
An Inside Job:
Remote Power Analysis Attacks on FPGAs

Falk Schellenberg∗‡, Dennis R.E. Gnad†‡, Amir Moradi∗, and Mehdi B. Tahoori†
∗Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany

†Institute of Computer Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
∗{falk.schellenberg, amir.moradi}@rub.de †{dennis.gnad, mehdi.tahoori}@kit.edu

‡These authors contributed equally to this work.

Abstract—Hardware Trojans have gained increasing interest
during the past few years. Undeniably, the detection of such
malicious designs needs a deep understanding of how they can
practically be built and developed. In this work we present
a design methodology dedicated to FPGAs which allows mea-
suring a fraction of the dynamic power consumption. More
precisely, we develop internal sensors which are based on FPGA
primitives, and transfer the internally-measured side-channel
leakages outside. These are distributed and calibrated delay
sensors which can indirectly measure voltage fluctuations due
to power consumption. By means of a cryptographic core as
a case study, we present different settings and parameters for
our employed sensors. Using their side-channel measurements,
we further exhibit practical key-recovery attacks confirming the
applicability of the underlying measurement methodology.
This opens a new door to integrate hardware Trojans in a) ap-
plications where the FPGA is remotely accessible and b) FPGA-
based multi-user platforms where the reconfigurable resources
are shared among different users. This type of Trojan is highly
difficult to detect since there is no signal connection between tar-
geted (cryptographic) core and the internally-deployed sensors.

I. INTRODUCTION

Cryptographic devices often deal with secret information as
well as privacy of the users. So-called Side-Channel Analysis
(SCA) attacks target the implementation of cryptographic
schemes and are independent of their mathematical security.
For example, [3] exploits the response time of an RSA
implementation to retrieve the used secret key. Introduction
of Differential Power Analysis (DPA) attacks [16] resulted in
extensive research in refining attacks and developing counter-
measures. Although timing attacks might even work over the
Internet, power analysis attacks are thought to require physical
access to the device, i.e., to connect an oscilloscope to measure
the power consumption or the electromagnetic emanation in
the near proximity. Yet, in the following, we prove this
assumption to be wrong. This falls well within the line what
has been seen for fault attacks. Before Rowhammer [14],
fault attacks were thought to require some sort of physical
access to induce a fault into the target. Instead, the attack
can lead to pure-software based privilege escalation from
an underprivileged user. Furthermore, it can be introduced
remotely as well, even at a very high abstraction level [11].

For side-channel attacks, the dynamic power consump-
tion originating from the switching of transistors is usually

targeted. Our methodology is based on the work presented
in [10], in which a mechanism to capture the fluctuation of
the internal supply voltage of FPGAs is shown. It is in fact
shown that the supply voltage at different locations of a Power
Distribution Network (PDN) is not constant and depends on
the activity of the logic. We followed the same principle and
built internal sensors to locally monitor the dynamic change in
the supply voltage. As a proof of concept, we conducted our
experiments on a Spartan-6 FPGA, where an AES encryption
module as the targeted cryptographic core is implemented.
Indeed, the results show that such sensors enable side-channel
attacks retrieving the secret key and is nearly as powerful as
when using an external measurement.

We highlight two important properties of the proposed
attack enabled by these sensors: a) it does not require a signal
connection to the targeted core and b) it can be implemented
using general-purpose logic available on any FPGA. These
properties lead to a large threat when using 3rd party IP
cores, considering both ASIC and FPGA implementations.
Furthermore, it enables power attacks in emerging use-cases
for FPGAs, such as fabric being shared among multiple users
in the cloud [7] or the FPGA being part of a complex System
on Chip (SoC). In such scenarios, an attacker might be able to
deploy a voltage sensor unnoticed, essentially acting as a hard-
ware Trojan to spy on the power consumption of the unaware
victim. This seems contradictory to one of the motivations of
using FPGA fabric as accelerator for cryptographic primitives
in SoC: although enabling SoCs to receive security patches in
hardware well after the design cycle [4], it may open doors to
the previously unknown threats and attacks.

