥ (1/n) Advoe

Π (A)− qE

2l2−1 −
4 qD

n 2 l2−l1
.

Adversary B runs in time t+ c(nqE + qD) for some ab-
solute constant c, and it asks at most qE encryption
queries and qD decryption queries.

Instantiation. Mathewson already gave some guid-
ance on what a practical instantiation of LBE would
look like. In particular, there is no need for ORs to grow
their state with each onion received, nor for the user to
grow his state with each ciphertext sent. Instead, the
state ui can be of constant length, like 20 bytes. To ac-
complish this, one must select a good realization of the
TBC E.
In Tor, the ciphertext length (in Tor’s terminology, the
cell payload length) is 509 bytes. There are no widely-
deployed TBCs for that length. Still, constructions are
out there, including EME2 (also called EME*) [18, 19],
a wideblock TBC based on AES, and AEZ [20], an
arbitrary-input-length TBC based on the AES round-
function. Both of these constructions are incremental [2]
for the tweak in the following sense: given E(k, t, x) and
a fixed-length string s saved during its computation, one
can compute E(k, t || t′, x′) in time linear to |t′|+ |x′|.

While one would expect almost any well-designed
TBC to have the property just named, in fact, one
can always engineer what is needed into a TBC with
the help of a collision-resistant hash function. Namely,
given a collision resistant hash-function H : {0, 1}∗ →
{0, 1}t and a TBC E : K × {0, 1}t × C → C, de-
fine the TBC E∗ : K × ({0, 1}t)+ × C → C by as-
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procedure Correct′Π(k′,m′)
21 (k′0, k′1, . . . , k′n)← k′; (m′1, . . . ,m′`)← m′

22 u′, s′1, . . . , s
′
n ← ε

23 for i← 1 to ` do
24 c′i ← m′i
25 for j ← n to 1 do (c′i, s′j)← E ′(k′j , c′i, s′j)
26 (d′i, u′)← D′(k′0, c′i, u′)
27 return

∧
1≤i≤`

(m′i = d ′i )

Fig. 5. Inbound correctness condition.

serting that E∗(k, c1 · · · cm, x) = E(k, t, x) where t =
H(· · ·H(H(H(c1) || c2) || c3) · · · || cm).

Translating into English, every time a ciphertext
comes in, the OR hashes the concatenation of its cur-
rent state with the incoming onion. That is the tweak
which is used for the TBC, as well as the OR’s updated
state. It is straightforward to prove that the collision
resistance of H and the strong, tweakable PRP secu-
rity of E suffice for the strong, tweakable PRP security
of E∗ constructed in this way. In fact, this is exactly the
approach suggested by Mathewson in his proposal.

7 Extension 1: Inbound Flows
So far our modeling only covers the outbound direction
of onion routing. We describe how to extend our syntax
and games to model the inbound direction as well. We
do not prove the security of (an appropriately modified
variant of) LBE with respect to the resulting notion,
but doing so would appear to be routine.

Syntax. We begin by adding two new algorithms E ′

and D′ into our syntax, defining an extended OE
scheme Π as a five-tuple (K, E ,D, E ′,D′). The new algo-
rithms are deterministic and have the following syntax:
– E ′: K× (M ∪ C)× S→ C× S

– D′: K× C× U→ (M ∪ {♦})× U

In brief, the pair (E ′,D′) is the counterpart of (E ,D)
for inbound flows: each ORi receives either a mes-
sage m from the outside world (the exit OR) or an in-
put onion c from ORi+1 (the intermediate OR). It uses
an inbound key k′i and an inbound state s′i to compute
an output onion c′ ← E ′(k′i,m, s′i) (or c′ ← E ′(k, c, s′i)
for intermediate ORs). It delivers c′ to ORi−1 (OR0
is treated as the user here). The user, after receiving
an inbound onion c from OR1, uses his own inbound

key k′0 and inbound state u′ to compute a decrypted
result m← D′(k′0, c, u′), which is either a message in M

or an authentication failure symbol ♦.
We have assumed that for both the user and the

ORs there is an inbound key, OR state, and user state.
The initialization of these is the same as their outbound
counterparts: the states are set to ε and the keys are
sampled according to K. Thus the outbound and in-
bound directions are completely separated. Although
such a definitional choice is not mandatory, it allows an
easier formalization and reflects real-world applications.

Correctness. We formulate the inbound correctness
experiment Correct′Π in a way similar to the existing
outbound one. See Fig. 5 for details. We say an ex-
tended OE scheme Π is correct if for all n ∈ N, all
k ∈ K(n), and all m ∈M∗, both CorrectΠ(k,m) in Fig. 1
and Correct′Π(k,m) in Fig. 5 return true. That is, the
scheme is correct only if it correctly decrypts onions in
both directions.

Inbound security games. One can extend the prior
security games to cover the inbound direction. Instead
of modifying the code of Fig. 3 we choose to write a new
pair of inbound games iOE1 and iOE0 from scratch, and
define an extended OE scheme Π to be secure if both the
pair (OE1Π,OE0Π) and the pair (iOE1Π, iOE0Π) are in-
distinguishable, both pairs of games silenced using the
class of schemes C′ corresponding to the new correct-
ness condition. For any adversary with reasonable re-
sources we want both Advoe

Π (A) = Pr[AOE1Π → 1] −
Pr[AOE0Π → 1] and Advr-oe

Π (A) = Pr[AiOE1Π → 1] −
Pr[AiOE0Π → 1] to be small. See Fig. 6 for the code
of iOE1 and iOE0.

