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Abstract

In this paper we propose a novel protocol that allows suppliers and grid operators to collect
users’ aggregate metering data in a secure and privacy-preserving manner. We use secure multiparty
computation to ensure privacy protection. In addition, we propose three different data aggregation
algorithms that offer different balances between privacy-protection and performance. Our protocol
is designed for a realistic scenario in which the data need to be sent to different parties, such as
grid operators and suppliers. Furthermore, it facilitates an accurate calculation of transmission,
distribution and grid balancing fees in a privacy-preserving manner. We also present a security
analysis and a performance evaluation of our protocol based on well known multiparty computation
algorithms implemented in C++.

1 Introduction

The Smart Grid (SG) is the electrical grid of the future, adding a communication network to the tra-
ditional electrical grid infrastructure. This allows bidirectional communication between the different
entities and components of the grid, facilitating automated grid management. The overall aim is to make
the electrical grid more reliable and efficient [1]. This is achieved by automatically collecting fine-grained
metering data from Smart Meters (SMs), which replace the traditional electricity meters. These metering
data include electricity consumption and production measurements. Electricity production takes place if
households own a Distributed Energy Resource (DER), e.g., solar panels. All these data are sent to the
grid operators and suppliers several times per hour.

Access to fine-grained metering data gives entities two main advantages. Firstly, these data allow
suppliers to predict their customers’ electricity consumption and production more accurately. These con-
sumption and production patterns are essential to allow the supplier to predict the amount of electricity
it needs to buy on the wholesale market for every trading period. Since suppliers pay heavy imbalance
fees for every deviation of the actual consumption compared to their prediction, it is crucial for them to
obtain accurate consumption and production patterns. Secondly, fine-grained metering data also allow
accurate settling of all the fees after each trading period. Currently, the imbalance fees for the sup-
pliers are calculated proportional to their number of customers in each neighbourhood - i.e. a group of
households connected to the same electrical substation. The current imbalance fee is only an estimate.
With SM data, accurate settling of fees becomes possible. The same is true for the distribution and
transmission fees which suppliers pay to the Distribution Network Operator (DNO) and Transmission
System Operator (TSO).

Unfortunately, fine-grained metering data also have disadvantages: they pose a serious privacy threat
to users. Any entity having access to individual users’ fine-grained metering data can use non-intrusive
load monitoring techniques [2] to analyse consumption patterns and infer user activities [3]. As a simple
example of how such a privacy invasion can lead to adverse consequences, consider an insurance company
which increases the insurance fee if they learn from the consumption pattern that their customers do
not sleep the recommended eight hours per night. Further illustrating the importance of this issue, the
Netherlands have abandoned their planned mandatory roll-out of SMs because of the privacy issues [4].

The UK has privacy protection as a requirement for their smart metering architecture [5]. However,
their proposed architecture contains a centralised entity, the Data Communications Company (DCC), that
collects all metering data and provides a privacy-friendly version of it to authorised entities. Although
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this might ensure privacy protection against these entities (if the privacy-friendly version is properly
generated), it does not protect against the DCC which has access to all users’ data.

There are two main approaches for user privacy protection: anonymisation and data aggregation.
Proper anonymisation is difficult to achieve, as de-anonymisation is almost always possible [6]. Aggrega-
tion is a better approach, but the current proposals [7–9] still have shortcomings: (i) they are designed
for system models in which data are sent to only one entity, thus they are not applicable to current
electricity markets, (ii) they do not consider electricity generated by residential DERs and injected to
the grid, and (iii) they do not support transmission, distribution and balancing fee calculation.

In this paper we propose a secure and privacy-preserving protocol for collecting metering data. This
work extends our previous research [10] by improving the data aggregation algorithm. Our main contri-
butions are twofold:

• We design a secure and privacy-preserving protocol for collecting operational metering data which
is required for calculating distribution, transmission and imbalance fees. Our protocol uses Multi-
party Computations (MPC) as the underlying cryptographic primitive and supports three different
privacy-friendly data aggregation algorithms.

• We analyse the computational complexity and communication cost of our protocol in a realistic
setting based on the UK’s smart metering architectue [5].

The remainder of the paper is organised as follows: Section 2 discusses the related work, Section 3
gives the necessary preliminaries, Section 4 proposes a protocol (and three aggregation algorithms) for
secure and privacy-preserving operational metering data collection. Sections 5 and 6 analyse its security
and privacy properties, and evaluate its performance, respectively. Finally, Section 7 concludes the paper.

