
PermuteRam: Optimizing Oblivious
Computation for Efficiency

Shruti Tople, Hung Dang, Prateek Saxena and Ee-Chien Chang

National University of Singapore
{shruti90, hungdang, prateeks, changec} @comp.nus.edu.sg

Abstract. Privacy preserving computation is gaining importance. Along
with secure computation guarantees, it is essential to hide information
leakage through access patterns. Input-oblivious execution is a secu-
rity property that is crucial to guarantee complete privacy preserving
computation. In this work, we present an algorithm-specific approach
to achieve input-oblivious execution. We call this class of algorithms
PermuteRam. PermuteRam algorithms satisfy a specific patterns in
their execution profile called Perpat— patterns that can be realized
using permutation as a primitive. Next, we claim that algorithms hav-
ing Perpat pattern execute in an input-oblivious manner. Further, we
show that PermuteRam is expressive and includes various categories
of algorithms like sorting, clustering, operating on tree data structures
and so on. PermuteRam algorithms incur only an additive overhead of
O(N) and a private storage of O(

√
N). Hence, PermuteRam algorithms

demonstrate optimal performance for linear or super-linear complexities.

1 Introduction

Privacy preserving computation on sensitive data is gaining importance. Several
secure computation and isolated execution techniques have emerged that sup-
port operating on encrypted data [11, 1]. However, it is well-known that only
encryption of data is not sufficient to guarantee privacy. Observing address ac-
cess patterns while executing on encrypted data can leak sensitive information
such as secret keys [18]. Therefore, it is crucial to prevent information leakage
through address access patterns in order to guarantee complete privacy preserv-
ing computation.

One approach to prevent leakage through address access patterns is to use
Oblivious RAM (ORAM). Goldreich and Ostrovsky [6] proposed ORAM to hide
memory access patterns by shuffling data in memory. ORAM is a generic ap-
proach and is applicable to any algorithm irrespective of its structure. It hides
the actual memory address by replacing a single access with polylog N accesses.
Although being algorithm-agnostic, it incurs a multiplicative overhead (poly-
log N) to the algorithm complexities. Despite of the tremendous improvements
in this area, the multiplicative factor causes a performance slowdown in many
applications [14, 16, 9, 15].

A second line of research is to specifically re-design existing algorithms to not
leak information about the input during execution. Such algorithms are called
as input-oblivious algorithms. Blanton et al. provides input-oblivious algorithms
for “dense” graphs such as SSSD, minimum spanning tree and maximum flow to
hide the graph structure [2]. More recently M2R system allows oblivious com-
putation for map-reduce framework by leveraging on its algorithmic structure of
write followed by read operations [5]. Previous work shows that some algorithms
exhibit specific patterns that allows the use of simple techniques like permutation
to make their execution input-oblivious. In addition, leveraging on the algorithm
structure provides better performance, almost equal to the complexity of original
algorithm in most cases [2].

The key question is whether their exists any general pattern that allows
designing of such input-oblivious algorithms? In this paper, we take a step ahead
to identify and generalize such patterns that guarantee input-obliviousness in
various algorithms. Such a generalization is useful in optimizing the performance
of various privacy preserving computations that are currently not feasible with
generic ORAM techniques. With the knowledge of these patterns, developers can
write efficient and practical input-oblivious algorithms using simple techniques.
This is a rational objective as the developers are aware of the algorithm structure
and the ways to modify them while retaining the functionality.

Prior work has used existence of specific patterns in algorithms to prevent
information leakage through address access profiling. In this paper, as our first
contribution, we identify such patterns and generalize them into a class called
Perpat patterns. These patterns are classified based on the read-write profiles
and the address access profiles of an algorithm. Permutation is an important
primitive to achieve these patterns in most algorithms, hence the name Perpat.
We refer to the class of algorithms that satisfy these patterns as PermuteRam
algorithms.

Next, we present a formal definition for our security property of input-
oblivious execution in presence of an “honest-but-curious” adversary. To state
informally, input-oblivious execution prevents information leakage about the in-
put by observing the execution of an algorithm. As our second contribution,
we claim that all PermuteRam algorithms having Perpat pattern guarantee
input-oblivious execution in our threat model. Further, as a part of security
analysis, we provide proofs to support the above claim.

Lastly, we investigate the expressiveness of PermuteRam algorithms in the
presence of a moderate size private but trusted storage and a large public un-
trusted storage. We show that a broad class of applications such as operations
on data structures, sorting algorithms, clustering algorithms fall under Per-
muteRam. Further exploration might result in even larger class of applications
falling in this category. However, we present this paper with the hope that future
work on optimizing input-oblivious algorithms will benefit from this work.