The separation of security into two notions needs
justification, since one must ensure security against at-
tacks where messages are routed in either directions and
in an arbitrary, interleaved fashion. Let us informally
explain why this is not a concern. Since we provide a
definition where the two flow directions use separate
variables, both keys and states, even if one constructs a
composite pair of games where both directions are mod-
eled altogether, the indistinguishability of them will end
up equivalent to the indistinguishability of the two pairs
of games. A standard hybrid argument would establish
that. The separate keys and states allow one to analyze
the security notions one at a time without a need to
worry about their interaction.
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Key(n′)
Game iOE1
(Real)

511 if n 6=⊥ then return Err
512 n← n′

513 (k0, . . . , kn)←←K(n)
Enc(c, i)

521 if n =⊥ then return Err
522 (c′, si)← E ′(ki, c, si)
523 return c′
Dec(c)

531 if n =⊥ then return Err
532 (d, u)← D′(k0, c, u)
533 return d

Key(n′)
Game iOE0
(Ideal)

611 if n 6=⊥ then return Err
612 n← n′

Enc(c, i)

621 if n =⊥ then return Err
622 c′←← C

623 return c′
Dec(c)

631 if n =⊥ then return Err
632 d← ♦
633 return d

Fig. 6. Utopian games for defining inbound onion-AE security. Games iOE1 and iOE0 have semantics almost identical to that
of OE1 and OE0 but now Enc models encryptions by the ORs and Dec models decryption by the user.

Key(n′)
Game eOE1
(Real)

711 if n 6=⊥ then return Err
712 n← n′

713 (k0, . . . , kn)←←K(n)
Enc(m)

721 if n =⊥ then return Err
722 (c0, c1, . . . , cn−1, u)← E(k0,m, u)
723 return (c0, c1, . . . , cn−1)
Dec(c, i)

731 if n =⊥ then return Err
732 (d, si)← D(ki, c, si)
733 return d

Key(n′)
Game eOE0
(Ideal)

811 if n 6=⊥ then return Err
812 n← n′

Enc(m)

821 if n =⊥ then return Err
822 else (c0, c1, . . . , cn−1)←← Cn

823 return (c0, c1, . . . , cn−1)

Dec(c, i)

831 if n =⊥ then return Err
832 return ♦

Fig. 7. Utopian games for defining eager-OE. Game eOE1 outputs everything honestly, while game eOE0 outputs freshly sampled
random strings for Enc queries and ♦ for Dec queries (after the circuit size has been initialization by a Key query). The games are
transformed by oracle silencing using the class of schemes C∗ associated to strong correctness.

8 Extension 2: Eager Authenticity
The authenticity notion captured by onion-AE is an
“only-at-exit” one: to satisfy our security definition, a
forged onion, regardless of its point of insertion, should
traverse the entire circuit until it reaches the exit node.
Only then is it quashed. This is implied by the game
logic of OE0, which always demands pseudorandom in-
termediate onions. In this section we explore an alter-

native aim: to immediately detect and quash a forged
ciphertext. We call this alternative eager-OE. We in-
tend, with eager-OE, that deviation from the honest
execution should result in a decryption failure as soon
as possible. Our task here is to formalize this deceptively
simple-to-state requirement.

Strong correctness. We first describe what we ex-
pect the utopian games to look like. The “real” utopian
behavior, game eOE1, does what it has to do: it follows
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procedure Correct∗Π(k,m)
(k0, k1, . . . , kn)← k; (m1, . . . ,m`)← m

u, s1, . . . , sn ← ε

for i← 1 to ` do
ci

n ← mi; (ci
0, c

i
1, . . . , c

i
n−1, u)← E(k0, c

i
n, u)

di
0 ← ci

0
for j ← 1 to n do (di

j , sj)← D(kj , d
i
j−1, sj)

return
∧

1≤i≤`

∧
1≤j≤n

(ci
j = di

j)

Fig. 8. Strong correctness condition. The syntax of E is ex-
tended so that it outputs a vector of intermediate onions (from
the outermost to the innermost).

the protocol. The “ideal” utopian behavior, game eOE0,
should instead do this: encryption queries should return
random bits, while decryption queries should return an
indication of an authentication failure, which we’ll con-
tinue to write as ♦.

Of course the specified games are utopian for the
same reason as OE: an honest execution is enough for
an adversary to determine if it is operating in the real or
ideal games—it simply observes whether the decryption
response is a string or ♦.

In the case of OE, we were able to delegate the
logic of exception handling to oracle silencing (honest
decryption at the exit OR). In the silenced games, or-
acles would behave as instructed, following the utopian
games, except when some generic condition, determined
by the correctness condition, demanded that the ora-
cles return a distinguished value ⊥. That won’t work
for eager-OE, since now the exceptional cases include
honest decryption at intermediate ORs, which is not
silenced with respect to the correctness condition we
used so far. We thus need a stronger correctness con-
dition, one that demands the equivalence of not only
the final decrypted message, but also the intermedi-
ate onion values. We approach this by extending the
syntax of E so that it outputs not only an outermost
onion c0, but also intermediate onions c1, c2, . . . , cn−1,
with the number of encryption layers from n − 1 to 1:
(c0, c1, . . . , cn−1;u′)← E(k0,m, u).

