ON THE SECURITY OF THE WOTS-PRF SIGNATURE SCHEME

PHILIP LAFRANCE AND ALFRED MENEZES

ABSTRACT. We identify a flaw in the security proof and a flaw in the concrete security analysis of the WOTS-PRF variant of the Winternitz one-time signature scheme, and discuss the implications to its concrete security.

1. INTRODUCTION

The Winternitz one-time signature (WOTS) scheme (see [22, 8]) is an optimization of a one-time signature scheme first described by Lamport [20]; the latter is now called the Lamport-Diffie one-time signature scheme. The WOTS scheme is widely believed to be resistant to attacks by large-scale quantum computers, and therefore is a prime candidate for inclusion in emerging standards for post-quantum cryptography.

Several variants of WOTS have been proposed and studied in the literature. The original WOTS scheme used a one-way function and was analyzed by Dods et al. [6]. The Leighton and Micali scheme WOTS-LM is described in an IETF Internet-Draft [21], and has been analyzed in the random oracle model [17] and the quantum random oracle model [7]. Buchmann et al. [4] (see also [3, 11]) proposed a variant, called WOTS-PRF, that uses a pseudorandom function (PRF) instead of a hash function. Another hash-based WOTS variant, called WOTS⁺, was proposed by Hülsing [12] and has been included in an IETF standard [14]. In [16], a modification of WOTS⁺ specifically designed to resist multi-target attacks was studied.

The practicality of a one-time signature scheme is enhanced by using a Merkle tree [22] to simultaneously authenticate many public keys for the one-time signature scheme. Merkle tree-based signature schemes that use a WOTS variant as the underlying one-time signature scheme include the eXtended Merkle Signature Scheme (XMSS) [5], XMSS⁺ [13], XMSS^{MT} [15], and XMSS-T [16].

The most attractive feature of WOTS-PRF is that it has a reductionist security proof with minimal assumptions [4], namely the existence of a secure PRF whose existence in turn is guaranteed by the existence of one-way functions [9, 10]. This is unlike, say, WOTS-LM whose only known security proof assumes that the underlying hash function is a purely random function [17], or WOTS⁺ whose security proof assumes the existence of a one-way function that is also second-preimage resistant and 'undetectable' [12].

In this paper, we show that the security proof for WOTS-PRF in [4] is flawed. Furthermore, we show that even if the flaw can be repaired, the concrete security analysis in [4] is incorrect since it underestimates the possible number of "key collisions" for the PRF by using an unconstructible reductionist argument to relate this number to PRF security. We

Date: September 24, 2017; updated on July 20, 2018.

¹⁹⁹¹ Mathematics Subject Classification. 94A60.

Key words and phrases. one-time signature schemes, pseudorandom functions, security proofs.

P. LAFRANCE AND A. MENEZES

show that this underestimation leads to a drastic overestimation of the concrete security of WOTS-PRF and the Merkle signature schemes that employ it including XMSS and $XMSS^+$.

The remainder of the paper is organized as follows. The WOTS-PRF signature scheme is described in $\S2$. In $\S3$ we identify a flaw in the reductionist security proof. The flaw in the concrete security analysis and its implications are presented in $\S4$. We make some concluding remarks in $\S5$.

2. The WOTS-PRF SIGNATURE SCHEME

The WOTS-PRF signature scheme [4] has the following ingredients:

- (1) A security parameter $n \in \mathbb{N}$.
- (2) The bitlength m of messages.
- (3) A Winternitz parameter $w \in \mathbb{N}$, which for simplicity we will take to be a power of two: $w = 2^{e}$.
- (4) A pseudorandom function $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$. For $(k,x) \in \{0,1\}^n \times \{0,1\}^n$ $\{0,1\}^n$, we will denote f(k,x) by $f_k(x)$. The *iterates* of f are defined as follows. For $(k, x) \in \{0, 1\}^n \times \{0, 1\}^n$,

$$f_k^0(x) = k$$
 and $f_k^i(x) = f_{f_i^{i-1}(x)}(x)$ for $i \ge 1$.

Thus, $f_k^1(x) = f_k(x)$, $f_k^2(x) = f_{f_k(x)}(x)$, and so on.