Results. We demonstrate the expressiveness of PermuteRam algorithms by
manually transforming various classes of algorithms to PermuteRam. We show
that most of them demonstrate a performance improvement as compared to the

best known ORAM techniques. It includes several sorting algorithms, clustering
algorithms and operations on tree structures. We compare the complexities of
PermuteRam algorithms to the best known ORAM scheme by Kushilevitz et
al. [9]. PermuteRam algorithms perform better in case studies that have more
than linear complexity, in most cases retaining the original complexity. This
is due to the fact that PermuteRam algorithms have an additive overhead
of O(N) for permutation operation where N is the size of input data whereas
all ORAM schemes have a multiplicative overhead. PermuteRam algorithms
requires O(

√
N) private storage which is practical in scenarios such as cloud

storage or secure processors.
Contributions. The contributions as follows :

– Perpat pattern: We present a class of pattern called Perpat to hide in-
formation leakage through access patterns. Perpat patterns can be realized
using a simple technique of permutation.

– Security Property: We define the security property of input-oblivious exe-
cution and prove that any algorithm with Perpat pattern is input-oblivious.

– Expressiveness: Perpat patterns are applicable to a variety of algorithms
such as sorting, clustering and operations on tree structures. We refer to
them as PermuteRam algorithms.

– Complexity Analysis : The algorithm complexities of PermuteRam algo-
rithms is close to the original algorithms. PermuteRam algorithms perform
better as compared to the best known ORAM techniques.

2 Overview

Our aim is to generalize patterns in various algorithms such that their presence
guarantees the security property of input-obliviousness when executed in real
world setting where the attacker is usually a passive observer.

2.1 Problem Setting.

We envision a setting with some moderate private storage and a huge amount
of public but untrusted storage. The untrusted public region stores the data
in encrypted form. The private storage is trusted and isolated from the public
region. Any operations or data accesses performed in the private memory are
inaccessible to the adversary. The data is decrypted only in the private memory
in order to compute on it. This setting is practical and observed in many real
world scenarios such as in cloud storage where the memory on client side can be
considered private and the storage space at the cloud provider is huge but un-
trusted. Similarly, enclaved execution environments such as SGX or Overshadow
suit this setting where a process has its own isolated and protected address space
as the private memory and the disk storage as the public memory [11, 4]. Finally,
a more granular setting can be observed in secure processors where cache is pri-
vate and RAM memory is public.

Scope and Assumptions. In this setting, our main goal is to hide information
leakage in various algorithms due to address access profiling. Leakage through
other channels like timing are not in the scope of this paper [3]. However, alter-
nate solutions to prevent information leakage through these side channels can
be used simultaneously [8]. We assume the encryption scheme used to protect
the confidentiality of sensitive data in the public region is semantically secure.
The security of the permutation operation which is used as a primitive in Per-
muteRam is assumed. Further, the implementation of private storage is assumed
to be secure and tamper-proof. The adversary does not have access to any secret
keys or address patterns in the private storage.

2.2 Attacker Model

In the above setting, an attacker is anybody that can observe the access patterns
on encrypted data, for example, a curious administrator at the cloud provider or
a compromised / untrusted operating system. In our threat model, the adversary
is “honest-but-curious” i.e., it can passively observes the algorithm execution
profile but cannot tamper or alter the execution process. An algorithm during its
execution performs several read / write operations accessing various addresses
in the memory. A passive adversary can trace memory access patterns in the
public region and may even log them for future analysis. Such an adversary
can observe the execution profile of an algorithm with the intention to infer
information about the inputs. Thus, the attacker’s knowledge set consists of the
algorithm execution profile as defined below.

Definition 1. (Execution Profile). The execution profile P of an algorithm
AG is a vector P (AG) = (P1, P2, P3...Pn) where each Pi is denoted as a tuple:

Pi :=< Operation,Address, V alue > (1)

The Operation parameter in P is either a read (R) or a write (W) operation ex-
ecuted by the algorithm on the untrusted memory. Address parameter denotes
the location (Loc) accessed by the corresponding read / write operation in public
memory. Value is any ciphertext which is read / written from / to the public
memory. We assume that Value parameter is always encrypted with a seman-
tically secure encryption scheme and is therefore secure. Since our focus in this
paper is to hide information leakage through address access pattern, henceforth,
we consider only operation and address parameters in the execution profile i.e,
P = (RW,Loc). Further, we divide this P into two separate profiles namely read-
write profile (RWP) and address access profile (LocP) which is used later for
explanation of the different Perpat patterns. Note that, the adversary can dis-
tinguish between a read and write operation unlike previous work [10]. Roughly
speaking, RWP = (RW1, RW2, ...RWn) contains the sequence of read-write
operations that an algorithm performs and LocP = (Loc1, Loc2...Locn) is the
sequence of addresses accessed during the execution of the algorithm.

