
More Efficient (Almost) Tightly Secure
Structure-Preserving Signatures

Romain Gay1 ∗, Dennis Hofheinz2 †, Lisa Kohl2 ‡, and Jiaxin Pan2 §

1 Département d’informatique de l’ENS, École normale supérieure, CNRS, PSL Research University, Paris, France,
and INRIA

rgay@di.ens.fr
2 Karlsruhe Institute of Technology, Karlsruhe, Germany

{Dennis.Hofheinz, Lisa.Kohl, Jiaxin.Pan}@kit.edu

Abstract. We provide a structure-preserving signature (SPS) scheme with an (almost) tight security
reduction to a standard assumption. Compared to the state-of-the-art tightly secure SPS scheme of Abe
et al. (CRYPTO 2017), our scheme has smaller signatures and public keys (of about 56%, resp. 40%
of the size of signatures and public keys in Abe et al.’s scheme), and a lower security loss (of O(logQ)
instead of O(λ), where λ is the security parameter, and Q = poly(λ) is the number of adversarial
signature queries).
While our scheme is still less compact than structure-preserving signature schemes without tight security
reduction, it significantly lowers the price to pay for a tight security reduction. In fact, when accounting
for a non-tight security reduction with larger key (i.e., group) sizes, the computational efficiency of our
scheme becomes at least comparable to that of non-tightly secure SPS schemes.
Technically, we combine and refine recent existing works on tightly secure encryption and SPS schemes.
Our technical novelties include a modular treatment (that develops an SPS scheme out of a basic
message authentication code), and a refined hybrid argument that enables a lower security loss of
O(logQ) (instead of O(λ)).

Keywords: Structure-preserving signatures, tight security.

1 Introduction

Structure-preserving signatures (SPSs). Informally, a cryptographic scheme (such as an en-
cryption or signature scheme) is called structure-preserving if its operation can be expressed using
equations over a (usually pairing-friendly) cyclic group. A structure-preserving scheme has the
advantage that we can reason about it with efficient zero-knowledge proof systems such as the
Groth-Sahai non-interactive zero-knowledge (NIZK) system [31]. This compatibility is the key to
constructing efficient anonymous credential systems (e.g., [10]), and can be extremely useful in
voting schemes and mix-nets (e.g., [30]).

In this work, we are concerned with structure-preserving signature (SPS) schemes. Since popular
tools such as “structure-breaking” collision-resistant hash functions cannot be used in a structure-
preserving scheme, constructing an SPS scheme is a particularly challenging task. Still, there already
exist a variety of SPS schemes in the literature [29, 18, 5, 19, 17, 35, 45, 40, 4, 2, 38, 6] (see also
Table 1 for details on some of them).
Tight security for SPS schemes. A little more specifically, in this work we are interested in
tightly secure SPS schemes. Informally, a cryptographic scheme is tightly secure if it enjoys a tight

∗Supported by ERC Project aSCEND (639554), and a Google PhD fellowship.
†Supported by ERC Project PREP-CRYPTO (724307), and by DFG grants HO 4534/4-1 and HO 4534/2-2.
‡Supported by ERC Project PREP-CRYPTO (724307), and by DFG grant HO 4534/2-2.
§Supported by DFG grant HO 4534/4-1.

security reduction, i.e., a security reduction that transforms any adversary A on the scheme into
a problem-solver with about the same runtime and success probability as A, independently of the
number of uses of the scheme.3 A tight security reduction gives security guarantees that do not
degrade in the size of the setting in which the scheme is used.

Specifically, tight security reductions allow to give “universal” keylength recommendations that
do not depend on the envisioned size of an application. This is useful when deploying an application
for which the eventual number of uses cannot be reasonably bounded a priori. Moreover, this point
is particularly vital for SPS schemes. Namely, an SPS scheme is usually combined with several
other components that all use the same cyclic group. Thus, a keylength increase (which implies
changing the group, and which might be necessary for a non-tightly secure scheme for which a
secure keylength depends on the number of uses) affects several schemes, and is particularly costly.

In recent years, progress has been made in the construction of a variety of tightly4 secure
cryptographic schemes such as public-key encryption schemes [11, 35, 43, 44, 34, 25, 33], identity-
based encryption schemes [21, 14, 36, 8, 27, 20], and signature schemes [16, 35, 3, 21, 14, 43,
34, 6]. However, somewhat surprisingly, only few SPS schemes with tight security reductions are
known. Moreover, these tightly secure SPS schemes [35, 6] are significantly less efficient than either
“ordinary” SPS or tightly secure signature schemes (see Table 1). One reason for this apparent
difficulty to construct tightly secure SPS schemes is that tight security appears to require dedicated
design techniques (such as a sophisticated hybrid argument over the bits of an IBE identity [21]),
and most known such techniques cannot be expressed in a structure-preserving manner.

Scheme |M | |σ| |pk | Sec. loss Assumption
HJ12 [35] 1 10`+ 6 13 8 DLIN
ACDKNO16 [2] (n1, 0) (7, 4) (5, n1 + 12) Q SXDH, XDLIN
LPY15 [45] (n1, 0) (10, 1) (16, 2n1 + 5) O(Q) SXDH, XDLINX
KPW15 [40] (n1, 0) (6, 1) (0, n1 + 6) 2Q2 SXDH
JR17 [38] (n1, 0) (5, 1) (0, n1 + 6) Q logQ SXDH
AHNOP17 [6] (n1, 0) (13, 12) (18, n1 + 11) 80λ SXDH
JOR18 [37] (n1, 0) (11, 6) (7, n1 + 16) 116λ SXDH
Ours (unilateral) (n1, 0) (8, 6) (2, n1 + 9) 6 logQ SXDH
AGHO11 [5] (n1, n2) (2, 1) (n1, n2 + 2) — generic
ACDKNO16 [2] (n1, n2) (8, 6) (n2 + 6, n1 + 13) Q SXDH, XDLIN
KPW15 [40] (n1, n2) (7, 3) (n2 + 1, n1 + 7) 2Q2 SXDH
AHNOP17 [6] (n1, n2) (14, 14) (n2 + 19, n1 + 12) 80λ SXDH
JOR18 [37] (n1, n2) (12, 8) (n2 + 8, n1 + 17) 116λ SXDH
Ours (bilateral) (n1, n2) (9, 8) (n2 + 4, n1 + 9) 6 logQ SXDH

Table 1: Comparison of standard-model SPS schemes (in their most efficient variants). We list unilateral
schemes (with messages over one group) and bilateral schemes (with messages over both source groups of a
pairing) separately. The notation (x1, x2) denotes x1 elements in G1 and x2 elements in G2. |M |, |σ|, and |pk |
denote the size of messages, signatures, and public keys (measured in group elements). “Sec. loss” denotes the
multiplicative factor that the security reduction to “Assumption” loses, where we omit dominated and additive
factors. (Here, “generic” means that only a proof in the generic group model is known.) For the tree-based scheme
HJ12, ` denotes the depth of the tree (which limits the number of signing queries to 2`). Q denotes the number
of adversarial signing queries, and λ is the security parameter.

3We are only interested in reductions to well-established and plausible computational problems here. While the
security of any scheme can be trivially (and tightly) reduced to the security of that same scheme, such a trivial
reduction is of course not very useful.

4Most of the schemes in the literature are only “almost” tightly secure, meaning that their security reduction
suffers from a small multiplicative loss (that however is independent of the number of uses of the scheme). In the
following, we will not make this distinction, although we will of course be precise in the description and comparison
of the reduction loss of our own scheme.

2

1.1 Our contribution

Overview. We present a tightly secure SPS scheme with significantly improved efficiency and
tighter security reduction compared to the state-of-the-art tightly secure SPS scheme of Abe et al. [6].
Specifically, our signatures contain 14 group elements (compared to 25 group elements in [6]), and our
security reduction loses a factor of only O(logQ) (compared to O(λ)), where λ denotes the security
parameter, and Q = poly(λ) denotes the number of adversarial signature queries. When accounting
for loose reductions through an appropriate keylength increase, the computational efficiency of our
scheme even compares favorably to that of state-of-the-art non-tightly secure SPS schemes.

In the following, we will detail how we achieve our results, and in particular the progress we make
upon previous techniques. We will also compare our work to existing SPS schemes (both tightly
and non-tightly secure).

Central idea: a modular treatment. A central idea in our work (that in particular contrasts our
approach to the one of Abe et al.) is a modular construction. That is, similar to the approach to tight
IBE security of Blazy, Kiltz, and Pan [14], the basis of our construction is a tightly secure message
authentication code (MAC). This tightly secure MAC will then be converted into a signature scheme
by using NIZK proofs, following (but suitably adapting) the generic MAC-to-signatures conversion
of Bellare and Goldwasser [12].

Starting point: a tightly secure MAC. Our tightly secure MAC will have to be structure-
preserving, so the MAC used in [14] cannot be employed in our case. Instead, we derive our MAC
from the recent tightly secure key encapsulation mechanism (KEM) of Gay, Hofheinz, and Kohl [26]
(which in turn builds upon the Kurosawa-Desmedt PKE scheme [42]). To describe their scheme, we
assume a group G = 〈g〉 of prime order p, and we use the implicit notation [x] := gx from [24]. We
also fix an integer k that determines the computational assumption to which we want to reduce.5

Now in (a slight simplification of) the scheme of [26], a ciphertext C with corresponding KEM key
K is of the form

C = ([t], π), K = [(k0 + µk1)
>t] (for µ = H([t])), (1)

where H is a collision-resistant hash function, and k0,k1, t ∈ Z2k
p and π are defined as follows. First,

k0,k1 ∈ Z2k
p comprise the secret key. Next, t = A0r for a fixed matrix A0 (given as [A0] in the

public key) and a random vector r ∈ Zkp chosen freshly for each encryption. Finally, π is a NIZK
proof that proves that t ∈ span(A0) ∪ span(A1) for another fixed matrix A1 (also given as [A1] in
the public key). The original Kurosawa-Desmedt scheme [42] is identical, except that π is omitted,
and k = 1. Hence, the main benefit of π is that it enables a tight security reduction.6

We can view this KEM as a MAC scheme simply by declaring the MAC tag for a message M to
be the values (C,K) from (1), only with µ :=M (instead of µ = H([t])). The verification procedure
of the resulting MAC will check π, and then check whether C really decrypts to K. (Hence, MAC
verification still requires the secret key k0,k1.) Now a slight adaptation of a generic argument of
Dodis et al. [22] reduces the security of this MAC tightly to the security of the underlying KEM

5For k = 1, we can reduce to DDH in G, and for k > 1, we can reduce to the k-Linear assumption, and in fact
even to the weaker Matrix-DDH assumption [24].

6Actually, the scheme of [26] uses an efficient designated-verifier NIZK proof π that is however not structure-
preserving (and thus not useful for our case), and also induces an additional term in K. For our purposes, we can
think of π as a (structure-preserving) Groth-Sahai proof.

3

scheme. Unfortunately, this resulting MAC is not structure-preserving yet (even if the used NIZK
proof π is): the message M = µ is a scalar (from Zp).7

Abstracting our strategy into a single “core lemma”. We can distill the essence of the security
proof of our MAC above into a single “core lemma”. This core lemma forms the heart of our work,
and shows how to randomize all tags of our MAC. While this randomization follows a previous
paradigm called “adaptive partitioning” (used to prove the tight security of PKE [33, 26] and SPS
schemes [6]), our core lemma induces a much smaller reduction loss. The reason for this smaller
reduction loss is that previous works on tightly secure schemes (including [33, 26, 6]) conduct their
reduction along the individual bits of a certain hash value (or message to be signed). Since this
hash value (or message) usually has O(λ) bits, this induces a hybrid argument of O(λ) steps, and
thus a reduction loss of O(λ). In contrast, we conduct our security argument along the individual
bits of the index of a signing query (i.e., a value from 1 to Q, where Q is the number of signing
queries). This index exists only in the security proof, and can thus be considered as an “implicit”
way to structure our reduction.8

From MACs to signatures and structure-preserving signatures. Fortunately, our core
lemma can be used to prove not only our MAC scheme, but also a suitable signature and SPS
scheme tightly secure. To construct a signature scheme, we can now use an case-tailored (and heavily
optimized) version of the generic transformation of Bellare and Goldwasser [12]. In a nutshell, that
transformation turns a MAC tag (that requires a secret key to verify) into a publicly verifiable
signature by adding a NIZK proof to the tag that proves its validity, relative to a public commitment
to the secret key. For our MAC, we only need to prove that the given key K really is of the form
K = [(k0 + µk1)

>t]. This linear statement can be proven with a comparatively simple and efficient
NIZK proof π′. For k = 1, an optimized Groth-Sahai-based implementation of π, and an implicit π′

(that uses ideas from [39, 41]), the resulting signature scheme will have signatures that contain 14
group elements.