Considering the related works, the first powerful hardware
Trojan has been presented in [15], where the Trojan inserted at
HDL level of a CPU design would give the attacker unlimited
access to the CPU resources. Further examples include mali-
cious designs (at netlist and HDL level) made public during
the student hardware Trojan challenge ICCD 2011 [23] or
stealthy Trojans at the layout level [2]. Other works like [13],
[18], [19] have shown methods to build malicious designs
which only leak out the secrets when the attacker conducts
specific SCA attacks. In [8], a design methodology for building
stealthy parametric hardware Trojans and its application to
bug attacks has been proposed. Other works, including [17],
[24], propose Trojans which are triggered by aging or reduced



supply voltage. In [2], a Trojan is embedded into an SCA-
resistant design, and would result in the cryptographic keys
leaking through the same side channel but only under a
particular condition, e.g., by means of a certain power model.

The Trojan we present in this work aims at leaking the
cryptographic keys through a side channel as well. However,
what makes our work different to the state of the art is
its remotely accessible feature. In short, we present how to
design power consumption sensors – synthesizable with FPGA
primitives – which can be placed in another module next to,
or even far from, the cryptographic core.
Outline: The remaining paper is structured as follows: In
Section II, we elaborate the adversary model in more detail
and explain the required background knowledge regarding
PDNs and the voltage sensors. Subsequently, in Section III,
we explain the implementation of the sensor and provide a
discussion of the experimental results in Section IV. Section V
concludes our paper.

II. PRELIMINARIES

A. Adversary Model and Threat Analysis

Considering Fig. 1, we assume two scenarios for the adver-
sary in our work. In both systems, the adversary’s goal is to
extract secret information from the other system components,
with only access to the PDN, and no signal connections. In
the first one, the adversary has partial access to the FPGA
fabric, whose resources are shared among multiple users, e.g.,
FPGA accelerators shared in the cloud [7]. When the sensors
are hidden in a complex application – which for instance needs
to communicate with the outside of the FPGA – the inspection
over the design would not detect any connection between the
cryptographic module and the rest of the application, i.e., low
chance for the Trojan to be detected. Automated isolation and
verification countermeasures for FPGAs with user-controlled
logic especially in data centers have already been proposed
in [25]. Such techniques usually employ some physical gap
between different IP cores with well-formed interfaces [6],
[12]. Yet, we later show that such a barrier might be breached
with internal voltage sensors, even when the sensors are placed
far away from the target.

In the second scenario, an attacker has full access to the
FPGA while the FPGA is part of a large system like an SoC
where CPUs reside on the same die. For example, we can
recall reconfigurable fabric of an SoC, where 3rd party users
are allowed to use the FPGA. Any underprivileged user with
access to the FPGA fabric can embed the sensors, thereby
potentially monitoring the voltage of the whole SoC. This is
an increasing threat under the trend of accelerator-use.

Note that, as opposed to the previous works about covert
channels passing through this isolation, e.g., by electrical
coupling [9] or even by temperature [20], we do not alter
the attacked IP core in any form and only monitor the
unintentional power consumption. The effects of electrical
coupling have been further investigated in [5], [28].

FPGA SoC
Accelerator used

by user A

CPU running
OS and Software

Shared FPGA
Fabric controlled

by user A

Fabric controlled
by user B

Logical separation

SCA through
PDN

a) b)

SCA
through

PDN

Fig. 1: Two scenarios of SCA attacks, where the circuits are logically
separated, but share the same PDN. a) In a shared FPGA, one user (A) can
attack another (B). b) In an FPGA SoC, a user with current access to the
FPGA accelerator can attack any software or operating system on the CPU.

B. Background on Power Distribution Networks (PDNs)

Every modern IC is supplied by power through a complex
PDN that starts at the printed circuit board (PCB) and spans
to individual logic gates in the IC. These PDNs consist of
resistive, capacitive and inductive components, both at board
level, and on-chip, in the form of a power mesh. Depending
on the operating conditions, and thus power consumption, the
voltage in the network is not perfectly stable [1].

Voltage drops in these PDNs can be attributed to a dynamic
change in current through inductive components by a LdI/dt
drop, or a steady state offset, depending on the absolute
value of current through resistive components as an IR drop.
Together, they lead to a voltage drop in the form of Vdrop =
L ·dI/dt+ IR [1]. Variations in the operating conditions will
be reflected in the power consumption, resulting in a change
in the supply current and voltage (P = V · I). Because the
PDN is not ideal, both changes in I and V can be measured
depending on the power.