2 Related Work

Security and privacy concerns in SG have been raised [3] and various protocols have already been pro-
posed [7–16]. To protect users’ privacy, these protocols usually take two approaches: anonymisation
or aggregation. Efthymiou and Kalogridis [11] proposed that each SM also have an anonymous ID for
reporting only operational metering data. However, Tudor et al. [6] have shown that de-anonymisation
is possible.

To achieve privacy-friendly aggregation, Li et al. [8] proposed to use homomorphic encryption. How-
ever, their protocol does not protect against active attackers nor facilitate current electricity markets.
Mustafa et al. [14,15] addressed these limitations by using digital signatures and a selective data aggrega-
tion and delivery method. Garcia and Jacobs [9] combined homomorphic encryption with a data sharing
scheme to allow the data recipient to perform the aggregation. The use of homomorphic encryption can
protect users’ privacy, but it also introduces high computational costs to SMs. To overcome this limi-
tation, Kursawe et al. [7] proposed a lightweight aggregation scheme which requires SMs to mask their
data with noise that cancels out when added together. Their scheme is computationally efficient, but it
requires a complex reinitialization process when adding SMs and does not support flexible aggregation
groups.

Another approach to aggregate data in a privacy-preserving (and efficient) manner is MPC. Danezis
et al. [12] proposed protocols using secret-sharing based MPC to detect fraud and to extract advanced
grid statistics. Rottondi et al. [13] proposed a novel security architecture for aggregation of metering
data. However, their architecture requires additional nodes in the system, i.e., gateways placed at the
users’ households.

Unlike the aforementioned work, our proposed MPC-based privacy-preserving protocol for operational
metering data collection (i) is based on a real smart metering architecture, (ii) is readily applicable to
a liberalised electricity market with various stakeholders, (iii) takes into account not only the electricity
consumption data, but also electricity injected into the grid by households, and (iv) allows the TSO,
DNOs and suppliers to calculate the exact distribution, transmission and balancing fees based on real
data rather than on estimates.
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Figure 1: System model.

3 Preliminaries

3.1 System Model

As shown in Fig. 1, our system model consists of the following entities. Users consume electricity and
are billed for this by their contracted supplier. Distributed Energy Resources (DERs) are mini electricity
generators (e.g., solar panels) located on users’ premises. Most of the electricity they generate is consumed
by their owners. However, surplus electricity may be injected into the grid. Smart Meters (SMs) are
advanced electricity metering devices that measure the amount of electricity flowing from the grid to
the house and vice versa per time slot, tk. The SMs regularly communicate with other authorised SG
entities. Suppliers are responsible for supplying electricity to all users including those whose DERs did not
generate sufficient electricity for their needs. They buy this electricity from generators on the wholesale
market, and sell it to the users. They are also obliged to buy any electricity their customers inject into
the grid. If the supplier buys an incorrect amount of electricity on the wholesale market, it will be
punished with imbalance fees. Distribution Network Operators (DNOs) are responsible for managing and
maintaining the electricity distribution lines (i.e., the low/middle voltage lines) in their respective regions.
To this end, they charge suppliers distribution fees based on the electricity consumption of the suppliers’
customers in each time slot. The suppliers then charge their customers this fee in turn. Transmission
System Operator (TSO) is responsible for managing and maintaining the electricity transmission lines
(i.e., the high voltage lines) in the grid as well as balancing the whole grid at any point in time. For this,
it charges the suppliers transmission and balancing fees based on the electricity consumption of their
customers in each time slot. Similarly, the suppliers pass this cost to the users. Data Communications
Company (DCC) is a centralised entity that consists of several servers run by different parties. It is
responsible for collecting and delivering the metering data to the TSO, DNOs and suppliers.

We also classify some of these entities into three groups: dealers (i.e., the SMs) who provide the input
data, computational parties (i.e., the DCC servers) who perform computations on the input data, and
output parties (i.e., the TSO, DNOs, and suppliers) who receive the results of the computations.

The SMs generate and provide the DCC servers with input data including the electricity consump-
tion and generation data measured per time slot. The DCC servers must be run by stakeholders with
competing interest. We set the number of computational parties to three. They obtain input data from
the SMs, jointly perform the necessary calculations and provide the TSO, DNOs and suppliers with the
results.
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3.2 Threat Model and Assumptions

For our protocol design we use the following threat model. Users are malicious. They may try to
modify metering data sent by their SMs in an attempt to gain financial advantage or learn other users’
data. The TSO, DNOs and suppliers are also malicious. They may manipulate users’ metering data
in an attempt to gain financial advantage, i.e., to manipulate the transmission and distribution fees as
well as imbalance fines calculations. They may also try to learn individual users’ consumption data
or the aggregate consumption of any group of users located in different regions or contracted by their
competitors. The DCC, i.e., the computational servers, are honest but curious. They follow the protocol
specifications, but they may try to learn the consumption data of individual users or aggregate data of
any group of users. External entities are malicious. They may eavesdrop and/or modify data in transit
trying to gain access to confidential data or to disrupt the SG.