(5) A checksum C on messages defined as follows: set

$$\ell_1 = \left\lceil \frac{m}{e} \right\rceil, \quad \ell_2 = \left\lfloor \frac{\log_2(\ell_1(w-1))}{e} \right\rfloor + 1, \quad \ell = \ell_1 + \ell_2.$$

Define $C: \{0,1\}^m \to \{0,1\}^{e\ell_2}$ as follows. Let $M \in \{0,1\}^m$. Obtain M^0 by prepending M with 0's until the bitlength of M^0 is $e\ell_1$, and then write $M^0 =$ $M_1 \| M_2 \| \cdots \| M_{\ell_1}$ where each M_i has bitlength e. Interpret each M_i as a nonnegative integer and compute $c(M) = \sum_{i=1}^{\ell_1} (w - 1 - M_i)$. The checksum C(M)is obtained by converting c(M) to a binary string and then prepending 0's as necessary to obtain a binary string of bitlength exactly $e\ell_2$.

We next present the WOTS-PRF signature scheme.

Key generation. Each user A does the following:

- (1) Select $x \in_R \{0, 1\}^n$.
- (1) Select $k \in \mathbb{R}$ (1) j(2) Select $sk_1, sk_2, \dots, sk_\ell \in_R \{0, 1\}^n$. (3) Compute $pk_i = f_{sk_i}^{w-1}(x)$ for $i = 1, 2, \dots, \ell$; $(sk_i, f_{sk_i}^1(x), f_{sk_i}^2(x), \dots, f_{sk_i}^{w-1}(x))$ is called the *i*-th Winternitz hash chain.
- (4) A's public signature verification key is $pk = (pk_0, pk_1, \ldots, pk_\ell)$ where $pk_0 = x$. A's secret signature generation key is $sk = (sk_1, sk_2, \ldots, sk_\ell)$.

Signature generation. To sign a message $M \in \{0, 1\}^m$, A does the following:

- (1) Compute the checksum C = C(M), and let $B = M^0 ||C = b_1 ||b_2 || \cdots ||b_\ell|$ where each b_i has bitlength e.
- (2) Compute $\sigma_i = f_{sk_i}^{b_i}(x)$ for $i = 1, 2, \dots, \ell$. (3) A's signature on M is $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_\ell)$.

Signature verification. To verify A's signed message (M, σ) , the verifier does the following:

- (1) Compute the checksum C = C(M), and let $B = M^0 || C = b_1 || b_2 || \cdots || b_\ell$ where each b_i has bitlength e.
- (2) Compute $pk'_i = f^{w-1-b_i}_{\sigma_i}(pk_0)$ for $i = 1, 2, \dots, \ell$. (3) Accept the signature if and only if $pk'_i = pk_i$ for all $i = 1, 2, \dots, \ell$.

3. The WOTS-PRF security proof

This section presents the WOTS-PRF reductionist security proof from [4] and the flaw we observed in the analysis of its success probability. We begin with the definitions of a secure one-time signature scheme, a secure pseudorandom function, and the maximum and minimum number of key collisions.

Definition 1. A one-time signature scheme S is said to be (t, ϵ) -secure if all adversaries $\mathcal{A}_{\mathcal{S}}$ whose running times are bounded by t have success probability less than ϵ in the following game: $\mathcal{A}_{\mathcal{S}}$ is given a public key pk for \mathcal{S} and can query a signing oracle (with respect to pk) for the signature σ of one message M of its choosing; $\mathcal{A}_{\mathcal{S}}$'s challenge is to generate a valid signed message (M^*, σ^*) with $M^* \neq M$. The security level of \mathcal{S} is $\log_2(t/\epsilon)$ bits.

Definition 2. A function $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is said to be a (t,ϵ) -secure PRF if all adversaries \mathcal{A}_f whose running times are bounded by t have advantage less than ϵ in the following game: \mathcal{A}_f is given blackbox access to an oracle $O(\cdot)$ that with equal probability is either $f_k(\cdot)$ for hidden key $k \in \{0,1\}^n$ or else a random function $R: \{0,1\}^n \to \{0,1\}^n$; \mathcal{A}_f 's challenge is to determine which it is. (\mathcal{A}_f 's advantage is the absolute value of the differences in probabilities that \mathcal{A}_f declares that $O(\cdot)$ is $f_k(\cdot)$ in the case where $O(\cdot)$ is $f_k(\cdot)$ and the case where $O(\cdot)$ is $R(\cdot)$.) The security level of f is $\log_2(t/\epsilon)$ bits.