The new correctness condition is formalized in
Fig. 8. We denote the class of all OE schemes Π (with
the modified encryption syntax) satisfying this condi-
tion (for all n ∈ N, all k ∈ K(n) and all m ∈ M∗,
Correct∗Π(k,m) in Fig. 8 is true) as C∗. We call this the
strong correctness condition. We then call the original
correctness condition (Fig. 1) the weak correctness con-
dition.

procedure Correct∗∗Π (k,m)
(k1, . . . , kn)← k; (m1, . . . ,m`)← m

u1, . . . , un, s1, . . . , sn ← ε

for i← 1 to ` do
ci

n ← mi;
for j ← n to 1 do (ci

j−1, uj)← E(kj , c
i
j , uj)

di
0 ← ci

0
for j ← 1 to n do (di

j , sj)← D(kj , d
i
j−1, sj)

return
∧

1≤i≤`

∧
1≤j≤n

(ci
j = di

j)

Fig. 9. Layered correctness condition. The syntax is that of lay-
ered OE schemes.

eOE games. We are now ready to write the code of eOE1
and eOE0, which, with the help of the strong correctness
condition becomes almost trivial. See Fig. 7.

The interesting change is the Enc oracle. With E
now outputting a vector of onions, the Enc oracle in
both worlds are changed accordingly—the real world
outputs the whole vector of real onions while the ideal
world samples a vector of mutually independent strings
in Cn. Note that such a change from a single outermost
onion to the whole vector is necessary for oracle silencing
to capture honest decryption on intermediate ORs—we
need to include intermediate onions in the query history.

The changed oracle syntax does not model the real-
world setting closely; in practice, an adversary does not
learn the intermediate onions by coaxing a user into
encrypting a chosen message. But these values can be
learned by forwarding onions along the circuit, making
honest Dec queries. The change still seems meaningful.
The Enc oracle now provides the adversary not only
what the user would output to OR1, but, also, the in-
termediate onions to OR2, . . . ,ORn that it would learn
from an honest run. In this way, honest Dec queries do
not give an adversary useful information, as they return
onions already included in previous Enc responses, and
will always be silenced.

Open questions. Beside LBE, Mathewson [25] also in-
troduced a second encryption scheme for Tor’s relay
protocol called short-MAC-and-pad. Unlike LBE, this
algorithm apparently targets eager authentication. It
should be possible to analyze it against the eager-OE
notion. We leave its analysis as a future work, but con-
jecture that it should satisfy eager-OE under reasonably
standard assumptions. There would appear to be fur-
ther alternatives for achieving eager-OE, including an
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Cor(n′, T ′)
Game xOE1
(Real)

911 if n 6=⊥ then return Err
912 if T * [n′] then return Err
913 (n, T )← (n′, T ′)
914 (k1, . . . , kn)←←K(n)
915 return {(i, ki) : i ∈ T}
Enc(m)

921 if n =⊥ then return Err
922 cn ← m

923 for i← n to 1 do
924 (ci−1, ui)← E(ki, ci, ui)
925 return (c0, c1, . . . , cn−1)
Dec(c, i)

931 if n =⊥ then return Err
932 if i ∈ T then return Err
933 (d, si)← D(ki, c, si)
934 return d

Cor(n′, T ′)
Game xOE0
(Ideal)

1011 if n 6=⊥ then return Err
1012 if T * [n′] then return Err
1013 (n, T )← (n′, T ′)
1014 (k1, . . . , kn)←←K(n)
1015 return {(i, ki) : i ∈ T}
Enc(m)

1021 if n =⊥ then return Err
1022 for i← n to 1 do
1023 if i ∈ T then (ci−1, ui)← E(ki, ci, ui)
1024 else ci−1←← C

1025 return (c0, c1, . . . , cn−1)
Dec(c, i)

1031 if n =⊥ then return Err
1032 if i ∈ T then return Err
1033 if i = n then return ♦
1034 c←← C

1035 return c

Fig. 10. Utopian games for defining OE in the face of static corruption of ORs. Games xOE1 and xOE0 extend OE1 and OE0
by replacing Key with Cor, which combines the modeling of key generation and static corruption together. In these games, Π =
(K, E, D) is a layered OE scheme.

embellishment of LBE that adds pairwise AE between
successive ORs.

9 Extension 3: Corrupted ORs
As our final extension to OE, we discuss an approach
to model corrupted ORs. Our corruption model is
static: the adversary can ask one and only one oracle-
corruption query, corrupting at that time all the ORs it
wishes to. Corruption is done prior to asking encryption
or decryption queries.

Layered OE scheme. We first introduce a further syn-
tactic change to an OE scheme: based on the idea of
strong correctness, we consider a model where a user’s
encryption not only outputs a vector of intermediate
onions, but also keeps a vector of separate encryption
keys and states. Effectively, we remove the abstraction
of user’s encryption key as a single element k0. A user
in this new model would instead share n secret keys
(k1, . . . , kn) with the ORs and the encryption operation
can now be expressed as a composition of multiple lay-

ers. Concretely speaking, an OE scheme Π = (K, E ,D)
has its syntax changed to what we call a layered OE
scheme, as follows:
– K: N → K∗ is a probabilistic algorithm that, given

a circuit size n ≥ 1, outputs a list of n strings
in K ⊆ {0, 1}∗. Note the difference from ordinary
OE schemes where n+ 1 strings are generated.

– E : K × (M ∪ C) × U → C × U is a deterministic
function that takes in a partial user key ki ∈ K,
either a plaintext m ∈ M or an intermediate onion
c ∈ C, and a user state u ∈ U. It outputs an onion
c′ ∈ C with an additional layer and an updated user
state u′ ∈ U.