We also make the following assumptions. Each entity in the system model has a unique identifier.
SMs are tamper-proof and sealed, thus no one can tamper with them without being detected. All entities
are time synchronised and the communication channels among them are encrypted and authenticated.

3.3 Notations

We denote the SM of household i as SMi ∈ SM, where SM is the set of all the SMs in the grid of a
country, and the amount of electricity taken from the grid (i.e., imported electricity) and the amount of
electricity fed back to the grid (i.e., exported electricity) by household i during the kth time slot, tk, as

Eimp,tk
i ∈ Eimp,tk and Eexp,tk

i ∈ Eexp,tk , respectively. Eexp,tk and Eexp,tk are the aggregate of electricity
consumption data and electricity fed back data, respectively, of all the households during tk in the grid.
We denote the following subsets:

• SMdj ⊂ SM as the set of all the SMs operated by the jth DNO, dj , (located in region j).

• SMimp
su ⊆ SM as the set of all the SMs whose users have a contract for buying electricity from the

uth supplier, su.

• SMexp
su ⊆ SM as the set of all the SMs whose users have a contract for selling electricity to the uth

supplier, su.

• SMimp
dj ,su

⊆ SMdj and ⊆ SMimp
su as the set of all the SMs operated by dj and whose users buy

electricity from su.

• SMexp
dj ,su

⊆ SMdj and ⊆ SMexp
su as the set of all the SMs operated by dj and whose users sell

electricity to su.

• Eimp,tk
dj

and Eexp,tk
dj

as the aggregate of imported and exported electricity data during tk, respectively,
measured by the SMs belonging to the set SMdj .

• Eimp,tk
su and Eexp,tk

su as the aggregate of imported and exported electricity data during tk measured

by the SMs belonging to the sets SMimp
su and SMexp

su , respectively.

• Eimp,tk
dj ,su

and Eexp,tk
dj ,su

as the aggregate of imported and exported electricity data during tk measured

by the SMs belonging to the sets SMimp
dj ,su

and SMexp
dj ,su

, respectively.

More notations are given in Table 1.

3.4 Design Requirements

The smart metering protocols should satisfy the following functional and security requirements.

3.4.1 Functional Requirements

(F1) For each time period tk, each DNO dj should access:

a) Eimp,tk
dj

and Eexp,tk
dj

, in order to better manage the distribution network in its region,

b) Eimp,tk
dj ,su

and Eexp,tk
dj ,su

, for u = 1, . . . ,Ns, in order to split the distribution fees fairly among the
suppliers.
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Table 1: Notations
Symbol Meaning
tk kth time slot, k = 1, . . . ,Nt

dj the DNO operating in region j, j = 1, . . . ,Nd

su uth supplier, u = 1, . . . ,Ns

SMi the SM belonging to household i
SM set of all the SMs in a specific country
SMdj set of all the SMs operated by DNO dj
SMimp

su set of all the SMs whose users buy electricity from su
SMexp

su set of all the SMs whose users sell electricity to su
SMimp

dj ,su
set of all the SMs operated by dj and whose users buy electricity from su

SMexp
dj ,su

set of all the SMs operated by dj whose users sell electricity to su

Eimp,tk
i amount of electricity imported by household i during tk

Eexp,tk
i amount of electricity exported by household i during tk

Eimp,tk aggregate data of all Eimp,tk
i for SMi ∈ SM

Eexp,tk aggregate data of all Eexp,tk
i for SMi ∈ SM

Eimp,tk
dj

aggregate data of all Eimp,tk
i for SMi ∈ SMdj

Eexp,tk
dj

aggregate data of all Eexp,tk
i for SMi ∈ SMdj

Eimp,tk
su aggregate data of all Eimp,tk

i for SMi ∈ SMimp
su

Eexp,tk
su aggregate data of all Eexp,tk

i for SMi ∈ SMexp
su

Eimp,tk
dj ,su

aggregate data of all Eimp,tk
i for SMi ∈ SMimp

dj ,su

Eexp,tk
dj ,su

aggregate data of all Eexp,tk
i for SMi ∈ SMexp

dj ,su

(F2) For each time period tk, each supplier su should access:

a) Eimp,tk
su and Eexp,tk

su , in order to predict its customers’ electricity consumption and production
accurately, so that it can avoid receiving imbalance fines,

b) Eimp,tk
dj ,su

and Eexp,tk
dj ,su

for j = 1, . . . ,Nd, so it can be assured that it pays the correct transmission
and distribution network fees to the TSO and each DNO, respectively. Note that transmission
network fees can also be made region dependent to encourage suppliers to buy electricity from
sources located as close to the demand as possible.