Definition 3. Consider the function $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$. For each pair $(k, x) \in \{0, 1\}^n \times \{0, 1\}^n$, let

$$N_{k,x} = \#\{k' \in \{0,1\}^n : f_{k'}(x) = f_k(x)\},\$$

and

$$T_x = \max_k \{N_{k,x}\} \quad \text{and} \quad S_x = \min_k \{N_{k,x}\}.$$

Then the maximum number κ and minimum number κ' of key collisions are

$$\kappa = \max_{x} \{T_x\}$$
 and $\kappa' = \min_{x} \{S_x\}$

Observe that $N_{k,x} \ge 1$, and so $1 \le \kappa' \le \kappa$. We note that the definition of κ' in [4] is incorrect, as are the definitions of κ and κ' in [3]. Our definitions of κ and κ' are equivalent to those given in [11].

In [4], the following notion of a key one-way (KOW) function is introduced.

Definition 4. A function $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is said to be (t,ϵ) -KOW if all adversaries \mathcal{A}_{KOW} whose running times are bounded by t have advantage less than ϵ in the following game: \mathcal{A}_{KOW} is given (x, y), where $x, k \in_R \{0, 1\}^n$ and $y = f_k(x)$; \mathcal{A}_{KOW} 's challenge is to find some $k' \in \{0,1\}^n$ with $f_{k'}(x) = y$.

Proposition 2.7 in [4] shows that a (t, ϵ) -secure PRF is a $(t - 2, \epsilon/(1/\kappa - 1/2^n))$ -KOW. The following is the main security claim in [4]. We include a summary of the proof from [4].

Theorem 1 (Theorem 2.8 in [4]). Let $f : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a (t',ϵ') -secure *PRF*. Then WOTS-PRF is a (t,ϵ) -secure one-time signature scheme with

(1)
$$t = t' - t_{\rm Kg} - t_{\rm Vf} - 2,$$

(2)
$$\epsilon \leq \epsilon' \ell^2 w^2 \kappa^{w-1} \frac{1}{1/\kappa - 1/2^n},$$

where t_{Kg} and t_{Vf} denotes the running times of the WOTS-PRF key generation and verification algorithms, respectively.

Summary of proof from [4]. Suppose that \mathcal{A}_{WOTS} is a forger that runs in time t and produces a WOTS-PRF forgery with probability at least ϵ . We construct an adversary \mathcal{A}_{KOW} that uses \mathcal{A}_{WOTS} to solve the KOW challenge.

The adversary \mathcal{A}_{KOW} is given a KOW challenge (x, y). It begins by generating a WOTS-PRF key pair as specified in §2 with one exception. It selects random indices $\alpha \in_R [1, \ell]$ and $\beta \in_R [1, w - 1]$. Instead of selecting the secret key component sk_{α} and computing $pk_{\alpha} = f_{sk_{\alpha}}^{w-1}(x)$, \mathcal{A}_{KOW} sets $pk_{\alpha} = f_y^{w-1-\beta}(x)$; i.e., it inserts y at position β in the Winternitz hash chain that an honest execution of the key generation algorithm would have produced to determine pk_{α} .

Next, \mathcal{A}_{KOW} invokes $\mathcal{A}_{\text{WOTS}}$ with public key pk and answers its signing oracle query M as follows. If $b_{\alpha} < \beta$, then \mathcal{A}_{KOW} terminates the experiment since it doesn't know the first β entries of the α 'th Winternitz hash chain. Otherwise, if $b_{\alpha} \geq \beta$, then $\mathcal{A}_{\text{WOTS}}$ produces the required signature σ on M as specified in §2 except that it sets $\sigma_{\alpha} = f_y^{b_{\alpha}-\beta}(x)$. If $\mathcal{A}_{\text{WOTS}}$ produces a valid forgery (M', σ') within its allotted time, and if $b'_{\alpha} < \beta$, then $\mathcal{A}_{\text{WOTS}}$ computes $k' = f_{\sigma'_{\alpha}}^{\beta-1-b'_{\alpha}}(x)$ and outputs k' if $f_{k'}(x) = y$; otherwise $\mathcal{A}_{\text{WOTS}}$ terminates with failure. See Figure 1.