To turn our scheme into an SPS scheme, we need to reconsider the equation K = [(k0+µk1)
>t]

from (1). In our MAC (and also in the signature scheme above), we have set µ =M ∈ Zp, which we
cannot afford to do for an SPS scheme. Our solution consists in choosing a different equation that
fulfills the following requirements:
(a) it is algebraic (in the sense that it integrates a message M ∈ G), and
(b) it is compatible with our core lemma (so it can be randomized quickly).
For our scheme, we start from the equation

K = [k>0 t+ k>
(
M
1

)
] (2)

for uniform keys k0,k. We note that a similar equation has already been used by Kiltz, Pan, and
Wee [40] for constructing SPS schemes, altough with a very different and non-tight security proof.
We can plug this equation into the MAC-to-signature transformation sketched above, to obtain an
SPS scheme with only 14 group elements (for k = 1) per signature.

Our security proof will directly rely on our core lemma to first randomize the k>0 t part of (2)
in all signatures. After that, similar to [40], an information-theoretic argument (that only uses the
pairwise independence of the second part of (2), when viewed as a function of M) shows security.

7A structure-preserving scheme should have group elements (and not scalars) as messages, since Groth-Sahai
proofs cannot (easily) be used to prove knowledge of scalars.

8A reduction loss of O(logQ) has been achieved in the context of IBE schemes [20], but their techniques are
different and rely on a composite-order group.

4

Our basic SPS scheme is unilateral, i.e., its messages are vectors over only one source group of a
given pairing. To obtain a bilateral scheme that accepts “mixed” messages over both source groups
of an asymmetric pairing, we can use a generic transformation of [40] that yields a bilateral scheme
with signatures of 17 group elements (for k = 1).

Scheme |M | PPEs Pairings Pairings Sec. |G1| |σ|
(plain) (batched) loss (bits) (bits)

KPW [40] (n1, 0) 3 n1 + 11 n1 + 10 2Q2 322 2576
JR [38] (n1, 0) 2 n1 + 8 n1 + 6 Q logQ 270 1890
AHNOP [6] (n1, 0) 15 n1 + 57 n1 + 16 80λ 226 8362
Ours (uniliteral) (n1, 0) 6 n1 + 29 n1 + 11 6 logQ 216 4320
KPW [40] (n1, n2) 4 n1 + n2 + 15 n1 + n2 + 14 2Q2 322 4186
AHNOP [6] (n1, n2) 16 n1 + n2 + 61 n1 + n2 + 18 80λ 226 9492
Ours (biliteral) (n1, n2) 7 n1 + n2 + 33 n1 + n2 + 15 6 logQ 216 5400

Table 2: Comparison of the computational efficiency of state-of-the-art SPS schemes (in their most efficient,
SXDH-based variants) with our SXDH-based schemes in the unilateral and bilateral version. With “PPEs” and
“Pairings”, we denote the number of those operations necessary during verification, where “batched” denotes
optimized figures obtained by “batching” verification equations [13]. The “ |M |” and “Sec. loss” columns have the
same meaning as in Table 1. The column “|G1|” denotes the (bit)size of elements from the first source group in
a large but realistic scenario (under some simplifying assumptions), see the discussion in Section 1.2. “|σ| (bits)”
denotes the resulting overall signature size, where we assume that the bitsize of G2 elements is twice the bitsize
of G1-elements.

1.2 Related work and efficiency comparison

In this subsection, we compare our work to the closest existing work (namely, the tightly secure
SPS scheme of Abe et al. [6]) and other, non-tightly secure SPS schemes.
Comparison to the work of Abe et al.. The state of the art in tightly secure SPS schemes
(and in fact currently the only other efficient tightly secure SPS scheme) is the recent work of Abe
et al. [6]. Technically, their scheme also uses a tightly secure PKE scheme (in that case [33]) as an
inspiration. However, there are also a number of differences in our approaches which explain our
improved efficiency and reduction.

First, Abe et al.’s scheme involves more (and more complex) NIZK proofs, since they rather
closely follow the PKE scheme from [33]. This leads to larger proofs and thus larger signatures.
Instead, our starting point is the much simpler scheme of [26] (which only features one comparatively
simple NIZK proof in its ciphertext).

Second, while the construction of Abe et al. is rather monolithic, our construction can be ex-
plained as a modification of a simple MAC scheme. Our approach thus allows for a more modular
exposition, and in particular we can outsource the core of the reduction into a core lemma (as
explained above) that can be applied to MAC, signature, and SPS scheme.

Third, like previous tightly secure schemes (and in particular the PKE schemes of [33, 26]), Abe
et al. conduct their security reduction along the individual bits of a certain hash value (or message
to be signed). As explained above, our reduction is more economic, and uses a hybrid argument
over an “implicit” counter value.
Efficiency comparison. We give a comparison to other SPS schemes in Table 1. This table shows
that our scheme is still significantly less efficient in terms of signature size than existing, non-tightly
secure SPS schemes. However, when considering computational efficiency, and when accounting for
a larger security loss in the reduction with larger groups, things look differently.

5

The currently most efficient non-tightly secure SPS schemes are due to Jutla and Roy [38]
and Kiltz, Pan, and Wee [40]. Table 2 compares the computational complexity of their verification
operation with the tightly secure SPSs of Abe et al. and our schemes. Now consider a large scenario
with Q = 230 signing queries and a target security parameter of λ = 100. Assume further that we
use groups that only allow generic attacks (that require time about the square root of the group
size). This means that we should run a scheme in a group of size at least 22(λ+logL), where L denotes
the multiplicative loss of the respective security reduction. Table 2 shows the resulting group sizes
in column “|G1|” (in bits, such that |G1| = 200 denotes a group of size 2200).

Now very roughly, the computational complexity of pairings can be assumed to be cubic in the
(bit)size of the group [7, 28, 23, 9]. Hence, in the unilateral setting, and assuming an optimized
verification implementation (that uses “batching” [13]) the computational efficiency of the verifica-
tion in our scheme is roughly on par with that in the (non-tightly secure) state-of-the-art scheme of
Jutla and Roy [38], even for small messages. For larger messages, our scheme becomes preferable.
In the bilateral setting, our scheme is clearly the most efficient known scheme.
Independent work. We briefly note that the recent work of Jutla, Ohkubo, and Roy [37] improved
the efficiency of [6] by using more efficient NIZK proof systems. Their method to achieve tight
security is via an encrypted partition bit in the signature, which is similar to the work of [6]. In
contrast to this, we transform a simple tightly secure MAC to an efficient SPS. Amongst other
things, we achieve shorter signatures and public keys and smaller security loss (cf. Table 1).

Roadmap

We fix some notation and recall some preliminaries in Section 2. In Section 3, we present our basic
MAC and prove it secure (using the mentioned core lemma). In Section 4 and Section 5, we present
our signature and SPS schemes.

2 Preliminaries

In this section we provide the preliminaries which our paper builds upon. First, we want to give an
overview of notation used throughout all sections.

2.1 Notation

By λ ∈ N we denote the security parameter. We always employ negl : N→ R≥0 to denote a negligible
function, that is for all polynomials p ∈ N[X] there exists an n0 ∈ N such that negl(n) < 1/p(n) for
all n ≥ n0. For any set S, by s←R S we set s to be a uniformly at random sampled element from
S. For any distribution D by d ← D we denote the process of sampling an element d according to
the distribution D. For any probabilistic algorithm B by out← B(in) by out we denote the output
of B on input in. For a deterministic algorithm we sometimes use the notation out := B(in) instead.
By p we denote a prime throughout the paper. For any element m ∈ Zp, we denote by mi ∈ {0, 1}
the i-th bit of m’s bit representation and by m|i ∈ {0, 1}i the bit string comprising the first i bits
of m’s bit representation.

It is left to introduce some notation regarding matrices. To this end let k, ` ∈ N such that ` > k.
For any matrix A ∈ Z`×kp , we write

span(A) := {Ar | r ∈ Zkp} ⊂ Z`p,

6

to denote the span of A.
For a full rank matrix A ∈ Z`×kp we denote by A⊥ a matrix in Z`×(`−k)p with A>A⊥ = 0 and

rank `− k. We denote the set of all matrices with these properties as

orth(A) := {A⊥ ∈ Z`×(`−k)p | A>A⊥ = 0 and A⊥ has rank `− k}.

For vectors v ∈ Zk+np (n ∈ N), by v ∈ Zkp we denote the vector consisting of the upper k entries
of v and accordingly by v ∈ Znp we denote the vector consisting of the remaining n entries of v.

Similarly, for a matrix A ∈ Z2k×k
p , by A ∈ Zk×kp we denote the upper square matrix and by

A ∈ Zk×kp the lower one.

2.2 Pairing groups and Matrix Diffie-Hellman assumptions

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ returns a description
PG = (G1,G2, GT , p, P1, P2, e) of asymmetric pairing groups where G1, G2, GT are cyclic group of
order p for a 2λ-bit prime p, P1 and P2 are generators of G1 and G2, respectively, and e : G1×G2 →
GT is an efficiently computable (non-degenerate) bilinear map. Define PT := e(P1, P2), which is a
generator of GT . We use implicit representation of group elements. For i ∈ {1, 2, T} and a ∈ Zp, we
define [a]i = aPi ∈ Gi as the implicit representation of a in Gi . Given [a]1, [a]2, one can efficiently
compute [ab]T using the pairing e. For two matrices A, B with matching dimensions, we define
e([A]1, [B]2) := [AB]T ∈ GT .

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH) assumption from [24].

Definition 1 (Matrix distribution). Let k, ` ∈ N, with ` > k and p be a 2λ-bit prime. We call a
PPT algorithm D`,k a matrix distribution if it outputs matrices in Z`×kp of full rank k.

Note that instantiating D2,1 with a PPT algorithm outputting matrices
(
1
a

)
for a←R Zp, D2,1-

MDDH relative to G1 corresponds to the DDH assumption in G1. Thus, for PG = (G1,G2, GT , p, P1,
P2, e), assuming D2,1-MDDH relative to G1 and relative to G2, corresponds to the SXDH assump-
tion.

In the following we only consider matrix distributions D`,k, where for all A ←R D`,k the first
k rows of A form an invertible matrix. We also require that in case ` = 2k for any two matrices
A0,A1 ←R D2k,k the matrix (A0 | A1) has full rank with overwhelming probability. In the following
we will denote this probability by 1 − ∆D2k,k

. Note that if (A0 | A1) has full rank, then for any
A⊥0 ∈ orth(A0), A⊥1 ∈ orth(A1) the matrix (A⊥0 | A⊥1) ∈ Z2k×2k

p has full rank as well, as otherwise
there would exists a non-zero vector v ∈ Z2k

p \{0} with (A0 | A1)
>v = 0. Further, by similar

reasoning (A⊥0)
>A1 ∈ Zk×kp has full rank.

The D`,k-Matrix Diffie-Hellman problem in Gi, for i ∈ {1, 2, T}, is to distinguish the between
tuples of the form ([A]i, [Aw]i) and ([A]i, [u]i), for a randomly chosen A ←R D`,k, w ←R Zkp and
u←R Z`p.

Definition 2 (D`,k-Matrix Diffie-Hellman D`,k-MDDH). Let D`,k be a matrix distribution. We
say that the D`,k-Matrix Diffie-Hellman (D`,k-MDDH) assumption holds relative to a prime order
group Gi for i ∈ {1, 2, T}, if for all PPT adversaries A,

Advmddh
PG,Gi,D`,k,A(λ) := |Pr[A(PG, [A]i, [Aw]i) = 1]

7

−Pr[A(PG, [A]i, [u]i) = 1]| ≤ negl(λ),

where the probabilities are taken over PG := (G1,G2,GT , p, P1, P2)← GGen(1λ), A←R D`,k,w←R

Zkp,u←R Z`p.

For Q ∈ N, W ←R Zk×Qp and U ←R Z`×Qp , we consider the Q-fold D`,k-MDDH assumption,
which states that distinguishing tuples of the form ([A]i, [AW]i) from ([A]i, [U]i) is hard. That
is, a challenge for the Q-fold D`,k-MDDH assumption consists of Q independent challenges of the
D`,k-MDDH assumption (with the same A but different randomness w). In [24] it is shown that the
two problems are equivalent, where the reduction loses at most a factor `− k.

Lemma 1 (Random self-reducibility of D`,k-MDDH, [24]). Let `, k, Q ∈ N with ` > k and
Q > ` − k and i ∈ {1, 2, T}. For any PPT adversary A, there exists an adversary B such that
T (B) ≈ T (A) +Q · poly(λ) with poly(λ) independent of T (A), and

AdvQ-mddh
PG,Gi,D`,k,A(λ) ≤ (`− k) ·Advmddh

PG,Gi,D`,k,B(λ) +
1
p−1 .

Here

AdvQ-mddh
PG,Gi,D`,k,A(λ) := |Pr[A(PG, [A]i, [AW]i) = 1]

−Pr[A(PG, [A]i, [U]i) = 1]| ,

where the probability is over PG := (G1,G2,GT , p, P1, P2) ← GGen(1λ), A ←R D`,k,W ←R Zk×Qp

and U←R Z`×Qp .

For k ∈ N we define Dk := Dk+1,k.
The Kernel-Diffie-Hellman assumption Dk-KMDH [46] is a natural computational analogue of

the Dk-MDDH Assumption.