– D: K× C× S→ (M∪ C∪ {♦})× S is a deterministic
function. It takes in a key k ∈ K, an input onion
c ∈ C, and an OR state s ∈ S. It returns a decrypted
result d and an updated OR state s′ ∈ S. This is the
only algorithm whose semantics remains unchanged
from ordinary OE schemes.

The correctness condition of a layered OE scheme is
defined in the same way as strong correctness condition:
in an honest execution, all the intermediate onions must
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be equivalent. Formally, a layered OE scheme Π satisfies
the layered correctness condition if for all n ∈ N, all
k ∈ K(n), and allm ∈M∗, the predicate Correct∗∗Π (k,m)
in Fig. 9 is true. The class of all correct layered OE
schemes is denoted C∗∗.

Ideal encryption oracle. With the modified syn-
tax and layered correctness condition in place, the code
of utopian games modeling static corruption, xOE1
and xOE0, are given in Fig. 10. A layered encryption
scheme Π is OE-secure with respect to static corrup-
tion if any adversary with a reasonable amount of re-
source cannot distinguish xOE1Π and xOE0Π, the si-
lencing done with respect to C∗∗.

Most parts of the code are self-explanatory. The
most noteworthy point is the Enc oracle’s behavior in
the ideal world: it computes real encryption for the cor-
rupted layers and samples fresh random strings for the
honest layers. For corrupted layers there is no hope for
achieving any semantic security, due to the leak of secret
keys. In fact, this is this definitional choice that drove
us to the formulation of a layered correctness condition.

Open questions. We leave the analysis of LBE against
the notion described, xOE, as a future problem. We con-
jecture that it should satisfy xOE, with an analysis sim-
ilar to that in Appendix B.

10 Conclusions
We end with some brief remarks on the limitations of
our formalization for onion encryption, and our basic
view as to what we have done.

First, we remind the reader that our setting is differ-
ent from the actual one used in Tor insofar as our syntax
disallows plaintexts to exit anywhere but at the end of a
circuit. Modeling Tor’s “leaky-pipe” possibility (which
we did in earlier versions of this paper) added consider-
able complexity, and we questioned its value. With early
exit the correctness condition becomes a game that the
adversary can win by getting onions to exit where they
ought not. The added complexity infects everything.

We acknowledge that our formulation of oracle si-
lencing is by no means the only one possible. Several
alternative formulations to that of Fig. 2 are possible,
and we don’t yet know how they compare.

While oracle silencing appears to be a powerful tech-
nique for simplifying or justifying some security notions,
it is no magic bullet. We don’t yet have very good in-
tuition for precisely what one gets when one defines a

utopian game and then “mods out” by a correctness
condition. Also, in order to use a definition obtained by
oracle silencing it seems that one will usually need to
provide an alternative and more concrete characteriza-
tion. It is a fair complaint that some of the simplicity
of oracle silencing is deceptive, some of the complexity
being pushed off into the concrete game that is later
needed and the proof of its equivalence to the silenced
game, and with further complexity hidden in the for-
mal definition of when silencing occurs. Then again, the
same complaints can be made of other powerful defini-
tional frameworks, like UC.

We believe that Tor is the most important privacy
tool currently in existence, and find it unfortunate that
what was arguably the most basic aspect of it, its use
of nested encryption, has lacked a compelling crypto-
graphic definition. We have wanted to help set this right.
We believe in the importance of foundations for real-
world privacy problems. Cryptographic experience in a
diverse set of domains suggests to us that a crucial first
step towards improving practice may be to back away
from the the realm of techniques and figure out what
problem those techniques aim to solve. Nested encryp-
tion, properly realized, is the answer to a question that
has eluded being asked: the question of how to con-
struct a scheme that realizes authenticated encryption
in a world where decryption happens using a chain of
separately keyed entities.
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A Concrete OE Games
In this section we develop concrete games cOE1 and
cOE0 corresponding to the silenced games OE1 and
OE0. This will be necessary for establishing the security
of LBE. See Fig. 11 for the concrete games’ code. The
games are identical to the utopian OE1 and OE0 except
that each oracle records its queries and responses into
a query history, and the Dec oracle, before responding,
first computes a concrete silencing predicate Ψ to decide
whether or not to silence the response.

Concrete silencing predicate. We explain the se-
mantics of Ψ in Fig. 11. At a high level, it identifies those
Dec queries at the exit OR (line 1319) such that all
queries so far form a stack of end-to-end chains. Specif-
ically, the code first runs through all (xi, yi) pairs and
records them in several tables. These tables share the
same indexing convention: the first index models time
and gets incremented for various types of queries, while
the second index refers to OR indices. When the sec-
ond index is j, it either refers to entities decrypted “out
of” ORj (as with entries of D) or onions with outermost
layer for ORj+1 (as with entries of S). After the record-
ing, the final if-clauses inspect them to check whether
at all previous rows the “chain” actually forms—there
is an Enc query at the row (line 1320) and Dec queries
join end-to-end with the Enc query’s response (line 1321
and 1322). Once this chaining condition is met, the
predicate also makes sure there is no chained-♦: a previ-
ous Dec query at the last OR that returns ♦ but satisfies
the chaining condition (this can only occur in the ideal
world). Above all, the predicate returns true when the

chaining condition (line 1319 to 1322) is met, and there
is no chained-♦ (line 1323). See Fig. 12 for a graphical
illustration of the chaining condition.