(F3) For each time period tk, the TSO should access:

a) Eimp,tk
dj ,su

and Eexp,tk
dj ,su

, for u = 1, . . . ,Ns, so it can split transmission network fees among suppliers,

b) Eimp,tk
su and Eexp,tk

su , for u = 1, . . . ,Ns, so it can calculate the imbalance fine for each supplier,

c) Eimp,tk
dj

and Eexp,tk
dj

, for j = 1, . . . ,Nd, to identify the regions which are the source of the im-
balance, thus to decide which measures from which sources to activate to avoid the imbalance,
and

d) Eimp,tk and Eexp,tk , to balance the grid efficiently.

3.4.2 Security Requirements

(S1) Confidentiality of users’ data: the aggregates (over several users) of users’ consumption/production
data should only be accessed by authorised entities.

(S2) User privacy preservation: individual users’ fine-grained consumption/production data should not
be revealed to any SG entity, apart from the users themselves.

(S3) Authorisation: SG entities should only be allowed to access the aggregate data of the users whom
they provide services to. For the DNO this means only the users living in the region it operates,
for the supplier this means only the users who have a contract with it.
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Algorithm 1: Generic Equality Test
Input: Secret share bit representation of x, [x]1, . . . , [x]σ

Bit representation y1, . . . , yσ of public scalar y to which x is compared
Output: A secret share of the output of the equality test [c]

1 [c]← 0;
2 for i← 1 to σ do
3 [c′]← [x]i + yi − 2 · ([x]i · yi);
4 [c]← [c] + [c′]− [c] · [c′];
5 end

3.5 Cryptographic Notation

Security of MPC protocols is typically analysed in the Universally Composable (UC) framework, which
was first introduced by Canetti [17]. Under this framework, the ideal functionality of MPC is modelled as
an Arithmetic Black Box (ABB). ABB can be thought of as a generic procedure for secure computation,
where any party can send its private input to ABB and ask it to calculate any computable function.
The functions are represented as arithmetic circuits comprising, for example, additions, multiplications,
equality tests, permutations, etc. As long as the arithmetic circuit components are UC secure, the UC
framework guarantees that the circuit can be executed securely. Our protocol uses equality test and
permutation as components which we describe below.

An equality test can be implemented in an oblivious fashion by using just multiplications and additions.
Any existing test [18,19] is suitable for use in our protocol. To simplify the test, SMs could share their ID
in its bit representation. This way the bit-wise comparison would require only σ multiplications, where
σ is the bit length of the suppliers’ ID. Algorithm 1 illustrates this. Note that the algorithm can also
be optimised by parallelising the computation of multiplications such that only log(σ) communication
rounds are needed.

An oblivious permutation can be typically achieved by using an n × n Boolean permutation matrix,
where n is the size of the input to be permuted. Under this approach each entry of the input is multiplied
against a corresponding matrix column, and the results aggregated. This method has a complexity of
O(n2). Other approaches, including the use of sorting networks, can achieve better asymptotic complex-
ity. However, using a pre-computed permutation network this can be achieved in (almost) O(n log(n))
complexity [20]. Such oblivious permutation protocols have been also adapted for practical use in whole-
sale electricity markets [21].

We assume that all secretly shared values are members of a field Zp bounded by a sufficiently large
prime p, such that no overflow occurs. If fixed point precision is needed, the entries can be multiplied
with a large enough constant such that they can be shared as elements of Zp.

4 Privacy-preserving Smart Metering Protocol

In this section we propose a privacy-preserving MPC-based protocol for operational metering data col-
lection. We give an overview of the protocol, and then propose three aggregation algorithms that offer
different privacy/performance trade-offs.

4.1 Overview of our Generic Protocol

The generic protocol consists of the following four steps.

1. Input data generation and distribution: Each SM generates three data tuples, each containing
different shares of the user’s contracted suppliers, consumption and generation data, and sends them
to the corresponding computational parties.

2. Region-based data aggregation: Once the input data of all the SMs are received, the compu-
tational parties aggregate the consumption and generation data for each region using one of the
three aggregation algorithms described below. The output is in shared form and represents the
region-based aggregate consumption and generation data per supplier.

