
Bit-Sliding: A Generic Technique for Bit-Serial

Implementations of SPN-based Primitives

Applications to AES, PRESENT and SKINNY

Jérémy Jean1, Amir Moradi2, Thomas Peyrin3,4, and Pascal Sasdrich2

1 ANSSI Crypto Lab, Paris, France
Jeremy.Jean@ssi.gouv.fr

2 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany
{Firstname.Lastname}@rub.de

3 Temasek Laboratories, Nanyang Technological University, Singapore

4 School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

Thomas.Peyrin@ntu.edu.sg

Abstract. Area minimization is one of the main efficiency criterion for lightweight encryption
primitives. While reducing the implementation data path is a natural strategy for achieving this
goal, Substitution-Permutation Network (SPN) ciphers are usually hard to implement in a bit-serial
way (1-bit data path). More generally, this is hard for any data path smaller than its Sbox size,
since many scan flip-flops would be required for storage, which are more area-expensive than regular
flip-flops.
In this article, we propose the first strategy to obtain extremely small bit-serial ASIC implementations
of SPN primitives. Our technique, which we call bit-sliding, is generic and offers many new interesting
implementation trade-offs. It manages to minimize the area by reducing the data path to a single
bit, while avoiding the use of many scan flip-flops.
Following this general architecture, we could obtain the first bit-serial and the smallest implementation
of AES-128 to date (1563 GE for encryption only, and 1744 GE for encryption and decryption with
IBM 130nm standard-cell library), greatly improving over the smallest known implementations (about
30% decrease), making AES-128 competitive to many ciphers specifically designed for lightweight
cryptography. To exhibit the generality of our strategy, we also applied it to the PRESENT and SKINNY

block ciphers, again offering the smallest implementations of these ciphers thus far, reaching an area
as low as 1054 GE for a 64-bit block 128-bit key cipher. It is also to be noted that our bit-sliding
seems to obtain very good power consumption figures, which makes this implementation strategy a
good candidate for passive RFID tags.

Key words: Bit-serial implementations, bit-slide, lightweight cryptography, AES,
SKINNY, PRESENT.

1 Introduction

Due to the increasing importance of pervasive computing, lightweight cryptography has
attracted a lot of attention in the last decade among the symmetric-key community. In
particular, we have seen many improvements in both primitive design and their hardware
implementations. We currently know much better how a lightweight encryption scheme
should look like (small block size, small nonlinear components with little hardware cost,
very few or even no XORs gates for the linear layer, etc.) and the quality of their hardware
implementations has grown alongside.

Lightweight cryptography can have different meanings depending on the applications and
the situations. For example, for passive RFID tags, power consumption is very important,
and for battery-driven devices energy consumption is a top priority. Power and energy



consumption depend on both the area and throughput of the implementation. In this
scenario, so-called round-based implementations (where an entire round of the cipher is
computed at every clock cycle) are usually the most efficient trade-offs with regards to these
metrics, since they require only a few cycles to compute while guaranteeing a reasonable
area cost. For example, the tweakable block cipher SKINNY [5] was recently introduced
with the goal of reaching the best possible efficiency for round-based implementations.

Yet, for the obvious reason that many lightweight devices are very strongly constrained,
one of the most important measurement remains simply the implementation area, regardless
of the throughput. It was estimated in 2005 that only a maximum of 2000 GE can be
dedicated to security in an RFID tag [18]. While these numbers might have evolved
a little since then, it is clear that area is a key aspect when designing/implementing
a primitive. In that scenario, round-based implementations are far from being optimal
since the data path is very large. In contrast, the serial implementation strategy tries to
minimize the data path to reduce the overall area (smaller sub-components have to be
implemented when compared to the round-based strategy), at the expense of a penalty on
the throughput. Some primitives even specialized for this type of implementation (e.g.,
LED [14], PHOTON [13]), with a linear layer crafted to be cheap and easy to perform in a
serial way.

In 2013, the National Security Agency (NSA) published two new ciphers [4], SIMON
and SPECK, targeting very low-area implementations, the former being tuned for hardware
implementations while the latter is designed for software realizations. SIMON is based on
a simple Feistel construction with just a few rotations, ANDs and XORs to build the
internal function. The authors showed that SIMON’s simplicity easily allows many hardware
implementation trade-offs with regards to the data path, going as low as a bit-serial
implementation, i.e., a 1-bit data path.

For Substitution-Permutation Network (SPN) primitives, as used in the block ciphers
AES [11] or PRESENT [6], the situation is more complex. While they can usually provide more
confidence concerning their security (it is usually easier to provide good linear/differential
security bounds for SPN ciphers), they are known to be harder to implement in a bit-serial
way. To the best of the authors’ knowledge, as of today, there is no bit-serial implementation
of an SPN cipher. The reason for that pertains to the structure of SPN constructions,
which are naturally organized around their Sbox and linear layers. While this construction
offers efficient and easy implementation trade-offs, they only work up to the Sbox size
level. Below that level, it seems nontrivial to build an architecture where the gain in area
due to data path reduction is not annihilated by the many multiplexers required for such
a trade-off. Thus, there remains a gap to bridge between SPN primitives and ciphers with
a general SIMON-like structure.

Our Contributions. In this article, we provide the first general bit-serial Application-
Specific Integrated Circuit (ASIC) implementation strategy for SPN ciphers. Our technique,
that we call bit-sliding, allows implementations to use small data paths, while significantly
reducing the number of costly scan flip-flops (FF) used to store the state and key bits.

Although our technique mainly focuses on bit-serial implementations, i.e., a 1-bit data
path, it easily scales and supports many other trade-offs, e.g., data paths of 2 bits, 4 bits,
etc. This agility turns to be very valuable in practice, where one wants to map the best
possible implementation to a set of constraints combining a particular scenario and specific
devices.

2



We applied our strategy to AES, and together with other minor implementation tricks,
we obtained extremely small AES-128 implementations on ASIC: only 1563 Gate Equivalent
(GE) for encryption (incl. 75% for storage), and 1744 GE for encryption and decryption
using IBM 130nm library (incl. 67% for storage).5 By comparison, using the same library,
the smallest ASIC implementation of AES-128 previously known requires 2182 GE for
encryption [21] (incl. 64% of storage), and 2413 GE for encryption and decryption [3]
(incl. 55% of storage).6 Our results show that AES-128 could almost be considered as a
lightweight cipher.

Since our strategy is very generic, we also applied it to the cases of PRESENT and
SKINNY, again obtaining the smallest known implementations of these block ciphers. More
precisely, for the 64-bit block 128-bit key versions and using the IBM 130nm library, we
could reach 1065 GE for PRESENT and 1054 GE for SKINNY. For comparison, the previously
smallest implementation of PRESENT-128 reaches 1230 GE in [31] using the same library.
Our work shows that the gap between the design strategy of SIMON and a classical SPN is
smaller than previously thought, as SIMON can reach 958 GE for the same block/key sizes
on the same library.

In terms of power consumption, it turns out that bit-sliding provides good results
when compared to currently known implementation strategies. This makes it potentially
interesting for passive RFID tags for which power is a key constraint. However, as for
any bit-serial implementation, due to the many cycles required to execute the circuit,
the energy consumption figures will not be as good as one can obtain with round-based
implementations.

We emphasize that for fairness, we compare the various implementations to ours using
five standard libraries: namely, UMC 180nm, UMC 130nm, UMC 90nm, NanGate 45nm
and IBM 130nm. All the results and benchmarks using these libraries are provided in the
respective implementation sections of this article.

Organization of the Paper. In Section 2, we first analyze the problem of bit-serial
implementations for SPN ciphers and we propose the new bit-sliding strategy. In Section 3
we study the case of AES, while in Section 4 and Section 5, we handle PRESENT and SKINNY

respectively.

2 Bit-Sliding Implementation Technique

We describe in this section the conducting idea of our technique, which allows to significantly
decrease the area required to serially implement any SPN-based cryptographic primitive.
To clearly expose our strategy, we first describe the general structure of SPN primitives
in Section 2.1 and we recall the most common types of hardware implementation trade-
offs in Section 2.2. Then, in Section 2.3, we explain the effect of reducing the data
path of an SPN implementation, in particular how the choice of the various flip-flops
used for state storage strongly affects the total area. Finally, we describe our bit-sliding
implementation strategy in Section 2.4 and we tackle the problem of bit-serializing any
Sbox in Section 2.5. Applications of these techniques to AES-128, PRESENT and SKINNY

block ciphers are conducted in the subsequent sections of the paper. For completeness,
we provide in Section 2.6 a quick summary of previous low-area implementations of SPN
ciphers such as AES-128 and PRESENT.

5The same library used to benchmark SIMON area footprints in [4].
6We note that the 2400 GE reported in [21] are done on a different library, namely UMC 180nm. The numbers

we report here are obtained by re-synthesizing the code from [21] on IBM 130nm.

3



Optional Expansion Algorithmk

s0 S P . . . S P sr+1

k0 k1 kr−1 krf f

Figure 1: Iterated construction of a block cipher with an SP round function f .

2.1 Substitution-Permutation Networks

Before we describe the bit-sliding strategy, we introduce the notations that we use for
the SPN primitives. Even though our results apply to any SPN-based construction (block
cipher, hash function, stream cipher, public permutation, etc.), for simplicity of the
description, we focus on block ciphers.

A block cipher corresponds to a keyed family of permutations over a fixed domain,
E : {0, 1}k×{0, 1}n → {0, 1}n. The value k denotes the key size in bits, n the dimension of
the domain on which the permutation applies, and for each key K ∈ {0, 1}k, the mapping
E(K, •), that we usually denote EK(•), defines a permutation over {0, 1}n.