Thus, the operating conditions of a circuit lead to differences
in power, which propagate through the complete PDN as
voltage fluctuations. These voltage fluctuations impact circuit
delay that can be measured to reveal power consumption
information about a running workload. SCA attacks can use
this information, for instance to recover secret keys.

By implementing suitable sensors, a hardware Trojan on the
same PDN can thus sense voltage fluctuation in other parts,
and perform SCA attacks. This scenario is a threat with respect
to hardware Trojans inserted at design time or foundry level. In
this work, as shown in Fig. 1, we further extend this scenario to
recent use-cases (i.e., shared FPGA) and scenarios with FPGA
SoCs, where the Trojans can also be inserted after fabrication
time by a third party.

Accordingly, the success of this attack depends on 1) being
able to realize these sensors using the FPGA primitives, in-
tended for digital logic, and 2) that enough voltage fluctuation
originates from the module under attack. In the following we
show that these two requirements are fulfilled and practically
prove it by an SCA attack on an AES implementation.

C. Voltage Drop Sensors

While many FPGAs feature dedicated internal power sen-
sors, they are shown to be inappropriate for side-channel
analysis [21]. Regarding the realization of suitable custom
sensors based on reconfigurable logic, Zick et al. [27] showed
an implementation that uses existing FPGA fabric to sense
variation in supply voltage, based on the concept of measuring



the propagation time of a signal with Time-to-Digital Con-
verters (TDCs), as shown in Fig. 2. In [10] it is shown that
the activity from synthesized logic can sufficiently stimulate
these sensors, and that voltage fluctuations have one of the
highest impacts on path delay during runtime, i.e. temperature
variation is negligible.

In this work we follow the same concept. The idea is to
use a delay line, in which a clock signal propagates through a
chain of buffers. As the delay of these buffers depends on the
supply voltage, the buffers can be monitored as a surrogate of
it. The delay line can be tapped by adding latches between
these buffers. The latches are enabled with the same clock
signal that is connected to the start of the delay line, and thus
can show how far the clock can propagate through the buffers
within the time the latches are enabled, i.e., half a clock cycle.

When any other circuit on the same PDN becomes active,
power is consumed, leading to a voltage drop that slows down
the buffers of the delay line, resulting in a reduced numeric
value in the TDC’s output register. As this unary value can
be quite large (i.e., 64 bins in our case), a priority encoder is
used to reduce this data to 6 bits. Because of a symptom that
higher valued bins can sometimes be faster than lower valued
bins, bubble correction needs to be applied [26].

To save area of the sensor, usually only the last bits of
the buffer chain are tapped, as the delay of the buffers do
not change enough to affect the complete delay line. Thus,
Fig. 2 shows part of the delay chain to be observable and
another part to be the initial delay. In FPGAs, the observable
part is usually implemented using carry-chain primitives (for
Xilinx: CARRY4), as they provide the finest resolution per
bit. However, the initial delay is then based on elements with
less area overhead, but higher delay, like multiple LUT and
latch elements, typically available in any FPGA. We show an
example floorplan of this sensor in Fig. 3.

Because the real delay of the elements used for the sensor
are not known at design time, it has to be ensured that the
clock signal reaches the latches through the observable delay
line within the respective clock cycle. In addition, it should not
reach to the last latches resulting in an output value saturated
at the maximum. They need to be calibrated at runtime or
through adjusting and re-mapping the design. Thus, either the
delay line’s length has to be adjusted to the right length, or
a second phase-shifted clock has to be used on the latches.
In this work, we basically adjusted the initial delay, sufficient
for our proof-of-concept. Please note, a more sophisticated
attacker would very well be able to use a combination of phase
shift and initial delay adjustment.

What is missing in [27] and [10] is an evaluation on how the
length of the initial delay will impact the time quantization,
i.e. how much time each individual bit in the observable delay
line represents, and in effect how detailed a voltage drop will
be visible. It is also not discussed how this initial delay can
be found, when not using phase-shifted clocks.

The primitives used in the observable delay line have their
own delay, but the fluctuations they show are those of the
entire delay line (initial and observable) until the respective

TDC register [0 .. N]

Clock

... ...

...Latches

Initial Delay Observable Delay Line

Delay Line Out

1 1 0 0

`110..00'

0

Range of
Latches

enable

Fig. 2: Principle of the TDC Sensor from [10].

