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Abstract. In this paper, we propose a family of lightweight cryptographic permutations called
sLiSCP, with the sole aim to provide a realistic minimal design that suits a variety of lightweight
device applications. More precisely, we argue that for such devices the chip area dedicated for security
purposes should, not only be consumed by an encryption or hashing algorithm, but also provide as
many cryptographic functionalities as possible. Our main contribution is the design of a lightweight
permutation employing a 4-subblock Type-2 Generalized-like Structure (GFS) and round-reduced
unkeyed Simeck with either 48 or 64-bit block length as the two round functions, thus resulting in
two lightweight instances of the permutation, sLiSCP-192 and sLiSCP-256. We leverage the exten-
sive security analysis on both Simeck (Simon-like functions) and Type-2 GFSs and present bounds
against differential and linear cryptanalysis. In particular, we provide an estimation on the maximum
differential probability of the round-reduced Simeck and use it for bounding the maximum expected
differential/linear characteristic probability for our permutation. Due to the iterated nature of the
Simeck round function and the simple XOR and cyclic shift mixing layer of the GFS that fosters
the propagation of long trails, the long trail strategy is adopted to provide tighter bounds on both
characteristics. Moreover, we analyze sLiSCP against a wide range of distinguishing attacks, and ac-
cordingly, claim that there exists no structural distinguishers for sLiSCP with a complexity below
2b/2 where b is the state size. We demonstrate how sLiSCP can be used as a unified round function in
the duplex sponge construction to build (authenticated) encryption and hashing functionalities. The
parallel hardware implementation area of the unified duplex mode of sLiSCP-192 (resp. sLiSCP-256)
in CMOS 65nm ASIC is 2289 (resp. 3039) GEs with a throughput of 29.62 (resp. 44.44) kbps, and
their areas in CMOS 130nm are 2498 (resp. 3319) GEs.

Keywords: Lightweight cryptography, Cryptographic permutation, Simeck block cipher, General-
ized Feistel Structure, Sponge duplexing, Authenticated encryption, Hash function.

1 Introduction

The area of lightweight cryptography has been investigated in the literature for over a decade, however,
only recently NIST [57] has recognized that there is a lack of standards that suit the bursting variety of
constrained applications. In fact, long before NIST’s lightweight cryptography project [57], the crypto-
graphic community has, in an ad-hoc manner, tried to establish some common criteria on how to define a
lightweight cryptographic design (e.g., 2000 GE for hardware area) [6, 47, 29]. Nevertheless, such criteria
are rather generic, and specifically the established bound on hardware area represents an upper bound
for a passive RFID tag which may contain between 1000 and 10000 GEs, out of which, a maximum of
20% is to be used for all security functionalities [47]. Certainly, it is not reasonable to compare a vehicular
embedded system with an Electronic Product Code (EPC) tag or an implantable medical device where the
critical operation environment imposes strict constraints on the area and power consumption. While the
latency maybe considered of a paramount importance for some applications such as automotive embedded
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systems that require a fast response time, it can be relaxed so that smaller area is realized in highly hard-
ware constrained applications (e.g., EPC tags). What remains the most important aspect in an acceptable
realistic secure lightweight cryptographic design is its hardware footprint given that it offers acceptable
metrics for throughput and latency.

Over the last decade, numerous symmetric-key primitives such as block ciphers, stream ciphers and hash
functions have been proposed to secure resource-constrained applications. Examples of block ciphers include
TEA [67], KATAN and KTANTAN [37], LED [44], PRESENT [29], HIGHT [46], EPCBC [73], KLEIN [41],
LBlock [69], TWINE [63], Piccolo [61], PRINCE [32], SIMON and SPECK [12], SIMECK [72], PRIDE [4]
and SKINNY [13], lightweight hash function examples include PHOTON [43], QUARK [7], SPONGENT
[28], and LHash [68], and lightweight stream cipher examples encompass Grain-128 [45], Trivium [36],
MICKY [11], and WG [58]. These proposals aim to achieve hardware efficiency by adopting efficient round
or feedback functions so that the targeted cryptographic functionality is provided while guaranteeing its
security. However, none of theses proposals have considered providing multiple cryptographic functions
with low overhead, which might be a determining factor for its realistic adoption in many constrained
devices. In other words, it is reasonable to assume that the available chip area dedicated for security
purposes should be used to provide encryption, authentication, hash computation, and possibly pseudo-
random bit generation, which are the basic functionalities required by a security protocol. Similar to the
advantage of having an encryption algorithm where both encryption and decryption use the same round
function, the concept of cryptographic minimal design aims to unify one design for as many cryptographic
functionalities as possible. As a trade-off for having a minimal design, some redundancy may be introduced
and thus, latency and throughput of individual functionalities may not be optimized.

In recent years, various authenticated encryption (AE) schemes have been developed (e.g., CAESAR
competition [34]). Of particular interest are NORX-16 [9] and Ketje-JR [14] as they have state sizes of 256
(2880 GEs) and 200 (1270 LUTs), respectively, and also the lightweight AE scheme Grain-128a (est. 2243
GE) [3]. However, all the latter lightweight AE schemes are optimized (e.g., MonkeyDuplexing [20]) for
authenticated encryption and not to be used as a hash function. One can achieve a minimal design using
the Keccak permutation family [21]. However, the smallest instance of the Keccak family is Keccak-200
whose implementation cost in the duplex mode is 4900 GE for 130nm ASIC technology [48]. Consequently,
we believe that there is a need to explore the design space of secure lightweight cryptographic permutations
which are suitable for unifying a cryptographic design with a minimal overhead of multiple cryptographic
functionalities.

Our Contributions. In this work, we present sLiSCP which is a family of lightweight cryptographic
permutations with the sole aim to provide a realistic lightweight cryptographic minimal design. Thus, our
contributions in this paper are as follows.

- We design the sLiSCP family of permutations, which adopts two of the most efficient and extensively an-
alyzed cryptographic structures, namely a 4-subblock Type-2 Generalized Feistel-like Structure (GFS)
[59, 31], and a round-reduced unkeyed version of the Simeck encryption algorithm [72]. Specifically,
the round function of Simeck is an independently parameterized version of the Simon round function
[12] and has set a new record in terms of hardware efficiency and performance on almost all platforms.
Moreover, Simeck, Simon and Simon-like variants have been extensively cryptanalyzed by the public
cryptographic community [65, 2, 24, 51, 52, 54]. Simeck utilizes shift parameters that are more hard-
ware efficient than those of Simon, and also in terms of bit diffusion, Simeck-48 is better than other
efficient shift parameters that are investigated in [51]. As for the overall GFS construction, it is proven
that Type-2 GFSs offer better diffusion than Type-1 GFSs, and having 4 subblocks bounds the number
of round functions to only two which satisfies the constrained area requirement [62]. Additionally, 4-
subblock Type-2 GFSs reach full subblock diffusion in 4 rounds which enables sLiSCP to provide good
security margins after an acceptable number of rounds. Also, we leverage the benefits of using Linear
Feedback Shift Register (LFSR) based constants in the round function in order to further optimize the
hardware footprint.

- We investigate the security of the sLiSCP permutation against a wide variety of distinguishing attacks.
As the design of sLiSCP is based on Type-2 GFS and Simeck’s round function, our analysis makes
use of the extensive analysis on both Type-2 GFSs, Simeck, and Simon-like round functions. Unlike
primitives such as PRESENT [29] and LED [44] block ciphers that offer strong security bounds which
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are relatively easy to cryptanalyze because of the use of small Sboxes and/or MDS diffusion layers,
the Simeck round function adopts a rather efficient and simple bitwise operations (AND, XOR and
Rotation), which makes their cryptanalysis not as easy. We use the SMT/SAT tool developed in [51] to
compute the bounds on the maximum expected probabilities for differential and linear characteristics
for Simeck. Using these bounds and encoding sLiSCP in a Mixed Integer Linear Programming (MILP)
model, we calculate the bounds for the probabilities of the differential and linear distinguishers based on
the minimum number of active round-reduced Simeck functions. The bounds on the minimum number
of active Simeck functions trail are further tightened by adopting the long trail strategy, which shows
that the analysis based on the MILP and MEDCP (Maximum Expected Differential Characteristic
Probability) provides loose bounds on the actual security of sLiSCP against differential and linear
cryptanalysis. The security of sLiSCP against the known attacks exploiting the low bit diffusion is
ensured by choosing the number of rounds to be three times the number of rounds required for achieving
full bit diffusion, as proposed by Gueron and Mouha in Simpira V2 [42]. We also investigate the security
of sLiSCP against integral, impossible differential, zero correlation, zero-sum, and self symmetry-based
distinguishers and claim that it has no structural distinguishers with complexity less than 2b/2 where
b is the state size. This kind of claim has been used in the settings of the security claims of Keccak
permutation [16] and Simpira V.2 [42] in response to mainly zero-sum distinguishers which can cover
the full round permutation with very high complexity.

- We demonstrate how to use the sLiSCP permutation to construct authenticated encryption (AE)
schemes and hash functions in a duplex unified sponge construction. The parameter choices and the
security levels offered by the proposed instances are reported.

- We implement the two instances of sLiSCP in the duplex unified sponge mode, and our parallel ASIC
implementation results in CMOS 65nm show that the areas of sLiSCP-192 and sLiSCP-256 are 2289
GEs and 3039 GEs with a throughput of 29.62 and 44.44 kbps, respectively, and their areas in CMOS
130nm are 2498 GEs (resp. 3319).

The rest of the paper is organized as follows. Section 2 presents the rationales behind our design
and choice of parameters. In Section 3, we define the notations used throughout the paper and review the
concepts and definitions related to our construction. We present the general construction of the permutation
sLiSCP and its two instances, the Simecku-m box and its cryptographic properties in Section 4. In Section
5, we analyze sLiSCP with respect to a variety of distinguishing attacks. In Section 6, we show how
we use sLiSCP in a sponge framework to construct authenticated encryption, stream cipher, MAC, and
hash functionalities. The hardware implementation and a comparison with other lightweight cryptographic
primitives are given in Section 7. Finally, the paper is concluded in Section 8.

2 Design Rationale

Our main objective for a minimal design is to provide as many cryptographic primitives as possible. Using
sLiSCP in the duplex sponge construction is an excellent choice as it offers a number of key features that en-
able the design of multiple cryptographic functionalities using the same hardware circuitry. In other words,
both keyed primitives such as (authenticated) encryption and MAC computation, and unkeyed primitives
such as hash function and pseudo randome bit generator are easily realized with minimum overhead. The
sponge construction ensures provable security [15] when the underlying permutation is indistinguishable
from a random function. Accordingly, the main challenge is to design a secure and hardware efficient
permutation for resource constrained applications. For an unkeyed sponge-based primitive with state size
b = r+ c, where r and c denote the rate and capacity, respectively, a bound of 2c/2 against generic attacks
is proven [15], which sets a lower bound on the state size of the permutation. If the permutation is used to
construct a hash function with output of size t, the permutation state size should be at least (2t+ r) bits.
For lightweight applications, a hash digest of 160 bits restricts the state size b to a minimum of 192 bits for
a rate of 32 bits, which means that around 1000 GEs are reserved only for the state. While a substitution
permutation network (SPN) based design requires a relatively small number of rounds to achieve the de-
sired security, offers good throughput, and is simpler to cryptanalyze, the hardware implementation cost
becomes expensive for a larger state size due to the large number of substitution boxes and their cost. To
design a lightweight permutation, we opted for a non-SPN based design consisting of Type-2 GFS and a
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round-reduced Simeck-m (i.e. Simeck with m-bit state) as a round function, which are based on the Feistel
network. Our design choices are motivated by the following design goals:

– Hardware efficiency: Both the implementations of Type-2 GFS and the Simeck-m round functions
are extremely efficient in terms of the hardware footprint. In fact, even though Simon has one of the
minimum hardware footprints in the literature, more GE savings are achieved by selecting more hard-
ware friendly shift parameters which is how Simeck is designed [72]. To provide an average estimation
on the GE count, we assume an ASIC 65nm technology that requires 2.5 GE for an XOR, 2 GE for an
AND. Given the latter estimates, a 4-subblock Type-2 GFS using Simeck-48 mixing requires around
2× 48× 2.5 = 240 GE and each Simeck-48 round function consumes around 24× (2.5 + 2 + 2.5) = 168
GE, which sums to around 576 GEs for the parallel implementation of the permutation round function
logic with a state size of 4× 48 = 192 bits.

– Security: Our goal is to design a permutation that is indistinguishable from a random one. The
security of sLiSCP is based on the Type-2 GFS and the Simeck round function, both of which have
been extensively cryptanalyzed in literature. Our design criteria that offer bounds against differential
and linear cryptanalysis, and the choice of the number of steps to be three times the number of steps
required for the full bit diffusion offer the security against known attacks. Nevertheless, we investigate
sLiSCP against integral, impossible differential, zero correlation and zero-sum distinguishers. According
to our analysis, we claim that there are no structural distinguishers for the full round permutation
with complexity less than 2b/2 where b denotes the state size of the permutation. Since, we plan to
use sLiSCP in the sponge-based designs, our security claim follows that of the Keccak permutation [16]
which is also used for the Simpira v2 permutation [42].