Definition 3 (Dk-Kernel Diffie-Hellman assumption Dk-KMDH). Let Dk be a matrix dis-
tribution. We say that the Dk-Kernel Diffie-Hellman (Dk-KMDH) assumption holds relative to a
prime order group Gi for i ∈ {1, 2} if for all PPT adversaries A,

Advkmdh
PG,Gi,D`,k,A(λ) : = Pr[c>A = 0 ∧ c 6= 0 | [c]3−i ←R A(PG, [A]i)]

≤ negl(λ),

where the probabilities are taken over PG := (G1,G2,GT , p, P1, P2)← GGen(1λ), and A←R Dk.

Note that we can use a non-zero vector in the kernel ofA to test membership in the column space
of A. This means that the Dk-KMDH assumption is a relaxation of the Dk-MDDH assumption, as
captured in the following lemma from [46].

Lemma 2 ([46]). For any matrix distribution Dk, Dk-MDDH ⇒ Dk-KMDH.

2.3 Signature schemes and message authentication codes

Definition 4 (MAC). A message authentication code (MAC) is a tuple of PPT algorithms MAC :=
(Gen,Tag,Ver) such that:

8

Gen(1λ): on input of the security parameter, generates public parameters pp and a secret key sk .
Tag(pp, sk ,m): on input of public parameters pp, the secret key sk and a message m ∈M, returns
a tag tag.

Ver(pp, sk ,m, tag): verifies the tag tag for the message m, outputting a bit b = 1 if tag is valid
respective to m, and 0 otherwise.

We say MAC is perfectly correct, if for all λ ∈ N,all m ∈M and all (pp, sk)← Gen(1λ) we have

Ver(pp, sk ,m,Tag(pp, sk ,m)) = 1.

Definition 5 (UF-CMA security). Let MAC := (Gen,Tag,Ver) be a MAC. For any adversary A,
we define the following experiment:

Expuf-cma
MAC,A(λ):

(pp, sk)← Gen(1λ)
Qtag := ∅
(m?, tag?)← ATagO(·)(pp)
if m? /∈ Qtag and VerO(m?, tag?) = 1

return 1
else return 0

TagO(m):
Qtag := Qtag ∪ {m}
tag← Tag(pp, sk ,m)
return tag

VerO(m, tag):
b← Ver(pp, sk ,m, tag)
return b

The adversary is restricted to one call to VerO. We say that a MAC scheme MAC is UF-CMA
secure, if for all PPT adversaries A,

Advuf-cma
MAC,A(λ) := Pr[Expuf-cma

MAC,A(λ) = 1] ≤ negl(λ).

Note that in our notion of UF-CMA security, the adversary gets only one forgery attempt. This is
due to the fact that we employ the MAC primarily as a building block for our signature. Our notion
suffices for this purpose, as an adversary can check the validity of a signature itself.

Definition 6 (Signature). A signature scheme is a tuple of PPT algorithms SIG := (Gen,Sign,Ver)
such that:

Gen(1λ): on input of the security parameter, generates a pair (pk , sk) of keys.
Sign(pk , sk ,m): on input of the public key pk , the secret key sk and a message m ∈ M, returns a
signature σ.

Ver(pk ,m, σ): verifies the signature σ for the message m, outputting a bit b = 1 if σ is valid
respective to m, and 0 otherwise.

We say that SIG is perfectly correct, if for all λ ∈ N,all m ∈M and all (pk , sk)← Gen(1λ),

Ver(pk ,m,Sign(pk , sk ,m)) = 1.

In bilinear pairing groups, we say a signature scheme SIG is structure-preserving if its public keys,
signing messages, signatures contain only group elements and verification proceeds via only a set of
pairing product equations.

Definition 7 (UF-CMA security). For a signature scheme SIG := (Gen, Sign,Ver) and any adver-
sary A, we define the following experiment:

9

Expuf-cma
SIG,A (λ):

(pk , sk)← Gen(1λ)
Qsign := ∅
(m?, σ?)← ASignO(·)(pk)
if m? /∈ Qsign and Ver(pk ,m?, σ?) = 1

return 1
else return 0

SignO(m):
Qsign := Qsign ∪ {m}
σ ← Sign(pk , sk ,m)
return σ

We say that a signature scheme SIG is UF-CMA, if for all PPT adversaries A,

Advuf-cma
SIG,A (λ) := Pr[Expuf-cma

SIG,A (λ) = 1] ≤ negl(λ).

2.4 Non-interactive zero-knowledge proof (NIZK)

The notion of a non-interactive zero-knowledge proof was introduced in [15]. In the following we
present the definition from [32]. Non-interactive zero-knowledge proofs will serve as a crucial building
block for our constructions.

Definition 8 (Non-interactive zero-knowledge proof [32]). We consider a family of languages
L = {Lpars} with efficiently computable witness relation RL. A non-interactive zero-knowledge proof
for L is a tuple of PPT algorithms PS := (PGen,PTGen,PPrv,PVer,PSim) such that:

PGen(1λ, pars) generates a common reference string crs.
PTGen(1λ, pars) generates a common reference string crs and additionally a trapdoor td .
PPrv(crs, x, w) given a word x ∈ L and a witness w with RL(x,w) = 1, outputs a proof Π ∈ P.
PVer(crs, x,Π) on input crs, x ∈ L and Π outputs a verdict b ∈ {0, 1}.
PSim(crs, td , x) given a crs with corresponding trapdoor td and a word x ∈ L, outputs a proof Π.

Further we require the following properties to hold.

Completeness: For all possible public parameters pars, all λ ∈ N, all words x ∈ L, and all
witnesses w such that RL(x,w) = 1, we have

Pr[PVer(crs, x,Π) = 1] = 1,

where the probability is taken over crs ← PGen (1λ, pars) and Π ← PPrv(crs, x, w).
Composable zero-knowledge: For all PPT adversaries A we have that

AdvkeygenPS,A (λ) :=
∣∣∣Pr[A(1λ, crs) = 1 | crs ← PGen(1λ, pars)]

−Pr[A(1λ, crs) = 1 | (crs, td)← PTGen(1λ, pars)]
∣∣∣ ≤ negl(λ).

Further, for all x ∈ L with witness w such that RL(x,w) = 1, the following are identically
distributed:

PPrv(crs, x, w) and PSim(crs, td , x),

where (crs, td)←R PTGen(1λ).
Perfect soundness: For all crs in the range of PGen(1λ, pars), for all words x /∈ L and all proofs

Π it holds PVer(crs, x,Π) = 0.

10

PGen(1λ, pars):
D←R Dk, z←R Zk+1

p \span(D)
//recall Dk := Dk+1,k

crs := (pars, [D]2, [z]2)
return crs

PPrv(crs, [x]1, r):
let j ∈ {0, 1} s.t. [x]1 = [Aj]1 · r
v←R Zkp
[z1−j]2 := [D]2 · v
// ([D]2, [z1−j]2) trapdoor crs
[zj]2 := [z]2 − [z1−j]2
// crs guaranteeing soundness
S0,S1 ←R Zk×kp

[Cj]2 := Sj · [D]>2 + r · [zj]>2
//commitment to r with rand. Sj
[Πj]1 := [Aj]1 · Sj
//proof for x = Ajr
[C1−j]2 := S1−j · [D]>2
//commitment to 0 with rand. S1−j
[Π1−j]1 := [A1−j]1 · S1−j − [x]1 · v>
//trapdoor proof for x = A1−jr
return ([z0]2, ([Ci]2, [Πi]1)i∈{0,1})

PTGen(1λ, pars):
D←R Dk, u←R Zkp
z := D · u
crs := (pars, [D]2, [z]2), td := u
return (crs, td)

PVer(crs, [x]1, ([z0]2, ([Ci]2, [Πi]1)i∈{0,1})):
[z1]2 := [z]2 − [z0]2
if for all i ∈ {0, 1} it holds
e([Ai]1, [Ci]2)
=e([Πi]1, [D]>2) + e([x]1, [zi]

>
2)

//check Ai ·Ci
?
= Πi ·D> + x · z>i

return 1
else return 0

PSim(crs, td , [x]1):
parse td =: u
v←R Zkp
[z0]2 := [D]2 · v
[z1]2 := [z]2 − [z0]2
S0,S1 ←R Zk×kp

[C0]2 := S0 · [D]>2
[Π0]1 := [A0]1 · S0 − [x]1 · v>
[C1]2 := S1 · [D]>2
[Π1]1 := [A1]1 · S1 − [x]1 · (u− v)>

return ([z0]2, ([Ci]2, [Πi]1)i∈{0,1})

Fig. 1: NIZK argument for L∨A0,A1
([31, 47]).

2.5 NIZK for our OR-language

In this section we recall an instantiation of a NIZK for an OR-language first given in [31] and
later generalized in [47] for more general languages. This NIZK will be a crucial part of all our
constructions, allowing to employ the randomization techniques from [6, 26, 33] to obtain a tight
security reduction.
Public parameters. Let PG ← GGen(1λ). Let k ∈ N. Let A0,A1 ←R D2k,k. We define the public
parameters to comprise

pars := (PG, [A0]1, [A1]1).

We consider k ∈ N to be chosen ahead of time, fixed and implicitly known to all algorithms (recall
that in practice, k = 1 for SXDH, k = 2 for DLIN).
OR-proof ([31, 47]). In Figure 1 we present a non-interactive zero-knowledge proof for the
OR-language

L∨A0,A1
:= {[x]1 ∈ Z2k

p | ∃r ∈ Zkp : [x]1 = [A0]1 · r ∨ [x]1 = [A1]1 · r}.

11

Note that this OR-proof is implicitly given in [31, 47]. For the sake of completeness we recall
the proof here.

Lemma 3. If the Dk-MDDH assumption holds in the group G2, then the proof system PS :=
(PGen,PTGen,PPrv,PVer,PSim) as defined in Figure 1 is a non-interactive zero-knowledge proof
for L∨A0,A1

. More precisely, for every adversary A attacking the composable zero-knowledge property
of PS, we obtain an adversary B with T (B) ≈ T (A) +Qprove · poly(λ) and

AdvzkPS,A(λ) ≤ Advmddh
PG,G2,Dk,B(λ).

Proof. Completeness: Let j ∈ {0, 1} such that [x]1 = [Aj]1 · r. Let ([z0]2, ([Ci]2, [Πi]1)i∈{0,1}) be
returned by PPrv on input crs, [x]1 and r.

e([Aj]1, [Cj]2) = e([Aj]1,Sj · [D]>2 + r · [zj]>2) = [Aj · Sj ·D>]T + [Aj · r · z>j]T
= [Πj ·D>]T + [x · z>j]T = e([Πj]1, [D]>2) + e([x]1, [zj]

>
2)

and further

e([A1−j]1, [C1−j]2) = e([A1−j]1,S1−j · [D]>2) = [A1−j · S1−j ·D>]T
= [(A1−j · S1−j − x · v> + x · v>) ·D>]T = [Π1−j ·D>]T + [x · z>1−j]T
= e([Π1−j]1, [D]>2) + e([x]1, [z1−j]

>
2).

Composable zero-knowledge: Let A be a PPT adversary, attacking the zero-knowledge prop-
erty. We build a PPT adversary B such that T (B) ≈ T (A) and

AdvzkPS,A(λ) ≤ Advmddh
PG,G2,Dk,B(λ) +

1
p .

Upon receiving its MDDH challenge (PG, [D]2, [z]2), B samples A0,A1 ←R D2k,k and forwards
the common reference string crs := ((PG, [A0]1, [A1]1), [D]2, [z]2) to A. When B receives a real
MDDH tuple, that is, when there exists u ∈ Zkp such that [z]2 := [Du]2, B simulates a crs

as output by PTGen(1λ, pars). The other case is when B receives [z]2 ←R Gk+1
2 . In that case,

using the fact that the uniformly random distribution over Zk+1
p and the uniformly random

distribution over Zk+1
p \ span(D) are 1/p-statistically close distributions, since D is of rank k,

we can conclude that B simulates the crs as output by PGen(1λ, pars), within a 1/p statistical
distance. Overall, we get: AdvzkPS,A(λ) ≤ Advmddh

PG,G2,Dk,B(λ) +
1
p .

Now, we proceed to prove that for all [x]1 ∈ L∨A0,A1
with witness r ∈ Zkp, {PPrv(crs, [x]1, r), (crs, td)←

PTGen(1λ, pars)} is identically distributed to {PSim(crs, td , [x]1), (crs, td)← PTGen(1λ, pars)},
which concludes the proof.
First, note that PPrv and PSim compute the vectors [z0]2 and [z1]2 in the exact same way, i.e.
for all j ∈ {0, 1}, zj := Dvj where v0,v1 are uniformly random over Zkp subject to v0 + v1 = u
(recall z := Du). Second, on input [x]1 := [Ajr]1, for some j ∈ {0, 1}, PPrv(crs, [x]1, r) computes
[C1−j]2 and [Π1−j]1 exactly as PSim, that is: [C1−j]2 = S1−j [D

>]2 and [Π1−j]1 = [A1−j]1S1−j−
[x]1 · v>1−j . The algorithm PPrv(crs, [x]1, r) additionally computes [Cj]2 = Sj [D

>]2 + r · [z>j]2
and [Πj]1 = [Aj]1Sj , with Sj ←R Zk×kp . Since the following are identically distributed:

Sj and Sj − r · v>j ,

12

for Sj ←R Zk×kp , we can re-write the commitment and proof computed by PPrv(crs, [x]1, r) as

[Cj]2 = Sj [D
>]2 − r · v>j [D>]2 + r · [z>j]2 = [SjD

>]2 and [Πj]1 = [Aj]1Sj − [Ajr · v>j D>]2 =

[AjSj]1 − [x · z>j]2, which is exactly as the output of PSim.
Perfect soundness: Since z = z0 + z1 /∈ span(D), there is a j ∈ {0, 1} such that zj /∈ span(D).