Initial Delay Observable Delay

LUTs
CARRY4
Latches

Registers

Fig. 3: Floorplan (rotated right) of one TDC Sensor with 18×(LUT, Latch)
as part of the Initial Delay.

latch. Thus, the higher the initial delay is in relation to the
observable delay, the more variation is zoomed into by the
observable part. Thus, more fine-grained quantization levels
are seen with higher initial delay, when checking the peak-to-
peak variation of a given voltage fluctuation. In Table I, we
show the initial delay and resulting variations observed in our
experiments.

III. IMPLEMENTATION OF THE PDN TROJAN

To demonstrate the effectiveness of the internal sensors,
we show a successful side-channel attack on an AES-128
implementation using our sensors, and compare it to an
attack based on external power measurement. We first start
by explaining the AES module and the target platform as well
as our sensor and its properties in the following.

A. AES module

The AES module is a relatively small implementation with a
32-bit datapath, occupying 265 Flip-Flops and 862 LUTs. The
128-bit plaintext, after being XORed with the first roundkey,
is loaded into the state registers si. At every cipher round,
which takes five clock cycles, first ShiftRows is performed.
Afterwards, as shown in Fig. 4, at each clock cycle, four
Sboxes followed by a MixColumn and AddRoundKey are
performed while the state register is shifted column-wise.
The four Sbox instances are shared with the (not shown)
KeySchedule unit while ShiftRows is being performed. By
bypassing the MixColumns during the last cipher round — in
total after 50 clock cycles — the ciphertext is taken from the
state register.

This AES module should generate much less voltage drop
than seen in [10], since its footprint in this FPGA is only 0.3%
of the total flip flops and 0.9% LUTs, versus 8% of flip flops
in [10]. However, we show in the following that we can still
gather sufficient information for the attack.

B. Target Platform and Implementation

Fig. 5 gives an overview of our experimental setup. We ran
our experiments on the widely-used side-channel evaluation
platform SAKURA-G, featuring a main and a control Xilinx
Spartan-6 FPGA. The main FPGA is a larger XC6SLX75 for



s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

Sbox

Sbox

Sbox

Sbox

s0

s1

s2

s3RoundKey

Fig. 4: Architecture of the underlying AES encryption core (ShiftRows and
KeySchedule not shown)

SAKURAG Board

Main FPGA

AES Core

Trojan
Sensor

Chipscope
ILA

Random Plaintext

Voltage Data

Ciphertext

DPA
Attack

Experimental Setup:
• 2x Spartan6 FPGA on SAKURAG
• Random Plaintexts from Control FPGA
• Main FPGA encrypts
• DPA Attack performed by PC

Logical separation

Control FPGA

Fig. 5: Experimental setup showing the Sakura-G Board connected to our
measurement PC, with Chipscope ILA used for data acquisition.

security implementations, controlled by an auxiliary Spartan-
6 XC6SLX9. As a proof of concept, we considered the
aforementioned AES encryption module as the targeted cryp-
tographic core, implemented in the main FPGA and ran at a
frequency of 24 MHz. The control FPGA generates random
plaintexts to be encrypted on the main FPGA. Our Trojan
circuit to measure voltage sits in the main FPGA, logically
disconnected from the AES module. When the AES module
sends out the ciphertext, we also receive the voltage data
from our sensors on the workstation, by utilizing the Xilinx
Chipscope Integrated Logic Analyzer (ILA). Here, the sensor
values are first stored in the internal Block RAM (BRAM) and
are then read out using the JTAG interface.

In Fig. 6 (left), we show the entire floorplan of the exper-
imental setup. We only place our design in the lower part of
the Spartan-6. In the center region, the AES core is fixed and
the sensor is placed on the left side of the AES module. The
FPGA slices used for the sensor’s delay line, including latches
and output register, are not shared with any other logic. For all
the experiments, we kept the same placed and routed partition
for the AES core, in order to keep the results comparable.
However, the logic required for the ILA core are automatically
added each time by the synthesis tool.

C. Data Acquisition

We compare the efficiency of our developed sensor to a
traditional measurement setup. To this end, we measured the
voltage drop over a ≈0 Ω shunt resistor1 in the Vdd path
using a Picoscope 6403. Fig. 7 (top) depicts the resulting trace,
measured at 625 MS/s showing approximately 120 quantiza-
tion levels. Note that the round structure of the underlying
AES implementation can be observed through ten similar
patterns, each including five smaller peaks of each individual
step, respectively. A 24 MHz clock is externally given to the

1The built-in shunt resistor of the SAKURA was shorted with a jumper.