3. Grid-based data aggregation: The computational parties compute the shares of all the grid-
based aggregate consumption and generation data by simply adding the corresponding shares of
the region-based aggregate data.
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4. Output data distribution: Following the functional requirements specified in Section 3, the
shares of the previously calculated aggregations are distributed to the TSO, DNOs and suppliers,
accordingly. Finally, these entities reconstruct their required results by reconstructing the corre-
sponding shares.

4.2 Region-based Data Aggregation Algorithms

In this section, we present our three region-based data aggregation algorithms which offer different trade-
offs in terms of security, flexibility and performance. The selection of the algorithm depends on the
application requirements and available computational and communication resources.

4.2.1 Näıve Aggregation Algorithm (NAA)

A näıve approach to perform data aggregation with perfect privacy would be to implement a basic
circuit that uses equality tests to identify users’ suppliers. As shown in Algorithm 2, SMs send their
tuples {[simp

u ], [sexpu ], [Eimp
i ], [Eexp

i ]} to the DCC servers, so that the servers can classify the inputs by
using oblivious comparisons. Although the algorithm is fairly adaptive to a growing number of suppliers,
denoted as Ns, it is expensive in terms of performance as it still requires O(|SMdj | · Ns) equality tests,
where |SMdj | is the number of SMs in a given region j.

4.2.2 No Comparison Aggregation Algorithm (NCAA)

To improve the performance of the aggregation algorithm, some level of disclosure to the DCC servers can
be allowed, in this case, the number of users linked to each supplier. As shown in Algorithm 3, the DCC
servers permute the tuples corresponding to the same region and aggregate them in a non-interactive
way afterwards. Considering that its complexity is dominated by the oblivious permutation calls, NCAA
multiplication bound is O(|SMdj | · log(|SMdj |). Also, NCAA keeps its flexibility with respect to Ns at
the cost of disclosing the number of SMs associated to each supplier.

4.2.3 Non-Interactive Aggregation Algorithm (NIAA)

To further improve the performance of the aggregation algorithm, the input data of SMs can be tweaked
such that the aggregation could be done without the need of communication between the DCC servers.
To achieve this, SMs have to encode their input data into vectors of all zeros but one unique non-zero
entry. These vectors are of size Ns and the non-zero entries are their Eimp and Eexp, respectively. This
way the DCC servers only need to process the aggregation of the shares, which is non-interactive for
any generalized Linear Secret Sharing Scheme (LSSS). By reducing the flexibility (Ns has to be fixed),
NIAA, as shown in Algorithm 4, is implemented with neither comparison nor multiplication operations.
To support the addition of a new supplier, SMs will have to use a vector with a sufficiently large pre-fixed
size, providing 0 for the non-used slots, so that the system is flexible in accommodating a large number
of suppliers. An easy alternative would be to allow the system to feed (via an update) all the SMs with a

Algorithm 2: Näıve Aggregation Algorithm (NAA)

Input: Tuples from region j, {[simp
u ], [sexpu ], [Eimp

i ], [Eexp
i ]} for SMi ∈ SMdj

Output: Shares of aggregate consumption data per supplier, [Eimp
dj ,su

] Shares of aggregate production data per

supplier, [Eexp
dj ,su

]

1 [Eimp
dj ,su

]← {01, ..., 0Ns};
2 [Eexp

dj ,su
]← {01, ..., 0Ns};

3 for i← 1 to |SMdj
| do

4 for u← 1 to Ns do

5 [c]← [simp
u ]

?
= su;

6 [Eimp
dj ,su

]← [Eimp
dj ,su

] + [c] ∗ [Eimp
i ];

7 end
8 for u← 1 to Ns do

9 [c]← [sexpu ]
?
= su;

10 [Eexp
dj ,su

]← [Eexp
dj ,su

] + [c] ∗ [Eexp
i ];

11 end

12 end
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Algorithm 3: No Comparison Aggr. Algorithm (NCAA)

Input: Tuples from region j, {[simp
u ], [sexpu ], [Eimp

i ], [Eexp
i ]} for SMi ∈ SMdj

Output: Shares of aggregate consumption data per supplier, [Eimp
dj ,su

] Shares of aggregate production data per

supplier, [Eexp
dj ,su

]

1 [Eimp
dj ,su

]← {01, ..., 0Ns};
2 [Eexp

dj ,su
]← {01, ..., 0Ns};

3 [SM′
dj

]← permute([SMdj
]);

4 for i← 1 to |SM′
dj
| do

5 simp
u ← open([simp

u ]);
6 for u← 1 to Ns do

7 c← simp
u == su;

8 [Eimp
dj ,su

]← [Eimp
dj ,su

] + c ∗ [Eimp
i ];

9 end

10 end

11 [SM′
dj

]← permute([SMdj
]);