We write Chain1(n) to denote the chaining condi-
tion: for 1 ≤ i ≤ n and query history (x1, y1, . . . , xq),
the predicate Chain1(i) is defined as:

Chain1(i) =
(
xq.idx = i

)
∧
(
v ≥ wi

)
∧(

(∀t ∈ [wi])Ct = S[t][0]
)
∧(

(∀t ∈ [wi] ∀j ∈ [i− 1])D[t][j] = S[t][j]
)
,

where v, w, C, S and D are as defined in the bottom
row of Fig. 11. The predicate Chain2 is identical to Ψ in
Fig. 11 except that line 1323 is negated:

Chain2 = Chain1(n) ∧ (∃t ∈ [wn − 1])D[t][n] = ♦.

Alternative characterization of onion-AE. The
following lemma proves useful in order to work with our
rather abstract definition onion-AE security.

Main Lemma. [Equivalence of OE and cOE] Let C be
the class of all correct OE schemes and let (OE1,OE0)
be the silenced games of (OE1,OE0) with respect to C.
Then OE1 is identical to cOE1 and OE0 is identical to
cOE0.

The lemma effectively corroborates the correctness
of the complex logic embodied in the code of cOE1 and
cOE0. It does this by equating the games to the ab-
stract silenced ones defined, more convincingly, by the
oracle-silencing technique. We expect this to be a typi-
cal usage of oracle silencing: the abstract nature of the
silenced games makes the definition hard to work with,
so one must first propose a concrete version and prove
it “right” by equating the two definitions. From a differ-
ent point of view, the tractability of the oracle-silencing
function (the fact that the adversary itself could easily
compute it) addresses the generic concern that oracle-
silencing ought not be used with a correctness condition
that leads to the adversary being provided information
(in the silencing or non-silencing of oracles) that the
adversary could not compute on its own.

Proof. Since the game logic of OE1 (resp. OE0)
and cOE1 (resp. cOE0) are identical except for the con-
dition of when to silence a query (silencing refers to
replacing a query response with ⊥), it suffices to show,
for the two versions of games, that their silencing condi-
tions (on the query history) are identical. In the follow-
ing, we refer to the silencing condition in OE1 and OE0
the abstract silencing condition; while that in cOE1
and cOE0 the concrete silencing condition. Recall that

https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
http://archives.seul.org/or/dev/Mar-2012/msg00019.html
http://archives.seul.org/or/dev/Mar-2012/msg00019.html
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Key(n′)
Game cOE1
(Real)

1111 if n 6=⊥ then return Err
1112 q ← 0
1113 n← n′

1114 (k0, . . . , kn)←←K(n)
Enc(m)

1121 if n =⊥ then return Err
1122 q++
1123 (c, u)← E(k0,m, u)
1124 (xq.type, xq.msg, yq)← (Enc,m, c)
1125 return c
Dec(c, i)

1131 if n =⊥ then return Err
1132 q++
1133 (d, si)← D(ki, c, si)
1134 (xq.type, xq.ctxt, xq.idx, yq)← (Dec, c, i, d)
1135 if Ψ(n, x1, y1, . . . , xq−1, yq−1, xq) then yq ←⊥
1136 return yq

Key(n′)
Game cOE0
(Ideal)

1211 if n 6=⊥ then return Err
1212 q ← 0
1213 n← n′

Enc(m)

1221 if n =⊥ then return Err
1222 q++
1223 c←← C

1224 (xq.type, xq.msg, yq)← (Enc,m, c)
1225 return c
Dec(c, i)

1231 if n =⊥ then return Err
1232 q++
1233 if i = n then d← ♦
1234 else d←← C

1235 (xq.type, xq.ctxt, xq.idx, yq)← (Dec, c, i, d)
1236 if Ψ(n, x1, y1, . . . , xq−1, yq−1, xq) then yq ←⊥
1237 return yq

Ψ(n, y1, . . . , xq−1, yq−1, xq):

1311 v ← 0
1312 for i ∈ [n] do wi ← 0
1313 for i ∈ [q − 1] do
1314 if xi.type = Enc then v ← v + 1;
1315 (Mv, Cv)← (xi.msg, yi)
1316 else j ← xi.idx; wj ← wj + 1;
1317 (S[wj ][j − 1], D[wj ][j])← (xi.ctxt, yi)

1318 wn++; S[wn][n− 1]← xq.ctxt
1319 return xq.idx = n ∧
1320 v ≥ wn ∧
1321 (∀t ∈ [wn])Ct = S[t][0] ∧
1322 (∀t ∈ [wn] ∀j ∈ [n− 1])D[t][j] = S[t][j] ∧
1323 (∀t ∈ [wn − 1])D[t][n] 6= ♦

Fig. 11. Concrete games cOE1 and cOE0 and the concrete silencing predicate Ψ on which they rely. In both games, for Dec, we
apply Ψ to the query history so far and silence the response if it evaluates to true.