The sponge construction is well-investigated and has been cryptanalyzed and proven secure for different
keyed and unkeyed applications including the SHA-3 winner Keccak [16]. Moreover, its security when
instantiated with a specific permutation F relies on the resistance of F against distinguishing attacks
and accordingly, we focus our cryptanalysis efforts to investigating sLiSCP against a wide variety of such
attacks.

Why Simeck is our design choice? The Simeck round function is an independently parameterized
version of the generalized Simon counterpart. More precisely, the shift parameters (a, b, c) used in Simon
and Simeck are (1, 8, 2) and (5, 0, 1), respectively, which make Simeck more hardware efficient, and based on
the analysis presented in [51, 52, 70] there is only slight difference in the security against differential, linear,
integral, and impossible differential distinguishers. In particular, due to the fact that Simeck has one bit
less diffusion, such distinguishers can usually cover one or two more rounds compared to using the Simon
round function. However, among the hardware efficient shift parameters which have been investigated
in [51] and have been shown to provide slightly better behavior with respect to differential and linear
cryptanalysis, we found that Simeck-48 parameters provide a slightly better bit diffusion. Specifically, the
shift parameters (7,0,2) have been shown to provide full bit diffusion after nine rounds of applying the
Simon-48 round function. While this is the same case for Simeck-48, when investigating the round-reduced
functions, for example, for six rounds, we find that (7, 0, 2) provide 40 and 32 bits of diffusion in the two
halves of the Feistel state and Simeck with shift parameters (5,0,1) provides 41 and 34 bits of diffusion.
Additionally, Simeck has been independently cryptanalysed in the literature with respect to a wide variety
of attack sources for over more than three years [52, 70, 54].

3 Preliminaries

In this section, we define our notations for expected linear and differential probability and give a brief
description of the Type-2 Generalized Feistel Structure.

3.1 Expected Linear and Differential Probability

We denote by F2 the field with two elements and by Fm2 the m-dimensional vector space over F2. Moreover,
(Fm2 )n denotes the n-dimensional vector space over Fm2 . By + and � we mean bitwise XOR and bitwise
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AND in Fm2 , respectively. For a vectorial boolean function f : Fm2 → Fm2 with input (resp. output) difference
δin (resp. δout), the differential probability, denoted by Pr(δin → δout), is defined as

Pr(δin → δout) =
|{x|f(x) + f(x+ δin) = δout}|

2m
.

The squared correlation of f with input mask Γin and output mask Γout is defined by

C2(Γin → Γout) =

(
f̃(Γin, Γout)

2m

)2

,

where f̃(Γin, Γout) =
∑

x∈Fm
2

(−1)(〈x,Γin〉⊕〈f,Γout〉), 〈x, y〉 denotes the inner product between vectors x and y,

and ⊕ is the XOR operation over F2.

Let fu denote the u-fold iteration of f . We say that a differential characteristic δ0 → δ1 → . . . → δu
is the maximum differential characteristic with probability p (p 6= 0) if no other u round differential
characteristic exists with probability greater than p. Let ∆u be the set of all differential characteristics of
fu with probability p > 0. For fu, the maximum expected differential characteristic probability (MEDCP)
is given by

MEDCP (fu) = max
(δ0→···→δu)∈∆u

u−1∏

j=0

Pr(δj → δj+1) (1)

where Pr(δj → δj+1) is the expected differential probability of δj → δj+1 over one round of the keyed
function f , when the key is picked uniformly and independently at random [39, 49]. The maximum expected
linear characteristic correlation (MELCC) can be defined analogously.

3.2 Type-2 Generalized Feistel Structure

A Type-2 GFS [59, 31] is a Feistel network with m (even) branches, m
2 functions g0, g1, . . . , gm

2 −1 and a
function G : (Fn2 )m → (Fn2 )m given by G(X0, X1, . . . , Xm−1) = (Y0, Y1, . . . , Ym−1), where

Yi =

{
X(i+1), i ≡ 0 mod 2

g i+1
2 mod( m

2 )(X(i+2)mod(m)) +X(i+1)mod(m), i 6≡ 0 mod 2

and the functions gi : {0, 1}n → {0, 1}n are called round functions. Figure 1 depicts the iterated construc-
tion of a generic Type-2 GFS.

Fig. 1: A block diagram of the Type-2 Generalized Feistel Structure.
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4 Specifications of sLiSCP

In this section, we formally describe our sLiSCP permutation, which has two instances. The core algorithm
of the sLiSCP permutation is built upon the Simeck cipher’s round function and a 4-subblock Type-2 GFS
construction. We present two lightweight instances of the sLiSCP permutation.

4.1 Description of Simecku-m

We use Simecku-m as a round function in the sLiSCP permutation. Simecku-m is derived from the Simeck
cipher whose block length equal to m and round function is given by:

hi(x) = Ri(x0, x1) = (((x0 <<< 5)� (x0 <<< 0)) + (x0 <<< 1) + x1 + rki, x0), x = x0‖x1

where hi : Fm2 → Fm2 , <<< is a left cyclic shift operator, x0 and x1 are m
2 -bit words and rki is a m

2 -bit
round key added at the i-th round. We modify the round function as follows. Instead of adding a round
key in hi, 0 ≤ i ≤ u − 1, we add a round constant rci in hi where rci = (C|ti), C = (2

m
2 − 2), ti ∈ F2

and C|ti denotes the bitwise OR between C and ti. Let t be the integer representation of the u-tuple
(t0, t1, · · · , tu−1). Simecku-m is defined as

Simecku-m(x) = hu−1 ◦ hu−2 ◦ · · · ◦ h0(x), x = x0‖x1,

where the round constant rci is used in hi at the i-th round. The round constants are generated using
an LFSR described in Section 4.4. We, henceforth, refer to Simecku-m as hut . We use the subscript t to
uniquely instantiate hut as hut1 and hut2 , for t1 6= t2, which are parametrized by different round constants,
t1 and t2. In sLiSCP, we choose all the round functions of GFS to be Simecku-m and we consider it as
an Sbox. We study the cryptographic properties of Simecku-m and present the bounds against differential
and linear cryptanalysis for sLiSCP based on the minimum number of active Sboxes.

Fig. 2: Simeck round function where (a, b, c) = (5, 0, 1).

Definition 1 (Simecku-m box) A Simecku-m box is a permutation of m-bit input constructed by iterat-
ing the Simeck-m cipher round function for u rounds with round constant addition in place of key addition.
The nonlinear operation of such an Sbox is provided by iterating a simple AND operation followed by bitwise
shifts and XORs for u rounds.

4.2 Cryptographic properties of Simecku-m

The cryptographic properties of an Sbox include differential uniformity (a.k.a maximum differential prob-
ability (MDP)), algebraic degree, and branching number. For an Sbox with large input size, it is infeasible
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to compute the exact value of the MDP. We use the maximum estimated differential probability (MEDP)
to provide better estimates for differential characteristics probabilities for the sLiSCP permutation. In what
follows, we analyze the above properties for Simecku-m.

Estimating the MEDP of Simecku-m. In our permutations, we employ a modified Simeck-48 and
Simeck-64 round functions for Simecku-48 and Simecku-64, respectively. Due to their large state sizes, it is
infeasible to build their differential distribution tables and compute the exact MDP values. Alternatively,
we estimate the MEDP of Simecku-m as tight as possible using the results in [51]. Table 1 presents the log2

probabilities of maximum expected differential and linear squared correlation characteristics for Simeck-48
and Simeck-64.

Table 1: Probabilities of the maximum differential and linear characteristics for Simecku-m, where m = 48
and 64. The probabilities are given in the log2(·) scale. Squared correlation is used for linear characteristic,
thus the duality between both probabilities.

Rounds u 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 · · · 24

Simecku-m 0 -2 -4 -6 -8 -12 -14 -18 -20 -24 -26 -30 -32 -36 -38 -44 -44 -46 · · · -62

For Simecku-m, we run the tool in [51] based on the SAT/SMT solvers CryptoMiniSat and STP to ob-
tain the results in Table 1. The maximum differential probability is usually approximated by the maximum
probability of a differential characteristic where such a probability is commonly assumed to be associated
with differentials from characteristics with the optimal probability [42, 39]. However, this probability may
change if such a differential is satisfied with a large number of characteristics (differential effect). Ac-
cordingly, we extract these differentials from all the optimal characteristics and get their corresponding
probabilities, then we approximate the MDP of the Simecku-m box by the maximum probability among
these differentials. For that, we get tighter (but not strong) bounds for the probabilities of differential
and linear characteristics of the whole permutation than by using the Simeck’s box maximum differential
characteristic probability. For Simecku-m, the probability of a differential (δ0, δu) is defined as

Pr(δ0
hu
t−→ δu) =

wmax∑

i=wmin

si · 2−i

where wmin and wmax denote the minimum and maximum log2 characteristic probabilities, respectively,
and si indicates the number of characteristics having probabilities equal to 2−i. Accordingly, we are able
to evaluate the probability of such differentials, and thus use the maximum probability among them as the
MEDP of the Simecku-m box (shown in Table 2) which is then calculated using Eq. (2) and is given by

MEDP(Simecku-m) = max
(δ0,δu)∈∆u

(Pr(δ0
hu
t−→ δu)), (2)

where ∆u denotes the set of differentials associated with characteristics with maximum probabilities.

Table 2: Estimation for the MDP for Simecku −m for m = 48 and 64

Rounds (u) 1 2 3 4 5 6 7 8 9

MEDP (Simecku-48) 0 -2 -4 -6 -8 -11.299 -13.298 -16.597 -18.595

Instantiating u in Simecku-m. Based on our analysis, we decided to choose u = 6 for Simecku-48 and
u = 8 for Simecku-64 because we found that if we opted for nine (resp. 11) rounds so that the full bit

7



diffusion is achieved at one sub-block after one step, then we need five steps for the full bit diffusion at the
state level (i.e., every state bit depends on all input bits), and thus based on our design criteria, fifteen steps
are required for the permutation. This results in 15× 9 = 135 (resp. 15× 11 = 165 ) Simeck rounds for the
permutation. On the other hand, by having six (resp. 8) rounds for Simecku-m, full bit diffusion is achieved
at the state level in six steps, as a result, we only need eighteen steps for the permutation. Hence, sLiSCP
employing Simeck-48 requires 18× 6 = 108 rounds and sLiSCP employing Simeck-64 requires 18× 8 = 144
rounds. It can be seen in Table 1 that for Simeck-48 (resp. Simeck-64), the optimal characteristic probability
decreases by a factor of 16 between 5 rounds and 6 rounds (resp. between 7 and 8 rounds) and by a factor
of only 4 between 6 and 7 rounds (resp. between 8 and 9 rounds), which further enhances the resistance of
Simecku-m parametrized by our round choices against differential and linear attacks. To achieve, a better
throughput and good resistance to differential and linear cryptanalysis, we opted for u = 6 rounds and
u = 8 rounds for Simecku-48 and Simecku-64, respectively.

For both Simeck6-48 and Simeck8-64, we consider all (δin, δout) differential pairs with wt(δin) =
wt(δout) = 1 and we found that the probability of such differentials is zero, which means that both
Sboxes have a branching number larger than 21. Using a tweaked method based on the propagation of the
division property [64], we have computed the algebraic degree of Simeck6-48 (resp. Simeck8-64) component
functions and our experimental results show that half of the components has algebraic degree of 13 (resp.
27) and the other half has a degree of 19 (resp. 36).

4.3 The Permutation F

The sLiSCP permutation is an iterative permutation, denoted by sLiSCP-b, over Fb2 where b = 4×m and m
is even. The construction of sLiSCP is based on Simecku-m (denoted as hut ) and a Type-2 GFS construction.
An architecture of the sLiSCP permutation is shown in Fig. 3. Let (X0

0 , X
0
1 , X

0
2 , X

0
3 ) and (Xs

0 , X
s
1 , X

s
2 , X

s
3)

be the input and output to the s-step permutation F , respectively where X0
i , X

s
i ∈ Fm2 , 0 ≤ i ≤ 3. Let

f : F4m
2 → F4m

2 denote the step function. Then the permutation F is defined in terms of f as

F (X0
0 , X

0
1 , X

0
2 , X

0
3 ) = fs(X0

0 , X
0
1 , X

0
2 , X

0
3 ) = (Xs

0 , X
s
1 , X

s
2 , X

s
3),

where (Xj+1
0 , Xj+1

1 , Xj+1
2 , Xj+1

3 ) = f(Xj
0 , X

j
1 , X

j
2 , X

j
3), for all j= 0, 1, . . . , s−1. The step function f is built

on a 4 sub-block Type-2 GFS with the second and fourth blocks at step j being processed by Simecku-m,
which is defined as

f(Xj
0 , X

j
1 , X

j
2 , X

j
3) = (Xj

1 , h
u
t′(X

j
3) +Xj

2 + (C ′|SC2j+1), Xj
3 , h

u
t (Xj

1) +Xj
0 + (C ′|SC2j)), (3)

where t = (RC12j , · · · , RC12j+2(u−1)), t
′ = (RC12j+1, · · · , RC12j+2u+1), C ′ = 2m − 256, P |Q denotes the

bitwise OR between P and Q, and hi is given by

hi(x0, x1) = (((x0 <<< 5)� (x0 <<< 0)) + (x0 <<< 1) + x1 + (C|γi), x0), 0 ≤ i ≤ u− 1,

where C = 2
m
2 − 2 and

γi =

{
ti, for hut
t′i, for hut′ .