Fig. 6: Floorplans showing the Experimental Setup with all the relevant parts.
Left: the internal sensor is placed close to the AES module. Right: the internal
sensor is placed far away from the AES.

main FPGA which supplies both the AES module and our
developed sensor. Thus, in contrast to the oscilloscope that
has an independent time base, the internal sensor can sam-
ple the power consumption synchronously. The side-channel
information is expected to be amplitude-modulated over the
clock signal, i.e., it is visible at the clock peaks. Therefore, it
would be enough to sample the power consumption (only) at
this exact moment when the side-channel information leakage
occurs. This drastically lowers the required sample frequency
for a successful attack [22]. To verify this, we conducted
different experiments by supplying the sensor with different
frequencies (24 MHz, 48 MHz, 72 MHz, and 96 MHz) while
the AES module always runs at 24 MHz. To this end, we used
a Digital Clock Manager (DCM) to generate the desired clock
frequencies based on the external 24 MHz clock.

D. Sensor Feasibility Discussion

In our experiments we used Xilinx Chipscope to read the
sensor values. Note that besides using the same clock source,
there is no connection made between the AES core and the
sensors, or the logic belonging to Chipscope. However, our
developed sensor has the additional advantage that even if it
is not synchronized with the AES clock, it catches all the
variation that occurs in half of each clock cycle, since the
clock traverses the delay chain during half of the clock period
in which the latches are enabled (see Section II-C).

When we use a 180° phase-shifted clock (or negative latch-
enable signal) for either the latches or a complete second
sensor, the average of all variation in the time between two
samples can be covered. This is an advantage over oscilloscope
based samples, so even when the sensors clock domain would
be separated, enough information can be inferred.

Although we use JTAG to connect to Chipscope in our
experimental setup, an actual attacker would easily be able



TABLE I: Overview of different sensor’s sampling frequency with AES
module @ 24 MHz.

Sampling frequency (MHz) 96 72 48 24

No. of primitives used for initial delay 10 14 22 46

Observed peak-to-peak variation 6 6 8 15

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-50

0

50

100

A
D

C
 V

al
ue

Picoscope

0 50 100 150 200 250

5

10

S
en

so
r 

V
al

ue

96Mhz

0 20 40 60 80 100 120 140 160 180 200

5

10

S
en

so
r 

V
al

ue

72Mhz

0 20 40 60 80 100 120 140
10

15

20

S
en

so
r 

V
al

ue

48Mhz

0 10 20 30 40 50 60 70

Time Samples

10

20

30

S
en

so
r 

V
al

ue

24Mhz

Fig. 7: Single traces measured using an oscilloscope (top) and using our
developed sensor at different sampling frequencies (below). Time samples
refer to the individual samples captured at the respective sampling rate.

to use whatever remote connection he has, to transmit the
sensor values from internal BRAM to the outside. Since no
logical signaling between the attacked module and the sensor
is desired, the attacker would need to adjust a mechanism to
trigger the start of saving the samples e.g., into the BRAM.
This can be achieved by observing the measured signal itself
and trigger by detecting a large peak. Indeed, the sensor
value varies only slightly, indicating that the AES is inactive
(cf. Fig. 7). The power consumption of the first round of the
AES module results in a large negative peak in the sensor
value, enabling a stable reference point for aligning the traces.

As described in Section II-C, for each sensor frequency,
the initial delay of the sensor has to be adjusted. This leads
to different levels of quantization, and thus the observed
peak-to-peak variation. This relationship is verified by our
experimental data in Fig. 7, where sensors at lower operating
frequencies show higher peak-to-peak variation (cf. Table I).

IV. RESULTS

In the following, we provide experimental results showing
a successful attack using the traces measured by the internal
sensor. We compare the results to a traditional measurement
setup, i.e., measuring the power consumption externally.

Fig. 8: Results using the oscilloscope (top row), using the internal sensor
at different sampling frequencies (rows below), for each the correlation by
means of 5 000 traces (left) and the progressive curves over the number of
traces (right). The correct key hypothesis is marked in black. Time samples
refer to the individual samples captured at the respective sampling rate.