ENC( · )

M1

C1

M2

C2

DEC( · , 1) DEC( · , 2) DEC( · , 3)

D[1][1]
S[1][0]

D[2][1]
S[2][0]

S[1][1]
D[1][2]

S[2][1]
D[2][2]

S[2][2]
D[1][3]

xq = S[2][2]
┴

Silenced

ENC( · )

M1

C1

M2

C2

DEC( · , 1) DEC( · , 2) DEC( · , 3)

D[1][1]
S[1][0]

D[2][1]
S[2][0]

S[1][1]
D[1][2]

S[2][1]
D[2][2]

S[1][2]
D[1][3]

xq = S[2][2]

yq

Unsilenced

Fig. 12. Illustration of the chaining condition. The yellow boxes stand for Enc queries and the green ones for Dec queries.
The dashed lines joining adjacent boxes imply that the left output and the right input are equal.
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K(n)

1411 for i← 1 to n do
1412 ki.key←←{0, 1}
1413 ki.id← i

1414 ki.exit← 0
1415 kn.exit← 1
1416 k0 ← (k1, . . . , kn)
1417 return (k0, . . . , kn)

E(k,m, u)

1421 n← |k|
1422 c← m || 0l2−l1

1423 for i← n downto 1 do
1424 c← F(ki.key, i, ui, c)
1425 ui ← ui || c
1426 u← (u1, u2, . . . , un)
1427 return (c, u)

D(k, c, s)

1431 c′ ← F−1(k.key, k.id, s, c)
1432 s← s || c
1433 if k.exit = 1 and
1434 c′[l1 + 1..l2] = 0l2−l1 then
1435 return (c′[1..l1], s)
1436 if k.exit = 1 then
1437 return (♦, s)
1438 return (c′, s)

Fig. 13. Code for AOE[F, l1], an artificial scheme used in the proof of the main lemma. Here F is a tweakable permuta-
tion on {0, 1}l2 .

the abstract silencing condition is a conjugation of Fixed
and Nondegenerate; the concrete silencing condition is a
conjunction of Chain1(n) and ¬Chain2, where n is the
circuit size as initialized by the Key query.

We first show Chain1(n) ∧ ¬Chain2 ⇒ Fixed ∧
Nondegenerate. The easy part is Chain1(n) ⇒ Fixed.
Let (x1, y1, . . . , xj−1, yj−1, xj) be the query history so
far, by the correctness condition of OE, for any Π ∈
C, if Chain1(n) is satisfied by the history then for
any Γ such that GivesOE1,Π,C(x1, y1, . . . , xj−1, yj−1; Γ),
we have OE1Π(x1, x2, . . . , xj ; Γ) equal to the message
queried in the corresponding Enc query, which is deter-
mined by the history. That implies Fixed is satisfied.

It remains to show ¬Chain2 ⇒ Nondegenerate. In
fact, we are going to show a stronger result, that
¬Chain2 ⇔ Nondegenerate and ¬Chain1(n) ∧ ¬Chain2 ⇒
¬Fixed. We establish this by constructing an artificial
OE scheme AOE ∈ C out of the query history. This
will prove the reverse direction that the abstract silenc-
ing condition implies the concrete silencing condition as
well, hence concluding the proof.

See Fig. 13 for the code of AOE. Basically, it uses
a generic tweakable permutation F to perform the com-
putation. In particular, the key space is simply {0, 1},
while the tweak consists of the OR’s ID (from 1 to n)
and the concatenation of this OR’s ciphertext history.
For convenience, we sometimes subscript the key input
of F and write F0 and F1 instead. Note that AOE is very
similar to LBE and indeed LBE can be viewed as a spe-
cialization of AOE where F is independent of ORs’ IDs.
In the following, we will use the same variable notations
as those in the bottom row of Fig. 11.

Suppose Chain2 is true, namely there is a Dec query
for which the chaining condition is met yet its response
is ♦. It is easy to see such an event can only occur in
cOE0, for in cOE1 the response would have been either

the original queried message or ⊥ by the correctness
condition and the game logic. Therefore, we conclude
Chain2⇒ ¬Nondegenerate.

Next suppose Chain2 is false, define F in terms of
the query history in the following way. Initially, all the
ORs are synced. By an ORi being synced, we mean its
encryption history ui and decryption history si are iden-
tical. In fact, there will be two versions (for the two key
values) of the user states ui,0 and ui,1 and OR states si,0
and si,1. We next specify, for each Enc query in turn,
one or two input-output value pairs for each ORi at
certain tweak values of F0 and F1.

During the specification we also maintain the in-
variant that ORj being synced implies all ORi (i ≤ j)
being synced. The specification goes like this: for the
t-th Enc query and response (Mt, Ct): for all synced
ORi (1 ≤ i ≤ j), if S[t][i − 1] = D[t][i − 1] (here D[t][0]
refers to Ct), then ORi keeps synced and we specify both
F0(i, ui,0, D[t][i]) ← S[t][i − 1] and F1(i, ui,1, D[t][i]) ←
S[t][i − 1]. (In case D[t][i] ∈ {♦,⊥} or does not exist,
which is possible when i = n, let D[t][i] be Mt || 0l2−l1

instead). Meanwhile, we update the states ui,k to
ui,k ||S[t][i − 1] accordingly for k ∈ {0, 1}. For the
first ORm such that either S[t][m − 1] 6= D[t][m − 1]
(the input ciphertext deviates from the decrypted re-
sult from the predecessor OR or there is no correspond-
ing Dec query hence no S[t][m − 1]) or ORm is un-
synced, if m < n, choose two distinct L0[t][m] and
L1[t][m] that are different from S[t][m] and D[t][m],
and specify Fk(m,um,k, Lk[t][m]) ← D[t][m − 1] for
k ∈ {0, 1}; if m = n, let both L0[t][m] and L1[t][m]
be Mt || 0l2−l1 and do the same. Finally, for all remain-
ing ORi apply similar specifications: as long as the OR
is not the exit one choose distinct Lk[t][i] and specify
Fk(i, ui,k, Lk[t][i])← Lk[t][i−1] for k ∈ {0, 1}; otherwise
simply let Lk[t][i] be Mt || 0l2−l1 . Note in this way, the
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invariant that the synced ORs are always at the left-
most are maintained, and its number can only decrease.
Next, for each Dec query (c, d) at ORi: if d ∈ {0, 1}l2
let Fk(i, si,k, d) ← c for k ∈ {0, 1}; if d ∈ {0, 1}l1 let
F−1