For the round constants RCi and SCi generation, the reader is referred to Section 4.4. The number of
rounds for sLiSCP-b is (u · s). Table 3 presents the parameters for two lightweight instances of the sLiSCP
permutation, which are denoted by sLiSCP-192 and sLiSCP-256.

4.4 Round and Step Constants for sLiSCP-192

To mitigate self-similarity attacks, we add constants in the Simeck function rounds and GFS permutation
steps. The constants added to Simecku-m are called round constants and the constants added to the GFS
are called step constants. We use only one LSFR to generate both the round and step constants. For

1 Finding the exact branch number is infeasible due to large size of Simecku-m
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Fig. 3: sLiSCP permutation following 4-subblock Type-2 GFS using Simecku-m as hut .

Table 3: Parameter set for the 4 subblock GFS permutation F (sLiSCP-192 and sLiSCP-256).

Permutation (b-bit) Subblock width m Rounds u Steps s State width (b = 4m) Total # rounds (u · s)

sLiSCP-192 48 6 18 192 108

sLiSCP-256 64 8 18 256 144

sLiSCP-192, we use a 6-stage LFSR to generate a one bit constant for each round of h6
t and h6

t′ . Each
single bit is further appended to C = 2

m
2 − 2 and added to the right half of a given h6

t (h6
t′) as shown

in Fig. 2. Note that we let the LFSR run continuously so the 6-bit constant sequence for h6
t at different

steps are also different. Moreover, we add two external step 6-bit constants SC2j , SC2j+1 to the 48-bit
output of h6

t and h6
t′ in the j-th step of F in Eq. (3) so that all steps are distinctive and every h6

t out of
the 18× 2 = 36 functions used in sLiSCP-192 permutation is made unique by the 12-bit tuple (t, SCi). We
assume the LFSR is generated by a primitive polynomial of degree 6: x6 + x+ 1 and denote the generated
sequence by (s0, s1, s2, s3, · · ·) and its 2-decimated sequence is given by (s0, s2, s4, s6, · · ·).

Round constants (RC). We use the LFSR depicted in Fig. 4 to generate the round constants. The j-th
step round constants for h6

t and h6
t′ are given by (C|RC12j+2i) and (C|RC12j+2i+1), 0 ≤ i ≤ 5, respectively.

Note that, {s2k} and {s2k+1} are both 2-decimated sequences with same period (26−1) of the original one.
In addition, the period of the 6-tuple (s12k, s12k+2, s12k+4, s12k+6, s12k+8, s12k+10) is 63/gcd(6, 63) = 21.
Hence, the pair of round constants (t, t′) starts repeating after 21 iterations.

Step constants (SC). At the 6-th round of the internal function, a 6-bit constant will be generated from
the same parallel LFSR as the round constants with four extra XORs. At the 6-th clock cycle in each 6-th
round at j-th step, the states for the LFSR are (s12j+10, s12j+11, s12j+12, s12j+13, s12j+14, s12j+15), we assign
(s12j+10, s12j+12, s12j+14) to SC2j and (s12j+11, s12j+13, s12j+15) to SC2j+1. For the other three values of
SC2j (s12j+16, s12j+18, s12j+20) and SC2j+1 (s12j+17, s12j+19, s12j+21 ), we use the following equations:

s12j+16 = s12j+10 ⊕ s12j+11, s12j+17 = s12j+11 ⊕ s12j+12, s12j+18 = s12j+12 ⊕ s12j+13

s12j+19 = s12j+13 ⊕ s12j+14, s12j+20 = s12j+14 ⊕ s12j+15, s12j+21 = s12j+15 ⊕ s12j+16.

9



Therefore, we use four more XORs to generate the remaining three bits of SC2j and SC2j+1 based on the
parallel LFSR in Fig. 4. Thus

SC2j = s12j+10||s12j+12||s12j+14||s12j+16||s12j+18||s12j+20

SC2j+1 = s12j+11||s12j+13||s12j+15||s12j+17||s12j+19||s12j+21.

The step constants at the j-th step of F are then given by (C ′|SC2j) and (C ′|SC2j+1) where C ′ = 2m−256.
The entire architecture of the parallel LFSR with feedback function x6 + x + 1 to generate the j-th step
round and step constants is shown in Fig. 4.

s12j+2is12j+2i+2s12j+2i+4

s12j+2i+1s12j+2i+3s12j+2i+5

⊕⊕

RC12j+2i

RC12j+2i+1

s12j+2i+6

s12j+2i+7

⊕
⊕
⊕
⊕

s12j+2i+8

s12j+2i+9

s12j+2i+10

s12j+2i+11

Fig. 4: Round and step constants generated by parallel LFSR at i-th round of j-th step.

Both the round and step constants for sLiSCP-192 are given in Table 4 in hexadecimal. At the j-th step
of F , there is a pair of 6-bit round constants (t, t′) and another pair of 6-bit step constants (SC2j , SC2j+1).
For example, at step 0, the round constants (t, t′) = (7, 27) are assigned to (h6

t , h
6
t′) and similarly, the step

constants (SC0, SC1) = (8, 29) are used.

Table 4: Round and Step Constants for sLiSCP-192

Step j Round Constants (t, t′) Step Constants (SC2j , SC2j+1)

0 - 5 (7, 27), (4, 34), (6, 2e), (25, 19), (17, 35), (1c, f) (8, 29), (c, 1d), (a, 33), (2f, 2a), (38, 1f), (24, 10)

6 - 11 (12, 8), (3b, c), (26, a), (15, 2f), (3f, 38), (20, 24) (36, 18), (d, 14), (2b, 1e), (3e, 31), (1, 9), (21, 2d)

12 - 17 (30, 36), (28, d), (3c, 2b), (22, 3e), (13, 1), (1a, 21) (11, 1b), (39, 16), (5, 3d), (27, 3), (34, 2), (2e, 23)

4.5 Round and Step Constants for sLiSCP-256

For sLiSCP-256, we use a 7-stage LFSR to generate a one bit constant for each round of h8
t and h8

t′ . Each
single bit is appended to the constant C = (2

m
2 − 2) which is then added to the right half of a given h8

t

(h8
t′) as shown in Fig. 2. Unlike the sLiSCP-192 case, we use a primitive polynomial of degree 7: x7 + x+ 1

with initial states of all “1”s to generate the LFSR constants. We let the LFSR run continuously so that
the 8-bit constant sequence for h8

t at different steps are also different. Moreover, we add two external step
8-bit constants SC2j , SC2j+1 to the 64-bit output of h8

t and h8
t′ in the j-th step of F in Eq. (3) so that

all steps are distinct and every h8
t out of the 18× 2 = 36 functions used in the sLiSCP-256 permutation is

made unique by the 16-bit tuple (t, SCi).

Round constants (RC). We use the LFSR depicted in Fig. 5 to generate the round constants. The j-th
step round constants for h8

t and h8
t′ are given by (C|RC16j+2i) and (C|RC16j+2i+1), 0 ≤ i ≤ 7, respectively.

Note that, both {s2k} and {s2k+1} are 2-decimated sequences with same period (27 − 1).
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Step constants (SC). At the 8-th round of the internal function, a 8-bit constant will be generated from
the same parallel LFSR as the round constants with seven extra XORs. At the 8-th clock cycle in each 8-th
round at j-th step, the states for the LFSR are (s16j+14, s16j+15, s16j+16, s16j+17, s16j+18, s16j+19, s16j+20),
we assign (s16j+14, s16j+16, s16j+18, s16j+20) to SC2j and (s16j+15, s16j+17, s16j+19) to SC2j+1.
The other four values of SC2j (s16j+22, s16j+24, s16j+26, s16j+28) and five values of SC2j+1

(s16j+21, s16j+23, s16j+25, s16j+27, s16j+29) are generated using the following equations:

s16j+21 = s16j+14 ⊕ s16j+15, s16j+22 = s16j+15 ⊕ s16j+16, s16j+23 = s16j+16 ⊕ s16j+17

s16j+24 = s16j+17 ⊕ s16j+18, s16j+25 = s16j+18 ⊕ s16j+19, s16j+26 = s16j+19 ⊕ s16j+20

s16j+27 = s16j+20 ⊕ s16j+21, s16j+28 = s16j+21 ⊕ s16j+22, s16j+29 = s16j+22 ⊕ s16j+23.

Therefore, seven more XORs are needed to generate the remaining nine bits of SC2j and SC2j+1 based
on the parallel LFSR in Fig. 5. Thus

SC2j = s16j+14||s16j+16||s16j+18||s16j+20||s16j+22||s16j+24||s16j+26||s16j+28

SC2j+1 = s16j+15||s16j+17||s16j+19||s16j+21||s16j+23||s16j+25||s16j+27||s16j+29.

The step constants at the j-th step of F are then given by (C ′|SC2j) and (C ′|SC2j+1) where C ′ = 2m−256.
The entire architecture of the parallel LFSR with feedback function x7 + x + 1 to generate the j-th step
round and step constants is shown in Fig. 5.

s16j+2is16j+2i+2s16j+2i+4

s16j+2i+1s16j+2i+3s16j+2i+5

⊕⊕

RC16j+2i

RC16j+2i+1

s16j+2i+8

s16j+2i+7

⊕
⊕
⊕
⊕

s16j+2i+9

s16j+2i+10

s16j+2i+11

s16j+2i+12

s16j+2i+6

⊕ s16j+2i+13

⊕ s16j+2i+14

⊕ s16j+2i+15

Fig. 5: Round and step constants generated by parallel LFSR at i-th round of j-th step.

Both the round and step constants for sLiSCP-256 are given in Table 5 in hexadecimal. At the j-th step
of F , there is a pair of 8-bit round constants (t, t′) and another pair of 8-bit step constants (SC2j , SC2j+1).
For example, at step 0, the round constants (t, t′) = (f, 47) are assigned to (h8

t , h
8
t′) and similarly, the step

constants (SC0, SC1) = (8, 64) are used.

Table 5: Round and Step Constants for sLiSCP-256

Step j Round Constants (t, t′) Step Constants (SC2j , SC2j+1)

0 - 5 (f, 47), (4, b2), (43, b5), (f1, 37), (44, 96), (73, ee) (8, 64), (86, 6b), (e2, 6f), (89, 2c), (e6, dd), (ca, 99)

6 - 11 (e5, 4c), (b, f5), (47, 7), (b2, 82), (b5, a1), (37, 78) (17, ea), (8e, 0f), (64, 04), (6b, 43), (6f, f1), (2c, 44)

12 - 17 (96, a2), (ee, b9), (4c, f2), (f5, 85), (7, 23), (82, d9) (dd, 73), (99, e5), (ea, 0b), (0f, 47), (04, b2), (43, b5)

5 Security Analysis

In this section, we analyze the security of the sLiSCP permutation. Since, the security of our design mainly
relies on the indistinguishability of the underlying permutation, we assess its behavior against various
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distinguishing attacks. As the design of the sLiSCP permutation is based on the Simecku-m box and the
Type-2 GFS, the permutation is analyzed against distinguishing attacks targeting Type-2 GFS designs
when the employed round function is a large Sbox with specific differential and linear properties.

5.1 Differential and Linear Cryptanalysis

Differential [23] and linear [56] cryptanalysis are very powerful cryptanalytic techniques against symmetric
key primitives. We assess the security of the sLiSCP permutation (denoted by F ) against these two attacks
by evaluating lower bounds on the probabilities of the differential and linear characteristics2.

Bounding trails using the Wide Trail Strategy (WTS). To evaluate the lower bounds on differential
and linear characteristics of sLiSCP, we first follow the WTS and compute the minimum number of active
Simecku-m boxes (hut ). In such a context, a Simecku-m box is referred to as active if a non zero difference
or a linear mask is presented at its input. Table 6 presents a lower bound on the minimum number of
active hut for up to 18 steps. The bounds presented in Table 6 are generated by running a Mixed Integer
Linear Programming (MILP) optimizer on a model describing our design.

Table 6: Lower bounds on the number of active hut with respect to the number of steps.

Step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Min. # of active hu
t 0 1 2 3 4 6 6 7 8 9 10 12 12 13 14 15 16 18

One can see that the number of active hut cycles every six steps. Given the most tight bounds on
the differential and linear correlation probabilities which we derived in Table 2, we can now evaluate
MEDCP (fs) and MELCC(fs). When the number of steps s = 18 in both sLiSCP-192 and sLiSCP-256,

sLiSCP-192: MEDCP (f18) = (MEDP (Simeck6-48))18 = (2−11.299)18 = 2−203.382 (4)

sLiSCP-256: MEDCP (f18) = (MEDP (Simeck8-64))18 = (2−16.597)18 = 2−298.746

The duality between linear and differential cryptanalysis enables us to similarly apply the same approach
to compute a bound on the MELCC. Over 18 steps, the maximum expected linear characteristic (squared)
correlation is upper bounded by 2−203.382 and 2−295.2 for sLiSCP-192 and sLiSCP-256, respectively.