12 for i← 1 to |SM′
dj
| do

13 sexpu ← open([sexpu ]);
14 for u← 1 to Ns do
15 c← sexpu == su;
16 [Eexp

dj ,su
]← [Eexp

dj ,su
] + c ∗ [Eexp

i ];

17 end

18 end

Algorithm 4: Non-Interactive Aggr. Algorithm (NIAA)

Input: Tuples from region j, {[Eimp
i ], [Eexp

i ]} for SMi ∈ SMdj
, where Eimp

i and Eimp
i are vectors of size Ns with only one

non-zero entry at position u

Output: Shares of aggregate consumption data per supplier, [Eimp
dj ,su

] Shares of aggregate production data per

supplier, [Eexp
dj ,su

]

1 [Eimp
dj ,su

]← {01, ..., 0Ns};
2 [Eexp

dj ,su
]← {01, ..., 0Ns};

3 for i← 1 to |SMdj
| do

4 for u← 1 to Ns do

5 [Eimp
dj ,su

]← [Eimp
dj ,su

] + [Eimp
i,u ];

6 [Eexp
dj ,su

]← [Eexp
dj ,su

] + [Eexp
i,u ];

7 end

8 end

parameter – the number of suppliers – so that SMs will encode their inputs as vectors of correct length.
Moreover, the supplier ID position has to be agreed in advance. NIAA also produces no leakage, hence
it achieves perfect security.

5 Security Analysis

To begin with, we note that the security assumptions listed in Section 3 are intended for protection
against some of the threats in our threat model. For instance, the natural assumption that the SMs
are tamper-proof and sealed is intended for protection against malicious users attempting to modify the
metering data for financial advantage; and the assumption on communication channel being encrypted
and authenticated, which can be achieved by using TLS, is for protection against adversaries attempting
to eavesdrop or modify the data in transit. Hence, we focus on the security of our protocol against
malicious DNOs/TSO/suppliers as well as semi-honest DCC.

We say that the protocol is secure against a (possibly malicious) entity if the privacy of the inputs to the
protocol is preserved against such entity. Therefore, by security against malicious DNOs/TSO/suppliers,
we mean that the SMs’ inputs (i.e., the users’ consumption or production data) to the protocol is pre-
served against these malicious entities. In our case, DNOs, TSO, and suppliers are the recipients of the
MPC output. By definition, one cannot learn anything from MPC output other than what can already
be learned from the output itself. Therefore, security against malicious DNOs, TSO, and suppliers is
straightforward. Security against DCC is a different matter because it comprises several computation
servers run by different parties. Therefore, security against DCC depends on the security of the MPC
algorithm used in the protocol. As shown by Ben-Or et al. [22] and Chaum et al. [23], MPC allows
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to compute any function with perfect (information-theoretic) security when an honest majority is con-
sidered. Ben-Or et al. [22] further shows that perfect security against semi-honest adversaries can be
achieved using the LSSS introduced by Shamir [24], as long as half of the parties remain honest. More-
over, security against malicious adversaries can be achieved using verifiable secret sharing techniques and,
in this case, security can be achieved against collusion among up two thirds of the parties involved in the
computation. See, for example, [25, 26] for various MPC protocols that offer security against malicious
majorities.

As already mentioned, security of MPC protocols is typically analysed in the UC framework, using
the ABB as the ideal functionality for MPC. As long as the arithmetic circuit components are UC secure,
the UC framework guarantees that the circuit can be executed securely. In our case, the three algorithms
(NAA, NCAA, and NIAA) use multiplication, addition, equality test and permutation operations as
components, all of which are operations in ABB and thus can be realised securely against semi-honest or
malicious adversary. Therefore, each of our three algorithms can be viewed as composition of operations
provided by ABB, and thus the security of our protocol against semi-honest DCC is also straightforward.

6 Performance Evaluation

This section evaluates the performance of our protocol (and our proposed data aggregation algorithms)
in terms of computational complexity and communication cost using parameters of the smart metering
architecture in the UK.

6.1 Computational Complexity

The most computationally demanding step of our protocol is the region-based aggregation algorithm.
Therefore, we focus on this step. Moreover, since the cost of a share, addition and open operations is
negligible compared to the cost of a multiplication operation (in an MPC setting), we take into account
only the number of multiplications in our calculation.

6.1.1 NAA complexity

This algorithm contains two loops which have the same number of multiplications. For each loop, NAA
requires |su|× |SMdj |×Ns multiplications to perform the equality tests needed, and |SMdj |×Ns multipli-
cations needed for the aggregation, where |su| is the bit length of the supplier ID, |SMdj | is the number
of SMs per region and Ns is the number of suppliers in the retail market. However, as both loops are
parallelizible, the total number of multiplications in NAA is equal to |su| × |SMdj | ×Ns + |SMdj | ×Ns.