FIGURE 1. The incomplete α 'th Winternitz hash chain in \mathcal{A}_{KOW} 's experiment.

 \mathcal{A}_{KOW} 's success probability ϵ_{KOW} is assessed as follows. The probability that $b_{\alpha} \geq \beta$ is at least $(\ell w)^{-1}$. The probability that $\mathcal{A}_{\text{WOTS}}$ succeeds is at least ϵ subject to the condition that pk is a valid public key, i.e., there exists $sk_{\alpha} \in \{0,1\}^n$ such that $f_{sk_{\alpha}}^{\beta}(x) = y$. This happens with probability at least $1/\kappa^{\beta}$ according to Definition 3. The probability that $b'_{\alpha} < \beta$ is at least $(\ell w)^{-1}$. The probability that $y = f_{k'}(x)$ holds where $k' = f_{\sigma'_{\alpha}}^{\beta-1-b'_{\alpha}}(x)$ is at least $1/\kappa^{w-1-\beta}$. This is because there exists at most κ^{w-1} keys mapping x to pk_{α} after w-1 iterations of f and only κ^{β} of these keys maps x to y after β iterations.

In summary we have $\epsilon_{\text{KOW}} \geq \epsilon/(\ell^2 w^2 \kappa^\beta \kappa^{w-1-\beta})$ and $t_{\text{KOW}} = t + t_{\text{Kg}} + t_{\text{Vf}}$. This yields a PRF forger \mathcal{A}_{PRF} with $\epsilon_{\text{PRF}} \geq \epsilon(1/\kappa - 1/2^n)/(\ell^2 w^2 \kappa^{w-1})$ and $t_{\text{PRF}} = t + t_{\text{Kg}} + t_{\text{Vf}} + 2$. \Box

 $\mathbf{4}$

We observe a flaw in the proof of Theorem 1, which pertains to the probability analysis of the reduction. To aid in our explanations, we introduce the notion of a *keychain*.

Definition 5. Let $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a PRF, and fix $x \in \{0,1\}^n$. For any $\gamma \in \mathbb{N}$ and $y \in \{0,1\}^n$, a γ -keychain to y is an ordered tuple $(k_1, k_2, \ldots, k_{\gamma})$ of n-bit keys such that $k_{i+1} = f_{k_i}(x)$ for $i = 1, 2, \ldots, \gamma - 1$ and $k_{\gamma} = y$.

The flaw is in the claim that the probability that $y = f_{k'}(x)$ holds is at least $1/\kappa^{w-1-\beta}$. Consider the tree of all w-keychains to pk_{α} ; see Figure 2. By definition of κ , there exist at

FIGURE 2. The tree of w-keychains to pk_{α} .

most $\kappa^{w-1-\beta} (w-\beta)$ -keychains to pk_{α} . Note that y is the first coordinate of one of these keychains. Now, since $b'_{\alpha} < \beta$, the $(w-b'_{\alpha})$ -keychain to pk_{α} beginning at σ'_{α} must connect with one of the $(w-\beta)$ -keychains to pk_{α} . If the connecting keychain is selected uniformly at random, then the probability that the connecting keychain begins with y (and thus $y = f_{k'}(x)$) is indeed at least $1/\kappa^{w-1-\beta}$. However, there is no justification for assuming that $\mathcal{A}_{\text{WOTS}}$ selects a connecting chain uniformly at random. Indeed, since $\mathcal{A}_{\text{WOTS}}$ knows σ_{α} , it is conceivable that it always selects σ'_{α} so that the $(w-b'_{\alpha})$ -keychain beginning at σ'_{α} does not pass through σ_{α} , and thus never connects with y; in this event, the probability that $y = f_{k'}(x)$ holds is zero.

4. Concrete security of WOTS-PRF

In [4], the following relationship between the security level of the PRF f and the maximum number of key collisions κ for f is proven.

Lemma 2. Let $f : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a (t,ϵ) -secure PRF with security level $b = \log_2(t/\epsilon)$. Then $\kappa \leq 2^{n-b} + 1$.