Bounding trails using the Long Trail Strategy (LTS). While the above bounds are for a single
optimistically found characteristic, we can argue that such a characteristic might not be valid as it is
pointed out in [39, 49], having all the 18 active Simecku-m boxes exhibiting the maximum differential
probability transitions is not always valid. Additionally, Dinu et al. [39] presented the long trail strategy
which proposes an interesting security argument with respect to designs that utilize rather weak but large
Sboxes (i.e., iterating a weak nonlinear function for some rounds), followed by a slow diffusion linear layer.
LTS states that better bounds on differential and linear characteristics probabilities may be given if the
design allows the propagation of long uninterrupted trails instead of the wide ones used in WTS. This
definition suits our design which uses two Simecku-m boxes where the Simeck round function is iterated for
u rounds and only two subblock XORs and subblock cyclic shift as the linear permutation. More precisely,
a long trail in our case is defined as follows:

Definition 2 (Long Trail for n Simecku-m boxes) A differential path that includes a single path passing
though n successive Simecku-m boxes with no other paths branching in. Such a trail can be static where an
output subblock of the linear layer is equal to one of its inputs, or a dynamic trail where an output subblock
of the linear layer is the result of XORing one of its input non active subblocks with the output of an active
Simecku-m box.

2 We use characteristic and trail interchangeably throughout this section.
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Based on the above definition, the MEDCP of a given differential trail is bounded by the product of
the MEDCPs of its component long trails, both dynamic or static ones. Given a differential trail that is
decomposed into i trails, where {κi}i≥1 denotes the set of their corresponding lengths, then, the probability
(pd) of such trail is upper bounded by

pd ≤
∏

i≥1

MEDCP (Simeckuκi-m).

When using the LTS in bounding the differential and linear probabilities of characteristics, tighter
bounds are derived. More precisely, if ds(r) and ls(r) denote the MEDCP and MELCC of Simecku-m box,
then it can be observed from Table 1:

ds(nr)� ds(r)n, and ls(nr)� ls(r)n.

In our design, only dynamic trails would be beneficial because static trails can only include one active
Simecku-m box and thus have a maximum length equal to one. Such an observation is attributed to
the fact that all applications of round functions in Type-2 GFS designs are directly followed by XORs.
Accordingly, if a given differential trail is only decomposed into static trails then the MEDCP of such
trail using the LTS is equivalent to that of the WTS as we only independently count the minimum number
of active Simecku-m boxes.

Decomposition of an optimum trail. We apply the trail decomposition process on a 6-step trail
with only six active Simecku-m box which is the trail returned by the MILP solver corresponding to
the minimum number of active Sboxes. As depicted in Figure 6, the whole differential trail covers all
the colored Sboxes. In such a trail, the XORs that receive two active input subblocks (indicated by
the dashed colored lines) are assumed to cancel them resulting in zero-difference subblocks which are
marked by black colored lines. Using the LTS, we can decompose this trail into five long trails, four out
of them are static with length one (green, blue, purple, and orange colored trails) and the remaining one
is dynamic (red trail) with length two. Accordingly, the MEDCP of this differential trail is evaluated by
MEDCP (Simecku-m)4 ×MEDCP (Simeck2u-m). Given the exact number of rounds that we used in the
probability calculation using the minimum number of active Sboxs method (see Equation 4), for sLiSCP-
192: MEDCP = (2−12)4×2−30 = 2−78 which is considerably lower than the previously anticipated 6-step
bound calculated using WTS in Equation 4, which is MEDCP ≈ (2−11.299)6 ≈ 2−67.794. Similarly, for
sLiSCP-256: MEDCP = (2−18)4 × 2−44 = 2−116 �MEDCP ≈ (2−16.597)6 = 2−99.582.

Fig. 6: A minimum number of active Simecku-m boxes trail decomposed into four long trails.

To this end, we claim that our analysis based on the minimum number of active Sboxes underestimates
the security of sLiSCP with respect to differential and linear cryptanalysis, and that although the above
analysis provide a provable bound against these types of attacks, they are not tight and as shown, tighter
bounds can be provided using the LTS.
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5.2 Meet/Miss in the Middle Distinguishers

A meet-in-the-middle attack [38] divides the permutation into two or three parts such that some interme-
diate state variables can be computed by evaluating the permutation and its inverse using only incomplete
sets of the input and output bits, respectively. Based on our design criteria, we require that the total
number of steps is equal to three times the number of steps required for full bit diffusion. Consequently,
splitting sLiSCP into two or even three parts always results in an intermediate state that achieves full
bit-diffusion. More precisely, the evaluation of each bit in an intermediate state i requires the knowledge
of the whole b bits of state i−6. For that, the evaluation of an intermediate partial state has no advantage
over brute force guessing, thus we believe that sLiSCP is secure against these types of attacks. On the
other hand, miss-in-the-middle distinguishers are a special kind of meet-in-the-middle distinguisher that
exploit contradicting conditions at an intermediate state which makes matching such an intermediate state
attributes impossible [22].

Impossible differential (ID) distinguisher. These distinguishers enable a miss-in-the-middle scenario
where two contradicting differential paths are combined such that one of them holds with probability one
in the forward direction and the other also holds with certainty in the backward direction [22]. Accordingly,
all input pairs and corresponding output pairs satisfying the input differential pattern of the forward trail
and the corresponding input difference of the backward one can be used to distinguish the permutation
from a random one, where such an impossible differential pair is expected to be possible.

Zero-correlation (ZC) distinguishers. A miss-in-the-middle distinguisher that exploits a situation
where there exist a zero-correlation linear approximations over a part of the primitive. Such linear approx-
imations hold with probability p that is exactly equal to 1/2. More precisely, the distinguishing property
in zero-correlations rely on rigidly unbiased approximations with correlation c = 2p− 1 = 0 [30].

Type-2 GFS constructions have been extensively analyzed with respect to such miss in the middle distin-
guishers. Specifically, the work of Blondeau et al. [26] has given a proof for the equivalence between ID
and ZC distinguishers. In their analysis, they define three types for both distinguishers: type 1, type 2,
and type 3 where the input and output differences (respectively linear masks) are independent, different,
and equal, respectively. In Figure 7, we present a type 2 nine-step ID distinguisher and its dual ZC on
sLiSCP-b.

It can be seen that although both input and output differences ((∆, 0, 0, 0), (0, 0, 0,∆)) (resp. linear
masks ((0, 0, 0, a), (0, 0, a, 0))) are not equal, they are not independent too which is a bit restrictive when
the permutation is operating in a keyed setting.

ID and ZC distinguishers for Simecku-m. Considering that the Simecku-m box is a u-round iteration
of the Simeck round function, the work of Kondo et al. investigates different shift parameters with respect
to their impossible differential behavior [52]. For Simeck-48, we have used the search algorithm provided
in [52] to search for impossible differential distinguishers and we are able to find a 13-round impossible
differential distinguisher as depicted in Table 7 where a ”? ” denotes an unknown difference, and thus
cannot be used to indicate an impossible differential. For Simeck-64, a 15-round impossible differential
distinguisher is shown in Table 8.

Zero-correlation attacks on the Simon family of block ciphers have been investigated by Wang et al. [65].
Given the analogy between impossible differential and zero correlation distinguishers, we have modified
the algorithm in [52] to search for zero-correlation distinguishers and we found a 13-round distinguisher
for Simeck-48 as depicted in Table 9, and a 15-round distinguisher for Simeck-64 is shown in Table 10.

Given the above analysis, it is then reasonable to assume that exploiting the structure of our Type-2 GFS
design is more powerful with respect to ID and ZC propagations. However, if one considers combining both
the overall GFS structure of sLiSCP and that of Simeck similar to the analysis presented by Abdelkhalek
et al. on SPARX [1], then at most ten steps may be analyzed. Accordingly, we believe that having eighteen
steps of sLiSCP-b is sufficient to mitigate distinguishers based on meet and miss in the middle approaches.
It also should be noted that although both ID and ZC distinguisher can be verified trivially, however, using
them in a distingushing attack for the permutation requires the full codebook.

14



Fig. 7: (a) Impossible differential distinguisher for nine steps of sLiSCP-b, (b) Nine-step zero-correlation
distinguisher for sLiSCP-b. Unlike differences and linear approximations are individually colored/marked.

5.3 Integral Distinguishers

In an integral attack [50], also known as square and saturation attacks [35, 55], one has to first look for
an integral distinguisher which starts with a set of chosen inputs that have constant equal values in some
parts whereas the other parts take all possible values. Moreover, an integral distinguisher ends with the
output set which sum to zero at some particular locations. While most of the results of integral attacks are
on SPN structures because of their bijective byte/word oriented nature, the behavior of GFSs have been
also studied with respect to integral cryptanalysis. The results in [27] implies the existence of 8-round
integral distinguisher for sLiSCP. However, traditional integral attacks are less effective on bit-oriented
ciphers which lead to the development of the new generalized division property [64].

Division property. The division property proposed by Todo [64] is a generalization of the integral attacks.
The main idea is to find the parity of

⊕
x∈X πu(x) for a multiset X ⊂ (Fm2 )n, where πu : (Fm2 )n → F2

defined by πu(x) =
∏n−1
i=0

∏m−1
j=0 xi[j]

ui[j] and u, x ∈ (Fm2 )n. In other words, if X satisfies the division

property Dm,n
k , then

⊕
x∈X πu(x) = 0 for all u ∈ (Fm2 )n satisfying wt(ui) < ki for i = 0, 1, . . . , n − 1,

where k = (k0, k1, . . . , kn−1) and ki ∈ {0, 1, . . . ,m}. The authors in [74] used this property and showed
that 2n + 1 rounds integral distinguisher exists for Type-2 GFS with n subblocks and bijective round
functions. Their results also imply that the length of the distinguisher can be increased further if the
degree of the round function is less than m − 1, where m is the subblock size. For sLiSCP-192, h6

t is
bijective with degree 19, so to find how many steps such a distinguisher can cover, we start with a multiset
having division property of D48,4

k , where k = {(48, 46, 48, 48)} and trace its propagation over iterations,
see Table 11. We found that the terminal condition {(0,0,0,1), (1,0,0,0), (0,1,0,0), (0,0,1,0)} is reached at
step 10. Thus, there exists a 9-step distinguisher for sLiSCP-192 with data complexity 2190. Additionally,
using a MILP-based division property propagation [70], a 9-round division property distinguisher with
data complexity of 2188 is generated. For sLiSCP-256, the algebraic degree of h8

t is 36, hence, starting with
the division property of D64,4

(64,63,64,64), we obtain a 9-step distinguisher with data complexity of 2255. Both

distinguishers can be extended by one round using the method in [65]. As for Simeck-48 and Simeck-64,
the MILP model in [70] leads to 17-round and 20-round integral distinguisher with data complexity of
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Table 7: Impossible differential distinguisher for thirteen rounds of Simeck-48 where red bold faced bits
correspond to contradicting bit-difference propagations.

Round ∆x0 ∆x1

0: 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000

1: 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

2: ?000 0000 0000 0000 000? 1000 1000 0000 0000 0000 0000 0000

3: ?000 0000 0000 00?? 100? ?000 ?000 0000 0000 0000 000? 1000

4: ?000 0000 0??? 10?? ?00? ?000 ?000 0000 0000 00?? 100? ?000

5: ?000 ???? 1??? ?0?? ?00? ?000 ?000 0000 0??? 10?? ?00? ?000

6: ???? ???? ???? ?0?? ?00? ?00? ?000 ???? 1??? ?0?? ?00? ?000

7: ???? ???? ???? ?0?? ?0?? ???? ???? ???? ???? ?0?? ?00? ?00?

8: ???? ???? ???? ???? ???? ???? ???? ???? ???? ?0?? ?0?? ????

5: ??00 0?00 0000 00?? ?10? ??00 ??00 0?00 0??? ?1?? ??0? ??00

4: ??00 0?00 0000 0000 000? ?100 ??00 0?00 0000 00?? ?10? ??00

3: ?100 0?00 0000 0000 0000 0000 ??00 0?00 0000 0000 000? ?100

2: 0000 0100 0000 0000 0000 0000 ?100 0?00 0000 0000 0000 0000

1: 0000 0000 0000 0000 0000 0000 0000 0100 0000 0000 0000 0000

0: 0000 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

247 and 263, respectively, where both distinguishers have 5 balanced bits in the output sum as depicted in
Table 12. Both distinguishers can be further extended by at most one round using the method presented
in [65].

5.4 Zero-sum Distinguishers

A zero-sum distinguisher [10] for a vector boolean function g : Fn2 → Fn2 finds a set of inputs X =

{x1, x2, . . . , xk} such that
⊕k

i=1 xi =
⊕k

i=1 g(xi) = 0. Let dr1 and dr2 (dr1 < n and dr2 < n) be the degree
of g and g−1 iterated in r1 forward and r2 backward rounds, respectively. Then, for d = max(dr1 , dr2) one
can choose 2d+1 intermediate states with (n − d − 1) bits fixed to constant and obtain 2d+1 states in r1

forward and r2 backward rounds. Since, the degree of g is less than or equal to d in both the directions,
the sum of these state values is zero [10, 33]. Hence, for a given d, there exist 2n−d−1 sets of input size
2d+1 that satisfies the zero-sum property.