6.1.2 NCAA complexity

The number of multiplications used by the NCAA depends on the permutation network used. For
instance, the Batcher oddeven merge sorting network requires |SMdj | × log2(|SMdj |) exchange gates.
Each of these gates requires three multiplications per item being permuted, in this case the supplier ID
and the respective electricity consumption or generation value. Also, the open operation performed by
the DCC servers has the same computational cost as performing a multiplication. In total, this adds
up to 2 × (|SMdj | × log2(|SMdj |) + |SMdj | multiplication-equivalent operations per loop. However, a
permutation network can be built with only |SMdj | × log(|SMdj |) exchange gates [20], reducing the total
to 2× (|SMdj | × log(|SMdj |) + |SMdj |.

6.1.3 NIAA complexity

NIAA does not perform any multiplications. As the cost of aggregation is negligible, given that it is just
an arithmetic aggregation of shares, the total computational complexity of NIAA is negligible.

Table 2 summarises the computational complexity of our data aggregation algorithms on per entity
base. The cost of the operations performed by each SM, TSO, DNO and supplier is negligible compared
to the cost of the operations performed by the DCC servers. In terms of computational complexity, NIAA
is the most efficient aggregation algorithm as it does not require any communication between the DCC
servers.

We also conducted an experiment to test the performance of our algorithms. We used C++ and
custom implementations of Shamir’s SSS [24], its linear addition and improved BGW protocol from
Gennaro et al. [27], all presented in [28]. We made use of the generalized equality test from Algorithm 1.
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Table 2: The computational complexity of our protocol when a different data aggregation algorithm is
used.

Entities SM DCC servers TSO DNO Supplier
Operations performed share multiplication open open open

Our protocol with NAA 1 |su| × |SMdj | ×Ns + |SMdj | ×Ns Nd × Ns Ns Nd

Our protocol with NCAA 1 2× (|SMdj | × log(|SMdj |) + |SMdj | Nd × Ns Ns Nd

Our protocol with NIAA Ns 0 Nd × Ns Ns Nd
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Figure 2: Computational cost of our protocol.

We run the three computational parties on the same machine, a 64-bit 2*2*10-cores Intel Xeon E5-2687
server at 3.1GHz, thus our results do not consider network latency.

We first executed 2 million multiplications which, on average, resulted in 20.8 × 10−6 seconds per
multiplication. We then calculated the CPU time needed by our algorithms for various settings. For our
calculations we used the following parameters based on the UK’s electrical grid [29] and smart metering
architecture [5]: Nd = 14, Ns = 10, |su| = 8, and |SMdj | = {0.5M, . . . , 4M}. Note that the computational
complexity does not depend on the metering data but on the smart metering architecture. Figure 2 depicts
our experimental results. They indicate all the necessary CPU time required regardless of the number of
processors. Considering that in each UK region there will be on average 2.2 million SMs, our protocol
could be executed in less than ten minutes, even if NAA (our most computationally demanding algorithm)
is used, by simply dividing the work between eight threads, thus making it practical for the UK smart
metering architecture.

6.2 Communication Cost

The communication cost of our protocol can be divided in three parts: SMs-to-DCC, Between-DCC and
DCC-to-TSO/DNOs/Suppliers. For each part, we evaluate the communication cost of our protocol when
a different aggregation algorithm is used, as well as, we compare it to the traditional protocol (denoted
as TRAD) proposed by the UK government. Note that TRAD does not provide sufficeint user privacy
protection as the DCC access all metering data of all users.

6.2.1 SMs-to-DCC part

In each time slot each SM sends its tuple to each of the DCC servers. If our protocol uses NAA or
NCAA, the format of the tuple is {[simp

u ], [sexpu ], [Eimp
i ], [Eexp

i ]}. Assuming there are three DCC servers,

the communication cost is 3 × Nd × |SMdj | × ([simp
u ] + [sexpu ] + [Eimp

i ] + [Eexp
i ]). If our protocol uses

NIAA, the tuple’s format is {[Eimp
i ], [Eexp

i ]}, where {[Eimp
i ], [Eexp

i ]} are shares of vectors with size Ns.

This adds up to a cost of 3 × Nd × Ns × |SMdj | × ([Eimp
i ] + [Eexp

i ]). If TRAD is used, each SM sends

{Eimp
i ,Eexp

i } to the DCC which is a single entity in this case. This results in a communication cost of

Nd × |SMdj | × (Eimp
i + Eexp

i ).