Permute(A,	 key);	
int	 i,j;	
int	 iMin;	
for	 (j	 =	 0;j	 <	 n-‐1;j++)	 	
	 iMin	 =	 j;	
	 for	 (i=	 j+1;i	 <	 n;i++)	 	
	 	 	 if	 (A[i]	 <	 A[iMin])	 	
	 	 	 	 iMin	 =	 i;	
	 if(iMin	 !=	 j)	 	
	 	 	 swap(A[j],	 A[iMin]);	

29	 5	 1	 3	 29	 1	 3	 5	

Original Input

(R,0)(R,1)(R,2)(R,3)(W,0) (W,2)
(R,1)(R,2)(R,3) (W,1) (W,3)
(R,2)(R,3) (W,2) (W,3)

Execution Profile

Permuted Input

(R,0)(R,1)(R,2)(R,3)(W,0) (W,1)
(R,1)(R,2)(R,3) (W,1) (W,2)
(R,2)(R,3) (W,2) (W,3)

Execution Profile

A A B B

j = 0
j = 1
j = 3

(i) (iii) (ii)

Fig. 1. Selection sort and its execution profiles

2.3 Our Approach : Running Example

Let us consider an example of selection sort algorithm. It sorts the input array
by finding the minimum element and placing it in the correct position in the
output array. Figure 1(i) shows the pseudo code for selection sort algorithm. It
also shows the execution profile P of selection sort for an input array (ii). In such
sorting algorithms, our goal is to hide the ordering of elements in the original
input array. For example, the position of the largest or smallest element in the
input. With this example, we generate an insight for Perpat patterns and how
their existence guarantees input-obliviousness.
Analysis. The execution profile for selection sort is divided into two sub-profiles
— A and B. For a fixed length input (n = 4 in Figure), profile A has a deter-
ministic pattern while profile B differs based on the input ordering. This profile
reflects the arrangement of the input values thereby leaking information about
their positions. Careful readers may notice that we can protect this information
leakage if the execution profile in part B is randomized (or unlinked) from the
original input. The key insight is to make the execution profile in part B ac-
cess random locations on every execution of this algorithm. Since the adversary
observes random locations being accessed, it learns nothing about the original
input.
Transformation. To introduce randomness, we insert a shuffling or permuta-
tion function before the start of the algorithm (line 1 in Figure 1). Now the
profile in part B is dependent on the permuted input rather than the original
input (See Figure 1(iii)). If the permutation function is perfectly pseudo-random
than the attacker cannot infer information about original input by observing the
execution profile of the permuted input. Selection sort is a simple case where
inserting a single permutation operation is sufficient to randomize the access
profile. This is due to the algorithm characteristics where the execution profile
in one part does not effect the profile in other part. However, this is not true for
all cases. Several algorithms require addition of intermediate permutation step
to completely hide the information leakage through address accesses. The per-
mutation step guarantees that the address accessed in each part is equally likely
and is not influenced by other read / write operations in the algorithm. With

this observation we define a class of Perpat patterns in Section 3 that prevents
information leakage through execution profile. We present these patterns with
the intention that developers can generate input-oblivious algorithms by trans-
forming algorithms to satisfy Perpat pattern. As this transformation requires
manual analysis and understanding of the algorithms, we expect the developer
of an algorithm to be the appropriate candidate for this task.
Permutation. Note that, the permutation step introduced in the above trans-
formation also needs to be performed obliviously. For performing oblivious per-
mutation, we use the Melbourne shuffle which requires O(

√
N) private memory

that satisfies our requirement of moderate size private storage, message size of
O(
√
N) and O(N) I/O operations [13]. This is a oblivious shuffling algorithm

which is practical and efficient.

2.4 Problem Definition

In this work, we advocate the idea that algorithms having execution profiles with
Perpat patterns guarantee the security propery of input-obliviousness.
Security Property. We define input-obliviousness as a property that guaran-
tees computational indistinguishability of inputs to an algorithm in the presence
of an adversary with access to the execution profile P . We model the definition
as a game between an adversary and a challenger. The adversary provides two
encrypted inputs I0 and I1 to the challenger. The challenger randomly selects
one of the inputs Ib where b ∈ {0, 1} and executes algorithm AG over the se-
lected input. The challenger further sends the execution profile Pb(AG) to the
adversary.

Definition 2. (Input-obliviousness). Given a computationally bounded ad-
versary A with access to execution profile Pb(AG) where b ∈ {0, 1} and en-
crypted inputs I0 and I1 having the same length i.e, |I0| = |I1|, algorithm AG
is input-oblivious only if the advantage of p.p.t A in distinguishing I0 and I1 is
negligible by learning Pb(AG) i.e,

Adv(A) := |Pr[A(I0) = 1]− Pr[A(I1) = 1]| ≤ ε (2)
where ε is negligible.

Section 4 provides a security proof that any algorithm having Perpat pat-
tern is input-oblivious as per above definition. The example of selection sort
algorithm explains how developers can manually analyze algorithmic structures
and transform them to satisfy Perpat patterns. The transformed algorithms
are input-oblivious if they satisfy Perpat patterns in their execution profile i.e,
P (AG) ∈ {Perpat }.

3 Perpat Pattern.

On the basis of whether the read-write (RWP) and address access profile(LocP)
of a given algorithm show deterministic or randomized behaviour, we classify the
Perpat pattern into four main types that guarantee input-obliviousness.