This implies that there exists a d⊥ ∈ Zk+1
p such that D>d⊥ = 0, and z>j d

⊥ = 1. Furthermore, as
the row vectors ofD together with zj form a basis of Zk+1

p , we can write [Cj]2 := [Sj ·D>+r·z>j]2
for some Sj ∈ Zk×kp , r ∈ Zkp. Multiplying the verification equation by d⊥ thus yields [Ajr]1 = [x]1,
which proves a successful forgery outside L∨A0,A1

impossible.

Gen(1λ):
PG ← GGen(1λ)
A0,A1 ← D2k,k

pars := (PG, [A0]1, [A1]1)
crs ← PGen(1λ, pars)
k0,k1 ←R Z2k

p

pp := (PG, [A0]1, crs)
sk := (k0,k1)
return (pp, sk)

Tag(pp, sk , µ ∈ Zp):
parse pp =: (PG, [A0]1, crs)
r←R Zkp
[t]1 := [A0]1r
Π ← PPrv(crs, [t]1, r)
[u]1 := (k0 + µk1)

>[t]1
tag := ([t]1, Π, [u]1)
return tag

Ver(pp, sk , µ ∈ Zp, tag) :
parse tag =: ([t]1, Π, [u]1)
b← PVer(crs, [t]1, Π)
if b = 1 and [u]1 6= [0]1
and [u]1 = (k0 + µk1)

>[t]1
return 1

else return 0

Fig. 2: Tightly secure MAC MAC := (Gen,Tag,Ver) from the D2k,k-MDDH assumption.

3 Tightly secure message authentication code scheme

Let k ∈ N and let PS := (PGen,PTGen,PPrv,PSim) a non-interactive zero-knowledge proof for
L∨A0,A1

as defined in Section 2.5. In Figure 2 we provide a MAC MAC := (Gen,Tag,Ver) whose
security can be tightly reduced to D2k,k-MDDH and the security of the underlying proof system PS.

Instead of directly proving UF-CMA security of our MAC, we will first provide our so-called core
lemma, which captures the essential randomization technique from [6, 26, 33]. We can employ this
lemma to prove the security of our MAC and (structure-preserving) signature schemes. Essentially,
the core lemma shows that the term [k>0 t]1 is pseudorandom. We give the corresponding formal
experiment in Figure 3.

Lemma 4 (Core lemma). If the D2k,k-MDDH assumption holds in G1 and the tuple of algorithms
PS := (PGen,PTGen,PPrv,PVer) is a non-interactive zero-knowledge proof system for L∨A0,A1

, then

13

Expcoreβ,A (λ), for β ∈ {0, 1}:
ctr := 0
PG ← GGen(1λ)
A0,A1 ←R D2k,k

pars := (PG, [A0]1, [A1]1)
crs ← PGen(1λ, pars)
k0 ←R Z2k

p

pp := (PG, [A0]1, crs)
tag← ATagO()(pp)
return VerO(tag)

TagO():
ctr := ctr + 1
r←R Zkp
[t]1 := [A0]1r
Π ← PPrv(crs, [t]1, r)

[u′]1 := (k0 +β · F(ctr))>[t]1
tag := ([t]1, Π, [u

′]1)
return tag

VerO(tag) :
parse tag = ([t]1, Π, [u

′]1)
b← PVer(crs, [t]1, Π)
if b = 1 and ∃ctr′ ≤ ctr :
[u′]1 = (k0 +β · F(ctr′))>[t]1
return 1

else return 0

Fig. 3: Experiment for the core lemma. Here, F : Zp → Z2k
p is a random function computed on the fly. We

highlight the difference between Expcore
0,A and Expcore

1,A in gray.

going from experiment Expcore0,A (λ) to Expcore1,A (λ) can (up to negligible terms) only increase the win-
ning chances of an adversary. More precisely, for every adversary A, there exist adversaries B, B′
with running time T (B) ≈ T (B′) ≈ T (A) +Q · poly(λ) such that

Advcore0,A (λ) ≤ Advcore1,A (λ) +∆core
A (λ),

where

∆core
A (λ) :=(4kdlogQe+ 2) ·Advmddh

PG,G1,D2k,k,B(λ)

+ (2dlogQe+ 2) ·AdvZKPS,B′(λ)

+ dlogQe ·∆D2k,k
+ 4dlogQe+2

p−1 + dlogQe·Q
p .

Recall that by definition of the distribution D2k,k (Section 2.2), the term ∆D2k,k
is statistically small.

Proof outline. Since the proof of Lemma 4 is rather complex, we first outline our strategy.
Intuitively, our goal is to randomize the term u′ used by oracles TagO and VerO (i.e., to change
this term from k>0 t to (k0+F(ctr))>t for a truly random function F). In this, it will also be helpful
to change the distribution of t ∈ Z2k

p in tags handed out by TagO as needed. (Intuitively, changing
t can be justified with the D2k,k-MDDH assumption, but we can only rely on the soundness of PS
if t ∈ span(A0) ∪ span(A1). In other words, we may assume that t ∈ span(A0) ∪ span(A1) for any
of A’s VerO queries, but only if the same holds for all t chosen by TagO.)

We will change u′ using a hybrid argument, where in the i-th hybrid we set u′ = (k>0 +Fi(ctr|i))
>t

for a random function Fi on i-bit prefixes, and the i-bit prefix ctr|i of ctr. (That is, we introduce
more and more dependencies on the bits of ctr.) To move from hybrid i to hybrid i+1, we proceed
again along a series of hybrids (outsourced into the proof of Lemma 5),and perform the following
modifications:

14

Partitioning. First, we choose t ∈ span(Actri+1) in VerO, where ctri+1 is the (i+1)-th bit of ctr.
As noted above, this change can be justified with the D2k,k-MDDH assumption, and we may
still assume t ∈ span(A0) ∪ span(A1) in every TagO query from A.

Decoupling. At this point, the values u′ computed in TagO and VerO are either of the form
u′ = (k>0 +Fi(ctr|i))

>A0r or u′ = (k>0 +Fi(ctr|i))
>A1r (depending on t). Since Fi : {0, 1}i → Z2k

p

is truly random, and the matrix A0||A1 ∈ Z2k×2k
p has linearly independent columns (with over-

whelming probability), the two possible subterms Fi(ctr|i)
>A0 and Fi(ctr|i)

>A1 are indepen-
dent. Thus, switching to u′ = (k>0 + Fi+1(ctr|i+1))

>t does not change A’s view at all.
After these modifications (and resetting t), we have arrived at the (i+1)-th hybrid, which completes
the proof. However, this outline neglects a number of details, including a proper reasoning of PS
proofs, and a careful discussion of the decoupling step. In particular, an additional complication
arises in this step from the fact that an adversary may choose t ∈ span(Ab) for an arbitrary bit b
not related to any specific ctr. This difficulty is the reason for the somewhat surprising “∃ctr′ ≤ ctr”
clause in VerO.

Proof (of Lemma 4). We proceed via a series of hybrid games G0, . . . ,G3.dlogQe, described in Figure
4, and we denote by εi the advantage of A to win Gi, that is Pr[Gi(A, 1λ) = 1], where the probability
is taken over the random coins of Gi and A.

G0, G1, G2, G3.i :

ctr := 0
PG ← GGen(1λ)
A0,A1 ←R D2k,k

pars := (PG, [A0]1, [A1]1)
crs ← PGen(1λ, pars)

(crs, td)← PTGen(1λ, pars)

k0,k1 ←R Z2k
p

pp := (PG, [A0]1, crs)
tag← ATagO()(pp)
return VerO(tag)

TagO():
ctr := ctr + 1
r←R Zkp
[t]1 := [A0]1r

[t]1 ←R G2k
1

Π ← PPrv(crs, [t]1, r)

Π ← PSim(crs, td , [t]1)

[u′]1 := (k0 +Fi(ctr|i))
>[t]1

return tag := ([t]1, Π, [u
′]1)

VerO(tag):
parse tag =: ([t]1, Π, [u

′]1)
b← PVer(crs, [t]1, Π)
if b = 1 and ∃ctr′ ≤ ctr :
[u′]1 = (k0 + Fi(ctr

′
|i))

>[t]1

return 1
else return 0

Fig. 4: Games G0,G1,G2,G3.i for i ∈ {0, . . . , dlogQe − 1}, for the proof of the core lemma (Lemma 4). Fi :
{0, 1}i → Z2k

p denotes a random function, and ctr|i denotes the i-bit prefix of the counter ctr written in binary.
In each procedure, the components inside a solid (dotted, gray) frame are only present in the games marked by
a solid (dotted, gray) frame.

15

G0: We have G0 = Expcore0,A (λ) and thus by definition:

ε0 = Advcore0,A (λ).

G0 G1: Game G1 is as G0, except that crs is generated by PTGen instead of PGen. Because
the output of PSim and PPrv are identically distributed on a crs ←R PTGen (see Definition 8),
we can argue that the crs distribution is the only difference in these two games. This difference is
justified by the zero-knowledge of PS. Namely, we build an adversary B on the composable zero-
knowledge property of PS as follows. The adversary B obtains crs from its own experiment instead
of calling PGen, samples A0 ←R D2k,k, and forwards pars := (PG, [A0]1, crs) to A. Then B samples
k0,k1 ←R Z2k

p , thanks to which it can answer TagO and VerO queries. Note that B simulates G0

in case it was given a crs generated by PGen, whereas it simulates G1 in case it was given a crs
generated by PTGen. Thus, B is such that T (B) ≈ T (A) +Q · poly(λ) and

|ε0 − ε1| ≤ AdvZKPS,B(λ).

G1 G2: We can switch [t]1 to random over G1 by applying the D2k,k assumption. More precisely,
let A be an adversary distinguishing between G1 and G2 and let B be an adversary given a Q-
fold D2k,k-MDDH challenge (PG, [A0]1, [z1]1, . . . , [zQ]1) as input. Now B sets up the game for A
similar to G1, but instead choosing A0 ←R D2k,k, it uses its challenge matrix [A0]1 as part of the
public parameters pars. Further, to answer tag queries B sets [ti]1 := [zi]1 and computes the rest
accordingly. This is possible as the proof Π is simulated from game G1 on. In case B was given a
real D2k,k-challenge, it simulates G1 and otherwise G2. Lemma 1 yields the existence of an adversary
B1 with T (B1) ≈ T (A) +Q · poly(λ) and

|ε1 − ε2| ≤ k ·Advmddh
PG,G1,D2k,k,B1(λ) +

1
p−1 .

G2 G3.0: As for all ctr ∈ N we have F0(ctr|0) = F0(ε) and k0 is distributed identically to
k0 + F0(ε) for k0 ←R Z2k

p we have
ε2 = ε3.0.

G3.i G3.(i+1): For the proof of this transition we refer to Lemma 5, which states that for every
adversary A there exist adversaries Bi, B′i with running time T (Bi) ≈ T (B′i) ≈ T (A) +Q · poly(λ),
and

ε3.i ≤ε3.(i+1) + 4k ·Advmddh
PG,G1,D2k,k,Bi(λ) + 2AdvZKPS,B′i

(λ)

+∆D2k,k
+ 4

p−1 + Q
p .

G3.dlogQe Expcore
1,A (λ): It is left to reverse the changes introduced in the transitions from game

G0 to game G2 to end up at the experiment Expcore1,A (1λ).
In order to do so we introduce an intermediary game G4, where we set [t] := [A0]1r for r←R Zkp.

This corresponds to reversing transition G1 G2. By the same reasoning for every adversary A we
thus obtain an adversary B3.dlogQe with T (B3.dlogQe) ≈ T (A) +Q · poly(λ) such that

|ε3.dlogQe − ε4| ≤ k ·Advmddh
PG,G1,D2k,k,B3.dlogQe

(λ) + 1
p−1 .

16

As [t]1 is now chosen from span([A0]1) again, we can switch back to honest generation of the
common reference string crs. As in transition G0 G1 for an adversary A we obtain an adversary
B4 with T (B4) ≈ T (A) +Q · poly(λ) and

|ε4 −Advcore1,A (λ)| ≤ AdvZKPS,B4(λ).

Lemma 5 (G3.i G3.(i+1)). If the D2k,k-MDDH assumptions holds in G1, and the tuple PS :=
(PGen,PTGen,PPrv,PVer) is a non-interactive zero-knowledge proof system for L∨A0,A1

, then for all
i ∈ {0, . . . , dlogQe − 1} between G3.i and G3.(i+1) as defined in Figure 7 the winning chances of an
adversary can only increase (up to negligible terms). More precisely, for every adversary A there
exist adversaries Bi, B′i with running times T (Bi) ≈ T (B′i) ≈ T (A) +Q · poly(λ), and

ε3.i ≤ε3.(i+1) + 4k ·Advmddh
PG,G1,D2k,k,Bi(λ) + 2AdvZKPS,B′i

(λ)

+∆D2k,k
+ 4

p−1 + Q
p .