k (i, si,k, c) ← d || 0l2−l1 for k ∈ {0, 1}; if d = ♦ let
F−1

k (i, si,k, c) ← ♦ for k ∈ {0, 1}. Last but not least,
for the last query xq, if it is an Enc query choose two
distinct responses in C distinct from S[v][0]; if it is an
Dec query on ORi choose two distinct responses distinct
from S[v][i], L0[v][i], L1[v][i], and Mv if present.

The above specification only partially defines F
at some domain points. For completing the definition,
we simply specify arbitrary values on other undefined
points. A simple induction on the number of Enc queries
show that ¬Chain2 implies the following are true:
– The partial specification is consistent: there are no

two specifications for F such that the same input
gets mapped to distinct outputs; nor are there any
specification for F−1 that are contradictory to F.
This means the complete definition as mentioned
above is well defined.

– When Chain1(n) is true, the given construction AOE
can generate the history (x1, y1, . . . , xj−1, yj−1) for
both k ∈ {0, 1} in cOE1. This means Chain1(n) ∧
¬Chain2⇒ Nondegenerate.

– When Chain1(n) is false, the given construction AOE
not only satisfies the previous point, but also gen-
erates distinct responses for k = 0 and k = 1 for the
last query xj . This means ¬Chain1(n) ∧ ¬Chain2 ⇒
¬Fixed.

The above three points conclude the proof.

B Proof of Theorem 6.1
Proof. We will be constructing an adversary B for which

Advoe
Π (A) ≤ n ·Advsprp

E (B) + qE ·
n

2l2−1

+ qD

(
3

2l2
+ 1

2l2−l1

)
, (1)

from which the result follows after a bit of manipula-
tion. In broad outline, we employ a hybrid argument
to replace the underlying TBC with a string-tweaked
purely random permutation, and then we analyze that
construction to show that no adversary will have any
advantage unless it induces some bad events to occur.
We bound the probability of those bad events.

By the hybrid argument, we construct B in the fol-
lowing way:

– Initially, run adversary A and get its intended cir-
cuit size n. Randomly choose an OR j←←[n]. Initial-
ize ui and si for each i ∈ [n], and ki for i ∈ [n]−{j}.
Note that B can simulate cOE1Π except computa-
tions involving kj .

– Upon an Enc query m from A, simulate a hybrid it-
erative encryption E as follows. For the layer before
the j-th router, simulate a purely random string-
tweaked permutation and use that to replace E; for
the honest layer after the j-th router, simulate the
real E; for the j-th layer, query the Encipher oracle
with uj as the tweak. Finally, update the user state
and return the outermost onion to A.

– Upon a Dec query (c, i) from A, simulate it accord-
ing to the code of cOE1Π with all layers before j
replaced by purely random string-tweaked permu-
tations; all layers after j as real D; and the very j-th
by querying Decipher oracle with sj as the tweak.
Finally, update the server state si accordingly.

– Upon receiving the final bit b from A, return to the
challenger b.

Let us analyze the behavior of B. First, note that
when B’s oracles realize the real TBC, what A sees is a
variant of cOE1Π where all layers before and excluding
the j-th layer have their underlying TBCs replaced by
purely random tweakable permutations. On the other
hand, when B’s oracles realize purely random string-
tweaked permutations, what A sees is a similar variant,
but this time with all layers before and including the
j-th layer replaced.

We use Gi to denote the variant of cOE1Π where all
layers before and including the i-th layer are replaced.
In this way, G0 denotes the original cOE1Π while Gn de-
notes a variant where all underlying TBCs are replaced.
Applying standard hybrid argument:

Advsprp
E (B) ≥ 1

n

(
Pr[AG0 ⇒ 1]−Pr[AGn ⇒ 1]

)
= 1
n

(Advoe
Π (A)− (Pr[AGn ⇒ 1]

−Pr[AcOE0 ⇒ 1]))

It remains to upper bound Pr[AGn ⇒ 1] −
Pr[AcOE0 ⇒ 1]. For this purpose, notice that in game
Gn, all onion layers use purely random string-tweaked
permutations. Since each Enc and Dec query appends
the user and router states, the successive oracle queries
of the same type never repeat the same tweak and hence
are mutually independent. Therefore, for each OR, the
corresponding permutation is sampled with the same



Onion-AE 19

tweak at most twice: one from an Enc query and the
other from a Dec query. Our analysis makes use of that
and rewrites most of the code into fresh string sampling,
so that Gn can be made “identical-until-bad” to cOE0.
See Fig. 14. We remark that although the re-writing
does not alter the semantics of Gn, it does alter the se-
mantics of cOE0 due to the assignment in line 1535. We
will come to this point later.

To express the above idea in the code, we introduce
a new variable T , indexed by a state string s and an
OR-index i. Table T [i, s] records the first sampled input-
output pair of the tweakable permutation for tweak s

and ORi. This sampling results from either an Enc

query or a Dec one, depending on which goes first in
using s as the tweak.