To apply this technique to sLiSCP, we first need to find the bounds for the algebraic degree of fs. We found
that the algebraic degree of h6

t is 19 and the algebraic degree of h8
t is 36. Using these values, we calculate

the bounds on the algebraic degree of fs with s = 1, .., 5 for sLiSCP-192 and sLiSCP-256 and present the
bounds in Table 13. We present the complexity of the zero-sum distinguisher below.

Basic zero-sum distinguisher for 2s steps. To create a zero-sum distinguisher for 2s steps of sLiSCP,
we target the state after the s-step as the intermediate state. Since, the bounds of fs and its inverse are
same, we can only move to s steps in either direction. Thus, there exist 2, 4, 6 and 8-step distinguishers
with data complexities 220, 258, 2111 and 2158 for sLiSCP-192. The same number of steps can also be covered
for sLiSCP-256, but with data complexities 237, 293, 2176 and 2241.
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Table 8: Impossible differential distinguisher for fifteen rounds of Simeck-64 where red bold faced bits
correspond to contradicting bit-difference propagations

Round ∆x0 ∆x1

0: 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

1: 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

2: ?000 0000 0000 0000 0000 0000 000? 0001 1000 0000 0000 0000 0000 0000 0000 0000

3: ?000 0000 0000 0000 0000 00?0 00?? 001? ?000 0000 0000 0000 0000 0000 000? 0001

4: ?000 0000 0000 0000 0?00 0??0 0??? 01?? ?000 0000 0000 0000 0000 00?0 00?? 001?

5: ?000 0000 0000 ?000 ??00 ???0 ???? 1??? ?000 0000 0000 0000 0?00 0??0 0??? 01??

6: ?000 000? 000? ?00? ??0? ???? ???? ???? ?000 0000 0000 ?000 ??00 ???0 ???? 1???

7: ?0?0 00?? 00?? ?0?? ???? ???? ???? ???? ?000 000? 000? ?00? ??0? ???? ???? ????

8: ???0 0??? 0??? ???? ???? ???? ???? ???? ?0?0 00?? 00?? ?0?? ???? ???? ???? ????

9: ???0 ???? ???? ???? ???? ???? ???? ???? ???0 0??? 0??? ???? ???? ???? ???? ????

10: ???? ???? ???? ???? ???? ???? ???? ???? ???0 ???? ???? ???? ???? ???? ???? ????

5: ???0 1??? 0000 0000 0000 0000 ?000 ??00 ???1 ???? 0000 0000 000? 000? ?00? ??0?

4: 0??0 01?? 0000 0000 0000 0000 0000 0?00 ???0 1??? 0000 0000 0000 0000 ?000 ??00

3: 00?0 001? 0000 0000 0000 0000 0000 0000 0??0 01?? 0000 0000 0000 0000 0000 0?00

2: 0000 0001 0000 0000 0000 0000 0000 0000 00?0 001? 0000 0000 0000 0000 0000 0000

1: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000

0: 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Adding an extra step. As the design of sLiSCP is based on Type-2 GFS, by carefully choosing the
position of d+ 1 bits, one free step can be added. For example, if we choose 20 bits in the first block, then
in forward direction these bits are processed by h6

t at the second step. Hence, the degree reaches 19 after
step 2. But in backward direction, the degree has already reached 19 after step 1 as h6

t is applied to the
same bits at step 1 only. Thus, we can construct (2 + 1), (4 + 1), (6 + 1) and (8 + 1)-step distinguishers
with data complexities 220, 258, 2111 and 2158 for sLiSCP-192. Similarly, the number of steps for sLiSCP-256
can be increased by one with the same data complexities like the basic zero-sum distinguisher.

The complexity of such distinguishers can be improved further by finding better bounds for the algebraic
degree of fs. Boura et al. [33] proposed that, by calculating the Walsh spectrum of an Sbox, a better bound
can be achieved. However, such a technique cannot be applied to sLiSCP due to the large size of Simecku-
m Sbox. Moreover, one can exploit the division property of fs to construct a 17-step (9 forward + 8
backward) distinguisher with data complexity 2190 (resp. 2255) for sLiSCP-192 (resp. sLiSCP-256).

5.5 Self Symmetry-based Distinguishers

A cryptographic permutation can be obtained by setting a keyed construction subround keys to publicly-
known constant values. However, an attempt to set these subround keys to equal values or zero all of them
makes the permutation vulnerable to a wide range of distinguishers based on symmetry between rounds
or steps.

Slide distinguishers. To destroy symmetry between the steps in the GFS layer, our design employs two
different 6-bit constants (SC2j , SC2j+1) at the j-th step so that all the round functions determined by
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Table 9: Zero-correlation distinguisher for thirteen rounds of Simeck-48 where red bold faced bits corre-
spond to contradicting bit-masks.

Round Γx0 Γx1

0: 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

1: 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000

2: 1000 0000 0000 0000 0000 0000 ?100 0?00 0000 0000 0000 0000

3: ?100 0?00 0000 0000 0000 0000 ??10 0??0 00?0 0000 0000 0000

4: ??10 0??0 00?0 0000 0000 0000 ???1 0??? 00?? 000? 0000 0000

5: ???1 0??? 00?? 000? 0000 0000 ???? 1??? ?0?? ?00? ?000 ?000

6: ???? 1??? ?0?? ?00? ?000 ?000 ???? ???? ???? ??0? ??00 ??00

7: 0??? 0??? ???? ???? ???? ???? 0??0 0??? ???? ???? ???0 ???0

6: 0??0 0??? ???? ???? ???0 ???0 0?00 0??? ?1?? ??0? ??00 ??00

5: 0?00 0??? ?1?? ??0? ??00 ??00 0000 0??? 10?? ?00? ?000 ?000

4: 0000 0??? 10?? ?00? ?000 ?000 0000 0??1 00?? 000? 0000 0000

3: 0000 0??1 00?? 000? 0000 0000 0000 0?10 00?0 0000 0000 0000

2: 0000 0?10 00?0 0000 0000 0000 0000 0100 0000 0000 0000 0000

1: 0000 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

0: 0000 0000 0000 0000 0000 0000 0000 0100 0000 0000 0000 0000

(SC2j , SC2j+1) are different. Accordingly, slide distinguishers [25] where an attacker can distinguish the
permutation F by evaluating two inputs X and Y , where Y = f j(X), and checking if F (Y ) = f j(F (X))
are mitigated.

Invariant subspace distinguishers. We require that the step constants are different for both (hut , h
u
t′),

because we need to mitigate invariant subspace distinguishers based on the symmetry between the even-
odd shuffle of some GFS designs as has been shown in [42]. Specifically, an invariant subspace attack as
introduced by Leander et al. implies that there exists a coset of the input vector space which after being
iterated for any number of rounds of the cryptographic round function maps to cosets of the same subspace
[53]. It has been shown by the attack of Rønjom [60] on Simpira v1 which employs the Yanagihara and
Iwata Type-1.x (4,2) GFS [71] that because the employed round constants in each subblock function only
differ in one byte, three out of the four subblocks remain the same. In our case, even though one constant
in each step is enough to avoid slide attacks, if the same step constant SC is XORed with the output of the
two round functions hut and hut′ , (assuming hut = hut′), an invariant subspace distinguisher can be produced
for sLiSCP as depicted in Fig. 8. Accordingly, we require that all functions in one step have different step
constants.

Rotational distinguishers. Our design uses Simecku-m as a round function where the nonlinear oper-
ation in Simeck is the bitwise AND operation. Without the round constant addition between interleaving
internal rounds, the rotational properties are preserved with certainty for any number of rounds. If two
inputs x and y are processed by the Simecku-m box, where y = (x0 <<< l)|(x1 <<< l), where x = x0‖x1,
then hu(y) = (hu(x) <<< l) where hu is the u-fold operation of the Simeck round function without round
constant. Accordingly, we require the addition of round constants between interleaving rounds of the
Simecku-m box. Although only one new bit is added to each internal round which is generated by our
efficient 6-bit m-sequence LFSR, we in fact add a m

2 -bit constant which contains at least (m2 − 1) ‘1’bits.
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Table 10: Zero-correlation distinguisher for fifteen rounds of Simeck-64 where red bold faced bits correspond
to contradicting bit-masks.

Round Γx0 Γx1

0: 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

1: 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

2: 1000 0000 0000 0000 0000 0000 0000 0000 ?100 0?00 0000 0000 0000 0000 0000 0000

3: ?100 0?00 0000 0000 0000 0000 0000 0000 ??10 0??0 00?0 0000 0000 0000 0000 0000

4: ??10 0??0 00?0 0000 0000 0000 0000 0000 ???1 0??? 00?? 000? 0000 0000 0000 0000

5: ???1 0??? 00?? 000? 0000 0000 0000 0000 ???? 1??? ?0?? ?00? ?000 ?000 0000 0000

6: ???? 1??? ?0?? ?00? ?000 ?000 0000 0000 ???? ???? ???? ??0? ??00 ??00 0?00 0000

9: ???? 0??? ???? ???? ???? ???? ???? ???? ???0 0??? ???? ???? ???? ???? ???? ???0

8: ???0 0??? ???? ???? ???? ???? ???? ???0 ??00 0?0? ???? ???? ???? ???? ??0? ??00

7: ??00 0?0? ???? ???? ???? ???? ??0? ??00 ?000 000? ???? ???? ???? ?0?? ?00? ?000

6: ?000 000? ???? ???? ???? ?0?? ?00? ?000 0000 000? ???1 ???? 0??? 00?? 000? 0000

5: 0000 000? ???1 ???? 0??? 00?? 000? 0000 0000 000? ??10 ???0 0??0 00?0 0000 0000

4: 0000 000? ??10 ???0 0??0 00?0 0000 0000 0000 000? ?100 ??00 0?00 0000 0000 0000

3: 0000 000? ?100 ??00 0?00 0000 0000 0000 0000 000? 1000 ?000 0000 0000 0000 0000

2: 0000 000? 1000 ?000 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000

1: 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

0: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000

Fig. 8: Type-2 GFS: Assuming that the two step constants SC are identical, and if the odd-numbered
input subblocks are equal, and the even-numbered input subblocks are equal, then the invariant subspace
property is preserved for any number of rounds.

Having all these ‘1’s result in a lot of inversions which breaks the propagation of the rotational property
in one step.

To sum up, we add a 12-bit constant including step and round constants in each hut and our choice
of LFSR ensures that each pair of such constants does not repeat due to the periodicity of the 6-tuple
sequence constructed from the decimated m-sequence of period 63, which enables our design to avoid self
symmetry-based distinguishers.
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Table 11: 9-step division property based distinguisher for sLiSCP-192.

Round Division property

0 {(48, 46, 48, 48)}
1 {(46, 48, 48, 48)}
2 {(10, 48, 48, 48), (29, 48, 48, 47), (48, 48, 48, 46)}
3 {(1, 48, 48, 13), (10, 48, 48, 12), (29, 48, 48, 11), (48, 48,

48, 10), (1, 48, 47, 32), (10, 48, 47, 31), (29, 48, 47, 30),
(48, 48, 47, 29), (48, 48, 46, 48)}

4 {(1, 48, 13, 4), (10, 48, 13, 3), (29, 48, 13, 2), (48, 48, 13,
1), (1, 48, 12, 13), (10, 48, 12, 12), (29, 48, 12, 11), (48,
48, 12, 10), (1, 48, 11, 32), (10, 48, 11, 31), (29, 48, 11,
30), (48, 48, 11, 29), (48, 48, 10, 48), (1, 47, 32, 4), (10,
47, 32, 3), (29, 47, 32, 2), (48, 47, 32, 1), (1, 47, 31, 13),
(10, 47, 31, 12), (29, 47, 31, 11), (48, 47, 31, 10), (1, 47,
30, 32), (10, 47, 30, 31), (29, 47, 30, 30), (48, 47, 30, 29),
(48, 47, 29, 48), (48, 46, 48, 48)}

5 {(1, 13, 0, 4), (1, 12, 13, 4), (10, 13, 0, 3), (10, 12, 13, 3),
(29, 13, 0, 2), (29, 12, 13, 2), (48, 13, 0, 1), (48, 12, 13,
1), (1, 12, 12, 13), (10, 12, 12, 12), (29, 12, 12, 11), (48,
12, 12, 10), (1, 12, 11, 32), (10, 12, 11, 31), (29, 12, 11,
30), (48, 12, 11, 29), (48, 12, 10, 48), (1, 11, 32, 4), (10,
11, 32, 3), (29, 11, 32, 2), (48, 11, 32, 1), (1, 11, 31, 13),
(10, 11, 31, 12), (29, 11, 31, 11), (48, 11, 31, 10), (1, 11,
30, 32), (10, 11, 30, 31), (29, 11, 30, 30), (48, 11, 30, 29),
(48, 11, 29, 48), (48, 10, 48, 48), (0, 32, 0, 4), (0, 31, 13,
4), (9, 32, 0, 3), (9, 31, 13, 3), (28, 32, 0, 2), (28, 31, 13,
2), (47, 32, 0, 1), (47, 31, 13, 1), (0, 31, 12, 13), (0, 31,
11, 32), (0, 30, 32, 4), (9, 30, 32, 3), (28, 30, 32, 2), (47,
30, 32, 1), (0, 30, 31, 13), (0, 30, 30, 32)}