From a high-level perspective, an SPN-based block cipher relies on a round function f
that consists of the mathematical composition of a nonlinear permutation S and a linear
permutation P (see Figure 1), which can be seen as a direction application of Shannon’s
confusion (nonlinear) and diffusion (linear) paradigm [25].

From a practical point of view, the problem of implementing the whole cipher then
reduces to implementing the small permutations S and P , that can either be chosen for
their good cryptographic properties, and/or for their low hardware or software costs. In
most known ciphers, the nonlinear permutation S : {0, 1}n → {0, 1}n relies on an even
smaller permutation called Sbox, that is applied several times in parallel on independent
portions on the internal n-bit state. We denote by s the bit-size of these Sboxes. Similarly,
the linear layer often comprises identical functions applied several times in parallel on
independent portions on the internal state. We denote by l the bit-size of these functions.

2.2 Implementation Trade-offs

We usually classify ASIC implementations of cryptographic algorithms in three categories:
round-based implementations, fully unrolled implementations and serial implementations.
A round-based implementation typically offers a very good area/throughput trade-off,
by providing the cryptographic functionalities (e.g., encryption and decryption) for a
moderately low area and a reasonable throughput. The idea is this case consists in simply
implementing the full round function f of the block cipher in one clock cycle and to reuse
the circuit to produce the output of the cipher. In contrast, to maximize the throughput
of the cipher implementation, a fully unrolled implementation would implement all the
rounds at the expense of a much larger area, essentially proportional to the number of
rounds required by the cipher specifications (some ciphers have been designed specially to
satisfy such low-latency requirements, for instance PRINCE [7] or MANTIS [5]). Finally, the
focus of our article are serial implementations, for applications that require to minimize the
area as much as possible. Serial implementations trade throughput by only implementing
a small fraction of the round function f .

4



2.3 Data Path Reduction and Flip-Flops

From round-based to serial implementations, the data path is usually reduced. In the
case of SPN primitives, reducing this data path is natural as long as the application
independence of the various sub-components of the cipher (s-bit Sboxes and l-bit linear
functions) is respected. This is the reason why all the smallest known SPN implementations
are serial implementations with an s-bit data path (l being most of the time a multiple
of s). Many trade-offs lying between an s-bit implementation and a full round-based
implementation can easily be reached. For example, in the case of AES, depending on
the efficiency targets, one can trivially go from a byte-wise implementation, to a row- or
column-wise implementation, up to a full round-based implementation.

The data path reduction in an ASIC implementation offers area reduction at two
levels. First, it allows to reduce the number of sub-components to implement (n/s Sboxes
in the case of a round-based implementation versus only a single Sbox for a s-bit serial
implementation), directly reducing the total area cost. Second, it offers an opportunity
to reduce the use of scan flip-flops (scan FF), at the benefit of regular flip-flops (FF) for
storage. Scan FF contain a 2-to-1 multiplexer to select either a normal operation with the
data input or a scan operation with scan input. This scan feature allows to drive the flip-flop
data input with an alternate source of data, thus greatly increasing the possibilities for
the implementer about where the data navigates. In short: in an ASIC architecture, when
a storage bit receives data only from a single source, regular FF can be used. If another
source must potentially be selected, then a scan FF is required (with extra multiplexers in
case of multiple sources). However, the inner multiplexer comes at a non-negligible price,
as scan FF cost about 20-30% more GE than regular ones (see Table 1).

2.4 The Bit-Sliding Strategy

Because of the difference between scan FF and regular FF, when minimizing area is the
main goal, there is a natural incentive in trying to use as many regular FF as possible.
In other words, the data should flow in such a way that many storage bits only have a
single input source. This is hard to achieve with a classical s-bit data path, since the data
usually moves from all bits of an Sbox to all bits of another Sbox. Thus, the complex
wiring due to the cipher specifications impacts all the Sbox storage bits at the same time.
For example, in the case of AES, the ShiftRows operation forces most internal state storage
bits to use scan FFs.

This is where the bit-sliding strategy comes into play. When enabling the bit-serial
implementation by reducing the data path from s bits to a single bit, we make the data bits
slide. All the complex data wiring due to the cipher specifications becomes handled only by
the very first bit of the cipher state. Therefore, this first bit has to be stored in a scan FF,
while the other bits can simply use regular FF. Depending on the cipher sub-components,

Table 1: Comparison of the cost of regular and scan flip-flops in five different libraries.

UMC180 UMC130 UMC90 Ngate45 IBM130

GE GE GE GE GE

1-bit D FF 4.67 5.00 4.25 5.67 4.25

1-bit Scan FF 6.00 6.25 5.75 7.67 5.50

5



other state bits should also make use of scan FF, but the effect is obviously stronger as
the size of the Sbox grows larger.

We emphasize that minimizing the ratio of scan FF is really the relevant way to look at
the problem of area minimization of ASIC implementations. Most previous implementers
concentrated their efforts on the optimization of the ciphers sub-components. Yet, in the
case of lightweight encryption where implementations are already very optimized for area,
these sub-components represent a relatively small portion of the total area cost of the
primitive, in opposition to the storage costs. For example, for our PRESENT implementations,
the storage represents about 80-90% of the total area cost. For AES-128, the same ratio is
about 65-75%.

2.5 Bit-Serializing any Sbox

A key issue when going from an s-bit data path to a single bit data path, is to find a
way to implement the Sbox in a bit-serial way. For some ciphers, like PICCOLO [26] or
SKINNY [5], this is easy as their Sbox can naturally be decomposed into an iterative 1-bit
data path process. However, for most ciphers, this is not the case and we cannot assume
such a decomposition always exists.

We therefore propose to emulate this bit-serial Sbox by making use of s scan FFs to
serially shift out the Sbox output bits at each clock cycle, while reusing the classical s-bit
data path circuit of the entire Sbox to store its output.

Although the cost of this strategy is probably not optimal (extra regular FFs should
change to scan FF), we nevertheless argue that this is not a real issue since the overall
cost of this bit-serial Sbox implementation is very small when compared to the total area
cost of the entire cipher. Moreover, this strategy has the important advantage that it is
very simple to put into place and that it generically works for any Sbox.

2.6 Previous Serial SPN Implementations

Most of the existing SPN ciphers such as AES or PRESENT have been implemented using
word-wise serialization, with 4- or 8-bit data paths. For AES, after two small implementations
of the encryption core by Feldhofer et al. [12] in 2005 and Hämäläinen et al. [15] in 2006,
one can emphasize the work by Moradi et al. [21] in 2011, which led to an encryption-only
implementation of AES-128 in 2400 GE for the UMC 180nm standard-cell library. More
recently, a follow-up work by Banik et al. [2] added the decryption functionality, while
keeping the overhead as small as possible: they reached a total of 2645 GE on STM 90nm
library. According to our estimations (see Section 3), this implementation requires around
2760 GE on UMC 180nm, which therefore adds decryption to [21] for a small overhead of
about 15%. In an unpublished paper [3], Banik et al. further improved this to 2227 GE on
STM 90nm (about 2590 GE on UMC 180nm).

As for PRESENT, the first result appeared in the specifications [6], where the authors
report a 4-bit serial implementation using about 1570 GE on UMC 180nm. In 2008, Rolfes
et al. [23] presented an optimization reaching about 1075 GE on the same library, which
was further decreased to 1032 GE by Yap et al. [31].

Finally, we remark that bit-serial implementations of SKINNY and GIFT [27] have already
been reported, which are based on the work described in this article.

6



3 Application to AES-128

In this section, we apply the bit-sliding technique to the most commonly used block cipher,
AES-128. We first briefly recall the specifications of the cipher in Section 3.1, and then we
describe in Section 3.2 how one can reach optimized implementations of some of its building
blocks, namely the AES Sbox and the MixColumns transformation. Then, in Section 3.3,
we provide the details as well as results of the implementations of AES-128 for the circuit
providing encryption only, and the one supporting both encryption and decryption.

3.1 Specifications of AES-128

The Advanced Encryption Standard (AES) [11] is a Substitution-Permutation Network
that can accommodate three different key lengths: 128, 192, and 256 bits. In the following,
we only focus on AES-128, the version with 128-bit keys, and refer to the specifications
for more details about the larger variants. The 128-bit plaintext initializes the internal
state viewed as a 4× 4 matrix of bytes as values in the finite field GF(28), which is defined
via the irreducible polynomial x8 + x4 + x3 + x+ 1 over GF(2). Internally, the bytes are
considered in the ordering shown on Figure 2(b). Then, 10 rounds are applied to that
state, where each of them applies four operations (see Figure 2(a)) to the state matrix
(except the last round where we omit the MixColumns):

• AddRoundKey (AK) adds a 128-bit subkey to the state,
• SubBytes (SB) applies the same 8-bit to 8-bit invertible S-Box S in parallel on all 16

bytes of the state,
• ShiftRows (SR) shifts Row i left by i positions,
• MixColumns (MC) replaces each of the four column C of the state by M× C where M

is a constant 4× 4 maximum distance separable matrix over GF(28).

After the last round has been applied, a final subkey is added to the internal state to
produce the ciphertext. The key scheduling algorithm that produces the 11 subkeys used
in AES-128 can be found in [11].

3.2 Optimizations of AES Components

Since its standardization, the AES has received many different kind of contributions, from
cryptanalytic efforts to evaluate its security in various scenarios, to attempts to optimize
its implementations on many platforms. We review here the main results that we use in
our implementations, which specifically target two internal components of the AES: the
8-bit Sbox from SubBytes and the matrix multiplication applied in the MixColumns.

AK SB

S

x
x
x
x

SR

C ←M× C

x
x

x
x

MC

(a) An AES round applies MC ◦ SR ◦ SB ◦ AK to the state.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(b) Ordering.