6.2.2 Between-DCC part

In each time slot the DCC servers need to communicate between each other in order to preform the
necessary computations for calculating the region-based aggregates per supplier. As each multiplication
equals the transmission of a share from each of the DCC servers to the others, the communication cost for
this part can be calculated by simply multiplying the total number of multiplications (given in Table 2)
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Table 3: The communication overhead of the traditional protocol and our protocol.
SMs-to-DCC Between-DCC DCC-to-TSO/DNOs/S

TRAD protocol 2×Nd × |SMdj | × |x| 0 6×Nd ×Ns × |x|
Ours with NAA 12×Nd × |SMdj | × |[x]| 6× |[x]| × (|su| × |SMdj | ×Ns + |SMdj | ×Ns) 18×Nd ×Ns × |[x]|
Ours with NCAA 12×Nd × |SMdj | × |[x]| 6× |[x]| × (2× (|SMdj | × log(|SMdj |) + |SMdj |) 18×Nd ×Ns × |[x]|
Ours with NIAA 6×Nd × |SMdj | ×Ns × |[x]| 0 18×Nd ×Ns × |[x]|
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(a) At the SMs-to-DCC part
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(b) At the Between-DCC part
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(c) At the DCC-to-TSO/DNOs/Suppliers part

Figure 3: The communication overhead of our protocol at different parts of the grid.

with the total number of shares exchanged between the DCC servers per multiplication. In our case this
is equal to 6× |[x]|, where |[x]| is the size of a share. Note that TRAD does not have any communication
cost in this part.

6.2.3 DCC-to-TSO/DNOs/Suppliers part

In each time slot the DCC servers need to send the computed results to the TSO, DNOs and suppliers. As
the output data of NAA, NCAA and NIAA is the same, the communication cost for this part is the same
regardless of the aggregation algorithm. In detail, each DCC server has to send (i) Nd×([Eimp

dj ,su
]+[Eexp

dj ,su
])

to each supplier, (ii) Ns× ([Eimp
dj ,su

]+ [Eexp
dj ,su

]) to each DNO, and Nd×Ns× ([Eimp
dj ,su

]+ [Eexp
dj ,su

]) to the TSO.

This results in a total communication cost of 9×Nd×Ns×([Eimp
dj ,su

]+[Eexp
dj ,su

]). If the suppliers and DNOs

trust the TSO (which is usually the case in practice), they could directly obtain the aggregation results

from the TSO. In that case, the communication cost will be reduced to 3×Nd×Ns×([Eimp
dj ,su

]+[Eexp
dj ,su

])+

(Nd + Ns)×Cdj ,su , where Cdj ,su is an encrypted message containing the region-supplier based aggregate

consumption and production data, i.e., Cdj ,su = Enck(Eimp
dj ,su

,Eexp
dj ,su

). If TRAD is used, the DCC sends

the respective aggregate consumption and generation data, (Eimp
dj ,su

,Eexp
dj ,su

), to the output parties. This

results in a communication cost of 3×Nd ×Ns × (Eimp
dj ,su

+ Eexp
dj ,su

).

Table 3 summarises the communication cost of our protocol (with a different aggregation algorithm
used) and TRAD, where |x| and |[x]| denote the length of a message and of its share, respectively.
Furthermore, using the parameters from the previous section and setting |x| = 32, |[x]| = 63 and |Cdj ,su | =
128, we depict the communication cost of our protocol at each part and the entire smart metering
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Figure 4: The total communication overhead for our protocol.

architecture in Fig. 3 and Fig. 4, respectively. As expected, our protocol has higher communication cost
than TRAD due to the privacy protection it offers. Regarding the choice of data aggregation algorithms,
NCAA is the most efficient. However, this algorithm discloses towards the DCC servers the number of
users linked to each supplier. In practice, such disclosure can be tolerated by users. If such disclosures
are not accepted, NAA or NIAA should be used. Both algorithms have comparable communication costs,
the difference being in the part of the smart metering architecture where the cost is concentrated. In
the case of NAA, the main cost incurs at the Between-DCC part, whereas in the case of NIAA – at the
SMs-to-DCC part.

7 Conclusions

We introduced an MPC-based protocol for aggregating electricity consumption and generation data in a
secure and privacy-friendly manner. These data are required for operational purposes such as calculat-
ing the transmission, generation and balancing fees. Furthermore, we proposed three data aggregation
algorithms that offer different security and performance trade-offs. We also analysed the computational
and communication cost of our protocol, including the data aggregation algorithms. Our results indicate
the feasibility of our protocol for a setting based on a real smart metering architecture.
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