1. deterRWP-and-deterLocP (PDD). The first pattern is where both the read-
write (RWP) and address (LocP) profiles of an AG show a deterministic
behavior. This is the most simplest pattern that provides input-obliviousness.
This pattern is observed and used in many previous works that aim to hide
information leakage through address accesses. We say that an algorithm exhibits
(PDD) pattern if given two inputs of the same length, the execution profile of
the algorithm for the two inputs can be divided into exactly same (RWP) and
(LocP). Intuitively, this indicates that the execution profile is not a function of
the input values and hence leaks nothing about the original inputs.

Examples of algorithms showing this pattern include finding minimum or
maximum value in a given input array, matrix multiplication, Rabin-Karp sub-
string match and so on.

Definition 3. (deterRWP-and-deterLocP.) If ∀I1, I2 ∈ I where |I1| = |I2|
and P (AGI1),P (AGI2) are the execution profile of algorithm AG over inputs
I1, I2 respectively, then algorithm AG exhibits deterRWP-and-deterLocP pat-
tern only if P (AGI1) ≡ P (AGI2) i.e, RWPI1 ≡ RWPI2 and LocPI1 ≡
LocPI2 .

Original Input Set
for fixed length |I|
I = {I1, I2, ……In} Possible

Profile Set S

	
P(AGI)	 	

Randomized
Profile

Permuted Inputs

Fig. 2. Mapping of input to permuted values and their execution profiles

2. deterRWP-and-randLocP (PDR). The second pattern which guarantees input-
obliviousness is called deterRWP-and-randLocP. In this pattern, similar to PDD,
the RWP is deterministic across all inputs of the same length. However, the ad-
dress corresponding to the read-write operations i.e, the LocP profile is always
randomized.

By randomized profile, we mean that LocP is not dependent on the original
input I and has equal probability of occurring as any one of the possible LocP
profiles for input of a given length. Figure 2 pictorially explains what it means
for a profile to show randomized behaviour. Let I = I1, I2....In be the set of all

the possible original inputs of fixed length l to an algorithm AG. Let S be the
set of all possible profiles P (AG) that an algorithm can generate given inputs
I ∈ I.

Definition 4. (Randomized Profile.) A profile is randomized if the probabil-
ity of occurence of that profile after executing algorithm AG on any input Ii ∈ I
is equally likely from the profile set S i.e,

P [P (AGIi)] =
1

|S|
(3)

Definition 5. (deterRWP-and-randLocP.) If ∀I1, I2 ∈ I where |I1| = |I2| and
P (AGI1),P (AGI2) are the execution profile of algorithm AG over inputs I1, I2

respectively, then algorithm AG exhibits deterRWP-and-randLocP pattern only
if RWPI1 ≡ RWPI2 and LocPI1 ,LocPI2 are randomized i.e, the probability
of their occurence is equally likely.

Examples of algorithms were this pattern appears is sorting algorithm such as
bubble sort, selection sort, merge sort, heapsort and so on. Here the algorithms
have a deterministic RWP mainly reading an element and followed by writing
it to its appropriate location. However, the address from where the element is
read and written is randomized.
3. randRWP-and-randLocP (PRR). The last profile pattern whose presence
provides input-obliviousness is randRWP-and-randLocP. It includes both ran-
domized RWP and LocP in the algorithm execution profile for every input
of the same length. In addition to LocP in PDR, in PRR the probability that
RWP belongs to one of the original inputs is equally likely. Quicksort algorithm
falls in this category.

Definition 6. (randRWP-and-randLocP.) If ∀I1, I2 ∈ I where |I1| = |I2| and
P (AGI1),P (AGI2) are the execution profile of algorithm AG over inputs I1, I2

respectively, then algorithm AG exhibits randRWP-and-randLocP pattern only if
both RWPI1 ,RWPI2 and LocPI1 ,LocPI2 are randomized i.e, the probability
of their occurence is equally likely.

4. Composite pattern. It is possible to find combination of one or more of
the above patterns in certain applications. If the execution of an algorithm can
be partitioned such that each of the partition satisfies the requirements for ei-
ther one of the above patterns then we say that the algorithm demonstrates a
composite pattern. If the execution profile of an algorithm satisfies composite
pattern then that algorithm guarantees the property of input-obliviousness.

Definition 7. (Composite pattern.) An algorithm AG exhibits composite pat-
tern if its execution profile P (AG) can be efficiently divided into n sub-profiles

such that P (AG) =
n⋃

i=1

pi and each sub-profile pi ∈ {PDD,PDR,PRR}.

Insertion sort algorithm exhibits composite pattern. In insertion sort, the
read operation is performed always at a fixed address but the address of write
operations is random depending on the input. In our case studies we manu-
ally transform clustering algorithms such as K means clustering and hierarchi-
cal clustering algorithms such that the transformation of these algorithms AG
demonstrate composite pattern.

4 Security Guarantees

In this section, we guarantee that any program that exhibits one of the Per-
pat pattern guarantees the security property of input-obliviousness as described
in Section 2.4. The definition is based on computational indistinguishability of
inputs in the presence of adversary with access to execution profile of the al-
gorithm. Our security guarantees rely on the following assumptions about the
underlying cryptographic schemes used in our solution.