Figure 2: Description of one AES round and the ordering of bytes in an internal state.

7



SubBytes. One crucial design choice of any SPN-based cipher lies in the Sbox and its
cryptographic strength. In the AES, Daemen and Rijmen chose to rely on the algebraic
inversion in the field GF(28) for its good resistance to classical differential and linear
cryptanalysis. Based on this strong mathematical structure, Satoh et al. in [24] used the
tower field decomposition to implement the field inversion using only 2-bit operations,
later improved by Mentens et al. in [20]. Then, in 2005, Canright reported a smaller
implementation of the combined Sbox and its inverse by enumerating all possible normal
bases to perform the decomposition, which resulted in the landmark paper [9]. In our serial
implementation supporting both encryption and decryption, we use this implementation.

However, when the inverse Sbox is not required, especially for inverse-free mode of
operations like CTR that do not require the decryption operation, the implementation cost
can be further reduced. Indeed, Boyar, Matthews and Peralta have shown in [8] that solving
an instance of the so-called Shortest Linear Program NP-hard problem yields optimized
AES Sbox implementations. In particular, they introduce a 115-operation implementation
of the Sbox, further refined to 113 logical operations in [28], which is, to the best of
our knowledge, the smallest known to date. We use this implementation (given fully
in Appendix B.1) in our encryption-only AES core, which allows to save 20-30 GE over
Canright’s implementation.

We should also refer to [29], where the constructed Sbox with small footprint needs
in average 127 clock cycles. The work has been later improved in [30], and the Sbox
module after at most 16 (in average 7) clock cycles finishes the operation. Regardless of
the vulnerability of such a construction to timing attacks [19], we could not use them in
our architecture due to their long latency.

MixColumns. Linear layers of SPN-based primitives have attracted lots of attention in
the past few years, mostly from the design point of view. Here, we are interested in finding
an efficient implementation of the fixed MixColumns transformation, which can either
be seen as multiplication by a 4 × 4 matrix over GF(28) or by a 32 × 32 matrix over
GF(2). For 8-bit data path, similar to previous works like [1, 2, 33], we have considered
the 32× 32 binary matrix to implement the MixColumns. An already-reported strategy
can implement it in 108 XORs, but we tried to slightly improve this by using a heuristic
search tool from [17], which yielded two implementations using 103 and 104 XORs, where
the 104-XOR one turned to be more area efficient.

3.3 Bit-Serial Implementations of AES-128 Encryption

We first begin by describing an implementation that only supports encryption, and then
complete it to derive one that achieves both encryption and decryption.

Data Path. The design architecture of our bit-serial implementation of AES-128 is shown
in Figure 3. The entire 128-bit state register forms a shift register, which is triggered
at every clock cycle. The white register cells indicate regular FFs, while the gray ones
represent scan FFs. The plaintext bits are serially fed from most significant bit (MSB)
down to least significant bit (LSB) of the Bytes 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7,
11, 15. In other words, during the first 128 clock cycles, first 8 bits (MSB downto LSB) of
plaintext Byte 0 and then that of Byte 4 are given till the 8 bits (MSB downto LSB) of
plaintext Byte 15.

The AddRoundKey is also performed in a bit serial form, i.e., realized by one 2-input
XOR gate. For each byte, during the first 7 clock cycles, the AddRoundKey result is fed

8



MC3

MC2

MC0

MC1

Ciphertext
Sbox

Plaintext

RoundKey

PolynotLSB

7

7

Byte 0 Byte 4 Byte 8 Byte 12

Byte 1

M
S

B

L
S

B

MC3

MC2

MC1

MC0

Figure 3: Bit-serial architecture for AES-128 (encryption only, data path).

into the rotating shift register, and at the 8th clock cycle, the Sbox output is saved at the
last 8 bits of the shift register and at the same time the rest of the state register is shifted.
Therefore, we had to use scan FFs for the last 8 bits of the state shift register (see Figure 3).
For the Sbox module, as stated before, we made use of the 113-gate description given
in [10] by Cagdas Calik. After 128 clock cycles, the SubBytes is completely performed.

The ShiftRows is also performed bit-serially. The scan FFs enable us to perform the
entire ShiftRows in 8 clock cycles. We should emphasize that we have examined two
different design architectures. In our design, in contrast to [2, 3, 21], the state register
is always shifted without any exception. This avoids extra logic to enable and disable
the registers. In [3], an alternative solution is used, where each row of the state register
is controlled by clock gating. Hence, by freezing the first row, shifting the second row
once, the third row twice and the forth row three times, the ShiftRows can be performed.
We have examined this fashion in our bit-serial architecture as well (see Figure 18 in
Appendix A). It allows us to turn 9 scan FFs to regular FFs, but it needs 4 clock gating
circuits and the corresponding control logic. For the bit-serial architecture, it led to more
area consumption. We discuss this architecture in Section 3.5, when we extend our serial
architecture to higher bit lengths.

For the MixColumns, we also provide a bit-serial version. More precisely, each column
is processed in 8 clock cycles, i.e., the entire MixColumns is performed in 32 clock cycles.
In order to enable such a scenario, when processing a column, we need to store the MSB
of all four bytes, which are used to determine whether the extra reduction for the xtime

(i.e., multiplication by 2 in GF(28) under AES polynomial) is required. The green cells
in Figure 3 indicate the extra register cells which are used for this purpose. The input of
the green register cells come from the 2nd MSB of column bytes. Therefore, these registers
should store the MSB one clock cycle before the operation on each column is started.
During the ShiftRows and at the 8th clock cycle of MixColumns on each column, these
registers are enabled. This enables us to fulfill our goal, i.e., always clocking the state
shift register. The bit-serial MixColumns circuit needs two control signals: Poly, which
provides the bit representation of the AES polynomial 0x1B serially (MSB downto LSB)
and notLSB, which enables xtime for the LSB.

Therefore, one full round of the AES is performed in 128 + 8 + 32 = 168 clock cycles.
During the last round, MixColumns is ignored, and the last AddRoundKey is performed

9



AddRow4Key

RoundKey

8

Byte 0M
S

B

L
S

B

Byte 4 Byte 8 Byte 12

Byte 1

AddRow1to3

7

Sbox

8

Rcon

Figure 4: Bit-serial architecture for AES-128 (encryption only, key path).

while the ciphertext bits are given out. Therefore, the entire encryption takes 9× 168 +
128 + 8 + 128 = 1776 clock cycles. Similar to [2, 3, 21], while the ciphertext bits are given
out, the next plaintext can be fed inside. Therefore, similar to their reported numbers, the
clock cycles required to fed plaintext inside are not counted.

Key Path. The key register is similar to the state register and is shifted one bit per
clock cycle, and gives one bit of the RoundKey to be used by AddRoundKey (see Figure 4).
The key schedule is performed in parallel to the AddRoundKey and SubBytes, i.e., in 128
clock cycles. In other words, while the RoundKey bit is given out the next RoundKey
is generated. Therefore, the key shift register needs to be frozen during ShiftRows and
MixColumns operations, which is done by means of clock gating. As shown in Figure 4, the
entire key register except the last one is made by regular FFs, which led to a large area
saving. During key schedule, the Sbox module, which is shared with the data path,7 is
required 4 times. We instantiate 7 extra scan FFs, those marked by green, which save 7 bits
of the Sbox output and can shift serially as well. It is noteworthy that 4 of such register
cells are shared with the data path circuit to store the MSBs required in MixColumns.8

At the first clock cycle of the key schedule, the Sbox is used and its output is stored in
the dedicated green register. It is indeed a perfect sharing of the Sbox module between
the data path and key path circuits. During every 8 clock cycles, the Sbox is used by
the key path at the first clock cycle and by the data path at the last clock cycle. During
the first 8 clock cycles, the Sbox output S(Byte13) is added to Byte0, which is already
the first byte of the next Roundkey. Note that the RoundConstant Rcon is also provided
serially by the control logic. During the next 16 clock cycles, by means of AddRow4 signal,
S(Byte13)⊕Byte0⊕Byte4 and S(Byte13)⊕Byte0⊕Byte4⊕Byte8 are calculated, which are
the next 2 bytes of the next RoundKey. The next 8 clock cycles, Byte12 is fed unchanged
into the shift register, that is required to go through the Sbox later. This process is
repeated 4 times and at the last 8 clock cycles, i.e., clock cycles 121 to 128, by means

7Eight 2-to-1 MUX at the Sbox input are not shown.
8It requires four 2-to-1 MUX which are not shown.

10



MC3

MC2

MC1

Output

Sbox
Sbox-1

Input77

Byte 8 Byte 12

Byte 1

MSB

7

88

L
S

B

LSB

RoundKey

Byte 4M
S

B

L
S

B

MC0

8

Figure 5: Bit-serial architecture for AES-128 (encryption and decryption, data path).

of AddRow1to3, the last XORs are performed to make the Bytes 12, 13, 14, and 15 of
the next RoundKey. During the next 8+32 clock cycles, when the data path circuit is
performing ShiftRows and MixColumns, the entire key shift register is frozen.

3.4 Bit-Serial AES-128 Encryption and Decryption Core

Data Path. In order to add decryption, we slightly changed the architecture (see Figure 5).
First, we replaced the last 7 regular FFs by scan FFs, where Byte0 is stored. Then, as
said before, we made use of Canright AES Sbox [9].