Proof. We proceed via a series of hybrid games Hi.j for i ∈ {0, . . . , dlogQe − 1}, j ∈ {1, . . . , 8},
described in Figure 5, and we denote by ε̂i.j the advantage of A to win Hi.j . We give an overview of
the transitions in Figure 6.

G3.i Hi.1: We switch [t]1 from chosen uniformly at random by TagO to [Actri+1r]1 for r←R Zkp,
where ctri+1 is the i+1’st bit of the binary representation of ctr, using the D2k,k-MDDH assumption
twice. More precisely, we introduce an intermediary game Hi.0, where we choose [ti]1 as

[ti]1 =

{
[A0ri] for ri ←R Zkp if ctri+1 = 0

[ui]1 for ui ←R Z2k
p else

.

17

Hi.1 Hi.2, Hi.3, Hi.4 − Hi.6 , Hi.7 , Hi.8 :

ctr := 0
PG ← GGen(1λ)
A0,A1 ←R D2k,k

(crs, td)← PTGen(1λ, pars)

crs ← PGen(1λ, pars)

k0,k1 ←R Z2k
p

pp := (PG, [A0]1, crs)
tag← ATagO()(pp)
return VerO(tag)

TagO():
ctr := ctr + 1
r←R Zkp
[t]1 := [Actri+1]1r
Π ← PSim(crs, td , [t]1)

Π ← PPrv(crs, [t]1, r)

[u′]1 := [(k0+Fi(ctr|i))
>t]1

[u′]1 := [(k0 + Fi+1(ctr|i+1))
>t]1

tag := ([t]1, Π, [u
′]1)

return tag

VerO(tag) :
parse tag =: ([t]1, Π, [u

′]1)
b← PVer(crs, [t]1, Π)
S := {Fi(ctr′|i) : ctr

′ ≤ ctr}
Game Hi.4:
S := { Fi+1(ctr

′
|i|d[t]) : ctr′ ≤ ctr}

Game Hi.5:
S := {Fi+1(ctr

′
|i|b) : ctr

′ ≤ ctr, b ∈ {0, 1} }
Game Hi.6 − Hi.8:
S := {Fi+1(ctr

′
|i+1) : ctr

′ ≤ ctr}

if [t]1 ∈ span([A0]) ∪ span([A1])

and b = 1 and ∃w ∈ S : [u′]1 = (k0+w)>[t]1
return 1

else return 0

Fig. 5: Games Hi.j for i ∈ {0, . . . , dlogQe−1}, j ∈ {1, . . . , 8}, for the proof of Lemma 5. Here, Fi : {0, 1}i → Z2k
p

denotes a random function, ctr|i denotes the i-bit string that is a prefix of ctr written in binary, and ctri is the
i’th bit of ctr written in binary. We have d[t] = 0 if t ∈ span(A0), and d[t] = 1 if t ∈ span(A1). In each procedure,
the components inside a solid (dotted, gray) frame are only present in the games marked by a solid (dotted,
gray) frame. For the intermediate transitions from game Hi.4 to game Hi.6 we use dark gray highlighting to
emphasize the respective differences.

18

crs ← [t]1
in TagO

Π ←
in TagO

[u′]1 = (k0 + ·)>[t]1
in TagO

S := {· : ctr′ ∈ Qtag}
in VerO

check on [t]1
in VerO

game
knows remark

G3.i PTGen ←R G2k
1 PSim Fi(ctr|i) Fi(ctr

′
|i) - - Game G3.i

Hi.1 PTGen = [Actri+1]1r PSim Fi(ctr|i) Fi(ctr
′
|i) - - D2k,k-MDDH

Hi.2 PGen = [Actri+1]1r PPrv Fi(ctr|i) Fi(ctr
′
|i) - - ZK of PS

Hi.3 PGen = [Actri+1]1r PPrv Fi(ctr|i) Fi(ctr
′
|i) [t]1

?
∈ L∨A0,A1

A0, A1 SND of PS

Hi.4 PGen = [Actri+1]1r PPrv Fi+1(ctr|i+1) Fi+1(ctr
′
|i|d[t]) [t]1

?
∈ L∨A0,A1

A0, A1 statistical

Hi.5 PGen = [Actri+1]1r PPrv Fi+1(ctr|i+1) Fi+1(ctr
′
|i|b), b ∈ {0, 1} [t]1

?
∈ L∨A0,A1

A0, A1 incr. chances

Hi.6 PGen = [Actri+1]1r PPrv Fi+1(ctr|i+1) Fi+1(ctr
′
|i+1) [t]1

?
∈ L∨A0,A1

A0, A1 statistical

Hi.7 PGen = [Actri+1]1r PPrv Fi+1(ctr|i+1) Fi+1(ctr
′
|i+1) - - SND of PS

Hi.8 PTGen = [Actri+1]1r PSim Fi+1(ctr|i+1) Fi+1(ctr
′
|i+1) - - ZK of PS

G3.(i+1) PTGen ←R G2k
1 PSim Fi+1(ctr|i+1) Fi+1(ctr

′
|i+1) - - D2k,k-MDDH

Fig. 6: Overview of the transitions in the proof of Lemma 5. We highlight the respective changes between the games in gray. In the third column, r
is chosen at random from Zk

p and ctri+1 denotes the i+1’st bit of the bit representation of ctr ∈ Zp. In the fifth and sixth column, the dot · represents
the gap filled by the respective entries in the table. Further, Fi : {0, 1}i → Z2k

p , Fi+1 : {0, 1}i → Z2k
p are random functions and ctr|i and ctr|i+1 denote

the bit strings consisting of the first i respectively the first i + 1 bits of the bit representation of ctr ∈ N. Further, we have d[t] = 0 if t ∈ span(A0),
and d[t] = 1 if t ∈ span(A1). For the seventh column, recall that L∨A0,A1

:= span([A0]1)∪ span([A1]1). In the remark we give the justification for the
respective transition from the previous game to the current game.

19

Let A be an adversary distinguishing between G3.i and Hi.0 and let B be an adversary receiving a
Q-fold MDDH-challenge (PG, [A0]1, [z1]1, . . . , [zQ]1) as input. Then B sets up the game for A similar
to game G3.i, where he embeds [A0]1 into the public parameters pars. Further, whenever obtaining
a simulation query ctr with ctr|i+1 = 0, B sets [ti] := [zi]1 and otherwise follows G3.i. Similar, we
can reduce the transition from game Hi.0 to Hi.1 to the D2k,k-MDDH assumption. Applying Lemma
1 yields an adversary Bi.0 with T (Bi.0) ≈ T (A) +Q · poly(λ) such that:

|ε3.i − ε̂i.1| ≤ 2k ·Advmddh
PG,G1,D2k,k,Bi.0(λ) +

2
p−1 .

Hi.1 Hi.2: In this step we reverse the transition from game G0 to G1 in Theorem 1. Namely, we
generate crs using PGen instead of PTGen, and we use the fact that proofs generated by PSim or
PPrv are identically distributed when crs ←R PTGen(1λ, pars). Note that it is possible to use the
algorithm PPrv, as from game Hi.1 on, we choose all [t]1 in tag queries from L with corresponding
witness and can thus honestly generate proofs. Therefore, by the same reasoning as for G0 G1

there exists an adversary Bi.1 such that T (Bi.1) ≈ T (A) +Q · poly(λ) and

|ε̂i.1 − ε̂i.2| ≤ AdvZKPS,Bi.1(λ).

Hi.2 Hi.3: From game Hi.3 on we introduce an additionally check in the verification oracle.
Namely, VerO checks that [t]1 ∈ span([A0]1) ∪ span([A1]1). As the crs is generated by PGen, we
can employ the perfect soundness of PS to obtain

ε̂i.2 = ε̂i.3.

Hi.3 Hi.4: Let A⊥0 ∈ orth(A0) and A⊥1 ∈ orth(A1). We introduce an intermediary game Hi.3.1,
where we replace the random function Fi : {0, 1}i → Z2k

p by

F′i : {0, 1}i → Z2k
p , F′i(ν) :=

(
A⊥0 |A⊥1

)(Γi(ν)
Υi(ν)

)
,

where ν ∈ {0, 1}i is a i-bit string and Γi, Υi : {0, 1}i → Zkp are two independent random functions.
With probability 1−∆D2k,k

the matrix (A⊥0 |A⊥1) has full rank. In this case, going from game Hi.3 to
game Hi.3.1 consists merely in a change of basis, thus, these two games are perfectly indistinguishable.
We obtain |ε̂3.i − ε̂3.i.1| ≤ ∆D2k,k

.
We now define

Fi+1 : {0, 1}i+1 → Z2k
p , Fi+1(ν) :=

(
A⊥0 |A⊥1

)(Γ ′i (ν|i)
Υi(ν|i)

)
if νi+1 = 0

(
A⊥0 |A⊥1

)(Γi(ν|i)
Υ ′i (ν|i)

)
else

,

where Γ ′i , Υ
′
i : {0, 1}i → Zkp are fresh independent random functions. Now Fi+1 constitutes a random

function {0, 1}i+1 → Z2k
p .

Replacing F′i(ctr|i) by Fi+1(ctr|i+1) does not show up in any of the tag queries, as we have

Fi+1(ctri+1)
>[t]1 = Fi+1(ctri+1)

>[Actri+1]1r

20

=

{
Γ ′i (ctr|i)A

⊥
0 [A0]1r+ Υi(ctr|i)A

⊥
1 [A0]1r if ctri+1 = 0

Γi(ctr|i)A
⊥
0 [A1]1r+ Υ ′i (ctr|i)A

⊥
1 [A1]1r else

=

{
Υi(ctr|i)A

⊥
1 [A0]1r if ctri+1 = 0

Γi(ctr|i)A
⊥
0 [A1]1r else

= F′i(ctr|i)
>[Actri+1]1r.

In the verification oracle we check [t]1 ∈ span([A0]) ∪ span([A1]), define d[t] = 0 if t ∈ span(A0)
and d[t] = 1 if t ∈ span(A1) and replace Fi(ctr|i) by Fi+1(ctr|i|d[t]). Thus, by similar reasoning as
for tag queries, the change does not show up in the final verification query either.

Altogether, we obtain
|ε̂3.3 − ε̂3.4| ≤ ∆D2k,k

.

Hi.4 Hi.5: From game Hi.5 on, we extend the set S in the verification oracle from Si.4 :=
{Fi+1(ctr

′
|i|d[t]) : ctr′ ≤ ctr} to Si.5 := {Fi+1(ctr

′
|i|b) : ctr′ ≤ ctr, b ∈ {0, 1}}. That is, we regard

a verification query ([t]1, Π, [u
′]1) as valid, if there exists a ctr′ ≤ ctr such that [u′]1 = (k0 +

Fi+1(ctr
′
|i|b))

>[t]1 for b ∈ {0, 1} arbitrary, instead of requiring b = d[t] (where d[t] = 0 if t ∈ span(A0)

and d[t] = 1 if t ∈ span(A1)). As changing the verification oracle does not change the view of the
adversary before providing its output and as we have Si.4 ⊆ Si.5, the transition from game Hi.4 to
game Hi.5 can only increase the chance of the adversary. We thus have

ε̂i.4 ≤ ε̂i.5.

Hi.5 Hi.6: The difference between game Hi.5 and game Hi.6 is that in the latter we only re-
gard a verification query ([t]1, Π, [u]1) valid, if there exists a ctr′ ≤ ctr such that [u]1 = (k0 +
Fi+1(ctr

′
|i|ctr

′
i+1))

>[t]1 (instead of allowing the last bit to be arbitrary). As the only way an adver-
sary can learn the image of Fi+1 on a value is via tag queries and Fi+1 is a random function, a
union bound over the elements in Qtag yields

|ε̂i.5 − ε̂i.6| ≤ Q
p .

Hi.6 Hi.7: The oracle VerO does not perform the additional check [t]1 ∈ span([A0]1) ∪
span([A1]1) anymore from game Hi.7 on. This is justified by the soundness of PS. As in transi-
tion Hi.2 Hi.3 we obtain

ε̂i.6 = ε̂i.7.

Hi.7 Hi.8: This transition is similar to transition G0 to G1 in Theorem 1. Namely, for an adversary
A distinguishing the two games, we can employ the composable zero-knowledge property of PS to
obtain an adversary Bi.7 such that T (Bi.8) ≈ T (A) +Q · poly(λ) and

|ε̂i.7 − ε̂i.8| ≤ AdvZKPS,Bi.7(λ).

21

Hi.8 G3.(i+1): We switch [t]1 generated by TagO to uniformly random over G2k
1 , using the

D2k,k-MDDH assumption first on [A0]1, then on [A1]1. Similarly than for the transition G3.i Hi.1,
we obtain an adversary Bi.8 with T (Bi.8) ≈ T (A) +Q · poly(λ) such that

|ε̂i.8 − ε3.(i+1)| ≤ 2k ·Advmddh
PG,G1,D2k,k,Bi.8(λ) +

2
p−1 .