6 {(0, 1, 0, 2), (0, 0, 4, 2), (13, 1, 0, 1), (13, 0, 4, 1), (0, 0,
3, 11), (13, 0, 3, 10), (0, 0, 2, 30), (13, 0, 2, 29), (13, 0, 1,
48), (12, 13, 0, 1), (12, 12, 13, 1), (12, 11, 32, 1), (11, 32,
0, 1), (11, 31, 13, 1), (11, 30, 32, 1), (32, 1, 0, 0), (32, 0,
4, 0), (32, 0, 3, 9), (32, 0, 2, 28), (32, 0, 1, 47), (31, 13,
0, 0), (31, 12, 13, 0), (31, 11, 32, 0), (30, 32, 0, 0), (30,
31, 13, 0), (30, 30, 32, 0)}

7 {(0, 1, 0, 1), (0, 0, 2, 1), (1, 1, 0, 0), (1, 0, 2, 0), (0, 4, 0,
0), (0, 3, 11, 0), (0, 2, 30, 0), (0, 0, 1, 13), (13, 0, 1, 12),
(32, 0, 1, 11), (0, 0, 0, 32), (13, 0, 0, 31), (32, 0, 0, 30)}

8 {(1, 1, 0, 0), (1, 0, 1, 0), (0, 0, 0, 1), (4, 0, 0, 0), (0, 2, 0,
0), (0, 1, 13, 0), (0, 0, 32, 0)}

9 {(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (2, 0, 0, 0)}
10 {(0,0,0,1), (1,0,0,0), (0,1,0,0), (0,0,1,0)}

6 Applications of sLiSCP

The sLiSCP permutation is designed to be used in lightweight applications to provide as many cryptographic
functionalities as possible. We use sLiSCP in the sponge framework to construct authenticated encryption,
stream cipher, MAC and hash function.
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Table 12: Integral distinguishers for Simeck-48 and Simeck-64 where ‘C’ denotes a fixed value in the same
position in the set of states, ‘A’ denotes all possible values appearing equal number of times, ‘B’ denotes
the values at a given position in the set of states sum to zero, and ‘?’ indicates that no property can be
determined.

Simeck-48 Input: [CAAAAAAAAAAAAAAAAAAAAAAA,AAAAAAAAAAAAAAAAAAAAAAAA]
Output: [????????????????????????,B???BB?????????????BB???]

Simeck-64 Input: [CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA,AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA]

Output: [????????????????????????????????,BB???B?????????????????????B???B]

Table 13: Bounds for the algebraic degree of fs.

s Degree of fs (sLiSCP-192) Degree of fs (sLiSCP-256)

1 19 36

2 57 92

3 110 175

4 157 240

5 191 255

6.1 Why the Sponge Framework?

Sponge constructions are very diversified in terms of the offered security level, particularly, it is proven
that the sponge and its single pass duplex mode offer a 2c/2 bound against generic attacks [15, 19] which
attains a lower bound on the width of the underlying permutation. However, for keyed modes such as
MAC, stream encryption and authenticated encryption a security level of 2c−a is proven when the number
of queries is upper bounded by 2a [20]. When restricting the data complexity to a maximum of 2a queries
with a < c, one can reduce the capacity and increase the rate for a better throughput with the same
security level. It has also been shown that, in keyed modes, the restrictions on the underlying permutation
can be relaxed, especially the required number of rounds as has been shown in MonkeyDuplexing which
accepts calls to variants of the permutation with a different number of rounds [20]. Furthermore, in sponge
keyed encryption modes, nonce reuse enables the encryption of two different messages with the same key
stream which undermines the privacy of the primitive. More precisely, the sponge duplex authenticated
encryption mode requires the uniqueness of a nonce when encrypting different messages with the same
key because the ability of the attacker to acquire multiple combinations of input and output differences
leaks information about the inner state bits which may lead to the reconstruction of the full state [19, 14].
Nonce reuse in duplex constructions reveals the XOR difference between the first two plaintexts by XORing
their corresponding ciphertexts. On the other hand, a nonce reuse differential attack may be exploited if
the attacker is able to inject a difference in the plaintext and cancel it out by another difference after
the permutation application. However, such an attack depends on the probability of the best differential
characteristic and the number of rounds of the underlying permutation, accordingly, if such a permutation
offers enough resistance to differential cryptanalysis, the feasibility of nonce reuse differential attacks is
minimal. The condition on the differential behavior of the underlying permutation is also important when
considering resynchronization attacks where related nonces are to be used, and for that reason, even if
nonce reuse is not permitted, the underlying permutation used in the initialization stage should be strong
enough to mitigate differential attacks.

Given the above results, we find that a combining version of the duplex sponge mode used in Ascon
[40, 20] and NORX [8] realizes the objectives we aimed for our sLiSCP permutation. We call this mode the
sLiSCP mode. Such objectives are attributed to the properties, which are derived directly from sponge-
based primitives, below

- The flexibility to adapt the same circuitry to provide both keyed and unkeyed functionalities (e.g.,
hashing, MAC computation, and pseudo random bit generation) as we adopt a unified round function
for all functionalities.
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- High key agility which fits the lightweight requirements because all keyed modes require no key schedul-
ing.

- Simplicity as there is no need to implement decryption algorithm because the same encryption algo-
rithm is used for decryption.

- Both plaintext and ciphertext blocks are generated online without the need to process the whole input
message and encrypted material first.

6.2 The sLiSCP Mode

The utilized sponge mode modifies the keyed initialization and keyed finalization stages of the Ascon
[40] and NORX [8] modes which make key recovery hard even if the internal state is recovered and also
renders universal forgery with the knowledge of the internal state unattainable. The adopted modification
makes the initialization and finalization stages more hardware efficient and adaptable to different primitive
modes. In particular, instead of initializing the state with the key, K, and then again XORing it with the
permutation output that requires an extra |K| XORs, we initialize the state with the key and then again
absorb the key in the rate part during the initialization and finalization phases. We also use the domain
separation technique as used in NORX because it runs for all rounds of all stages, and thus reduces the
chances of side channel analysis and offers uniformity across different stages. The separation between the
processing of different types of inputs is important to distinguish between the roles of the processed data.
To this end, we only have one round function (See Fig. 9) that incorporates absorption, squeezing, and
domain separation, and according to the fed inputs, we decide which stage and functionality to implement.
The sLiSCP mode used in the authenticated encryption is further depicted in Fig. 10.

Fig. 9: Unified round function which can be used in all stages of both keyed and unkeyed modes.

Initialization, absorbing, and squeezing. Our sLiSCP permutation is based on Type-2 GFS where,
apart of the permutation size, each subblock is either 48 or 64 bits. Since we use it in sponge-based modes,
we need to specify exactly from where the r-bit input is absorbed and the r-bit output is squeezed. For
sLiSCP permutations, we consider the b-bit state as a series of four m-bit subblocks, X0, X1, X2, X3 (see
Figure 3), where m is equal to 48 and 64 for sLiSCP-192 and sLiSCP-256, respectively. We divide the state
S of sLiSCP as bytes, S = (B0, B1, · · · , Bl−1) where l = 24 and 32, for sLiSCP-192 and sLiSCP-256, respec-
tively. Moreover, each subblock Xi can be viewed as a series of j = m

8 bytes, Bij+0, Bij+1, · · · , Bij+(j−1)

arranged from left to right. In nonce-based keyed modes, initially, the state is loaded with the nonce and
key bytes, denoted by NBw, w = 0, 1, · · · , n, and KBz, z = 0, 1, · · · , k, respectively and remaining bytes are
set to zero. Also, when the hashing mode is employed, we load the state by a 3-byte IV and the remaining
bytes are set to zero. Specifically, the first two IV bytes are assigned to the first two bytes of X0, and the
remaining IV byte is loaded in the first byte of X2. All initialization public variables either nonce or IV
are ceiling divided and loaded in the even indexed subblocks, X0 and X2, in an ascending byte order. The
key is loaded in the odd indexed subblocks, X1 and X3 in the same manner, and if the key size is larger
than half the state size, then remaining key bytes populate the remaining bytes in X0 and X2 equally and
in an ascending order. For example, for sLiSCP-192/80, sLiSCP-192/112, and sLiSCP-256/128, the state is
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initialized as follows:

sLiSCP-192/80: B0 ← NB0, B1 ← NB1, B2 ← NB2, B3 ← NB3, B4 ← NB4, B12 ← NB5, B13 ← NB6,

B14 ← NB7, B15 ← NB8, B16 ← NB9, B6 ← KB0, B7 ← KB1, B8 ← KB2, B9 ← KB3,

B10 ← KB4, B18 ← KB5, B19 ← KB6, B20 ← KB7, B21 ← KB8, B22 ← KB9.

sLiSCP-192/112: B0 ← NB0, B1 ← NB1, B2 ← NB2, B3 ← NB3, B4 ← NB4, B12 ← NB5, B13 ← NB6,

B14 ← NB7, B15 ← NB8, B16 ← NB9, B6 ← KB0, B7 ← KB1, B8 ← KB2, B9 ← KB3,

B10 ← KB4, B11 ← KB5, B18 ← KB7, B19 ← KB8, B20 ← KB9, B21 ← KB10, B22 ← KB11,

B23 ← KB12, B5 ← KB6, B17 ← KB13

sLiSCP-256/128: B0 ← NB0, B1 ← NB1, B2 ← NB2, B3 ← NB3, B4 ← NB4, B5 ← NB5, B6 ← NB6, B7 ← NB7,

B16 ← NB8, B17 ← NB9, B18 ← NB10, B19 ← NB11, B20 ← NB12, B21 ← NB13, B22 ← NB14,

B23 ← NB15, B8 ← KB0, B9 ← KB1, B10 ← KB2, B11 ← KB3, B12 ← KB4, B13 ← KB5,

B14 ← KB6, B15 ← KB7, B24 ← KB8, B25 ← KB9, B26 ← KB10, B27 ← KB11, B28 ← KB12,

B29 ← KB13, B30 ← KB14, B31 ← KB15

In the sLiSCP modes, we use initialize(x) to denote the process of loading the state with x in the
positions described above. As for absorbing and squeezing, we want the input bits to be processed by the
Simecku-m box as soon as possible so we achieve better diffusion. Accordingly, choosing the right place
for absorbing data determines how fast it is processed by the round function which is important since not
all the subblocks in GFS constructions receive the same amount of processing at first. The same r/8 bytes
are used for absorbing and squeezing and they are denoted by the following state bytes:

sLiSCP-192: B6, B7, B18, B19

sLiSCP-256: B8, B9, B10, B11,

B24, B25, B26, B27.

In the AE mode, the tag is extracted from the same byte positions which are used in the key initialization
stage. Hence, the process of tag extraction from state S is denoted by tagextract(S). We denote the rate
and capacity parts of the state S by Sr and Sc, respectively, thus S = (Sr, Sc). In what follows, we show
how we use the unified round function depicted in Figure 9 to implement several functionalities using
sLiSCP permutation in the sLiSCP mode.

6.3 Authenticated Encryption

An authenticated encryption algorithm takes as input a secret key K, a nonce N , a block header A (a.k.a,
associated data) and a message M and outputs a ciphertext C with |C|= |M |, and an authentication tag
T . Mathematically, an authenticated encryption AE mode is defined as

AE : {0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t

with
AE(K,N,A,M) = (C, T )

where k is the bit length of K, n is the bit length of N . We denote an instance of sLiSCP in a keyed mode
by sLiSCP-b/k, where b and k denote the state size and the key length, respectively. In such a mode, we
limit the number of processed bits per key to 2a, which is known as the data usage limit [18]. Specifically,
2a denotes the value that an implementation restricts the maximum message size (data queries) that can
be processed per a given key such that one can attain bit security equal to 2k when c ≥ k + a + 1.
Recommended parameters for sLiSCP when used in AE mode are listed in Table 14.

The depiction of the encryption and decryption processes using the sLiSCP sponge mode is shown in
Figure 10. We describe the padding rule and the algorithms of the AE below.

Padding: Padding is necessary when the length of the processed data is not a multiple of the rate r value
and also to act as a delimiter between data of unknown lengths. Since the keys are of fixed length, we need
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Table 14: Recommended parameter set for sLiSCP-b/k when used in authenticated encryption mode.