The encryption functionality of the circuit stays unchanged, while the decryption needs
several more clock cycles. After serially loading the ciphertext bits, at the first 128 clock
cycles, the AddRoundKey is performed. Afterwards, the ShiftRows−1 should be done. To
do so, we perform the ShiftRows three times since ShiftRows3 = ShiftRows−1. This helps
us to not modify the design architecture, i.e., no extra scan FF or MUX. Therefore, the
entire ShiftRows−1 takes 3× 8 = 24 clock cycles. The next SubBytes−1 and AddRoundKey
are performed at the same time. For the first clock cycle, the Sbox inverse is stored in
7 scan FFs, where Byte0 is stored, and the same time the XOR with the RoundKey bit
and the shift in the sate register happen. In the next 7 clock cycles, the AddRoundKey
is performed. This is repeated 16 times, i.e., 128 clock cycles. For the MixColumns−1, we
followed the principle used in [3] that MixColumns3 = MixColumns−1. In other words, we
repeat the MixColumns process explained above 3 times, in 3× 32 = 96 clock cycles. Note
that for simplicity, the MixColumns circuit is not shown in Figure 5. At the last decryption
round, first the ShiftRows−1 is performed, in 24 clock cycles, and afterwards, when the
SubBytes−1 and AddRoundKey are simultaneously performed, the plaintext bits are given
out. Therefore, the entire decryption takes 128 + 9× (24 + 128 + 96) + 24 + 128 = 2512
clock cycles. Note that the state register, similar to the encryption-only variant, is always
active.

Key Path. Enabling the inverse key schedule in our bit-serial architecture is a bit more
involved than in the data path. According to Figure 6, we still make use of only one
scan FF and the rest of the key shift register is made by regular FFs. We only extended the

11



AddRow4Key

RoundKey

8

Byte 0M
S

B

L
S

B

Byte 4 Byte 8 Byte 12

Byte 1

AddRow1to3

8

Sbox

8

Rcon

MSB

7
LSB

7

AddInvnotLastByte

Figure 6: Bit-serial architecture for AES-128 (encryption and decryption, key path).

7 green scan FFs to 8. At the first 8 clock cycles, Byte1 ⊕ Byte5 is serially computed and
shifted into the green scan FFs, and at the 8th clock cycle the entire 8-bit Sbox output is
stored in the green scan FFs. Within the next 16 clock cycles, the key state is just rotated.
During the next 8 clock cycles, the green scan FFs are serially shifted out and its XOR
results with Byte0 is stored. At the same time, by means of AddInv signal, Byte0 ⊕Byte4,
Byte4 ⊕ Byte8, and Byte8 ⊕ Byte12 are serially computed, that are the first 4 bytes of the
next RoundKey upwards. For sure, RoundConstant is also provided (serially) in reverse
order (by the control logic). This process is repeated 4 times with one exception. At the
last time, i.e., at Clock cycles 97 to 104, by means of the notLastByte signal, the XOR is
bypassed when the green scan FFs are serially loaded. This is due to the fact that such
an XOR has already been performed. Hence, the key scheduleinv takes again 128 clock
cycles, and is synchronized with the AddRoundKey of the data path circuit. During other
clock cycles, where ShiftRows−1 and MixColumns−1 are performed, the key shift register is
disabled.

3.5 Extension to Higher Bit Lengths

We could relatively easily extend our design architecture(s) to higher bit lengths. More
precisely, instead of shifting 1 bit at every clock cycle, we can process either 2, 4, or 8 bits.
The design architectures stay the same, but every computing module provides 2, 4, or
8 bits at every clock cycle. More importantly, the number of scan FFs increases almost
linearly. For the 2-bit version, the 9 scan FFs that enabled ShiftRows must be doubled. Its
required number of clock cycles is also half of the 1-bit version, i.e., 888 for encryption
and 1256 for decryption.

However, we observed that in 4-bit (resp. 8-bit) serial version almost half (resp. full) of
the FFs of the state register need to be changed to scan FF, that in fact contradicts our
desire to use as much regular FFs as possible instead of scan FFs. In these two settings
(4- and 8-bit serial), we have achieved more efficient designs if the ShiftRows is realized

12



Table 2: Area and latency of AES-128 implementations for a data path of δ bits.

Func. δ UMC180 UMC130 UMC90 Ngate45 IBM130 Latency Ref.

bits GE GE GE GE GE Cycles

NAND µm2 9.677 5.120 3.136 0.798 5.760

Enc 1 1727 1902 1596 1982 1560 1776 New

Enc 2 1796 1992 1667 2054 1625 888 New

Enc 4 1920 2168 1784 2146 1731 520 New

Enc 8 2112 2360 1968 2337 1912 282 New

Enc 8 2400 3574 2292 2768 2182 226 [21]

Enc/Dec 1 1917 2142 1794 2171 1738 1776/2512 New

Enc/Dec 2 2028 2269 1916 2286 1855 888/1256 New

Enc/Dec 4 2212 2509 2097 2436 2069 520/736 New

Enc/Dec 8 2416 2713 2329 2621 2293 282/354 New

Enc/Dec 8 2577 2893 2332 2793 2402 246/326 [3]

Enc/Dec 8 2772 3233 2639 3105 2503 226/226 [2]

by employing 4 different clock gating, each of which for a row in state shift register. This
allows us to avoid replacing 36 (resp. 72) regular FFs by scan FF. The design architecture
for encryption-only case is shown in Figure 18 in Appendix A. This architecture forces
us to spend 4 more clock cycles during MixColumns since not all state registers during
ShiftRows are shifted, and the MSB for the MixColumns cannot be saved beforehand.
Therefore, for the 4-bit version, the AddRoundKey and SubBytes are performed in 32 clock
cycles, the ShiftRows in 6 cycles, and the MixColumns in 4 × (1 + 2) = 12 cycles, hence
9× (32 + 6 + 12) + 32 + 6 + 32 = 520 clock cycles for the entire encryption.

For the decryption, the ShiftRows−1 does not need to be performed as ShiftRows3,
and it can also be done in 6 clock cycles. However, the MixColumns−1 still requires to
apply 3 times MixColumns, i.e., 3 × 12 = 36 cycles. Thus, the entire decryption needs
32 + 9× (6 + 32 + 36) + 6 + 32 = 736 clock cycles.

In the 8-bit serial version, since the Sbox is required during the entire 16 clock cycles
of SubBytes, we had to disable the state shift register 4 times to allow the Sbox module
to be used by the key schedule. Since MixColumns now computes the entire column in 1
clock cycle, there is no need for extra registers (as well as clock cycles) to save the MSBs.
Therefore, AddRoundKey and SubBytes need 20 clock cycles, ShiftRows 3 clock cycles, and
MixColumns 4 clock cycles, i.e., 9× (20 + 3 + 4) + 20 + 3 + 16 = 282 clock cycles in total.
The first step of decryption is AddRoundKey, but at the same time the next RoundKey
should be provided. In order to simplify the control logic, the first sole AddRoundKey also
takes 20 clock cycles, and MixColumns−1 12 clock cycles. Hence, the entire decryption is
performed in 20 + 9× (3 + 20 + 12) + 3 + 16 = 354 clock cycles.

Compared to [2,3,21], our design is different with respect to how we handle the key
schedule. For example, our entire key state register needs only 8 scan FFs; we could reduce
the area, but with a higher number of clock cycles. It is noteworthy that we have manually
optimized most of the control logic (e.g., generation of Rcon) to obtain the most compact
design.

13



Table 3: Power consumption of AES-128 implementations @ 100 KHz.

Func. δ UMC180 UMC130 UMC90 Ngate45 IBM130 Ref.

bits µW µW µW µW µW

Enc 1 3.510 0.845 0.666 100.2 0.823 New

Enc 2 3.640 0.904 0.699 104.6 0.842 New

Enc 4 4.040 1.040 0.800 111.4 0.892 New

Enc 8 3.990 1.020 0.784 122.2 0.874 New

Enc 8 6.240 1.270 0.768 136.6 0.984 [21]

Enc/Dec 1 3.670 0.944 0.713 112.1 0.852 New

Enc/Dec 2 3.920 0.972 0.761 119.8 0.922 New

Enc/Dec 4 4.590 1.200 0.942 130.4 1.070 New

Enc/Dec 8 4.490 1.170 0.945 142.3 1.070 New

Enc/Dec 8 3.560 0.915 0.645 139.1 0.753 [3]

Enc/Dec 8 5.860 1.280 0.832 160.2 1.110 [2]

3.6 Results

The synthesis result of our designs under five different standard cell libraries are shown
in Table 2. The corresponding power consumption values – estimated at 100 KHz – are also
shown in Table 3 We have also shown that of the designs reported in [2,3,21]. It should be
noted that we had access to their designs and did the syntheses by our considered libraries.
It can be seen that in all cases our constructions outperform the smallest designs reported
in literature. The numbers listed in Table 2 obtained under the highest optimization level
(for area) of the synthesizer. For all designs (including [2, 3, 21]), we further forced the
synthesizer to make use of the dedicated scan FFs of the underlying library when needed.
We should highlight that our target is the smallest footprint, and our designs would not
provide better results if area×time is considered as the metric.

Based on the results presented in Table 2, it can be seen that comparing the area
based on GE in different libraries does not make much sense. For instance, the synthesis
results reported in [2, 3] that are based on STM 65nm and STM 90nm libraries cannot
be compared with that of another design under a different library. Indeed, such a huge
difference comes from the definition of GE, i.e., the the relative area of the NAND gate
compared to the other gates: an efficient NAND gate (compared to the other gates in
the library) will yield larger GE numbers than an inefficient one. The area of the NAND
gate under our considered libraries are also listed in Table 2. The designs synthesized by
Nangate 45nm show almost the highest GE numbers, that is due to its extremely small
NAND gate. More interestingly, using IBM 130nm, it shows the smallest GE numbers
while the results with UMC 130nm (with the same technology size) are amongst the largest
ones. One reason is the larger NAND gate in IBM 130nm.