Theorem 1 (UF-CMA security of MAC). If the D2k,k-MDDH assumptions holds in G1, and the
tuple PS := (PGen,PTGen,PPrv,PVer) is a non-interactive zero-knowledge proof system for L∨A0,A1

,
then the MAC MAC := (Gen,Tag,Ver) provided in Figure 2 is UF-CMA secure. Namely, for any
adversary A, there exists an adversary B with running time T (B) ≈ T (A) +Q · poly(λ), where Q is
the number of queries to TagO, poly is independent of Q, and

Advuf-cma
MAC,A(λ) ≤ ∆core

B (λ) + Q
p .

Proof. We employ an intermediary game G0 to prove UF-CMA security of the MAC. By ε0 we denote
the advantage of A to win game G0, that is Pr[G0(A, 1λ) = 1], where the probability is taken over
the random coins of G0 and A.

Expuf-cma
A (λ), G :

Qtag := ∅
ctr := 0
PG ← GGen(1λ)
A0,A1 ←R D2k,k

pars := (PG, [A0]1, [A1]1)
crs ← PGen(1λ, pars)
k0,k1 ←R Z2k

p

pp := (PG, [A0]1, crs)
(µ?, tag?)← ATagO(·)(pp)
if µ? /∈ Qtag

and VerO(µ?, tag?) = 1
return 1

else return 0

TagO(µ):
Qtag := Qtag ∪ {µ}
ctr := ctr + 1
r←R Zkp
[t]1 := [A0]1r
Π ← PPrv(crs, [t]1, r)

[u]1 := (k0 + µk1 +F(ctr))>[t]1
tag := ([t]1, Π, [u]1)
return tag

VerO(µ?, tag?) :
parse tag? =: ([t]1, Π, [u]1)
b← PVer([t]1, Π)

if b = 1 and [u]1 6= [0]1 and ∃ctr′ ≤ ctr :

[u]1 = (k0 + µ?k1 +Fi(ctr
′))>[t]1

return 1
else return 0

Fig. 7: The UF-CMA security experiment and game G for the UF-CMA proof of MAC in Figure 2. F :
{0, 1}dlogQe → Z2k

p denotes a random function, applied on ctr written in binary. In each procedure, the compo-
nents inside a gray frame are only present in the games marked by a gray frame.

Expuf-cma
A (λ) G0: Let A be an adversary distinguishing between Expuf-cma

A (λ) and G0. Then we
construct an adversary B with T (B) ≈ T (A)+Q ·poly(λ) allowing to break the core lemma (Lemma
4) as follows. On input pp from Expcoreβ (1λ,B) the adversary B forwards pp to A. Then, B samples
k1 ←R Z2k

p . Afterwards, on a tag query µ from A, B queries its own TagO oracle (which takes

22

no input), receives ([t]1, Π, [u′]1), computes [u]1 := [u′]1 + µk>1 [t]1, and answers with ([t]1, Π, [u]1).
Finally, given the forgery

(
µ?, tag? := ([t]1, Π, [u

?]1)
)
from A, if µ? /∈ Qtag and [u?]1 6= [0]1, then the

adversary B sends tag′ := ([t]1, Π, [u
?]1 + µk>1 [t]1) to its experiment (otherwise an invalid tuple).

Then we have Advuf-cma
MAC,A(λ) = Advcore0,B (λ) and ε0 = Advcore1,B (λ). The core lemma yields

Advcore0,B (λ) ≤ Advcore1,B (λ) +∆core
B (λ)

and thus altogether we obtain

Advuf-cma
MAC,A(λ) ≤ ε0 +∆core

B (λ).

Game G0: We now prove that any adversary A has only negligible chances to win game G0 using
the randomness of F together with the pairwise independence of µ 7→ k0 + µk1.

Let
(
µ?, tag?

)
be the forgery of A. we can replace k1 by k1 − v for v ←R Z2k

p , as both are
distributed identically. Next, for all j ≤ Q we can replace F(j) by F(j) + µ(j) · v for the same
reason. This way, TagO(µ(j)) computes

[u(j)]1 : = [(k0 + µ(j)k1 −µ(j)v + F(j) +µ(j)v)>t(j)]1

= [(k0 + µ(j)k1 + F(j)>t(j)]1,

and VerO
(
[µ?]2, tag

? := ([t]1, Π, [u])
)
checks if there exists a counter i ∈ Qtag such that:

[u]1 = [(k0 + µ?k1 −µ?v + F(i) +µ(i)v)>t]1

= [(k0 + µ?k1 + F(i)>t?]1 +[(µ(i) − µ?)v>t]1 .

For the forgery to be successful, it must hold µ? /∈ Qtag and [u] 6= 0 (and thus [t]1 6= [0]1).
Therefore, each value computed by VerO is (marginally) uniformly random over G1.

As the verification oracle checks for all counters i ≤ Q, applying the union bound yields

ε0 ≤ Q
p .

4 Tightly secure signature scheme

In this section, we present a signature scheme SIG for signing messages from Zp, described in Figure
8, whose UF-CMA security can be tightly reduced to the D2k,k-MDDH and Dk-MDDH assumptions.

SIG builds upon the tightly secure MAC from Section 3, and functions as a stepping stone to
explain the main ideas of the upcoming structure-preserving signature in Section 5. Recall that our
MAC outputs tag = ([t]1, Π, [u]1), where Π is a (publicly verifiable) NIZK proof of the statement
t ∈ span(A0) ∪ span(A1), and u = (k0 + µk1)

>t has an affine structure. Hence, alternatively,
we can also view our MAC as an affine MAC [14] with t ∈ span(A0) ∪ span(A1) and a NIZK
proof for that. Similar to [14], we use (tuned) Groth-Sahai proofs to make [u]1 publicly verifiable.
Similar ideas have been used to construct efficient quasi-adaptive NIZK for linear subspace [41, 39],
structure-preserving signatures [40], and identity-based encryption schemes [14].

23

Gen(1λ):
PG ← GGen(1λ)
A0,A1 ← D2k,k

pars := (PG, [A0]1, [A1]1)
crs ← PGen(1λ, pars)
A←R Dk
K0,K1 ←R Z2k×(k+1)

p

pk := (PG, [A0]1, crs,
[A]2, [K0A]2, [K1A]2)

sk := (K0,K1)
return (pk , sk)

Sign(pk , sk , µ ∈ Zp):
r←R Zkp
[t]1 := [A0]1r
Π ← PPrv(crs, [t]1, r)
[u]1 := (K0 + µK1)

>[t]1
σ := ([t]1, Π, [u]1)
return σ

Ver(pk , µ ∈ Zp, σ) :
parse tag =: ([t]1, Π, [u]1)
b← PVer(crs, [t]1, Π)
if b = 1 and [u]1 6= [0]1 and e([u]>1 , [A]2)

= e([t]>1 , [K0A]2 + µ[K1A]2)
return 1

else return 0

Fig. 8: Tightly UF-CMA secure signature scheme SIG.

Theorem 2 (Security of SIG). If PS := (PGen,PPrv,PVer,PSim) is a non-interactive zero-
knowledge proof system for L∨A0,A1

, then the signature scheme SIG described in Figure 8 is UF-CMA
secure under the D2k,k-MDDH and Dk-MDDH assumptions. Namely, for any adversary A, there
exist adversaries B,B′ with running time T (B) ≈ T (B′) ≈ T (A) + Q · poly(λ), where Q is the
number of queries to SignO, poly is independent of Q, and

Advuf-cma
SIG,A (λ) ≤ Advuf-cma

MAC,B(λ) + Advmddh
PG,G2,Dk,B′(λ).

By using the KMDH assumption, we verify the forgery with the signing key; then we introduce
the MAC in the kernel of A. Since we always know A over Zp, we extract the MAC tag from the
forgery and break the MAC security. The proof idea is similar, but weaker than [14].

Proof. We proceed via a series of hybrid games G0 to G1, described in Figure 9. By εi we denote the
advantage of A to win Gi, that is Pr[Gi(A, 1λ) = 1], where the probability is taken over the random
coins of Gi and A.

Expuf-cma
SIG,A (λ) G0: Here we change the verification oracle as described in Fig. 9. Note that a

pair (µ?, σ?) that passes VerO in G0 always passes the VerO in Expuf-cma
SIG,A (λ). Thus, to bound

|Advuf-cma
SIG,A (λ)− ε1|, it suffices to bound the probability that A produces (µ?, σ?) that passes VerO

in Expuf-cma
SIG,A (λ) but not in G0. We write σ? := ([t]1, Π, [u]1), and the verification equation in

Expuf-cma
SIG,A (λ) as:

e([u]>1 , [A]2) = e([t]>1 , [(K0 + µ?K1)A]2)

⇔ e([u]1 − [t]>1 (K0 + µ?K1), [A]2) = 0

Observe that for any (µ?, ([t]1, Π, [u]1)) that passes the verification equation in Expuf-cma
Σ,A (λ)

but not in G0 the value
[u]1 − [t]>1 (K0 + µ?K1)

24

G0, G1 :
Qsign := ∅
PG ← GGen(1λ)
A0,A1 ← D2k,k

pars := (PG, [A0]1, [A1]1)
crs ← PGen(1λ, pars)
A←R Dk
a⊥ ∈ orth(A)

K0,K1 ←R Z2k×(k+1)
p

k0,k1 ←R Z2k
p

pk := (PG, [A0]1, crs,
[A]2, [K0A]2, [K1A]2)

sk := (K0,K1)
(µ?, σ?)←R ASignO(·)(pk)
if µ? /∈ Qsign

and VerO(µ?, σ?) = 1
return 1

else return 0

SignO(µ):
Qsign := Qsign ∪ {µ}
r←R Zkp
[t]1 := [A0]1r
Π ← PPrv(crs, [t]1, r)

[u]1 := (K0 + µK1)
>[t]1 +a⊥(k0 + µk1)

>[t]1
σ := ([t]1, Π, [u]1)
return σ

VerO(µ?, σ?):
parse σ? := ([t]1, Π, [u]1)
b← PVer(pk , [t]1, Π)
if b = 1 and [u]1 6= [0]1 and

[u]1 = (K0 + µ?K1)
>[t]1 +a⊥(k0 + µ?k1)

>[t]1
return 1

else return 0

Fig. 9: Games G0 to G1 for proving Theorem 2. The instructions inside a solid frame are only present in the
games marked by a solid frame.

is a non-zero vector in the kernel of A.
Thus we can construct an adversary B with T (B) ≈ T (A) + Q · poly(λ) on the Dk-KMDH

assumption from A as follows. On receiving (PG, [A]2) from the Dk-KMDH experiment, B can
sample all other parameters itself and simulate G0 for A. If A outputs the tuple (µ?, ([t]1, Π, [u]1)),
then B outputs the value [u]1 − [t]>1 (K0 + µ?K1) to its own experiment.

Lemma 2 finally yields an adversary B′ with T (B′) ≈ T (B) ≈ T (A) +Q · poly(λ) and

|Advuf-cma
SIG,A (λ)− ε0| ≤ Advmddh

PG,G2,Dk,B′(λ).

G0 G1: For i ∈ {0, 1} we can replace Ki by Ki + ki(a
⊥)> for a⊥ ∈ orth(A) and ki ←R Z2k

p ,
as both are distributed identically. Further, as (a⊥)> ·A = 0, this change does not show up in the
public key pk . Thus, we have

ε0 = ε1.

Game G1: We can employ the UF-CMA security of MAC given in Figure 2 to bound the probability
of an adversary winning game G1. Let A be an adversary on G1. We construct an adversary B with
T (B) ≈ T (A) +Q · poly(λ) on the UF-CMA security of MAC as follows.

On input pp = (PG, [A0]1, crs) of Expuf-cma
A (λ) adversary B samplesA←R Dk+1,k andK0,K1 ←R

Z2k×(k+1)
p , chooses a⊥ ∈ orth(A) and forwards pk := (PG, [A0]1, crs, [A]2, [K0A]2, [K1A]2) to A.
On a signing query µ of A, the adversary B queries its own tag oracle to obtain tag =

([t]1, Π, [u]1). Then, B computes [u]1 := (K0 + µK1)
>[t]1 + a⊥[u]1 and forwards σ := ([t]1, Π, [u]1)

to A.

25

Let (µ?, σ?) be a forgery of A with σ? = ([t?]1, Π
?, [u?]1). Then B computes [u′]1 := (K0 +

µ?K1)
>[t]1 and (if possible) chooses [u?]1 such that a⊥[u?]1 = [u?]1 − [u′]1 (note that this doable

efficiently given a⊥) Finally, B outputs (µ?, tag?) with tag? := ([t?]1, Π
?, [u?]1). If (µ?, σ?) was

a successful forgery of A then, by the definition of game G1, (µ?, tag?) is a successful forgery in
Expuf-cma

A (λ). This yields
ε1 ≤ Advuf-cma

MAC,B(λ).

5 Tightly secure structure-preserving signature scheme

In this section we present a structure-preserving signature scheme SPS, described in Figure 10,
whose security can be tightly reduced to the D2k,k-MDDH and Dk-MDDH assumptions. It builds
upon the tightly secure signature presented in Section 4 by using a similar idea of [40]. Precisely,
we view µ as a label and the main difference between both schemes is that in the proof we do not
need to guess which µ the adversary may reuse for its forgery, and thus our security proof is tight.