– The encryption scheme used to provide confidentiality of data is semantically
secure.

– The permutation scheme (Melbourne Shuffle [13]) is secure i.e, an adversary
cannot construct the original input array given a permutation of the array.

Lemma 1. An algorithm having execution profile with deterRWP-and-deterLocP
pattern is input-oblivious.

Proof. For execution profiles of algorithm having deterRWP-and-deterLocP pat-
tern, the read-write profile and address profile are always deterministic for input
of fixed length as per Definition 3. It is straightforward to calculate that the
probability of execution profile P (AG) being generated from either input I0

or I1 is exactly the same i.e, 1/2. Hence, simply observing the execution profile
does not give any significant advantage to an adversary in distinguishing between
two inputs to the algorithm. This ensures computational indistinguishability of
inputs and thereby guaranteeing our security property of input-obliviousness.

Lemma 2. An algorithm having execution profile with deterRWP-and-randLocP
pattern is input-oblivious.

Proof. For algorithms that demonstrate deterRWP-and-randLocP pattern in
their execution profiles, we know by Definition 5 that the RWP are always de-
terministic i.e, they are exactly the same for any input of fixed length supplied
to the algorithm. Thus, the adversary has no additional advantage in distin-
guishing the inputs by observing the RWP profile. Now let us consider what
benefit the adversary gets from the address profile. The address profile LocP is
randomized in PDR pattern. According to the definition of randomized profile
(Definition 4), the probability LocP is equally likely to be generated from the
possible set of address profiles for every run of the algorithm. Thus, the advan-
tage of an adversary in guessing the input is equivalent to making a random

guess from the possible input space. Therefore, given two inputs I0 or I1 a p.p.t
adversary cannot distinguish between them with more than negligible advan-
tage even by observing the RWP profile and LocP profile. Note that, Perpat
pattern guarantees input-obliviousness as long as the underlying permutation
scheme is secure. By observing the execution profile, the adversary guesses the
input to be a random value from the possible input space. The security guar-
antee relies on the assumption that the adversary cannot reverse the permuted
input to original input.

Lemma 3. An algorithm having execution profile with randRWP-and-randLocP
pattern is input-oblivious.

Proof. In randRWP-and-randLocP pattern, both theRWP and LocP have ran-
domized behaviour. Similar to deterRWP-and-randLocP pattern, the adversary
can guess the input to be a random value from the input space depending on the
profiles generated during that run of the algorithm. Hence, for two original in-
puts I0 or I1, the probability of the a specific profile being generated during the
execution of an algorithm exhibiting randRWP-and-randLocP pattern is equally
likely for both the inputs by Definition 6. Thus, the advantage of a p.p.t adver-
sary in distinguishing between the two inputs based on their execution profiles
is negligible.

Theorem 1. An algorithm having execution profile with composite pattern is
input-oblivious.

Proof. An algorithm with composite pattern has its execution profile composed
of sub-profiles where each profiles has either PDD, PDR or PRR patterns.
Lemma 1, 2 and 3 guarantee that each of these sub-profiles is input-oblivious. We
have to prove that the composition of these sub-profiles is also input-oblivious.
Let us consider that an algorithm has 2 sub-profiles with a deterRWP-and-deterLocP
pattern followed by a deterRWP-and-randLocP pattern. At the end of first pro-
file, the adversary’s advantage in distinguishing between two inputs I0 or I1 is
negligible (by Lemma 1). The input to the PDR pattern is the output of the
PDD pattern. However, as the PDR sub-profile is input-oblivious by itself, an
adversary observing this sub-profile cannot distinguish whether the input to this
sub-profile was generated from either I0 or I1. Therefore, the advantage of an
adversary in distinguishing between two inputs given to an algorithm that con-
tains composition of two sub-profiles is negligible. Similar argument holds for
a profile consisting of n sub-profiles. Thus, an algorithm with n sub-profiles is
input-oblivious as long as each sub-profile is itself input-oblivious i.e, belongs
to either PDD, PDR or PRR patterns. Such an algorithm is said to exhibit
composite pattern according to Definition 7. Hence, we prove that an algorithm
having execution profile with composite pattern is input-oblivious.

5 Case Studies

We present the expressiveness of PermuteRam by elaborating on various cat-
egories of algorithms that satisfy Perpat patterns and hence perform input-
oblivious execution.

5.1 Sorting Algorithms

Sorting algorithms especially comparison-based sorting operate on a given input
array and produce sorted output. An adversary can learn about the relation of
the elements in the original array by observing the execution profile of these
algorithms such as the position of the smallest / largest element in the array.
We discuss the method to transform these algorithm to PermuteRam and the
type of Perpat patterns exhibited by their execution profiles.
Quicksort. Quicksort algorithm divides an input array into smaller sub-arrays
and sorts the smaller arrays. It choses a pivot element in each iteration to parti-
tion the array. To satisfy Perpat pattern, we insert a permute function at the be-
ginning of the algorithm. The algorithm in the Figure 3 shows randRWP-and-randLocP
pattern. Due to the permutation, the pivot element is chosen randomly in each
iteration. Hence, the sequence of read and writes varies across different inputs of
the same size. However, since the permuted value cannot be converted to original
array, the access pattern on the permuted input does not leak any information
about the original input.