4 Application to PRESENT

4.1 Specifications of PRESENT

The block cipher PRESENT has been introduced at CHES 2007 in [6], and in 2012, it became
an ISO/IEC standard for lightweight cryptography (ISO/IEC 29192-2:2012). There are

14



two variants of PRESENT that only differ by the key size: either 80 or 128 bits. In both
cases, the state size consists of 64 bits. The round function adopts a simple SP structure
(see Figure 7), where the S layer applies the same 4-bit Sbox in parallel to 16 independent
nibbles of the internal state, and the P layer simply reorders the 64 bits. In each round,
a 64-bit subkey is injected into the state by means of bitwise XORs, for a total of 31
rounds. The key scheduling algorithm essentially relies on a rotating 80- or 128-bit register:
at every step, the register is clocked by 61 positions to the left, the 4 leftmost bits are
updated by the Sbox, and the 5-bit round counter is XORed to the register. We refer the
interested reader to [6] for more details.

S S S S S S S S S S S S S S S S

ki

Figure 7: One round of PRESENT: The internal state is first updated by the 64 subkey
bits, then the Sbox S is applied 16 times in parallel and then the bits are permuted.

4.2 Optimization of PRESENT Components

Substitution Layer. To help the synthesizer reach an area-optimized implementation,
we use the tool described in [17] to look for an efficient implementation of the PRESENT

Sbox. We have found several ones that allow to significantly decrease the area of the Sbox,
in comparison to a LUT-based VHDL description: namely, while the LUT description
yields an area equivalent to 60-70 GE, our Sbox implementation decreases it to about
20-30 GE. In our serial implementations described below, we have selected the PRESENT

Sbox implementation described in [17] using 21.33 GE on UMC 180nm In our serial
implementations described below, we have selected the PRESENT Sbox implementation
described in [17] using 21.33 GE on UMC 180nm (see Algorithm 2 in Appendix B.2),
which is the world’s smallest known implementation to date of the PRESENT S-box, about
1 GE smaller than the one provided in [32].

Permutation Layer. The diffusion layer of PRESENT is designed as a bit permutation
that is cheap and efficient in hardware, particularly for round-based architectures since
then the permutation simply breaks down to wired connections. However, for serialized
architectures, such as for our bit-sliding technique, the bit permutation seems to be an
obstacle. Although the permutation layer has some underlying structure, adapting it for
a bit-serial implementation seems nontrivial. However, we present in the following an
approach that allows to decompose the permutation into two independent operations
that can be easily performed in a bit-serial fashion. The first operation performs a local
permutation at the bit-level, whereas the second operation performs a global permutation
at the nibble-level, comparable to ShiftRows in the AES.

15



Local Permutation. Essentially, the local permutation sorts all bits of a single row of the
state (in its matrix representation) according to their significance as show in Figure 8.
Hence, given four nibbles 0,1,2,3 (with bit-order: MSB downto LSB), the first nibble will
contain the most significant bits (in order 0,1,2,3) after the sorting operation, whereas
the fourth nibble will hold the least significant bits. Fortunately, this operation can be
applied to each row individually and independently. As a direct consequence, only one row
of the state register needs to implement the local permutation, which can then be applied
to the state successively.

M
SB

L
S
B

M
SB

L
S
B

M
SB

L
S
B

M
SB

L
S
B

M
SB

M
SB

M
SB

M
SB

L
S
B

L
S
B

L
S
B

L
S
B

SORT

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 8: Local Permutation (SORT). Re-ordering of bits according to their significance.

Global Permutation. After the local permutation has been performed on all rows of the
state, all bits are sorted according to their significance and, for instance, the first column
will contain all MSBs. However, for a correct implementation of the permutation layer, the
bits should be sorted row-wise instead of column-wise. Therefore, the global permutation
restores the correct ordering by rearranging the nibbles as shown in Figure 9, which can
also be visualized as a mirroring of the state to its diagonal. Then, either by swapping two
nibbles or by holding a nibble in its position, the global permutation can be mapped to
structures that are very similar to the ShiftRows operation of AES or SKINNY and we can
adapt some design strategies.

SWAP

13 14 151213 14 151213 14 151213 14 1512

9 10 1189 10 1189 10 1189 10 118

5 6 745 6 745 6 745 6 74

1 2 301 2 301 2 301 2 30 13 14 15129 1185 6 741 2 30 10

13 14 15129 1185 6 741 2 30 10

13 14 15129 1185 6 741 2 30 10

13 14 15129 1185 6 741 2 30 10

Figure 9: Global Permutation (SWAP). Column- and row-wise re-ordering of nibbles.

4.3 Bit-Serial Implementations of PRESENT

Data Path. We illustrate in Figure 10 the basic architecture of our bit-serial implemen-
tation of PRESENT. Similar to the bit-serial AES design described in Section 3, the 64-bit
state of PRESENT is held in a shift register and shifted at every clock cycle. Again, the
white cells represent regular FFs, while the gray ones indicate the positions of scan FFs.
During the initialization phase, the plaintext is provided starting from its MSB to its LSB
of each nibble in the order of 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15. Hence, each
nibble is provided within 4 clock cycles, starting from MSB to LSB and the entire plaintext
is stored in the state register after 64 clock cycles starting from Nibble0 to Nibble15.

Similar to our bit-serial AES implementation, the addition of the round key is performed
in a bit serial fashion using a single 2-input XOR gate. However, since PRESENT has a 64-bit

16



state of 16 nibbles, only during the first 3 clock cycles, the result of the XOR-operation
is fed into the state register. At the 4th clock cycle, the Sbox is applied and the result
is saved in the last 4 bits of the state register (using the indicated scan FFs) while the
remaining part of the state is shifted.

At the 16th clock cycle, the first stage of the permutation (local permutation) is applied
to the last row in parallel to the 4th Sbox operation. The red lines in Figure 10 indicate
the data flow that realizes the sorting of the bits according to their significance. Since this
operation could be interleaved with the continuous shifting of the state register, we could
save a few scan FFs for the last row.

After 64 clock cycles, the round key has been added, all 16 Sboxes have been evaluated,
and each row has been sorted according to the local permutation. To finalize the round
computation, the second stage of the permutation (global permutation) is performed in 4
clock cycles by means of the blue lines in Figure 10. In total, a full round of the cipher
is performed in 4 × 16 + 4 = 68 clock cycles. After 31 rounds (2108 clock cycles), the
ciphertext is returned as the result of the final key addition, whereby the next plaintext
can be loaded into the state register simultaneously.

Key Path. The state register of the key update function is implemented as shift register,
which is shifted and rotated one bit per clock cycle, similar to the state of the data
path (see Figure 11 for the 80-bit version, the 128-bit version is shown in Figure 19
in Appendix A). At each clock cycle, one bit of the round key is extracted and given to
the data path module.

Besides, in order to derive the next round key, the current state has to be rotated
by 61 bits to the left which can be done in parallel to the round key addition and Sbox
computation of the data path. However, these operation takes 64 clock cycles in total,
and the rotation of the round key needs only 61 clock cycles. Hence, we have to stop
the shifting of the key register using a gated clock signal. However, since we would loose

M
S

B

L
S

B

Sbox

Input

Output

RoundKey

Nibble 1 Nibble 2 Nibble 3

Nibble 4

2

2

4

3

1

3

Figure 10: Bit-serial architecture for PRESENT (encryption only, data path).

17



M
S

B

L
S

B

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4

Byte 5 Byte 6 Byte 7 Byte 8 Byte 9

RoundConst

Key

Sbox

44

55

RoundKey

Figure 11: Bit-serial architecture for PRESENT-80 (encryption only, key path).

synchronization between key schedule and round function for the last 3 bits of the round
key, we have to partition the key register into a higher (7 bits) and a lower part (73
bits). Then, after 61 clock cycles, the lower part is stopped, while the higher part still is
rotated using an additional scan FF (see blue line in Figure 11) to provide the remaining
3 bits of the round key. Then, while the data path module performs the finalization of the
permutation layer, the remaining 4 bits of the higher part are rotated to restore the correct
order of the bits. In addition, during the last clock cycle, the round constant is added as
well as the Sbox is applied (which is shared with the data path module9). Eventually, the
key register holds the next round key and is synchronized with the round function in order
to continue with the next round.

4.4 Extension to Higher Bit Lengths

In this section, we discuss necessary changes of our architectures to extend and scale
the data path to higher bit lengths in order to increase the throughput and decrease the
latency.

2-Bit Serial. Expansion of our 1-bit serial data path to a 2-bit serial one is straightforward.
Essentially, every component is adapted such that it provides 2 bits at a time, i.e., the
state register is shifted for two bits per clock cycle, while the Sbox is applied every 2
clock cycles. Similarly, the local permutation is performed every 8 clock cycles, and the
finalization of the permutation takes another 2 clock cycles. Hence, an entire round is
computed within 16× 2 + 2 = 34 clock cycles, which is exactly half of the clock cycles of
the 1-bit serial architecture.

Unfortunately, adaption of the key path to a 2-bit serial one is more complex. In
particular the rotation of 61 bits is difficult since shifting 2 bits at a time does not allow a
rotation of an odd number of bits. In order to overcome this issue, we decided to distinguish
between odd and even rounds. During an odd round we use a rotation of 60 bits, while
during even rounds the key state is rotated by 62 bits. However, this approach implies
the need for additional multiplexers in order to select the correct round key as well as the
correct positions to inject the round constant and the Sbox computation. Apart from that,
the key state register is shifted 2 bits per clock cycle, still uses a gated clock signal for
the lower part and a rotation of the most significant bits (eight or six, depending on the
round) for synchronization.

9Again, necessary 2-to-1 MUX at the inputs are not shown.