As an example, we use a standard Correlation Power
Analysis (CPA) attack on the AES module. Only a few bits
within each byte of the internal state showed a strong leakage.
Hence, we chose to predict only a single bit b to evaluate our
key hypothesis khyp. Note that this was identical both for the
oscilloscope as well as the internal sensor. We ran the attack
on all bits of the state. The results in the following correspond
to the bit position bitpos showing the highest correlation. We
have chosen the state just before the SubBytes operation at
the last round. Based on a ciphertext byte ci, our model is

b = Sbox−1 (khyp ⊕ ci) ∧ (2bitpos).

A. Sensor placed close to the AES core

Fig. 8 depicts the results using the oscilloscope as well
as placing the internal sensor close to the AES core, with
a gap of just 4 FPGA slices to avoid potential crosstalk.
In all cases the correlation curves using 5 000 traces and
the progressive curves over the number of traces are shown.
Starting with the result using the oscilloscope, we observed the
maximum correlation of approximately −0.3 for the correct
key hypothesis. As shown, the attacks using the internally-
measured traces by the sensor are also successful. The correct
key hypothesis is clearly distinguished from the others, but
with a slightly lower maximum correlation of about −0.2.

Comparing the results of the sensor at different sampling
frequencies, we do not observe a large deviation. This is



Fig. 9: Correlation using 5 000 traces (left) and progress of the maximum
correlation over the number of traces (right) using the internal sensor at
96 MHz sampling frequency, placed far away from the AES module.

caused by the synchronous sampling as most of the infor-
mation is contained in the respective peak anyway. Finally,
we can observe that the higher resolution (more quantization
steps) slightly improves the maximum correlation.

B. Distant Sensor

We further investigated whether we still can detect any
side-channel leakage in case the sensor is placed far away
from the cryptographic block. We placed the sensor in the
opposite region as far away as possible from the AES module.
The right part of Fig. 6 depicts the corresponding layout. We
examined this situation only with 96 MHz sampling frequency,
i.e., the worst case in Fig. 8. The corresponding CPA results
are depicted in Fig. 9, indicating that the successful attack is
still possible with only a slight decrease in the correlation.
This highlights the high risks involved when sharing an FPGA
among multiple users. Note that for a real-world design,
additional logic might be placed in between the AES and
the sensor, resulting in noise and an increased number of
required traces for a successful attack. Anyhow, such effects
are also present for an external measurement. As stated, for
the presented results we made use of a SAKURA-G board
optimized for SCA evaluations. However, we were able to
collect similar traces on standard Artix-7 and Zynq-7000
FPGA evaluation boards as well.

V. CONCLUSION

We have shown a Trojan which exploits the Power Distribu-
tion Network (PDN) as side channel to successfully retrieve
secret keys. To this end, we have developed sensors using
reconfigurable resources of FPGAs to internally capture the
dynamic power consumption. We analyzed the feasibility to
sense minor variations through sufficient quantization. This
relies on the characteristics of the PDN of an FPGA: When
the FPGA logic toggles, the supply voltage fluctuates, which
is observable through the PDN. The calibrated delay sensors
allow inferring the power consumption indirectly from delay
changes due to such voltage fluctuations.

The Trojan can be inserted remotely without requiring
physical access and with no signal connection to the attacked
module. Further, it provides a very strong side channel to the
entire device, even if the sensor is not placed in proximity of
the attacked module. In fact, our work is a proof of concept
and warns that even with 100% logical separation between
the modules, the PDN carries SCA information which makes
many security threats and attacks possible. This reveals a
major vulnerability in emerging applications of FPGAs, such

as FPGA fabric being shared between multiple users. While
we have used an FPGA for our experiments, this type of attack
can be transferred to other ICs and SoCs as well.

REFERENCES

[1] K. Arabi, R. Saleh, and X. Meng. Power supply noise in socs: Metrics,
management, and measurement. Des. Test. Comput., 2007.

[2] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson. Stealthy
Dopant-Level Hardware Trojans. In CHES, volume 8086 of LNCS.
Springer, 2013.

[3] D. Bleichenbacher. Chosen Ciphertext Attacks Against Protocols Based
on the RSA Encryption Standard PKCS #1. In CRYPTO, volume 1462
of Lecture Notes in Computer Science. Springer, 1998.