Gen(1λ):
PG ← GGen(1λ)
A0,A1 ←R D2k,k

pars := (PG, [A0]1, [A1]1)
crs ← PGen(pars, 1λ)
A←R Dk
K0 ←R Z2k×(k+1)

p

K←R Z(n+1)×(k+1)
p

pk := (PG, [A0]1, crs, [A]2,
[K0A]2, [KA]2)

sk := (K0,K)
return (pk , sk)

Sign(pk , sk , [m]1 ∈ Gn
1):

r←R Zkp [t]1 := [A0]1r
Π ← PPrv(crs, [t]1, r)

[u]1 := K>0 [t]1 +K>
[
m
1

]
1

return σ := ([t]1, Π, [u]1)

Ver(pk , σ, [m]1):
parse σ := ([t]1, Π, [u]1)
b← PVer(pk , [t]1, Π)
if b = 1 and e([u]>1 , [A]2) = e([t]>1 , [K0A]2)

+e(

[
m
1

]>
1

, [KA]2)

return 1
else return 0

Fig. 10: Tightly UF-CMA secure structure-preserving signature scheme SPS with message space Gn
1 .

Theorem 3 (Security of SPS). If PS := (PGen,PTGen,PVer,PSim) is a non-interactive zero-
knowledge proof system for L∨A0,A1

, the signature scheme SPS described in Fig. 10 is UF-CMA
secure under the D2k,k-MDDH and Dk-MDDH assumptions. Namely, for any adversary A, there
exist adversaries B,B′ with running time T (B) ≈ T (B′) ≈ T (A) + Q · poly(λ), where Q is the
number of queries to SignO, poly is independent of Q, and

Advuf-cma
SPS,A (λ) ≤ ∆core

B (λ) + Advmddh
PG,G2,Dk,B′(λ) +

Q
pk

+ Q
p .

When using PS from Section 2.5, we obtain

Advuf-cma
SPS,A (λ) ≤(4kdlogQe+ 2) ·Advmddh

PG,G1,D2k,k,B(λ)

26

G0, G1, G2, G3, G4 :

Qsign := ∅
ctr := 0 , c̃tr←R [Q]

PG ← GGen(1λ)
A0,A1 ←R D2k,k

pars := (PG, [A0]1, [A1]1)
A←R Dk
a⊥ ∈ orth(A)

crs ← PGen(pars, 1λ)

K0 ←R Z2k×(k+1)
p

k0 ←R Z2k
p

K←R Z(n+1)×(k+1)
p

pk := (crs, pars, [A]2,
[K0A]2, [KA]2)

sk := (K0,K)
([m?]1, σ

?)←R ASignO(·)(pk)
if [m?]1 /∈ Qsign

and VerO([m?]1, σ
?) = 1

return 1
else return 0

SignO([m]1 ∈ Gn
1):

Qsign := Qsign ∪ {[m]1}
ctr := ctr + 1

r←R Zkp, r←R (Zkp)∗ , [t]1 := [A0]1r

Π ← PPrv(crs, [t]1, r)

[u]1 := K>0 [t]1 +K>
[
m
1

]
1

+a⊥(k0 +F(ctr))>[t]1

return σ := ([t]1, Π, [u]1)

VerO([m?]1, σ
?):

parse σ =: ([t]1, Π, [u]1)
b← PVer(pk , [t]1, Π)

if b = 1 and ∃ctr′ ≤ ctr :

ctr′ = c̃tr and

[u]1 = K>0 [t]1 +K>
[
m
1

]
1

+a⊥(k0 +F(ctr′))>[t]1

return 1
else return 0

Fig. 11: Games G0 to G4 for proving Theorem 3. Here, F : Zp → Z2k
p is a random function. In each procedure,

the components inside a solid (dotted, double, gray) frame are only present in the games marked by a solid
(dotted, double, gray) frame.

+ (2dlogQe+ 3) ·Advmddh
PG,G2,Dk,B′(λ) + dlogQe ·∆D2k,k

+ 4dlogQe+2
p−1 + (Q+1)dlogQe+Q

p + Q
pk
.

Strategy. In a nutshell, we will embed a “shadow MAC” in our signature scheme, and then
invoke the core lemma to randomize the MAC tags computed during signing queries and the final
verification of A’s forgery. A little more specifically, we will embed a term k>0 t into the A-orthogonal
space of each u computed by SignO and VerO. (Inuitively, changes to this A-orthogonal space
do not influence the verification key, and simply correspond to changing from one signing key to
another signing key that is compatible with the same verification key.) Using our core lemma, we
can randomize this term k>0 t to (k0 + F(ctr))>t for a random function F and a signature counter
ctr. Intuitively, this means that we use a freshly randomized signing key for each signature query.
After these changes, an adversary only has a statistically small chance in producing a valid forgery.

Proof (of Theorem 3). We proceed via a series of hybrid games G0 to G4, described in Figure 11.
By εi we denote the advantage of A to win Gi.

Expuf-cma
SPS,A(λ) G0: Here we change the verification oracle as described in Fig. 11.

27

Note that a pair (µ?, σ?) that passes VerO in G0 always passes the VerO check in Expuf-cma
SPS,A (λ).

Thus, to bound |Advuf-cma
SPS,A (λ) − ε0|, it suffices to bound the probability that A produces a tuple

(µ?, σ?) that passes VerO in Expuf-cma
SPS,A (λ), but not in G0. For the signature σ? =: ([t]1, Π, [u]1) we

can write the verification equation in Expuf-cma
SPS,A (λ) as

e([u]>1 , [A]2) = e([t]>1 , [K0A]2) + e(

[
m
1

]>
1

, [KA]2)

⇔ e([u]1 − [t]>1 K0 −
[
m
1

]>
1

K, [A]2) = 0

Observe that for any (µ?, ([t]1, Π, [u]1)) that passes the verification equation in the experiment
Expuf-cma

SPS,A (λ), but not the one in G0, the value

[u]1 − [t]>1 K0 −
[
m
1

]>
1

K

is a non-zero vector in the kernel of A. Thus, from A we can construct an adversary B against the
Dk-KMDH assumption. Finally, Lemma 2 yields an adversary B′ with T (B′) ≈ T (A) +Q · poly(λ)
such that

|Advuf-cma
SPS,A (λ)− ε0| ≤ Advmddh

PG,G2,Dk,B(λ).

G0 G1: We can replace K0 by K0 + k0(a
⊥)> for a⊥ ∈ orth(A) and ki ←R Z2k

p , as both are
distributed identically. Note that this change does not show up in the public key pk . Looking ahead,
this change will allow us to use the computational core lemma (Lemma 4). This yields

ε0 = ε1.

G1 G2: Let A be an adversary playing either G1 or G2. We build an adversary B such that
T (B) ≈ T (A) +Q · poly(λ) and

Pr[Expcore0,B (1λ) = 1] = ε1 and Pr[Expcore1,B (1λ) = 1] = ε2.

This implies, by the core lemma (Lemma 4), that

ε1 ≤ ε2 +∆core
B (λ).

We now describe B against Expcoreβ,B (1
λ) for β equal to either 0 or 1. First, B receives pp :=

(PG, [A0]1, crs) from Expcoreβ,B (1
λ), then, B samples A ←R Dk, a⊥ ∈ orth(A), K0 ←R Z2k×(k+1)

p ,

K←R Z(n+1)×(k+1)
p and forwards pk := (PG, [A0]1, crs, [A]2, [K0A]2, [KA]2) to A.

To simulate SignO([m]1), B uses its oracle TagO, which takes no input, and gives back

([t]1, Π, [u]1). Then, B computes [u]1 := K>0 [t]1+a⊥[u]1+K>
[
m
1

]
1

, and returns σ := ([t]1, Π, [u]1)

to A.
Finally, given the forgery

(
[m?]1, σ

?) with corresponding signature σ? := ([t?]1, Π
?, [u?]1), B

first checks if [m?]1 /∈ Qsign and [u?]1 6= [0]1. If it is not the case, then B returns 0 to A. If it is the

28

case, with the knowledge of a⊥ ∈ Zp, B efficiently checks whether there exists [u?]1 ∈ G1 such that

[u?]1 −K>0 [t
?]1 −K>

[
m?

1

]
1

= [u?]1a
⊥. If it is not the case, B returns 0 to A. If it is the case, B

computes [u?]1 (it can do so efficiently given a⊥), sets tag := ([t?]1, Π
?, [u?]1), calls its verification

oracle VerO(tag), and forwards the answer to A.

G2 G3: In game G2 the vectors r sampled by SignO are uniformly random over Zkp, while they
are uniformly random over (Zkp)∗ = Zkp\{0} in G3. Since this is the only difference between the games,
the difference of advantage is bounded by the statistical distance between the two distributions of
r. A union bound over the number of queries yields

ε2 − ε3 ≤ Q
pk
.

G3 G4: These games are the same except for the extra condition c̃tr = ctr′ in G4, which happens
with probability 1

Q over the choice of c̃tr ←R [Q]. Since the adversary view is independent of c̃tr,
we have

ε4 =
ε3
Q .

Game G4: We prove that ε4 ≤ 1
p .

First, we can replace K by K + v(a⊥)> for v ←R Zn+1
p , and {F(i) : i ∈ [Q], i 6= c̃tr} by

{F(i) +wi : i ∈ [Q], i 6= c̃tr} for wi ←R Z2k
p . Note that this does not change the distribution of the

game.
Thus, for the i-th signing query with i 6= c̃tr the value u is computed by SignO([mi]1) as

[u]1 = K>0 [t]1 + (K> +a⊥v>)

[
mi

1

]
1

+a⊥(k0+F(i) +wi)
>[t]1,

with [t]1 := [A0]1r, r←R (Zkp)∗. This is identically distributed to

[u]1 = K>0 [t]1 +K>
[
mi

1

]
1

+ γi · [a⊥]1, with γi ←R Zp.

For the c̃tr’th signing query, we have

[u]1 = K>0 [t]1 + (K> +a⊥v>)

[
mc̃tr

1

]
1

+ a⊥(k0 + F(c̃tr))>[t]1.

Assuming A succeeds in producing a valid forgery, VerO computes

[u?]1 = K>0 [t
?]1 + (K> +a⊥v>)

[
m?

1

]
1

+a⊥(k0+F(c̃tr))>[t]1.

Since m? 6= mc̃tr by definition of the security game, we can use the pairwise independence of

m 7→ v>
[
m
1

]
1

to argue that v>
[
m?

1

]
1

and v>
[
mc̃tr

1

]
1

are two independent values, uniformly

random over G1. Thus, the verification equation is satisfied with probability at most 1
p , that is

ε4 ≤ 1
p .

29

Bilateral structure-preserving signature scheme. Our structure-preserving signature scheme,
SPS, defined in Figure 10 can sign only messages from Gn

1 . By applying the generic transformation
from [40, Section 6], we can transform our SPS to sign messages from Gn1

1 × Gn2
2 using their two-

tier SPS, which is a generalization of [1]. The transformation is tightness-preserving by Theorem 6
of [40] and costs additional k elements from G1 and k + 1 elements from G2 in the signature. For
the SXDH assumption (k = 1), our bilateral SPS scheme requires additional 1 element from G1 and
2 elements from G2 in the signature.

Acknowledgments. We thank Carla Ràfols for insightful discussions regarding the OR proof, and
Yohei Watanabe for spotting a mistake in the write-up.

References

[1] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and Miyako Ohkubo.
“Constant-Size Structure-Preserving Signatures: Generic Constructions and Simple Assumptions”. In: ASI-
ACRYPT 2012. Ed. by Xiaoyun Wang and Kazue Sako. Vol. 7658. LNCS. Springer, Heidelberg, Dec. 2012,
pp. 4–24. doi: 10.1007/978-3-642-34961-4_3.

[2] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and Miyako Ohkubo.
“Constant-Size Structure-Preserving Signatures: Generic Constructions and Simple Assumptions”. In: Journal
of Cryptology 29.4 (Oct. 2016), pp. 833–878. doi: 10.1007/s00145-015-9211-7.

[3] Masayuki Abe, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and Miyako Ohkubo. “Tagged One-Time
Signatures: Tight Security and Optimal Tag Size”. In: PKC 2013. Ed. by Kaoru Kurosawa and Goichiro
Hanaoka. Vol. 7778. LNCS. Springer, Heidelberg, 2013, pp. 312–331. doi: 10.1007/978-3-642-36362-7_20.

[4] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. “Structure-
Preserving Signatures and Commitments to Group Elements”. In: Journal of Cryptology 29.2 (Apr. 2016),
pp. 363–421. doi: 10.1007/s00145-014-9196-7.

[5] Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. “Optimal Structure-Preserving Signa-
tures in Asymmetric Bilinear Groups”. In: CRYPTO 2011. Ed. by Phillip Rogaway. Vol. 6841. LNCS. Springer,
Heidelberg, Aug. 2011, pp. 649–666.

[6] Masayuki Abe, Dennis Hofheinz, Ryo Nishimaki, Miyako Ohkubo, and Jiaxin Pan. “Compact Structure-
Preserving Signatures with Almost Tight Security”. In: CRYPTO 2017. Springer, 2017, pp. 548–580.