1 // In s e r t permute opera t ion on the input array
2 Permute(A, K);
3 qu i ck so r t (A, lo , h i)
4 i f l o < hi
5 p = pa r t i t i o n (A, lo , h i)
6 qu i ck so r t (A, lo , p − 1)
7 qu i ck so r t (A, p + 1 , h i)
8
9 p a r t i t i o n (A, lo , h i)

10 // A random p i v o t e lement i s s e l e c t e d in every
11 // execu t i on o f q u i c k s o r t due to permutat ion s t ep
12 p ivot = A[h i]
13 i = l o // p l ace f o r swapping
14 for j = l o to h i − 1
15 i f A[j] <= pivot
16 swap A[i] with A[j]
17 i = i + 1
18 swap A[i] with A[h i]
19 return i

Fig. 3. Quicksort algorithm with randRWP-and-randLocP pattern

Heapsort. Heapsort algorithm involves building a heap data structure from a
given input array and then performing sort operation on it. The heapsort func-
tion follows deterRWP-and-deterLocP pattern thus making it oblivious. How-
ever, building the heap data structure from a given array input is what leaks
information. By performing a permute operation on the input array, we prevent
the information leakage from building a heap step. Permuting the input array
and then building the heap follows the randRWP-and-randLocP pattern. Figure 4
shows the algorithm for heapsort that performs input-oblivious execution.

1 Permute(A. key)
2 Heapsort (A)
3 Build_Max_Heap(A)
4 for i = A. l ength downto 2
5 exchange A[1] with A[i]
6 A. s i z e = A. s i z e − 1
7 Max_heapify (A, 1)
8
9 Build_Max_Heap(A)

10 A. s i z e = A. length
11 for i = [A. l ength /2] downto 1
12 Max_heapify (A, i)

1 Max_heapify (A, i)
2 l = LEFT(i)
3 r = RIGHT(i)
4 i f l <= A. s i z e and A[l] > A[i]
5 l a r g e s t = l
6 else
7 l a r g e s t = i
8 i f r <= A. s i z e && A[r]>A[l a r g e s t]
9 l a r g e s t = r

10 i f l a r g e s t != i
11 exchange A[i] with A[l a r g e s t]
12 Max_heapify (A, l a r g e s t)

Fig. 4. Psuedo code for Heapsort and Building a Maximum Heap with
deterRWP-and-deterLocP pattern. The Max_heapify function shows a random pat-
ten due to the permutation operation on the input array.

Mergesort. Mergesort algorithm divides the input array into small arrays of
single element and then merges the smaller arrays. The order in which the merge
step operates leaks information about the original array. Permuting the original
array and then performing merge operation on it randomizes the execution pro-
file. Such a merge-sort algorithm with permutation function displays the pattern
deterRWP-and-randLocP. Hence, for any permuted input the address profile of
mergesort is different and indistinguishable from the original input.
Bubblesort / Insertion sort. Bubblesort and Insertion sort also fall in the
category where the algorithm operates on the complete input array and the
output is an sorted array. Modifying these algorithms and inserting a permuta-
tion function at the beginning transforms them such that the execution profile
satisfies is a combination of patterns, thus exhibiting composite pattern. Selec-
tion sort as shown in the running example follows the deterRWP-and-randLocP
pattern and thus can be executed with PermuteRam.

5.2 Clustering Algorithms

In clustering algorithms, various input elements are grouped together into several
clusters. Normal execution of these algorithm leaks the elements that are grouped
together to form a cluster and even the size of each cluster. We describe how
these algorithms can be transformed using permutation as a building block to
satisfy one of Perpat patterns.

Kmeans clustering. K-means clustering algorithm partitions n input elements
into k clusters where each input element belongs to a cluster with the closest
mean value. We manually modify this algorithm to fit into Perpat patterns. We
use the euclidean distance as the metric for computation. Figure 5 shows our
transformed algorithm. A permutation function is appended at the beginning
of the algorithm. After every iteration, we permute the K mean value, thus the
read values are always deterministic whereas the write values occurring is equally
likely, and it does not leak how many numbers belong to the same cluster. Since
the permutation cost is O(K) it gets subsumed in the cost for accessing the K
means. Thus the complexity for PermuteRam for K means clustering is equal
to the original cost of the algorithm i,e O(N.K).