18



4-Bit Serial. Further, we considered extending the data path to 4 bits using our bit-
sliding technique and replacing all FFs of the state registers by scan FFs. Unfortunately,
the bit permutation layer prevents an efficient scaling of our approach, which would
result in an architecture that is even larger than the results reported in the literature
(for nibble-serial implementations). In particular, the decomposition of the permutation
layer, that allowed us an efficient realization for 1- and 2-bit serial data paths, is rather
inefficient for nibble-serial structures. Although the global permutation could be realized
using only scan FFs for the entire state, the local permutation would require additional
multiplexers for the last row of the state. Eventually, performing the entire permutation
in a single clock cycle after the substitution layer (as it is done in existing nibble-serial
architectures), would be possible solely using scan FFs and without the need of further
multiplexers. Hence, although our bit-sliding approach offers outstanding results for 1-
and 2-bit serial data paths, it does not scale for larger structures and classical approaches
appear to be more efficient.

4.5 Results

In Table 4 and Table 5, we report synthesis results and estimated power consumption of
our designed architectures using the aforementioned five standard cell libraries based on
various technologies (from 45nm to 180nm). We also report results for the design published
in [31] which is, to the best of our knowledge, the smallest PRESENT architecture reported
in the literature. We emphasize again that we had access to the design sources from [31]
and performed the syntheses using our considered libraries with the same set of parameters
as for our architectures. It can be seen that our constructions outperform the smallest
designs reported in the literature in terms of area.

Table 4: Area and latency for encryption-only PRESENT implementations for a data path
of δ bits.

δ UMC180 UMC130 UMC90 Ngate45 IBM130 Latency Ref.

bits GE GE GE GE GE Cycles

PRESENT-80 1 934 1006 872 1113 847 2252 New

PRESENT-80 2 1004 1096 949 1191 913 1126 New

PRESENT-80 4 1032 1088 990 1279 942 516 [31]

PRESENT-128 1 1172 1268 1090 1397 1065 2300 New

PRESENT-128 2 1265 1366 1189 1499 1150 1150 New

PRESENT-128 4 1344 1416 1289 1672 1230 528 [31]

5 Application to SKINNY

5.1 Specifications of SKINNY

In 2016, the SKINNY family of lightweight tweakable block ciphers has been introduced at
CRYPTO 2016 in [5], in an attempt to provide a lightweight alternative to the two ciphers
from the NSA, namely SIMON and SPECK.

19



Table 5: Power consumption of encryption-only PRESENT implementations for a data path
of δ bits @ 100KHz.

δ UMC180 UMC130 UMC90 Ngate45 IBM130 Ref.

bits µW µW µW µW µW

PRESENT-80 1 1.82 0.44 0.32 55.43 0.43 New

PRESENT-80 2 2.05 0.47 0.33 59.33 0.45 New

PRESENT-80 4 3.13 0.53 0.33 59.69 0.49 [31]

PRESENT-128 1 2.41 0.59 0.43 69.26 0.57 New

PRESENT-128 2 2.61 0.61 0.44 74.92 0.58 New

PRESENT-128 4 4.00 0.67 0.53 77.54 0.71 [31]

One of the main differences between SKINNY and traditional block ciphers is the
presence of a tweak input following the TWEAKEY framework [16], which allows for
easy instantiation of the primitive into higher-level mode of operations. We recall that
in SKINNY, key and tweak behave similarly with respect to the implementation, and are
collectively refer to as tweakey. For the rest of this section, we therefore omit the distinction
between key and tweak material.

In the SKINNY family, there are two main variants with an internal state of either
n = 64 or n = 128 bits, each accepting tweakey lengths t of n, 2n or 3n bits. For each
variant, Table 6 recalls the number of round functions applied.

Table 6: Number of rounds for SKINNY-n-t, with n-bit internal state and t-bit tweakey
state.

Tweakey size t

Block size n n 2n 3n

64 32 rounds 36 rounds 40 rounds

128 40 rounds 48 rounds 56 rounds

For both state dimensions, the structure of the round function is the same (see Figure 12):
it adopts an SP network with an s-bit Sbox, with the word size s = 4 for n = 64, and
s = 8 for n = 128. The 4-bit Sbox is almost the same one as in the PICCOLO lightweight
cipher [26], whose structure is mimicked to build the 8-bit Sbox (see [5] for more details).
The ShiftRows used in SKINNY is similar to the one from AES, but with different rotation
offsets, and the MixColumns multiplies the internal state by a 4× 4 binary matrix that has
been chosen for its low implementation cost. Unlike traditional SPN-based ciphers, the
subkeys are only injected into the top half of the state, after the application of the Sbox.

Finally, the tweakey scheduling algorithm updates the t-bit register independently on
the up to t/n ∈ {1, 2, 3} possible parts, denoted TK1, TK2 and TK3. As shown on Figure 13,
each TK1, TK2 or TK3 is also viewed as a 4×4 state of either 4- or 8-bit words. The tweakey
arrays are updated by applying a permutation PT that rearranges the 16 words, and then
the words located in the top half are updated by a constant LFSR (for TK1, no LFSR

20



SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Figure 12: SKINNY round function.

is applied). The round keys are extracted from the first and second row, prior to the
application of PT .

Extracted
8s-bit subtweakey

PT

LFSR

LFSR

Figure 13: SKINNY tweakey scheduling algorithm.

5.2 Bit-Serial Implementations of SKINNY

Data Path. The design of our bit-serial architecture for SKINNY, as shown in Figure 14,
follows the same principles as the bit-sliding implementations of AES and PRESENT. Hence,
for simplicity, we only highlight the most important differences in comparison to the
previous designs.

One of the most affecting differences in SKINNY is the switched order of the substitution
layer and the addition of the round key. This difference allows us to place the Sbox at a
different location (i.e., on the first word of the state instead of the last one) and to perform
the combined round key and constant addition consecutively. However, since the round
key is only injected to the first half of the state and the round constant only added to the
first column, we need some additional AND gates to control and disable the round key
and constant addition (these gates are not shown in Figure 14).

Although the ShiftRows operation of SKINNY uses shifts in the opposite direction as in
the AES, it can still be described using left shifts with offsets 0,3,2, and 1 for the individual
rows. Hence, the basic concept used in the AES implementation stays the same. We recall
that we evaluated different strategies in the AES implementation (Section 3), by either
using scan FFs or gated clock signals to implement the ShiftRows operation. Similar to
our previous results for AES, the approach based on additional scan FFs proved to be the
most efficient one.

The MixColumns operation in SKINNY being much simpler than the one from AES, it
easily allows bit serialization. It can be achieved by using only three 2-input XOR gates to
update four bits of the state register and an additional multiplexer at the input of each
row (see red lines in Figure 14).

21



Sbox

Input

Output RoundKey

Nibble 1 Nibble 2 Nibble 34

3

MC0

MC1

MC2

MC3

RoundConst

MC0

MC1

MC2

MC3

Nibble 4

M
S

B

L
S

B

Figure 14: Bit-serial architecture for SKINNY-64 (encryption only, data path).

Input

Nibble 1 Nibble 2 Nibble 3Nibble 0

Output

AddKey

Nibble 4

M
S

B

L
S

B

Figure 15: Bit-serial architecture for SKINNY-64 (encryption only, tweakey path).

Tweakey Path. Depending on the chosen SKINNY parameter set (n, t), the tweakey state
register comprises up to three different parts: TK1, TK2, and TK3. Essentially, all these
sub-registers follow the same construction principle but only differ in the LFSR that is
used to update the tweakey. Details for the implementation of TK1 is shown in Figure 15,
in Figure 16 for TK2, and in Figure 17. for TK3.

22



Input

Nibble 1 Nibble 2 Nibble 3Nibble 0

Output

AddKey

3

Nibble 4

M
S

B

L
S

B

Figure 16: Bit-serial architecture for SKINNY-64 (encryption only, TK2 key path).

Input

Output

AddKey

3

Nibble 1 Nibble 2 Nibble 3Nibble 0

Nibble 4

M
S

B

L
S

B

Figure 17: Bit-serial architecture for SKINNY-64 (encryption only, TK3 key path).

During operation, the round key is extracted from the first nibble (or byte) and gated
in order to control the key addition. After the extraction of the round key, the upper and
lower half of the key state are already swapped, as necessary for the permutation. For
TK2 and TK3, we also applied the LFSR at Cell 7 (where Nibble7 is stored, see Figure 16
and Figure 17), such that only the final permutation of the upper part is missing to
complete the update process of the tweakey. However, in order to keep the synchronization
between the data and tweakey paths, the clock signal once again has to be gated to stop
the shifting of the state register after the round key has been extracted. Eventually, while
the ShiftRows operation is performed for the data path, the final permutation of the upper

23



half of the tweakey state is performed using 6 addition scan FFs and a gated clock signal
that is only active for the upper half of the tweakey state.

5.3 Extension to Higher Bit Lengths

Again, we could easily extend our architectures in order to process either 2, 4, or 8 (only
for SKINNY-128) bits per cycle. As expected, the latency decreases and is halved for every
doubling of the data path whereas the area increases almost linearly due to additional
scan FFs that replaced some regular FFs. Since the design concepts are similar to the
ones for AES and PRESENT, we refrain from discussing the architectures in detail and only
report the final results.

5.4 Results

In Table 7, we illustrate the synthesis results of our bit-sliding architectures for all SKINNY
variants, with different data paths δ and for five different technologies. We observe the
same effects and trends as before, leaving us with architectures that are smaller than our
previous AES and PRESENT designs.

6 Conclusion

In this paper, we have introduced a new ASIC implementation strategy, so-called bit-sliding,
that allows to obtain efficient bit-serial implementations of SPN ciphers. Apart from the
area savings due to a small data path, the bit-sliding strategy reduces the proportion
of scan-flip flops to store the cipher state and key, greatly improving the performances
compared to state-of-the-art area-optimized implementations.