Proof, paraphrased from [4]. Suppose that $\kappa > 2^{n-b}+1$ and let $(x, y) \in \{0, 1\}^n \times \{0, 1\}^n$ be a pair for which there exist κ keys k for which $f_k(x) = y$. We construct a PRF-adversary \mathcal{A}_f as follows. \mathcal{A}_f queries its oracle $O(\cdot)$ with x. If O(x) = y then \mathcal{A}_f declares that $O(\cdot)$ is $f_k(\cdot)$; otherwise it declares that $O(\cdot)$ is $R(\cdot)$. Clearly \mathcal{A}_f 's runs in time t' = 1. Furthermore,

$$\Pr[\mathcal{A}_f \text{ declares that } O(\cdot) \text{ is } f_k(\cdot) \mid O(\cdot) \text{ is indeed } f_k(\cdot)] = \frac{\kappa}{2^n} > 2^{-b} + 2^{-n}$$

and

$$\Pr[\mathcal{A}_f \text{ declares that } O(\cdot) \text{ is } f_k(\cdot) \mid O(\cdot) \text{ is indeed } R(\cdot)] = 2^{-n}.$$

Hence \mathcal{A}_f 's advantage is $\epsilon' > 2^{-b}$, which contradicts the assumed PRF security level of b for f.

Since the only way for the adversary of a good PRF f to gain an advantage is to guess the hidden key, the authors of [4] conclude that f can be expected to have security level b = n, whence $\kappa \leq 2$. However, we will argue that $\kappa = 2$ is a severe underestimation of the maximum number of key collisions for f. The problem with the proof of Lemma 2 is that the adversary \mathcal{A}_f described is *non-constructive* since no efficient method for determining the pair (x, y) for f may be known. On the other hand, the security level b of the PRF fis usually assessed by considering all known *constructible* algorithms for the PRF security game in Definition 2. Thus, \mathcal{A}_f 's advantage $\epsilon' > 2^{-b}$ in the proof does not contradict the assumed security level of f.

We show in §4.1 that κ can be expected to be considerably larger than 2 even for 'good' PRFs. The implications of the underestimation of κ to the concrete security guarantees for WOTS-PRF are explored in §4.2.

Remark 1. As argued in [18, 19] (see also [2]), the security level of a PRF f against attacks that might be unconstructible is expected to be significantly lower that when only constructible attacks are considered. In particular, if f is a good PRF with security level n against constructible attacks, then f can be expected to have security level no more than n/2 against unconstructible attacks. Furthermore, determining the exact security level of f against unconstructible attacks is expected to be a very challenging undertaking. The significance of the difference in the constructible and unconstructible security levels of f to the concrete security guarantees of Bellare's security proof [1] for the HMAC authentication scheme is discussed in [18, 19].

Remark 2. A one-time signature scheme S is said to be (t, ϵ) -strongly secure if, in addition to satisfying Definition 1, it is required that the signed message (M^*, σ^*) produced by the adversary \mathcal{A}_S satisfies $(M^*, \sigma^*) \neq (M, \sigma)$. Theorem 3.5 of [4] proves that WOTS-PRF is strongly secure assuming that the underlying PRF f is second-key resistant (SKR) or key-collision resistant (KCR). Furthermore, it is assumed that the minimum number of key collisions κ' for f (see Definition 3) satisfies $\kappa' \geq 2$. However, since

$$\kappa' = \min_{(k,x)} \{ N_{k,x} \},$$

it is highly unlikely that $\kappa' \neq 1$ for PRFs f used in practice. Indeed, one would expect with overwhelming probability that $N_{k,x} = 1$ for at least one pair (k,x) for a function f selected uniformly at random from the space of all functions from $\{0,1\}^n \times \{0,1\}^n$ to $\{0,1\}^n$. Thus, the claim that WOTS-PRF is strongly secure if $\kappa' \geq 2$ is vacuous for common constructions of PRFs. 4.1. **Balls and bins.** Consider an experiment wherein N balls are thrown, independently and uniformly at random, into N bins. Of interest is the expected maximum number of balls in any bin. This study is analogous to the determination of the expected value of T_x for a fixed $x \in \{0,1\}^n$ (cf. Definition 3) for a uniform random function $f: \{0,1\}^n \times$ $\{0,1\}^n \to \{0,1\}^n$. Here, the balls are the keys $k \in \{0,1\}^n$ (so $N = 2^n$), the bins are the elements of the codomain $\{0,1\}^n$, and ball k is placed in bin $f_k(x)$. Then the expected maximum number M of balls in a bin is equal to the expected value of T_x , which in turn is at most the expected value of κ .