1 Permute(A, key)
2 K−means (A)
3 for i = 0 to A. l ength
4 A[i] . d i s t = i n f i n i t y
5 A[i] . c l u s t e r = 0
6
7 for i = 0 to K. l ength
8 K[i] . mean = random(A)
9 K[i] . new_mean = K[i] . t o t a l = 0

10
11
12 for i = 0 to A. l ength
13 Permute(K, key)
14 for j = 0 to K. l ength
15 d i s = d i s t ance (A[i] . val ,K[j] . mean)
16 i f A[i] . d i s > d i s
17 A[i] . d i s = d i s
18 A[i] . c l u s t e r = K[j] . mean
19 K[j] . new_mean += A[i] . va l
20 K[j] . t o t a l++
21
22 for i = 0 to K. l ength
23 K[i] . mean = K[i] . new_mean / K[i] . t o t a l

Fig. 5. Modified K-means algorithm to satisfy Perpat patterns.

Hierarchical clustering. Hierarchical clustering is an algorithm that groups in-
put elements to build a hierarchy of clusters. We transform the original algorithm
such that it exhibits Perpat patterns. We consider a matrix representation to
denote the distance between two points. Similar to K-means clustering, we use
the Euclidean distance. After every iteration we permute the matrix to update
the clustering information. Since the outer loops proceeds for n iterations, and in
every iteration we permute the matrix which hides the points that are combined

together to form the next cluster. The original algorithm has cost of O(n3). Ev-
ery matrix permutation has a cost of O(n2). Thus our modified program retains
the original cost of the algorithm.

5.3 Building a data structure from an array

Input data is often represented in form of ordered data-structures such as heaps,
priority queue, AVL trees and so on to compute queries on them efficiently.
The execution profile while constructing such data structures from given input
values leaks information about the values. These algorithms are transformed to
PermuteRam by adding a permute function at the beginning of the algorithm.
The permutation causes the access patterns in the execution profile of algorithm
to be independent of the original input. Constructing of such data structures
using PermuteRam makes the execution input-oblivious thereby preventing
information leakage about the input values. The transformed PermuteRam
algorithms preserve the property of data-structure that supports efficient queries.

5.4 Complexity analysis

Table 1 gives the execution complexity for PermuteRam algorithms with re-
spect to original algorithm and using the best known generic ORAM solutions.
Kushilevitz et al. scheme for oblivious RAM is the best known scheme which
requires a constant private storage and has a overhead of O(log2N

loglogN) for each
memory access. We use this scheme for comparison purpose. PermuteRam al-
gorithms require a private storage of O(

√
N) and additive overhead of O(N). The

table gives the complexity comparison for the case studies discussed above using
these two schemes. Using the big O notation, we observe that PermuteRam
algorithms demonstrate complexities almost equal to the complexity of original
algorithms. On the other hand, the case studies incur a multiplicative overhead
for generic ORAM solution. This result is because of the fact that PermuteRam
algorithms has an additive overhead of O(N) incurred due to the permutation
step. This additive overhead gets subsumed in the complexity for algorithms
which perform in linear or super-linear time. Thus in all the sorting, clustering
and creating data structures algorithms, PermuteRam performs better than
general ORAM schemes. However, PermuteRam algorithms might not be an
efficient approach for algorithms with sub-linear complexities where the permu-
tation cost will dominate the overall complexity.

6 Related Work

Blanton et. al design input-oblivious algorithms for “dense" graphs for vari-
ous applications like SSSD, minimum spanning tree, breadth-first-search and so
on [2]. They use permutation primitive to hide the access patterns in these al-
gorithms. Though this work does not intentionally design algorithms to satisfy
Perpat pattern, we observe that all their algorithms meet the requirement of

Algortihms Technique (Private Storage)

Original
Algorithm

Generic ORAM
O(1)

PermuteRAM
O(
√
N)

Constructing a tree data structure from a given array :

Heap O(NlogN) O(Nlog3N
loglogN

) O(NlogN)

Priority-queue O(NlogN) O(Nlog3N
loglogN

) O(NlogN)

AVL tree O(NlogN) O(Nlog3N
loglogN

) O(NlogN)

Sorting Algortihms :

Heapsort O(NlogN) O(Nlog3N
loglogN

) O(NlogN)

Quicksort NlogN O(N
2log2N

loglogN
) O(NlogN)

Selection sort O(N2) O(N2 + Nlog2N
loglogN

) O(N2)

Clustering algorithms:

K means O(N.K.) O(N.Klog2N.
loglogN

O(N.K)

Hierarchical O(N3)N O(N3)log2N
loglogN

O(N3)

Table 1. Overhead comparison for different algorithms

Perpat patterns. Goodrich et. al use a similar shuffling technique to design data-
oblivious graph drawing algorithms for outsourced computation scenario with a
small trusted private storage. M2R system uses mixed network as a primitive to
shuffle or permute the data in memory and thereby prevent leakage through ac-
cess patterns. It leverages the specific pattern in map-reduce operations where all
the data is first written to a fixed memory location, followed by a read operation.
Thus, this paper intuitively converts the map-reduce functionality to demon-
strate deterRWP-and-deterLocP pattern followed by deterRWP-and-randLocP
pattern. Therefore, map-reduce operations are also a part of PermuteRam al-
gorithms.

Recently, Ohrimenko et. al propose the use of shuffling data in memory to
hide leakage in map-reduce jobs in presence of secure hardware like SGX [12]. The
key observation is similar as in this paper i.e, access patterns during execution
should be independent of the input data. Even their work uses Melbourne shuffle
as a primitive to prevent leakage through access patterns.