We have successfully applied bit-sliding to AES-128, PRESENT and SKINNY, and in some
cases reduced the area figures by more than 25%. Even though area optimization was
our main objective, it turns out that power consumption figures are also improved, which
indicates that bit-sliding can be used especially for passive RFID tags, where area and
power consumption are the key measures to optimize, notably affecting the proximity
requirements.

However, as for any bit-serial implementation, it is to be noted that energy consumption
necessarily increases when compared to round-based implementations, due to the higher
latency. Therefore, depending on the area available for security on the device, bit-sliding
might not be the best choice for battery-driven devices. All in all, this work shows that for
some scenarios, AES-128 can be considered as a lightweight cipher and can now easily fit
in less than 2000 GE.

Acknowledgements. The authors would like to thank the anonymous referees for their
helpful comments. The authors would like to thank Bernhard Jungk for early discussions
and his input on the bitserial implementations of PRESENT. Additionally, we would like to
thank Subhadeep Banik, Andrey Bogdanov and Francesco Regazzoni for providing us their
implementation of AES from [2,3]. We also thank Huihui Yap, Khoongming Khoo, Axel
Poschmann and Matt Henricksen for sharing with us their implementation of PRESENT
described in [32]. This work is partly supported by the Singapore National Research
Foundation Fellowship 2012 (NRF-NRFF2012-06).

24



Table 7: Area and latency for encryption-only SKINNY-n-t implementations for a data
path of δ bits.

n t δ UMC180 UMC130 UMC90 Ngate45 IBM130 Latency Ref.

bits bits bits GE GE GE GE GE Cycles

64 64 1 828 931 786 978 763 2816 New

64 64 2 864 966 821 1017 788 1408 New

64 64 4 938 1033 894 1110 854 704 New

64 128 1 1149 1276 1082 1369 1054 3152 New

64 128 2 1195 1319 1130 1424 1091 1608 New

64 128 4 1290 1412 1227 1545 1177 804 New

64 192 1 1473 1616 1376 1756 1343 3616 New

64 192 2 1529 1675 1438 1828 1391 1808 New

64 192 4 1650 1794 1563 1982 1500 904 New

128 128 1 1458 1610 1363 1740 1333 6976 New

128 128 2 1496 1640 1399 1779 1361 3488 New

128 128 4 1589 1730 1494 1889 1440 1744 New

128 128 8 1742 1903 1653 2080 1577 872 New

128 256 1 2082 2278 1937 2501 1905 8448 New

128 256 2 2130 2318 1988 2554 1941 4224 New

128 256 4 2248 2433 2108 2694 2044 2112 New

128 256 8 2456 2662 2325 2949 2223 1056 New

128 384 1 2707 2946 2508 3260 2471 9920 New

128 384 2 2767 2998 2572 3328 2520 4960 New

128 384 4 2912 3139 2721 3501 2649 2480 New

128 384 8 3165 3422 2988 3819 2864 1240 New

References

1. Banik, S., Bogdanov, A., Regazzoni, F.: Exploring Energy Efficiency of Lightweight Block Ciphers. In
Dunkelman, O., Keliher, L., eds.: Selected Areas in Cryptography - SAC 2015 - 22nd International Conference,
Sackville, NB, Canada, August 12-14, 2015, Revised Selected Papers. Volume 9566 of Lecture Notes in
Computer Science., Springer (2015) 178–194

2. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-AES: A compact implementation of the AES encryption/de-
cryption core. In Dunkelman, O., Sanadhya, S.K., eds.: Progress in Cryptology - INDOCRYPT 2016 - 17th
International Conference on Cryptology in India, Kolkata, India, December 11-14, 2016, Proceedings. Volume
10095 of Lecture Notes in Computer Science. (2016) 173–190

3. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-aes v 2.0. IACR Cryptology ePrint Archive 2016 (2016) 1005

4. Beaulieu, R., Treatman-Clark, S., Shors, D., Weeks, B., Smith, J., Wingers, L.: The SIMON and SPECK
lightweight block ciphers. In: Design Automation Conference (DAC), 2015 52nd ACM/EDAC/IEEE, IEEE
(2015) 1–6

5. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim, S.M.: The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In Robshaw, M., Katz, J., eds.:
Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2016, Proceedings, Part II. Volume 9815 of Lecture Notes in Computer Science.,
Springer (2016) 123–153

6. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe,
C.: PRESENT: An ultra-lightweight block cipher. In Paillier, P., Verbauwhede, I., eds.: CHES 2007. Volume
4727 of LNCS., Springer, Heidelberg (September 2007) 450–466

25



Table 8: Power consumption of encryption-only SKINNY-n-t implementations for a data
path of δ bits @ 100KHz.

n t δ UMC180 UMC130 UMC90 Ngate45 IBM130 Ref.

bits bits bits µW µW µW µW µW

64 64 1 1.66 0.41 0.31 49.01 0.39 New

64 64 2 1.73 0.42 0.30 50.61 0.39 New

64 64 4 1.88 0.38 0.28 54.56 0.38 New

64 128 1 2.40 0.61 0.44 67.95 0.57 New

64 128 2 2.68 0.66 0.46 69.79 0.58 New

64 128 4 2.69 0.56 0.41 75.24 0.54 New

64 192 1 3.30 0.86 0.61 86.69 0.76 New

64 192 2 3.60 0.89 0.62 89.96 0.77 New

64 192 4 3.51 0.74 0.54 96.12 0.70 New

128 128 1 2.95 0.78 0.56 86.66 0.73 New

128 128 2 3.13 0.80 0.57 88.31 0.74 New

128 128 4 3.37 0.81 0.57 93.19 0.75 New

128 128 8 3.60 0.72 0.53 100.77 0.72 New

128 256 1 4.39 1.15 0.83 123.49 1.08 New

128 256 2 4.82 1.22 0.88 125.81 1.12 New

128 256 4 5.13 1.23 0.88 131.60 1.12 New

128 256 8 5.21 1.06 0.78 142.59 1.04 New

128 384 1 5.97 1.55 1.12 160.03 1.45 New

128 384 2 6.56 1.64 1.18 162.96 1.51 New

128 384 4 6.91 1.65 1.17 170.57 1.50 New

128 384 8 6.82 1.39 1.02 184.16 1.37 New

7. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knežević, M., Knudsen, L.R., Leander, G., Nikov, V.,
Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçin, T.: PRINCE - A low-latency block cipher
for pervasive computing applications - extended abstract. In Wang, X., Sako, K., eds.: ASIACRYPT 2012.
Volume 7658 of LNCS., Springer, Heidelberg (December 2012) 208–225

8. Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applications to cryptology. Journal
of Cryptology 26(2) (April 2013) 280–312

9. Canright, D.: A very compact S-box for AES. In Rao, J.R., Sunar, B., eds.: CHES 2005. Volume 3659 of
LNCS., Springer, Heidelberg (August / September 2005) 441–455

10. CMT: Circuit Minimization Team: http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html

11. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer (2002)
12. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of sand. IEE Proceedings-

Information Security 152(1) (2005) 13–20
13. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In Rogaway, P., ed.:

CRYPTO 2011. Volume 6841 of LNCS., Springer, Heidelberg (August 2011) 222–239
14. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED block cipher. [22] 326–341
15. Hamalainen, P., Alho, T., Hannikainen, M., Hamalainen, T.D.: Design and implementation of low-area and

low-power AES encryption hardware core. In: Digital System Design: Architectures, Methods and Tools, 2006.
DSD 2006. 9th EUROMICRO Conference on, IEEE (2006) 577–583

16. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: The TWEAKEY framework. In Sarkar, P.,
Iwata, T., eds.: ASIACRYPT 2014, Part II. Volume 8874 of LNCS., Springer, Heidelberg (December 2014)
274–288

17. Jean, J., Peyrin, T., Sim, S.M.: Optimizing Implementations of Lightweight Building Blocks. Cryptology
ePrint Archive, Report 2017/101 (2017)

26

http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html


18. Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols. In Shoup, V., ed.: CRYPTO 2005.
Volume 3621 of LNCS., Springer, Heidelberg (August 2005) 293–308

19. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In
Koblitz, N., ed.: Advances in Cryptology - CRYPTO ’96, 16th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 18-22, 1996, Proceedings. Volume 1109 of Lecture Notes in Computer
Science., Springer (1996) 104–113

20. Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A systematic evaluation of compact hardware
implementations for the Rijndael S-box. In Menezes, A., ed.: CT-RSA 2005. Volume 3376 of LNCS., Springer,
Heidelberg (February 2005) 323–333

21. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: A very compact and a threshold
implementation of AES. In Paterson, K.G., ed.: EUROCRYPT 2011. Volume 6632 of LNCS., Springer,
Heidelberg (May 2011) 69–88

22. Preneel, B., Takagi, T., eds.: CHES 2011. In Preneel, B., Takagi, T., eds.: CHES 2011. Volume 6917 of LNCS.,
Springer, Heidelberg (September / October 2011)

23. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-lightweight implementations for smart devices–security
for 1000 gate equivalents. In: International Conference on Smart Card Research and Advanced Applications,
Springer (2008) 89–103

24. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware architecture with S-box
optimization. In Boyd, C., ed.: ASIACRYPT 2001. Volume 2248 of LNCS., Springer, Heidelberg (December
2001) 239–254

25. Shannon, C.E.: Communication theory of secrecy systems. Bell Systems Technical Journal 28(4) (1949)
656–715

26. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: An ultra-lightweight
blockcipher. [22] 342–357

27. Subhadeep Banik and S. K. Pandey and Thomas Peyrin and Yu Sasaki and Siang Meng Sim and Yosuke
Todo: GIFT: A Small PRESENT. to appear in Cryptographic Hardware and Embedded Systems - CHES
2017 - Taipei, Taiwan, September 25-28, 2017