It remains to bound the probability of bad events,
which, in terms of code, are the conditions of the if-
statements before every boxed statements in Fig. 14.

We begin with the Enc query.
Line 1519: Informally, this line is reached when pre-

viously there was a Dec query that sets an entry in T

and the current Enc query happens to have a collid-
ing input for the outermost layer, resulting in an out-
put that is not freshly sampled. We now argue that this
event is unlikely, based on the assumption that no previ-
ous Dec query produced a decrypted result in M that was
not silenced. We analyze the probability of that event
later, and merely assumes it has not taken place here.

In Line 1517, Li has three possible origins: line 1511,
line 1513, and line 1518 (before any boxed events oc-
cur). For line 1511, by the assumption of no previous
unsilenced decrypted results in M, a colliding Li+1 orig-
inating from line 1511 can only occur with probability
at most 2−l2 , because any information about this collid-
ing Li+1 with l2− l1 trailing zeros (sampled in line 1531
in a Dec query which first accessed T [i, u[i]]) must have
been silenced. For the other cases, consider the layer
i + 1, since line 1513 results in independent samplings,
whenever Li+1 comes from such a sampling, the proba-
bility of collision is 2−l2 . If Li+1 otherwise comes from
line 1518 the problem reduces to bounding the prob-
ability of Li+1 = L′i+1. An inductive argument shows
that the final probability of collision is at most nqE/2l2

throughout the game (on the assumption that no pre-
vious unsilenced decrypted results in M, and no boxed
events occurred so far).

Line 1522. The if-event is a simple collision of a
fresh independent string, so its probability is bounded
by nqE/2l2 across the game.

We next analyze the Dec query.

Line 1535: Since m gets some value that is not
freshly sampled, it is necessary to argue that such a
non-random assignment does not allow the adversary
to see any difference from cOE0. That is, if m is going
to be returned to the adversary, it has to be uniformly
random and independent from what the adversary has
learned. Our argument goes in two steps:
– With probability at least 1− 2−l2 , reaching to m =

m′ in line 1535 implies Chain1(i).
– In the likely event of Chain1(i), the assigned valuem′

either is uniformly random and independent from
what the adversary has learned, or it is going to be
silenced.

For the first step, suppose at some time when line 1535 is
reached Chain1(i) is false. Consider the first time when
such an event takes place: the only possibility is that
the adversary deviated from the “staircase order” and
queried c directly on an inner layer. However, since Enc

only returns the outermost sampling, and the inner lay-
ers can only be learned by asking Dec in the correct
staircase order (the only line of Dec returning a “non-
fresh” string is line 1535), the information about c′ is
hidden from the adversary and thus the probability of
c = c′ is at most 2−l2 .

The second argument follows partly from the above.
Namely, apart from the innermost layer, m′ must have
come from a sampling in line 1513 of the Enc oracle
(assuming no boxed events occurred so far), which is
uniformly random. The remaining case is the innermost
honest layer, for which we will show that with high
probability, the predicate Ψ will be true, namely the re-
sponse would be silenced. First, the chaining condition
is satisfied by condition already, and therefore all previ-
ous Dec queries at the exit satisfy the chaining condi-
tion as well. Now suppose at some previous Dec query
there is a chained-♦, then at the point of this query,
it cannot satisfy the chaining condition since otherwise
that would contradict to the game’s logic (a chained
Dec query at the exit should return a message). By the
same argument, such an event occurs with probability
at most 1/2l2 . Applying union bound, we conclude for
line 1535, the probability that the adversary gains any
information-theoretic advantage throughout the game
execution is bounded by 2qD/2l2 .

Line 1536 and 1538: We have seen that as long as
the response is not silenced, it always appears freshly
uniform to the adversary. Therefore the two kinds of
events together are bound by qD(2−l2 + 2−(l2−l1)).

Finally, it remains to analyze the probability of un-
silenced decrypted result in M. Observe that this is ex-
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Enc(m)

1511 Ln ← m || 0l2−l1

1512 for i← n downto 1 do
1513 Li−1←←{0, 1}l2
1514 if T [i, ui] = undef then T [i, ui]← (Li, Li−1)
1515 else
1516 (L′i, L′i−1)← T [i, ui]
1517 if Li = L′i then
1518 Li−1 ← L′i−1
1519 if i = 1 then
1520 Li−1←←{0, 1}l2
1521 else
1522 if Li−1 = L′i−1 then
1523 Li−1←←{0, 1}l2/{L′i−1}
1524 ui ← ui ||Li−1
1525 return L0

Dec(c, i)

1531 m←←{0, 1}l2
1532 if T [i, si] = undef then T [i, si]← (m, c)
1533 else
1534 (m′, c′)← T [i, si]
1535 if c = c′ then m← m′

1536 else if m = m′ then m←←{0, 1}l2 − {m′}
1537 si ← si || c
1538 if i = n and m[l1 + 1..l2] = 0l2−l1 then
1539 return m[1..l1]
1540 else if i = n then return ♦
1541 return m

Fig. 14. Rewritten code for Gn (with dashed box and without solid box) and OE0 (with solid box and without
dashed box), used for bounding the adversarial advantage in distinguishing them. The semantics of Gn is preserved
while the semantics of cOE0 is not due to line 1535.

actly the event of line 1539. So the bad events already
contain unsilenced results in M, thus no need to include
it again.

Formula 1 is now established by summing the above
probabilities and substituting that sum as the upper
bound for Pr[AGn ⇒ 1]−Pr[AOE0 ⇒ 1].
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