Algorithm Key Nonce Tag Block size r Capacity c Usage exponent a

sLiSCP-192/80 80 80 80 32 160 72

sLiSCP-192/112 112 80 112 32 160 40

sLiSCP-256/128 128 128 128 64 192 56

to pad it by appending zeros only if its length is not a multiple of r bits such that the padded K is divided
into `K r-bit blocks K0‖K1‖· · · ‖K`K−1. Afterwards, the padding rule (10∗) denoting a single 1 followed
by required 0’s is applied to the message M such that its length after padding is a multiple of r. Then
the resulting padded message is divided into `M r-bit blocks M0‖M1‖· · · ‖M`M−1. A similar procedure is
carried out on the associated data A which results in `A r-bit blocks A0‖A1‖· · · ‖A`A−1. In the case where
no associated data is present, no processing is necessary. We summarize the padding rules for key, message
and associated data below.

padr(K) → K‖0r−(|K| mod r), if |K| mod r 6= 0

padr(M)→M‖1‖0r−1−(|M | mod r)

padr(A) →
{
A‖1‖0r−1−(|A| mod r) if |A| > 0

φ if |A| = 0

}

Initialization: The initial state S is loaded with the nonce N and key K as described in Section 6.2. Each
r-bit key block Ki is absorbed by XORing it to the Sr part of the state and a one bit domain separator is
XORed to the most significant bit in byte B23 and B31 for sLiSCP-192 and sLiSCP-256 with the absorption
of the last key block K`K−1, respectively. Afterwards, the sLiSCP permutation is applied to the whole
state. The initialization steps are described below.

S ← F (initialize(N,K))

S ← F ((Sr ⊕Ki), Sc), i = 0, · · · , `K − 2

S ← F ((Sr ⊕Ki), (Sc ⊕ 0c−1‖1)), i = `K − 1

Processing A: If there is associated data, each r-bit block Ai, i = 0, · · · , `A − 1 is XORed to the first Sr
part of the internal state S and one-bit domain separator is XORed to the last byte of the states. Then,
sLiSCP permutation is applied on the whole state.

S ← F ((Sr ⊕Ai), (Sc ⊕ 0c−1‖1)), i = 0, · · · , `A − 2

S ← F ((Sr ⊕Ai), (Sc ⊕ 0c−2‖2)), i = `A − 1

Encryption: Similar to the processing of A, however, with a different domain separator, each message r-bit
block Mi, i = 0, · · · , `M − 1 is XORed to the Sr part of the internal state S resulting in the corresponding
ciphertext Ci which is then extracted from the Sr part of the state. After the computation of each Ci, the
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whole internal state S is permuted by F .

Ci ← Sr ⊕Mi,

S ← F (Ci, (Sc ⊕ 0c−2‖2)) if 0 ≤ i < `M − 2

S ← F (Ci, (Sc ⊕ 0c−3‖4)) if i = `M − 1

To keep a minimal overhead, the last ciphertext block C`M−1 is truncated so that its length is equal
to that of the last unpadded message block M`M−1 (i.e., C`M−1 = bC`M−1c(|M | mod r)).

Decryption: Each ciphertext r-bit block Ci, i = 0, · · · , `M − 1 is XORed to the Sr part of the internal
state S to calculate the corresponding message block Mi, then the same Ci replaces the r-bit block Sr in
the internal state, then the whole internal state S is transformed by the permutation F

Mi ← Sr ⊕ Ci
S ← F (Ci, (Sc ⊕ 0c−2‖2)), 0 ≤ i < `M − 2

The last message block M`M−1 is calculated by XORing the ciphertext block C`M−1 to the truncated Sr
part of the state, then replacing the Sr part by C`M−1‖(dSre(r−|M | mod r) ⊕ (1‖0(r−1−|M | mod r))).

M`M−1 ← bSrc(|M | mod r) ⊕ C`M−1

S ← F (C`M−1‖(dSre(r−|M | mod r) ⊕ (1‖0(r−1−|M | mod r))), (Sc ⊕ 0c−3‖4)).

Finalization: Finally, the `K key blocks are absorbed and the tag is extracted from the chosen bytes of
the state as described earlier.

S ← F ((Sr ⊕Ki), Sc), i = 0, · · · , `K − 1

T ← tagextract(S).

The decryption procedure returns the message blocks Mi ,i = 0, 2, · · · `M − 1, only if the calculated tag
value is equal to the received tag value. The AE mode assumes nonce respecting adversary and we do not
claim security in the event of nonce reuse, although, the initialization and finalization stages combined by
the number of rounds used in the sLiSCP permutation tremendously reduces the effect of such attacks. We
claim no security for reduced-round versions of the sLiSCP permutation operating in the sLiSCP mode. In
summary, our security claims are given in Table 15

Table 15: Security claims for sLiSCP operating in the sLiSCP AE mode where sLiSCP-b/k denotes sLiSCP
with state size b and key size k.

Security property sLiSCP-192/80 sLiSCP-192/112 sLiSCP-256/128

Data confidentiality 80 112 128

Data integrity 80 112 128

Associated data integrity 80 112 128

Nonce data integrity 80 112 128

An authenticated encryption algorithm can be easily used to provide either encryption or authentication
only. More precisely, when using sLiSCP for encryption only, we run the algorithm as usual and stop after
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the last message block is encrypted and since we do not care about tag forgery, we can omit/ignore the
finalization stage and the tag extraction stage. We also set to zero all the domain separation as we are
only processing one domain of messages. For the MAC generation, we can ignore the initialization phase
and directly load both the key and nonce in the state and start absorbing the message blocks directly after
applying F once to the initialized state. This design decision is attributed to the fact that during the MAC
generation, there is no leaked part of the state and the attacker has little control (only probabilistic) over
the state which makes state recovery attacks harder than that in the case of authenticated encryption or
encryption only. However, since we care about tag forgery, we need to maintain a strong keyed finalization
stage, also, in this mode, we may zero all domain separator XORs because we are authenticating data
apart of its role. Also, the adopted initialization and finalization stages are not efficient throughput wise
when the processed message is short. However, in such a case, the ability of attacker to recover the internal
state is reduced too, so when processing short messages we can directly initialize the state with the key
and nonce, and skip the initialization phase.

6.4 Hash Computation

A hash function takes as input a message M , and a standard initialization vector IV , and then returns a
fixed size output H, called hash or message digest. Formally, the hash mode is specified by

H : {0, 1}∗ × {0, 1}iv → {0, 1}h

with H = H(M, IV ) where iv is the length of the IV and h is the length of the hash. The depiction of the
hashing process of the sLiSCP mode is shown in Fig. 11.

Fig. 11: Hash computation of the sLiSCP mode of operation.

We adapt the sLiSCP mode such that it can be used to initially absorb the message blocks and then
squeeze hash blocks to output the desired hash value. This is an unkeyed mode where we do not need an
initialization or finalization stage. It has been shown that inverting the squeezing phase falls in the category
of “multiblock constrained-input constrained-output problem” which requires 2min(h,b)−r computations to
recover the state before the squeezing phase. Once such an internal state is recovered one can launch a
meet-in-the-middle attack with around 2c/2 computations to get a preimage of a given hash of length
h [16, 43]. The latter condition reduces the generic preimage attack on the sponge-based hash functions
from 2h to min(2min(h,b),max(2min(h,b)−r, 2c/2)) where such a preimage security is usually dominated by
2min(h,b)−r and accordingly highly dependent on the squeezed bit rate. In [43], Guo et al. suggested using
a flexible squeezing bit rate r′ < r that offers a trade-off between speeding up the hash computation and
preimage security (similar solution has been suggested by Andreeva et al. [5]). More precisely, a smaller r′

would make the time complexity of a preimage attack equal to 2h−r
′

(assuming that the hash length is less
than the state length) which is close to that of the expected generic one 2h. On the other hand, if small
inputs are hashed (e.g., electronic product code (EPC) data, which is a 96-bit string), small squeezing bit
rate may make the computation too slow as one needs dh/r′e − 1 calls to the underlying permutation.
Another solution to reach the expected generic preimage security is to run one more squeezing round after
one extracts the desired hash length h [43, 7], thus increasing the acquired output to h + r′ and in this
case the complexity of the generic preimage attack is equal to :

min(2min(h+r′,b),max(2min(h,b−r′), 2c/2)) ≥ 2h when c+ r − r′ ≥ h.
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We adopt a standard initialization vector that combines the parameters of a given sLiSCP instance. In
particular, we use the same format used by Guo et al. in PHOTON such that for any instance the state
is first initialized by IV = h/2‖r‖r′, where 8 bits are used to encode each of the used h/2, r, and r′ sizes.
The claimed security levels for the recommended parameters for sLiSCP in the hashing mode are given in
Table 16.

Table 16: Recommended parameter set for sLiSCP-b when used in hashing mode and the associated bit
securities.

Algorithm IV h r r′ c collision Sec. preimage Primage

sLiSCP-192 0x502020 160 32 32 160 80 80 128

sLiSCP-256 0x604040 192 64 64 192 96 96 128

sLiSCP-256 0x604020 192 64 32 192 96 96 160

Initialization and Message Padding The state is first initialized with the IV and the padding rule
(10∗) is applied to the input message M where a single 1 followed by enough 0s is appended to it
such that its length after padding is a multiple of r bits. Then the resulted padded message is divided
into `M r-bit blocks M0‖M1‖· · · ‖M`M−1. Accordingly, the message padding procedure is given by:
padr(M)→M‖1‖0r−1−(|M | modr)

Absorbing and Squeezing: Initially each message block is absorbed by XORing it to the Sr part of
the state, then sLiSCP permutation is applied afterwards. After absorbing all the message blocks, the
h-bit output is extracted from the Sr part of the state r′ bits at a time followed by the application of
sLiSCP permutation until a total of dh/r′e extractions are completed, then if the resulting extracted bits
are more than the desired hash length, truncation is performed. Note that if r′ < r, then its byte size is
extracted from the same subblocks used in squeezing, X1 and X3, such that the first and second halves of
the r′ bytes are extracted from X1 and X3, respectively, in an ascending byte order.

Absorbing : S ← F (Sr ⊕Mi, Sc) for 0 ≤ i ≤ `M − 1

Squeezing : Hi ← S′r

S ← F (S), 1 ≤ i ≤ j, for j = dh/r′e − 1

H ← bH1‖H2‖· · · ‖Hjch

Reseedable Pseudo Random Bit Generator (PRBG). The hash construction can be used as a
reseedable pseudo random bit generator [17] where initially the state is loaded by an all zero vector, and
then, the initial seed is fed through a series of absorbing rounds. After the last absorbed rate part of
the seed, the output stream is squeezed in r bits as needed. Also, because we are using a sponge duplex
construction a new seed can be fed to the state while squeezing output at the same time, thus allowing
the construction of a reseedable PRBG.

7 Hardware Implementation and Results

We implement our sLiSCPpermutation using the parallel hardware architecture as shown in Figure 12.
Each of the four m-bit subblocks of the registers are divided into two parts. In order to control the internal
rounds and the steps, two counters (i and j) are adopted, where i (0 ≤ i ≤ u) controls the round function
of Simeck and j (0 ≤ j ≤ s) controls the steps of the permutation. The output of Simeck round function
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Fig. 12: Hardware architecture of the sLiSCP permutation

(dashed box) on registers X1 and X3 is feedback to the left half of the registers during each clock cycle
when 0 ≤ i < u, and at the same time the left half of the registers is shifted to the right half. The 1-bit
round constant RC12j+2i and RC12j+2i+1 are first padded with m/2 − 1 bits ‘1’s and then are added to
the Simeck round function in each clock cycle and they are generated using the parallel LFSR as described
in Section 4.4. The two extra registers X ′1 and X ′3 are used to store the initial values of registers X1 and
X3 when i equals 0. At the last clock cycle, i.e., i equals u, one step of the permutation begins. During
this clock cycle, the output of the Simeck round function based on register X1 is first XORed with the left
half of register X0, and then is XORed with a constant of m/2 bits ‘1’s. This new value is sent to the left
half of the register X3. Due to the two different inputs for register X3, a m/2 bits multiplexer is needed.
Meanwhile, the left half of the register X1 is XORed with the right half of the register X0, and then is
XORed with m/2−8 bits ‘1’s padded with a step constant SC2j (In particular, for sLiSCP-192, the m/2−8
bits ‘1’s is padded with two 0’s and then padded with the step constant SC2j). The generated new value
is shifted to the right half of the register X3. A multiplexer in this case is needed as well. The similar case
for the output of the Simeck round function based on register X3 XORed with register X2, where the new
results are sent to the register X1. At the same time, the values of registers X ′1 and X ′3 are shifted into the
registers X0 and X2 respectively. At the end of this clock cycle, all the registers are updated with a new
value, and one step of permutation is finished, the counter j is increased by 1, and the counter i returns
to 0. After s steps, one permutation is finished. Table 17 shows the number of discrete components in the
sLiSCP permutation F , where XOR is 1-bit xor operation and MUX is 1-bit multiplexer.

The authenticated encryption and hash modes of sLiSCP involve running the permutation multiple
times in the sponge structure, where r-bit input is absorbed using r XORs and r′-bit output is squeezed
using r′ XORs. The input for the authenticated encryption mode are key, nonce, associated data, and
message, whereas there is only message for hash mode. In addition, a three bit domain separator is taken
in the authenticated encryption mode, hence three more XORs are required.