Wang et. al design data-oblivious algorithms for programs and data-structures
which exhibit a certain amount of predictability in their access patterns [17].
Similar to our work, they identify some specific behaviour in applications that
allow designing efficient oblivious counterparts of the original algorithms. How-
ever, instead of permutation, their work uses ORAM as a primitive for hiding
access patterns which incurs a multiplicative overhead. Keller and Scholl pro-

vide oblivious algorithms specifically for data structures but in the multi-party
computation model [7].

All these work focus on specific applications like dense graphs algorithms,
map-reduce jobs, graph drawing model or data structures whereas in this paper,
we generalize the patterns and presents PermuteRam algorithms exhibiting
Perpat patterns that aims to encompass a broader class of applications.

7 Conclusion

In this we work, we present a new class of algorithms called PermuteRam.
PermuteRam algorithms satisfy the security property of input-obliviousness
in presence of honest-but-curious adversary with access to algorithm execution
profiles. The key contribution is the generalization of specific patterns in Per-
muteRam algorithms called Perpat that prevent information leakage through
address access profiling. PermuteRam algorithms use a simple operation like
permutation as its basic primitive. Several classes of algorithms like sorting, clus-
tering and so on fall under PermuteRam. Knowledge of Perpat pattern allows
developers to design efficient and practical input-oblivious algorithms.

8 Future Work

In this work, we rely on developer’s skill to transform algorithms into Per-
muteRam. An interesting future work is to build a compiler that can automat-
ically transform original algorithms into PermuteRam algorithms. Such a tool
will be useful in scaling the expressiveness of PermuteRam algorithms. In addi-
tion to this, a promising direction is to use techniques like probabilistic symbolic
execution to verify whether transformed algorithms adhere to the requirements
of Perpat patterns.

References

1. Private Core. https://privatecore.com/
2. Blanton, M., Steele, A., Alisagari, M.: Data-oblivious graph algorithms for secure

computation and outsourcing. In: Proceedings of the 8th ACM SIGSAC symposium
on Information, computer and communications security. pp. 207–218. ACM (2013)

3. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: USENIX Security
Symposium 2003

4. Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., Dwoskin, J., Ports, D.R.: Overshadow: a virtualization-based approach
to retrofitting protection in commodity operating systems. In: ACM SIGOPS Op-
erating Systems Review. vol. 42, pp. 2–13. ACM (2008)

5. Dinh, A., Saxena, P., Chang, E.C., Ooi, B.C., Zhang, C.: M 2 r: Enabling
stronger privacy in mapreduce computation. In: 24th USENIX Security Sympo-
sium (USENIX Security 15). USENIX Association (2015)

6. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM (1996)

7. Keller, M., Scholl, P.: Efficient, oblivious data structures for mpc. In: Advances in
Cryptology–ASIACRYPT 2014, pp. 506–525. Springer (2014)

8. Kopf, B., Durmuth, M.: A Provably Secure And Efficient Countermeasure Against
Timing Attacks. In: IEEE Computer Security Foundations Symposium (2009)

9. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in) security of hash-based oblivious
ram and a new balancing scheme. In: Proceedings of the twenty-third annual ACM-
SIAM symposium on Discrete Algorithms. pp. 143–156. SIAM (2012)

10. Liu, C., Wang, X., Nayak, K., Huang, Y., Shi, E.: Oblivm: A programming frame-
work for secure computation. In: IEEE Symposium on Security and Privacy (S &
P) (2015)

11. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue,
V., Savagaonkar, U.R.: Innovative Instructions and Software Model for Isolated
Execution. In: Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy. HASP (2013)

12. Ohrimenko, O., Costa, M., Fournet, C., Gkantsidis, C., Kohlweiss, M., Sharma,
D.: Observing and preventing leakage in mapreduce. In: Proceedings of the 2015
CCS. ACM

13. Ohrimenko, O., Goodrich, M.T., Tamassia, R., Upfal, E.: The melbourne shuffle:
Improving oblivious storage in the cloud. In: Automata, Languages, and Program-
ming, pp. 556–567. Springer (2014)

14. Stefanov, E., Shi, E., Song, D.: Towards Practical Oblivious RAM. CoRR (2011)
15. Stefanov, E., Van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.:

Path oram: An extremely simple oblivious ram protocol. In: Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security. pp. 299–
310. ACM (2013)

16. Wang, X.S., Chan, T.H., Shi, E.: Circuit oram: On tightness of the goldreich-
ostrovsky lower bound (2014)

17. Wang, X.S., Nayak, K., Liu, C., Chan, T., Shi, E., Stefanov, E., Huang, Y.: Obliv-
ious data structures. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. pp. 215–226. ACM (2014)

18. Zhuang, X., Zhang, T., Pande, S.: Hide: An infrastructure for efficiently protecting
information leakage on the address bus. SIGOPS Oper. Syst. Rev. (2004)