Theorem 3 ([23]). Consider an experiment wherein N balls are randomly assigned to N bins. Let M be the random variable that counts the maximum number of balls in a bin. Then

$$E[M] = \frac{\ln N}{\ln \ln N} (1 + o(1)) \text{ with probability } 1 - o(1).$$

Moreover,

$$\Pr[\text{ there is at least one bin with } \geq \alpha \frac{\ln N}{\ln \ln N} \text{ balls }] = \begin{cases} 1 - o(1), & \text{if } 0 < \alpha < 1, \\ o(1), & \text{otherwise.} \end{cases}$$

Clearly the value $\ln N / \ln \ln N$ can be made arbitrarily large. Hence, for any $t \in \mathbb{N}$ one can produce values $0 < \alpha < 1$ and $N \in \mathbb{N}$ such that $\alpha \ln N / \ln \ln N \ge t$. Thus, even though the PRF f is not uniformly random, this gives strong evidence that $\kappa \le 2$ is in general false.

4.2. Concrete security assurances of WOTS-PRF and XMSS. Theorem 1 states that if f is a (t', ϵ') -secure PRF, then WOTS-PRF is a (t, ϵ) -secure one-time signature scheme with $t \approx t'$ and $\epsilon \leq \epsilon' \ell^2 w^2 \kappa^{w-1} / (1/\kappa - 1/2^n)$. The tightness gap in the security reduction of Theorem 1 is

$$\ell^2 w^2 \kappa^{w-1} \frac{1}{1/\kappa - 1/2^n} \approx \ell^2 w^2 \kappa^w,$$

which is sensitive to the value to κ . For example, suppose that the PRF f is instantiated using AES with 128-bit keys, whereby it is reasonable to assume that it has a security level of 128 bits. The authors of [4], take $\kappa = 2$, m = 128, w = 16 and conclude that Theorem 1 guarantees a security level of at least 91 bits for WOTS-PRF. However, since one expects that

$$\kappa \ge \frac{\ln(2^{128})}{\ln(\ln(2^{128}))} \approx 20,$$

Theorem 1 can guarantee a security level of at most 39 bits for WOTS-PRF, which is insufficient in practice.

As a second example, consider XMSS when instantiated with WOTS-PRF. The security proof in [11] yields an XMSS security level of

(3)
$$b > n - h - 3 - \max\{h + 1, w \log_2(\kappa) + \log_2(\ell w)\},\$$

where h is the height of the XMSS tree. Taking n = m = 256, w = 64, $\kappa = 2$ and h = 16, Table 7.1 concludes that XMSS has a security level of at least 161 bits. However, since one expects that

$$\kappa \ge \frac{\ln(2^{256})}{\ln(\ln(2^{256}))} \approx 34.3,$$

P. LAFRANCE AND A. MENEZES

the security bound (3) can at best guarantee that b > -100, which is vacuous.

Similar conclusions can be drawn about the concrete security levels given for XMSS in [5] and XMSS⁺ in [13].

5. Concluding Remarks

We emphasize that our observations on the WOTS-PRF security proof have no bearing on the security proofs for other variants of WOTS such as WOTS-LM and WOTS⁺. Furthermore, our remarks in §4.2 on the concrete security bounds for XMSS and XMSS⁺ only apply when these signature schemes are instantiated with WOTS-PRF. In particular, they are not applicable to XMSS as described in the IETF RFC [14] where WOTS⁺ is the underlying one-time signature scheme.

An open problem is to devise a (tight) reductionist security proof for WOTS-PRF (or a variant of it) under the sole assumption that f is a secure PRF.

Acknowledgements

We thank Andreas Hülsing for his comments on an earlier draft of this paper.