We use the same ASIC design flow and metrics as described in Simeck [72]. Our implementation results
are based on STMicroelectronics CMOS 65nm CORE65LPLVT library and IBM CMOS 130nm library
and the areas are obtained before the place and route phase in order to compare fairly with other lightweight
candidates. To keep the consistency with other sponge based primitives, the throughput is computed at
a frequency of 100 kHz using the following formula: Throughput = r′

(u∗s) ∗ 100 kbps. Our implementation

areas, as shown in Table 18, for sLiSCP-192 permutation are 2153 GEs and 2318 GEs in 65nm and 130nm
ASICs respectively, and that for sLiSCP-256 permutation are 2833 GEs and 3040 GEs respectively.
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Table 17: The number of discrete components in sLiSCP permutation

Permutation F Components Numbers

sLiSCP-192 sLiSCP-256

Step Function f

Registers 6× 48 6× 64

XOR 108 140

MUX 96 128

Simeck Round Function
AND 24 32

XOR 49 65

LFSR Constants
Registers 6 7

XOR 6 9

Table 18: Parallel hardware implementation results of sLiSCP-192/256 permutations

Permutation F Process Areas

(nm) (GEs)

sLiSCP-192 65 2153

sLiSCP-192 130 2318

sLiSCP-256 65 2833

sLiSCP-256 130 3040

By applying the sLiSCP permutations repeatedly, we carry two implementations for the hash and AE
modes in order to contrast with other dedicated designs. The implementations of these two modes involve
the input of key, nonce, associated data, message, and the bit domain separator; and also involve the output
of the ciphertext, hash value and tag. Therefore, the resulting areas are increased from the permutations
by using extra XORs to deal with the inputs and bit domain separator, and using multiplexers to select
different inputs to the permutation. More specifically, for the AE mode of sLiSCP-192, 32 XORs are used
for the inputs, 3 XORs are used for the bit domain separator, 35 multiplexers are used for selecting from
the initial value or the XORs’ results. While for the AE mode of sLiSCP-256, the corresponding numbers
of them are 64 XORs, 3 XORs, 67 multiplexers. The 3 XORs for the bit domain separator are deleted for
the hash mode. It is worth noting that the number of multiplexers depends on the specific architecture
undertaken, and there is a tradeoff between area and throughput. Our results in both CMOS 65nm and
CMOS 130nm ASICs for the hash and authenticated encryption modes of sLiSCP are presented in Table 19,
as well as a comparison with other lightweight hash functions and AE algorithms. If a unified mode is
used for both functionalities, then the consumed GE area will be dominated by that of the AE mode. The
hash mode can be achieved from the circuit of the AE mode by inputting 0’s to the bit domain separator’s
XORs, which means the hardware of AE mode can be used for both functionalities.

Our implementation in CMOS 65nm shows that the area for the hash mode of sLiSCP-192 (resp.
sLiSCP-256) is 2271 (resp. 3019) GEs with a throughput of 29.62 (resp. 44.44 kbps or 22.22 kbps de-
pending on r′) kbps. Their area results in CMOS 130nm are 2492 and 3305 GEs respectively. When
compared with other primitives with similar internal states, the area of sLiSCP-192 is slightly larger than
that of the serialized implementation of Photon-160/36/36 and is comparable with that of Spongent-
160/160/16. However, the area of sLiSCP-192 is quite smaller than that of D-Quark, Keccak-f [40,160],
Keccak-f [72,128], where the areas of Keccak-f [40,160] and Keccak-f [72,128] are permutations only. In
terms of throughput, sLiSCP-192 is better than Photon-160/36/36, D-Quark, and Spongent-160/160/16.
The area of sLiSCP-256 is larger than that of the serialized result of Photon-224/32/32 and is comparable
with that of Spongent-160/160/80, Spongent-224/224/16, Sponogent-256/256/16, and is smaller than that
of S-Quark. The relevant throughput is only smaller than that of Spongent-160/160/80 and S-Quark.

For the authenticated encryption mode, the area in CMOS 65nm of sLiSCP-192 (resp. sLiSCP-256)
is 2289 (resp. 3039) GEs with a throughput of 29.62 (resp. 44.44) kbps. Their respective areas in CMOS
130nm are 2498 and 3319 GEs. sLiSCP-256 has a GE area that is comparable with the estimated area
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Table 19: Parallel hardware implementation of sLiSCP modes and comparison with other lightweight hash and
AE primitives. Throughput is given for a frequency of 100 kHz.

Hash function Parameters a Security(bits) Process Latency Area Throughput

r c r′ h Pre 2nd
Pre.

Coll. (nm) (Cycles) (GEs) (kbps)

sLiSCP-192 32 160 32 160 128 80 80 65 108 2271 29.62

sLiSCP-192 32 160 32 160 128 80 80 130 108 2492 29.62

Photon-160/36/36 [43] 36 160 36 160 124 80 80 180 180 2117 20.00

D-Quark [7] 16 160 16 176 160 80 80 180 88 2819 18.18

Spongent-160/160/16 [28] 16 160 16 160 144 80 80 130 90 2190 17.78

Keccak-f [40,160] [48] 40 160 40 200 160 160 80 130 18 4900 222.22

Keccak-f [72,128] [48] 72 128 72 200 128 128 64 130 18 4900 400.00

sLiSCP-256 64 192 64 192 128 96 96 65 144 3019 44.44

sLiSCP-256 64 192 64 192 128 96 96 130 144 3305 44.44

sLiSCP-256 64 192 32 192 160 96 96 65 144 3019 22.22

sLiSCP-256 64 192 32 192 160 96 96 130 144 3305 22.22

Photon-224/32/32 [43] 32 224 32 224 192 112 112 180 204 2786 15.69

Spongent-160/160/80 [28] 80 160 80 160 80 80 80 130 120 3139 66.67

Spongent-224/224/16 [28] 16 224 16 224 208 112 112 130 120 2903 13.33

Spongent-256/256/16 [28] 16 256 16 256 240 128 128 130 140 3281 11.43

S-Quark [7] 32 224 32 256 224 112 112 180 64 4640 50

AE algorithm t Con. b Int.c

sLiSCP-192/80 32 160 32 80 80 80 - 65 108 2289 29.62

sLiSCP-192/80 32 160 32 80 80 80 - 130 108 2498 29.62

sLiSCP-192/112 32 160 32 112 112 112 - 65 108 2289 29.62

sLiSCP-192/112 32 160 32 112 112 112 - 130 108 2498 29.62

sLiSCP-256/128 64 192 64 128 128 128 - 65 144 3039 44.44

sLiSCP-256/128 64 192 64 128 128 128 - 130 144 3319 44.44

Ketje-Jr [14] 16 184 16 96 96 96 - - - 4900d -

NORX-16 [9] 128 128 128 96 96 96 - - - 2880 -
a r, c, r′, h and t denote the input bitrate, capacity, output bitrate, digest length and tag size, respectively.
b Confidentiality of plaintext.
c Integrity of plaintext, associated data and nonce.
d Considering it uses Keccak-200 as its underlying permutation, its area is at least 4900 GEs.

of NORX-16, while sLiSCP-192 is quite smaller than NORX-16. Both areas of sLiSCP-192 and sLiSCP-256
are much smaller than that of Ketje-Jr. We note that serialized implementations of sLiSCP modes result
in more savings in GE area and thus enable its adoption in highly constrained devices such as EPC tags.
Overall, both the hash and authenticated encryption modes of sLiSCP are competitive with others in terms
of area and throughput.

8 Concluding Remarks

In this section, we conclude the paper by highlighting some of the design choices that we have made for
the construction of the sLiSCP permutations. Most of the contents of this section have been stated in a
scattered way in earlier sections, so we aim by addressing these points again to reiterate some important
conclusions that may have been missed by a reader.

-“Another sponge-based primitive:” We design sLiSCP in response to the noticeable shortage of lightweight
secure cryptographic permutations which can be used in the sponge framework to provide a unified secure
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design which offers as many cryptographic functionalities as possible. In fact, most of the lightweight sym-
metric key primitives that exist in the literature are dedicated to offer a specific cryptographic functionality
and accordingly are optimized as such. Other than Keccak-200 permutation which has a parallel hardware
implementation cost of around 4900 GE [48], we cannot find a lightweight cryptographic permutation.
On the other hand, sLiSCP-192 has a parallel implementation cost of 2289 GEs on a 65nm ASIC tech-
nology which enables its realistic adoption in constrained lightweight applications to provide a minimal
cryptographic design.

-“Simeck is based on the generalized round function of NSA’s Simon:” The justifications by the NSA of
the parameters and design choices for Simon remain unclear. However, Simeck is an independently param-
eterized unkeyed version of the generalized Simon round function. In addition to being fully analyzed by its
designers [72] where all the parameter choices have been justified, Simeck has been publicly cryptanalyzed
for over three years. Finally, Simeck offers one of the lowest hardware footprints which is even lower than
Simon’s.

-“The sLiSCP permutation is based on a GFS like the MD/SHA family of hash functions” The MD/SHA
family is a special instantiation of the Feistel construction which is vulnerable to the Wang et al. differential
attacks [66]. However, such attacks are successful on this family of hash functions due to the ability of the
attacker to manipulate the propagation of differences in the internal state through message modification
techniques, which are effective because the algorithm allows a user to feed the state with independent
message blocks for a substantial number of rounds. Nevertheless, without the message feeding algorithm,
the Wang et al. attacks are ineffective and sLiSCP is an unkeyed permutation where the attacker has no
means to manipulate the value of the internal state amid execution.

-“Simeck operations are bit-based and so it scales linearly with state size thus, can be used directly on a
large state for sLiSCP:” Large Simeck states such as Simeck-128 are hard to analyze, even the probabilities
of their differential and linear characteristics are harder to bound for the extended number of rounds
[51, 54]. Thus, providing security guarantees for Simeck with an even larger state is almost unpractical.
Consequently, the adoption of Simeck-48 and Simeck-64 in a Type-2 GFS construction enables us to
leverage their existing cryptanalysis and further provide bounds on the probabilities of differential and
linear characteristics for our whole permutation.
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strategies for arx with provable bounds: Sparx and lax. In: J. H. Cheon and T. Takagi (Eds.), ASIACRYPT
2016. LNCS, vol. 10031, pp. 484–513. Springer, Heidelberg (2016)

[40] Dobraunig, C., Eichlseder, M., Mendel, F., and Schläffer, M.: Ascon v1.2. Submission to the caesar
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A Test Vectors for sLiSCP AEAD and Hash Instances

In this section we provide the test vectors for each instance of the sLiSCP AEAD and hash. The key, initial
vector (IV), associated data (AD), message, ciphertext and tag are represented in hexadecimal.

A.1 sLiSCP Permutations

sLiSCP-192. The input and output of the sLiSCP-192 permutation are given below.
Input: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Output: c2 e9 68 54 41 38 70 d0 c4 23 bb 2a bd d2 4e 65 6e c7 f9 50 41 56 dd c1
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sLiSCP-256. The input and output of the sLiSCP-256 permutation are given below.
Input: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00

Output: 09 15 02 b1 4d 0d c8 45 91 86 66 88 e8 df 52 5f f6 92 c3 07 a5 f5 59 ba 72 b6 f8

0d c9 f0 5d 53

A.2 Authenticated Encryption Mode of sLiSCP

sLiSCP-192/80.
Key: 10 10 10 10 10 10 10 10 10 10

Nonce: 44 44 44 44 44 44 44 44 44 44

AD: 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66

Message: 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88

Ciphertext: 89 a8 37 38 62 05 d9 a6 2f f2 05 be c7 e1 ef 91

Tag: 67 f3 d8 4b 54 a0 83 d5 2e ad

sLiSCP-192/112.
Key: 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Nonce: 44 44 44 44 44 44 44 44 44 44

AD: 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66

Message: 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88

Ciphertext: 93 26 5d 94 50 9b bd 1a 3c 26 1d ee 9e d5 7a fe

Tag: 1e d4 e4 9b 46 87 87 a5 8f 06 be 8b b5 68

sLiSCP-256/128.
Key: 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Nonce: 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44

AD: 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66

Message: 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88

Ciphertext: 77 3f c8 0b d0 6c 21 28 f6 cc 4c be d8 0b 15 0e

Tag: 77 68 fc a3 b5 7e 8e 2c c0 a7 7b 1e 07 55 1e 80

A.3 Hash Mode of sLiSCP

sLiSCP-192. Rate r′ = 32
IV: 50 20 20

Message (M): 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88

Hash value H(M): aa 5c 69 05 0c 39 26 58 5e 97 45 f0 74 38 7c ec cc 67 26 f3

sLiSCP-256. Rate r′ = 32
IV: 60 40 20

Message (M): 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88

Hash value H(M): 52 2a d6 ba e2 3c 06 a8 84 7a d2 ad ec 88 90 ca 96 7a f5 62 28 50 46 a8

sLiSCP-256. Rate r′ = 64
IV: 60 40 40

Message (M): 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88

Hash value H(M): c5 14 1f 85 71 d1 36 66 b9 a9 61 ef 0f c9 09 04 df be 10 64 f9 9b 9d 7a
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