[4] L. Bossuet, M. Grand, et al. Architectures of Flexible Symmetric
Key Crypto Engines—a Survey: From Hardware Coprocessor to Multi-
crypto-processor System on Chip. ACM Comput. Surv., Aug. 2013.

[5] T. D. Cnudde, B. Bilgin, et al. Does Coupling Affect the Security
of Masked Implementations? In COSADE, volume 10348 of LNCS.
Springer, 2017.

[6] J. D. Corbett. The Xilinx Isolation Design Flow for Fault-Tolerant
Systems, 2013.

[7] S. A. Fahmy, K. Vipin, and S. Shreejith. Virtualized FPGA Accelerators
for Efficient Cloud Computing. In CloudCom. IEEE, 2015.

[8] S. Ghandali, G. T. Becker, D. Holcomb, and C. Paar. A Design
Methodology for Stealthy Parametric Trojans and Its Application to Bug
Attacks. In CHES, volume 9813 of LNCS. Springer, 2016.

[9] I. Giechaskiel and K. Eguro. Information Leakage Between FPGA Long
Wires. CoRR, 2016.

[10] D. R. E. Gnad, F. Oboril, S. Kiamehr, and M. B. Tahoori. Analysis of
transient voltage fluctuations in FPGAs. In FPT. IEEE, 2016.

[11] D. Gruss, C. Maurice, and S. Mangard. Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript. In DIMVA, volume 9721
of LNCS. Springer, 2016.

[12] T. Huffmire, B. Brotherton, et al. Moats and Drawbridges: An Isolation
Primitive for Reconfigurable Hardware Based Systems. In IEEE S&P.
IEEE Computer Society, 2007.

[13] M. Kasper, A. Moradi, et al. Side channels as building blocks. J.
Cryptographic Engineering, 2012.

[14] Y. Kim, R. Daly, et al. Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM Disturbance Errors. In ISCA.
ACM/IEEE, 2014.

[15] S. T. King, J. Tucek, et al. Designing and Implementing Malicious
Hardware. In USENIX Workshop on Large-Scale Exploits and Emergent
Threats, 2008.

[16] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In
CRYPTO, volume 1666 of LNCS. Springer, 1999.

[17] R. Kumar, P. Jovanovic, W. P. Burleson, and I. Polian. Parametric
Trojans for Fault-Injection Attacks on Cryptographic Hardware. In
FDTC. IEEE Computer Society, 2014.

[18] L. Lin, W. Burleson, and C. Paar. MOLES: Malicious off-chip leakage
enabled by side-channels. In ICCAD. ACM, 2009.

[19] L. Lin, M. Kasper, et al. Trojan Side-Channels: Lightweight Hardware
Trojans through Side-Channel Engineering. In CHES, volume 5747 of
LNCS. Springer, 2009.

[20] R. J. Masti, D. Rai, et al. Thermal Covert Channels on Multi-core
Platforms. In USENIX. USENIX Association, 2015.

[21] C. Nagl. Exploiting the Virtex 6 System Monitor for Power-Analysis
Attacks. Master’s thesis, IAIK - Graz University of Technology, 2012.

[22] C. O’Flynn and Z. Chen. Synchronous sampling and clock recovery of
internal oscillators for side channel analysis and fault injection. Journal
of Cryptographic Engineering, Apr 2015.

[23] J. Rajendran, V. Jyothi, and R. Karri. Blue team red team approach to
hardware trust assessment. In ICCD. IEEE Computer Society, 2011.

[24] Y. Shiyanovskii, F. G. Wolff, et al. Process reliability based trojans
through NBTI and HCI effects. In AHS. IEEE, 2010.

[25] S. Trimberger and S. McNeil. Security of FPGAs in Data Centers. In
IVSW. IEEE Computer Society, 2017.

[26] J. Wu. Several key issues on implementing delay line based tdcs using
fpgas. IEEE Trans. Nucl. Sci., June 2010.

[27] K. M. Zick, M. Srivastav, W. Zhang, and M. French. Sensing
Nanosecond-scale Voltage Attacks and Natural Transients in FPGAs.
In FPGA. ACM, 2013.

[28] L. Zussa, I. Exurville, et al. Evidence of an information leakage between
logically independent blocks. In CS2@HiPEAC. ACM, 2015.