References

- M. Bellare, "New proofs for NMAC and HMAC: Security without collision resistance", Advances in Cryptology — CRYPTO 2006, LNCS 4117 (2006), 602–619.
- [2] D. Bernstein and T. Lange, "Non-uniform cracks in the concrete: the power of free computation", Advances in Cryptology — ASIACRYPT 2013, LNCS 8270 (2013), 321–340.
- [3] J. Buchmann, E. Dahmen, S. Ereth, A. Hülsing and M. Rückert, "On the security of the Winternitz one-time signature scheme", *Progress in Cryptology — AFRICACRYPT 2011*, LNCS 6737 (2011), 363–378.
- [4] J. Buchmann, E. Dahmen, S. Ereth, A. Hülsing and M. Rückert, "On the security of the Winternitz one-time signature scheme", International Journal of Applied Cryptography, 3 (2013), 84–96.
- [5] J. Buchmann, E. Dahmen and A. Hülsing, "XMSS a practical forward secure signature scheme based on minimal security assumptions", *Post-Quantum Cryptography — PQCrypto 2011*, LNCS 7071 (2011), 117–129.
- C Dods, N. Smart and M. Stam, "Hash based digital signature schemes", Cryptography and Coding, LNCS 3796 (2005), 96–115.
- [7] E. Eaton, "Leighton-Micali hash-based signatures in the quantum random-oracle model", Selected Areas in Cryptography — SAC 2017, LNCS 10719 (2018), 263–280.
- [8] S. Even, O. Goldreich and S. Micali, "On-line/off-line digital signatures", Journal of Cryptology, 9 (1996), 35–67.
- [9] O. Goldreich, S. Goldwasser and S. Micali, "How to construct random functions", Journal of the ACM, 33 (1986), 792–807.
- [10] J. Håstad, R. Impagliazzo, L. Levin and M. Luby, "A pseudorandom generator from any one-way function", SIAM Journal on Computing, 28 (1999), 1364–1396.
- [11] A. Hülsing, "Practical forward secure signatures using minimal security assumptions", Ph.D. thesis, Technical University of Darmstadt, 2013.
- [12] A. Hülsing, "W-OTS⁺ Shorter signatures for hash-based signature schemes", Progress in Cryptology — AFRICACRYPT 2013, LNCS 7918 (2013), 173–188.
- [13] A. Hülsing, C. Busold and J. Buchmann, "Forward secure signatures on smart cards", Selected Areas in Cryptography — SAC 2012, LNCS 7707 (2013), 66–80.
- [14] A. Hülsing, D. Butin, S. Gazdag, J. Rijneveld and A. Mohaisen, "XMSS: eXtended Merkle Signature Scheme", IETF RFC 8391, May 31, 2018; available at https://datatracker.ietf.org/doc/rfc8391/.
- [15] A. Hülsing, L. Rausch and J. Buchmann, "Optimal parameters for XMSS^{MT}", Availability, Reliability, and Security in Information Systems and HCI — CD-ARES 2013, LNCS 8128 (2013), 194–208.

- [16] A. Hülsing, J. Rijneveld and F. Song, "Mitigating multi-target attacks in hash-based signatures", Public-Key Cryptography — PKC 2016, LNCS 9614 (2016), 387–416.
- [17] J. Katz, "Analysis of a proposed hash-based signature scheme", Security Standardisation Research SSR 2016, LNCS 10074 (2016), 261–273.
- [18] N. Koblitz and A. Menezes, "Another look at HMAC", Journal of Mathematical Cryptology, 7 (2013), 225–251.
- [19] N. Koblitz and A. Menezes, "Another look at non-uniformity", Groups Complexity Cryptology, 5 (2013), 117–140.
- [20] L. Lamport, "Constructing digital signatures from a one way function", Technical Report CSL-98, SRI International, 1979.
- [21] D. McGrew, M. Curcio and S. Fluhrer, "Hash-based signatures", Internet Draft, April 5, 2018; available at https://datatracker.ietf.org/doc/draft-mcgrew-hash-sigs/.
- [22] R. Merkle, "A digital signature based on a conventional encryption function", Advances in Cryptology — CRYPTO '87, LNCS 293 (1988), 369–378.
- [23] M. Raab and A. Steger, ""Balls into bins" a simple and tight analysis", Randomization and Approximation Techniques in Computer Science RANDOM 1998, LNCS 1518 (1998), 159–170.

ISARA CORPORATION, WATERLOO, CANADA *E-mail address:* philip.lafrance@isara.com

DEPARTMENT OF COMBINATORICS & OPTIMIZATION, UNIVERSITY OF WATERLOO, CANADA *E-mail address*: ajmeneze@uwaterloo.ca