28. Visconti, A., Schiavo, C.V., Peralta, R.: Improved upper bounds for the expected circuit complexity of dense
systems of linear equations over GF(2). Cryptology ePrint Archive, Report 2017/194 (2017)

29. Wamser, M.S.: Ultra-small designs for inversion-based s-boxes. In: 17th Euromicro Conference on Digital
System Design, DSD 2014, Verona, Italy, August 27-29, 2014, IEEE Computer Society (2014) 512–519

30. Wamser, M.S., Holzbaur, L., Sigl, G.: A petite and power saving design for the AES s-box. In: 2015 Euromicro
Conference on Digital System Design, DSD 2015, Madeira, Portugal, August 26-28, 2015, IEEE Computer
Society (2015) 661–667

31. Yap, H., Khoo, K., Poschmann, A., Henricksen, M.: EPCBC - A Block Cipher Suitable for Electronic Product
Code Encryption. In Lin, D., Tsudik, G., Wang, X., eds.: Cryptology and Network Security - 10th International
Conference, CANS 2011, Sanya, China, December 10-12, 2011. Proceedings. Volume 7092 of Lecture Notes in
Computer Science., Springer (2011) 76–97

32. Yap, H., Khoo, K., Poschmann, A., Henricksen, M.: EPCBC-a block cipher suitable for electronic product
code encryption. In: International Conference on Cryptology and Network Security, Springer (2011) 76–97

33. Zhang, X., Parhi, K.K.: High-speed VLSI architectures for the AES algorithm. IEEE transactions on very
large scale integration (VLSI) systems 12(9) (2004) 957–967

27



A Additional Figures

MC3

MC2

MC0

MC1

Ciphertext
Sbox

Plaintext

RoundKey

PolynotLSB

7

7

Byte 0 Byte 4 Byte 8 Byte 12

Byte 1

M
S

B

L
S

B

MC3

MC2

MC1

MC0

Figure 18: An alternative version of bit-serial architecture for AES-128 (encryption only,
data path).

Key

Byte 1 Byte 2 Byte 3

Byte 4 Byte 5 Byte 6 Byte 7

Byte 8

Byte 12

Byte 9

Byte 13

Byte 10

Byte 14

Byte 11

Byte 15

Sbox

5

5

44

4

4

RoundConst

RoundKey

Figure 19: Bit-serial architecture for PRESENT-128 (encryption only, key path).

28



B Efficient Sbox Implementations

B.1 AES Sbox

We give in Algorithm 1 the 113-gate implementation of the AES Sbox SAES reported in [28].

Algorithm 1 – Evaluate (S3, S7, S0, S6, S4, S1, S2, S5)← SAES(U0, . . . , U7)

1: y14 ← U3 ⊕ U5

2: y13 ← U0 ⊕ U6

3: y9 ← U0 ⊕ U3

4: y8 ← U0 ⊕ U5

5: t0 ← U1 ⊕ U2

6: y1 ← t0 ⊕ U7

7: y4 ← y1 ⊕ U3

8: y12 ← y13 ⊕ y14
9: y2 ← y1 ⊕ U0

10: y5 ← y1 ⊕ U6

11: y3 ← y5 ⊕ y8
12: t1 ← U4 ⊕ y12
13: y15 ← t1 ⊕ U5

14: y20 ← t1 ⊕ U1

15: y6 ← y15 ⊕ U7

16: y10 ← y15 ⊕ t0
17: y11 ← y20 ⊕ y9
18: y7 ← U7 ⊕ y11
19: y17 ← y10 ⊕ y11
20: y19 ← y10 ⊕ y8
21: y16 ← t0 ⊕ y11
22: y21 ← y13 ⊕ y16
23: y18 ← U0 ⊕ y16
24: t2 ← y12 · y15
25: t3 ← y3 · y6
26: t4 ← t3 ⊕ t2
27: t5 ← y4 · U7

28: t6 ← t5 ⊕ t2
29: t7 ← y13 · y16
30: t8 ← y5 · y1
31: t9 ← t8 ⊕ t7
32: t10 ← y2 · y7
33: t11 ← t10 ⊕ t7
34: t12 ← y9 · y11
35: t13 ← y14 · y17
36: t14 ← t13 ⊕ t12
37: t15 ← y8 · y10
38: t16 ← t15 ⊕ t12

39: t17 ← t4 ⊕ y20
40: t18 ← t6 ⊕ t16
41: t19 ← t9 ⊕ t14
42: t20 ← t11 ⊕ t16
43: t21 ← t17 ⊕ t14
44: t22 ← t18 ⊕ y19
45: t23 ← t19 ⊕ y21
46: t24 ← t20 ⊕ y18
47: t25 ← t21 ⊕ t22
48: t26 ← t21 · t23
49: t27 ← t24 ⊕ t26
50: t28 ← t25 · t27
51: t29 ← t28 ⊕ t22
52: t30 ← t23 ⊕ t24
53: t31 ← t22 ⊕ t26
54: t32 ← t31 · t30
55: t33 ← t32 ⊕ t24
56: t34 ← t23 ⊕ t33
57: t35 ← t27 ⊕ t33
58: t36 ← t24 · t35
59: t37 ← t36 ⊕ t34
60: t38 ← t27 ⊕ t36
61: t39 ← t29 · t38
62: t40 ← t25 ⊕ t39
63: t41 ← t40 ⊕ t37
64: t42 ← t29 ⊕ t33
65: t43 ← t29 ⊕ t40
66: t44 ← t33 ⊕ t37
67: t45 ← t42 ⊕ t41
68: z0 ← t44 · y15
69: z1 ← t37 · y6
70: z2 ← t33 · U7

71: z3 ← t43 · y16
72: z4 ← t40 · y1
73: z5 ← t29 · y7
74: z6 ← t42 · y11
75: z7 ← t45 · y17
76: z8 ← t41 · y10

77: z9 ← t44 · y12
78: z10 ← t37 · y3
79: z11 ← t33 · y4
80: z12 ← t43 · y13
81: z13 ← t40 · y5
82: z14 ← t29 · y2
83: z15 ← t42 · y9
84: z16 ← t45 · y14
85: z17 ← t41 · y8
86: tc1 ← z15 ⊕ z16
87: tc2 ← z10 ⊕ tc1
88: tc3 ← z9 ⊕ tc2
89: tc4 ← z0 ⊕ z2
90: tc5 ← z1 ⊕ z0
91: tc6 ← z3 ⊕ z4
92: tc7 ← z12 ⊕ tc4
93: tc8 ← z7 ⊕ tc6
94: tc9 ← z8 ⊕ tc7
95: tc10 ← tc8 ⊕ tc9
96: tc11 ← tc6 ⊕ tc5
97: tc12 ← z3 ⊕ z5
98: tc13 ← z13 ⊕ tc1
99: tc14 ← tc4 ⊕ tc12
100: S3 ← tc3 ⊕ tc11
101: tc16 ← z6 ⊕ tc8
102: tc17 ← z14 ⊕ tc10
103: tc18 ← tc13 ⊕ tc14
104: S7 ← z12 ⊕ tc18 ⊕ 1
105: tc20 ← z15 ⊕ tc16
106: tc21 ← tc2 ⊕ z11
107: S0 ← tc3 ⊕ tc16
108: S6 ← tc10 ⊕ tc18 ⊕ 1
109: S4 ← tc14 ⊕ S3

110: S1 ← S3 ⊕ tc16 ⊕ 1
111: tc26 ← tc17 ⊕ tc20
112: S2 ← tc26 ⊕ z17 ⊕ 1
113: S5 ← tc21 ⊕ tc17

29



B.2 PRESENT Sbox

We give in Algorithm 2 an efficient hardware implementation of the PRESENT Sbox SPRESENT
that we use in the paper.

Algorithm 2 – Evaluate (S0, . . . , S3)← SPRESENT(U0, . . . , U3)

1: t0 ← U1 ∨ U3

2: y2 ← t0 ⊕ U2 ⊕ 1
3: t1 ← U1 ∨ y2
4: y0 ← t1 ⊕ U0 ⊕ 1
5: y3 ← y0 ⊕ U3 ⊕ 1

6: z0 ← y0
7: t2 ← y2 ∨ z0
8: t3 ← t2 ∨ y3
9: S1 ← t3 ⊕ U1 ⊕ 1

10: S3 ← y2 ⊕ y3 ⊕ 1

11: t4 ← U1 ∨ z0
12: S2 ← t4 ⊕ y2 ⊕ 1
13: t5 ← y2 ∨ U1 ∨ y3
14: S0 ← t5 ⊕ z0 ⊕ 1

30


	Introduction
	Bit-Sliding Implementation Technique
	Substitution-Permutation Networks
	Implementation Trade-offs
	Data Path Reduction and Flip-Flops
	The Bit-Sliding Strategy
	Bit-Serializing any Sbox
	Previous Serial SPN Implementations

	Application to AES-128
	Specifications of AES-128
	Optimizations of AES Components
	Bit-Serial Implementations of AES-128 Encryption
	Bit-Serial AES-128 Encryption and Decryption Core
	Extension to Higher Bit Lengths
	Results

	Application to PRESENT
	Specifications of PRESENT
	Optimization of PRESENT Components
	Bit-Serial Implementations of PRESENT
	Extension to Higher Bit Lengths
	Results

	Application to SKINNY
	Specifications of SKINNY
	Bit-Serial Implementations of SKINNY
	Extension to Higher Bit Lengths
	Results

	Conclusion
	Additional Figures
	Efficient Sbox Implementations
	AES Sbox
	PRESENT Sbox