[7] Tolga Acar, Kristin Lauter, Michael Naehrig, and Daniel Shumow. “Affine Pairings on ARM”. In: PAIRING
2012. Ed. by Michel Abdalla and Tanja Lange. Vol. 7708. LNCS. Springer, Heidelberg, May 2013, pp. 203–209.
doi: 10.1007/978-3-642-36334-4_13.

[8] Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada. “A Framework for Identity-Based Encryption
with Almost Tight Security”. In: ASIACRYPT 2015, Part I. Ed. by Tetsu Iwata and Jung Hee Cheon. Vol. 9452.
LNCS. Springer, Heidelberg, 2015, pp. 521–549. doi: 10.1007/978-3-662-48797-6_22.

[9] Paulo S. L. M. Barreto, Craig Costello, Rafael Misoczki, Michael Naehrig, Geovandro C. C. F. Pereira, and
Gustavo Zanon. “Subgroup Security in Pairing-Based Cryptography”. In: LATINCRYPT 2015. Ed. by Kristin
E. Lauter and Francisco Rodríguez-Henríquez. Vol. 9230. LNCS. Springer, Heidelberg, Aug. 2015, pp. 245–265.
doi: 10.1007/978-3-319-22174-8_14.

[10] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. “P-signatures and Noninteractive
Anonymous Credentials”. In: TCC 2008. Ed. by Ran Canetti. Vol. 4948. LNCS. Springer, Heidelberg, Mar.
2008, pp. 356–374.

[11] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. “Public-Key Encryption in a Multi-user Setting: Se-
curity Proofs and Improvements”. In: EUROCRYPT 2000. Ed. by Bart Preneel. Vol. 1807. LNCS. Springer,
Heidelberg, May 2000, pp. 259–274.

[12] Mihir Bellare and Shafi Goldwasser. “New Paradigms for Digital Signatures and Message Authentication Based
on Non-Interative Zero Knowledge Proofs”. In: CRYPTO’89. Ed. by Gilles Brassard. Vol. 435. LNCS. Springer,
Heidelberg, Aug. 1990, pp. 194–211.

[13] Olivier Blazy, Georg Fuchsbauer, Malika Izabachène, Amandine Jambert, Hervé Sibert, and Damien Vergnaud.
“Batch Groth-Sahai”. In: ACNS 10. Ed. by Jianying Zhou and Moti Yung. Vol. 6123. LNCS. Springer, Heidel-
berg, June 2010, pp. 218–235.

30

[14] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. “(Hierarchical) Identity-Based Encryption from Affine Message
Authentication”. In: CRYPTO 2014, Part I. Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8616. LNCS.
Springer, Heidelberg, Aug. 2014, pp. 408–425. doi: 10.1007/978-3-662-44371-2_23.

[15] Manuel Blum, Paul Feldman, and Silvio Micali. “Non-Interactive Zero-Knowledge and Its Applications (Ex-
tended Abstract)”. In: 20th ACM STOC. ACM Press, May 1988, pp. 103–112.

[16] Dan Boneh, Ilya Mironov, and Victor Shoup. “A Secure Signature Scheme from Bilinear Maps”. In: CT-
RSA 2003. Ed. by Marc Joye. Vol. 2612. LNCS. Springer, Heidelberg, Apr. 2003, pp. 98–110.

[17] Jan Camenisch, Maria Dubovitskaya, and Kristiyan Haralambiev. “Efficient Structure-Preserving Signature
Scheme from Standard Assumptions”. In: SCN 12. Ed. by Ivan Visconti and Roberto De Prisco. Vol. 7485.
LNCS. Springer, Heidelberg, Sept. 2012, pp. 76–94.

[18] Julien Cathalo, Benoît Libert, and Moti Yung. “Group Encryption: Non-interactive Realization in the Standard
Model”. In: ASIACRYPT 2009. Ed. by Mitsuru Matsui. Vol. 5912. LNCS. Springer, Heidelberg, Dec. 2009,
pp. 179–196.

[19] Melissa Chase and Markulf Kohlweiss. “A New Hash-and-Sign Approach and Structure-Preserving Signatures
from DLIN”. In: SCN 12. Ed. by Ivan Visconti and Roberto De Prisco. Vol. 7485. LNCS. Springer, Heidelberg,
Sept. 2012, pp. 131–148.

[20] Jie Chen, Junqing Gong, and Jian Weng. “Tightly Secure IBE Under Constant-Size Master Public Key”. In:
PKC 2017, Part I. Ed. by Serge Fehr. Vol. 10174. LNCS. Springer, Heidelberg, Mar. 2017, pp. 207–231.

[21] Jie Chen and Hoeteck Wee. “Fully, (Almost) Tightly Secure IBE and Dual System Groups”. In: CRYPTO 2013,
Part II. Ed. by Ran Canetti and Juan A. Garay. Vol. 8043. LNCS. Springer, Heidelberg, Aug. 2013, pp. 435–
460. doi: 10.1007/978-3-642-40084-1_25.

[22] Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs. “Message Authentication, Revisited”. In:
EUROCRYPT 2012. Ed. by David Pointcheval and Thomas Johansson. Vol. 7237. LNCS. Springer, Heidelberg,
Apr. 2012, pp. 355–374.

[23] Andreas Enge and Jérôme Milan. “Implementing Cryptographic Pairings at Standard Security Levels”. In:
SPACE 2014. 2014, pp. 28–46.

[24] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. “An Algebraic Framework for Diffie-
Hellman Assumptions”. In: CRYPTO 2013, Part II. Ed. by Ran Canetti and Juan A. Garay. Vol. 8043. LNCS.
Springer, Heidelberg, Aug. 2013, pp. 129–147. doi: 10.1007/978-3-642-40084-1_8.

[25] Romain Gay, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. “Tightly CCA-Secure Encryption Without Pair-
ings”. In: EUROCRYPT 2016, Part I. Ed. by Marc Fischlin and Jean-Sébastien Coron. Vol. 9665. LNCS.
Springer, Heidelberg, May 2016, pp. 1–27. doi: 10.1007/978-3-662-49890-3_1.

[26] Romain Gay, Dennis Hofheinz, and Lisa Kohl. “Kurosawa-Desmedt Meets Tight Security”. In: CRYPTO 2017.
Springer, 2017, pp. 133–160.

[27] Junqing Gong, Jie Chen, Xiaolei Dong, Zhenfu Cao, and Shaohua Tang. “Extended Nested Dual System Groups,
Revisited”. In: PKC 2016, Part I. Ed. by Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin
Yang. Vol. 9614. LNCS. Springer, Heidelberg, Mar. 2016, pp. 133–163. doi: 10.1007/978-3-662-49384-7_6.

[28] Gurleen Grewal, Reza Azarderakhsh, Patrick Longa, Shi Hu, and David Jao. “Efficient Implementation of
Bilinear Pairings on ARM Processors”. In: SAC 2012. Ed. by Lars R. Knudsen and Huapeng Wu. Vol. 7707.
LNCS. Springer, Heidelberg, Aug. 2013, pp. 149–165. doi: 10.1007/978-3-642-35999-6_11.

[29] Jens Groth. “Simulation-Sound NIZK Proofs for a Practical Language and Constant Size Group Signatures”.
In: ASIACRYPT 2006. Ed. by Xuejia Lai and Kefei Chen. Vol. 4284. LNCS. Springer, Heidelberg, Dec. 2006,
pp. 444–459.

[30] Jens Groth and Steve Lu. “A Non-interactive Shuffle with Pairing Based Verifiability”. In: ASIACRYPT 2007.
Ed. by Kaoru Kurosawa. Vol. 4833. LNCS. Springer, Heidelberg, Dec. 2007, pp. 51–67.

[31] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “New Techniques for Noninteractive Zero-Knowledge”. In: J.
ACM 59.3 (June 2012), 11:1–11:35. issn: 0004-5411. doi: 10.1145/2220357.2220358. url: http://doi.acm.
org/10.1145/2220357.2220358.

[32] Jens Groth and Amit Sahai. “Efficient Non-interactive Proof Systems for Bilinear Groups”. In: EURO-
CRYPT 2008. Ed. by Nigel P. Smart. Vol. 4965. LNCS. Springer, Heidelberg, Apr. 2008, pp. 415–432.

[33] Dennis Hofheinz. “Adaptive Partitioning”. In: EUROCRYPT 2017, Part II. Ed. by Jean-Sébastien Coron and
Jesper Buus Nielsen. Vol. 10211. LNCS. Springer, Heidelberg, May 2017, pp. 489–518.

[34] Dennis Hofheinz. “Algebraic Partitioning: Fully Compact and (almost) Tightly Secure Cryptography”. In:
TCC 2016-A, Part I. Ed. by Eyal Kushilevitz and Tal Malkin. Vol. 9562. LNCS. Springer, Heidelberg, Jan.
2016, pp. 251–281. doi: 10.1007/978-3-662-49096-9_11.

31

[35] Dennis Hofheinz and Tibor Jager. “Tightly Secure Signatures and Public-Key Encryption”. In: CRYPTO 2012.
Ed. by Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417. LNCS. Springer, Heidelberg, Aug. 2012, pp. 590–607.

[36] Dennis Hofheinz, Jessica Koch, and Christoph Striecks. “Identity-Based Encryption with (Almost) Tight Secu-
rity in the Multi-instance, Multi-ciphertext Setting”. In: PKC 2015. Ed. by Jonathan Katz. Vol. 9020. LNCS.
Springer, Heidelberg, 2015, pp. 799–822. doi: 10.1007/978-3-662-46447-2_36.

[37] Charanjit S. Jutla, Miyako Ohkubo, and Arnab Roy. “Improved (Almost) Tightly-Secure Structure-Preserving
Signatures”. In: PKC 2018. Springer, 2018, To appear.

[38] Charanjit S. Jutla and Arnab Roy. “Improved Structure Preserving Signatures Under Standard Bilinear As-
sumptions”. In: PKC 2017, Part II. Ed. by Serge Fehr. Vol. 10175. LNCS. Springer, Heidelberg, Mar. 2017,
pp. 183–209.

[39] Charanjit S. Jutla and Arnab Roy. “Switching Lemma for Bilinear Tests and Constant-Size NIZK Proofs for
Linear Subspaces”. In: CRYPTO 2014, Part II. Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8617. LNCS.
Springer, Heidelberg, Aug. 2014, pp. 295–312. doi: 10.1007/978-3-662-44381-1_17.

[40] Eike Kiltz, Jiaxin Pan, and Hoeteck Wee. “Structure-Preserving Signatures from Standard Assumptions, Re-
visited”. In: CRYPTO 2015, Part II. Ed. by Rosario Gennaro and Matthew J. B. Robshaw. Vol. 9216. LNCS.
Springer, Heidelberg, Aug. 2015, pp. 275–295. doi: 10.1007/978-3-662-48000-7_14.

[41] Eike Kiltz and Hoeteck Wee. “Quasi-Adaptive NIZK for Linear Subspaces Revisited”. In: EUROCRYPT 2015,
Part II. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057. LNCS. Springer, Heidelberg, Apr. 2015, pp. 101–
128. doi: 10.1007/978-3-662-46803-6_4.

[42] Kaoru Kurosawa and Yvo Desmedt. “A New Paradigm of Hybrid Encryption Scheme”. In: CRYPTO 2004.
Ed. by Matthew Franklin. Vol. 3152. LNCS. Springer, Heidelberg, Aug. 2004, pp. 426–442.

[43] Benoît Libert, Marc Joye, Moti Yung, and Thomas Peters. “Concise Multi-challenge CCA-Secure Encryption
and Signatures with Almost Tight Security”. In: ASIACRYPT 2014, Part II. Ed. by Palash Sarkar and Tetsu
Iwata. Vol. 8874. LNCS. Springer, Heidelberg, Dec. 2014, pp. 1–21. doi: 10.1007/978-3-662-45608-8_1.

[44] Benoît Libert, Thomas Peters, Marc Joye, and Moti Yung. “Compactly Hiding Linear Spans - Tightly Secure
Constant-Size Simulation-Sound QA-NIZK Proofs and Applications”. In: ASIACRYPT 2015, Part I. Ed. by
Tetsu Iwata and Jung Hee Cheon. Vol. 9452. LNCS. Springer, Heidelberg, 2015, pp. 681–707. doi: 10.1007/
978-3-662-48797-6_28.

[45] Benoît Libert, Thomas Peters, and Moti Yung. “Short Group Signatures via Structure-Preserving Signatures:
Standard Model Security from Simple Assumptions”. In: CRYPTO 2015, Part II. Ed. by Rosario Gennaro
and Matthew J. B. Robshaw. Vol. 9216. LNCS. Springer, Heidelberg, Aug. 2015, pp. 296–316. doi: 10.1007/
978-3-662-48000-7_15.

[46] Paz Morillo, Carla Ràfols, and Jorge Luis Villar. “The Kernel Matrix Diffie-Hellman Assumption”. In: ASI-
ACRYPT 2016, Part I. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031. LNCS. Springer, Heidelberg,
Dec. 2016, pp. 729–758. doi: 10.1007/978-3-662-53887-6_27.

[47] Carla Ràfols. “Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability”. In: TCC 2015, Part II. Ed. by
Yevgeniy Dodis and Jesper Buus Nielsen. Vol. 9015. LNCS. Springer, Heidelberg, Mar. 2015, pp. 247–276. doi:
10.1007/978-3-662-46497-7_10.

32

