
Watermarking Public-key Cryptographic Functionalities and

Implementations∗

Foteini Baldimtsi†1, Aggelos Kiayias†2, and Katerina Samari‡3

1George Mason University, USA
2University of Edinburgh and IOHK, UK

3National and Kapodistrian University of Athens, Greece

Abstract

A watermarking scheme for a public-key cryptographic functionality enables the em-
bedding of a mark in the instance of the secret-key algorithm such that the functionality
of the original scheme is maintained, while it is infeasible for an adversary to remove the
mark (unremovability) or mark a fresh object without the marking key (unforgeability).
Cohen et al. [STOC’16] has provided constructions for watermarking arbitrary cryp-
tographic functionalities; the resulting schemes rely on indistinguishability obfuscation
(iO) and leave two important open questions: (i) the realization of both unremovability
and unforgeability, and (ii) schemes the security of which reduces to simpler hardness
assumptions than iO.

In this paper we provide a new definitional framework that distinguishes between
watermarking cryptographic functionalities and implementations (think of ElGamal en-
cryption being an implementation of the encryption functionality), while at the same
time provides a meaningful relaxation of the watermarking model that enables both
unremovability and unforgeability under minimal hardness assumptions. In this way
we can answer questions regarding the ability to watermark a given implementation
of a cryptographic functionality which is more refined compared to the question of
whether a watermarked implementation of the functionality exists. Taking advantage
of our new formulation we present the first constructions for watermarking public key
encryption that achieve both unremovability and unforgeability under minimal hard-
ness assumptions. Our first construction enables the watermarking of any public-key
encryption implementation assuming only the existence of one-way functions for pri-
vate key detection. Our second construction is at the functionality level and uses a
stronger assumption (existence of identity-based encryption (IBE)) but supports public
detection of the watermark.

∗This is the full version of the paper [2].
†This research was partly performed while at the National Kapodistrian University of Athens and sup-

ported by the ERC project CODAMODA, #259152.
‡This research was supported by the ERC project CODAMODA, #259152.

1

1 Introduction

Watermarking digital objects like pictures, video or software is usually achieved by em-
bedding a special piece of information, the mark, into the object so that it is difficult for
an adversary to remove it without damaging the object itself, or to introduce a fresh and
legible mark. At the same time, the embedding of the mark should not result to a signifi-
cantly different object, or an object with different functionality. Watermarking in practice
is particularly useful, and widely applied, in order to protect content creators against illegal
use and distribution of copyrighted digital objects. A plethora of watermarking schemes
exists in the literature [1, 13, 27, 28] (and references therein), most of them focusing on
watermarking “static” objects while lacking a rigorous theoretical analysis and provable
secure constructions.

The first formal security definitions for watermarking objects were given by Barak et
al. [3, 4] and by Hopper et al. [17]. Barak et al. [3, 4] proposed definitions for software
watermarking and showed impossibility relations between program obfuscation and wa-
termarking, while Hopper et al. [17] defined watermarking of perceptual objects without
providing any constructions. Nishimaki [23], inspired by the work of [17], extended their
definitions to formalize watermarking of cryptographic functions/ circuits and defined the
security properties to be: correctness, functionality-preserving, unremovability and unforge-
ability.

Watermarking cryptographic functions has various real-life applications. Consider for
instance the case of VPN clients. An organization might wish to distribute VPN clients to
its employees where every employee has a public/secret-key pair. Watermarking the VPN
client restricts the employees from sharing their clients since, due to the unremovability and
unforgeability property, given any client one could detect to whom does this client belongs
to (assuming the ID of the user is embedded in the watermark).

Nishimaki [23] provided the first construction of a cryptographic watermarking. While
proven secure, the scheme is still vulnerable to a general obfuscation attack described in [4];
Cohen at al. [10] (merged result of [11, 25]) gave a watermarking scheme for puncturable
PRFs [19, 7, 8] which avoids the impossibility result of [4] by allowing statistical correctness,
i.e. the marked PRF is allowed to behave differently in a negligible fraction of inputs, com-
paring to the initial one. The construction suggested in [10] is based on the assumption that
indistinguishability obfuscation (iO) exists, allows for public key detection and it provably
satisfies the unremovability property.

Our results. Our contributions are both in definitional and constructional level. We
start by rethinking the definitional framework for watermarking public-key cryptographic
functionalities. We approach cryptographic watermarking, by making a relaxation and
refinement to the model considered in previous works, which we argue maintains all the
relevant to practice features that the previous formulations enjoyed, and moreover can be
very suitable for some real world scenarios due to its more refined nature. Previous ap-
proaches [23, 25, 11, 10] considered a watermarking definition where the marking algorithm
would take as input a specific unmarked program/circuit and would output the marked
version of it, i.e., a program that preserves the functionality of the one given as input to
Mark. The origins of this thinking are in the work of [17], that dealt with the cryptographic
formalization of watermarking in general.

2

An important observation that motivates our modeling is that limiting the interaction
between the marking system and the recipient of the object in the above fashion is unnec-
essarily restrictive. In most, if not all, applications of public-key cryptography, the actual
details of the decryption or signing program are not relevant to its user, only its functional-
ity is (which encompasses its correctness and security properties). For instance, in the VPN
scenario we described above, the organization (i.e. the marking system) is often the one to
sample a key KU for its client and provide it along with the VPN client. Thus we argue
that in practice, any interaction between the marking system and the recipient that results
in the sampling of a decryption or signing program would be sufficient for an application of
watermarking. Following the above reasoning, we propose a new version of watermarking
definitions where the Mark algorithm does not take a specific program as input1 but instead
it partitions2 the exponential space of available secret-key program instances into marked
and unmarked (taking advantage of the marking key) and whenever queried it samples and
returns a program from the marked space. This extends to the case of embedding a wa-
termark in the form of a message msg, in which setting, the space is partitioned further
labeled by the different messages that may be embedded.

In our model, we define watermarking for public-key cryptographic functionalities as
well as cryptographic implementations. Distinguishing between the two is a further refine-
ment of the definitional framework and relevant from a real world point of view. Specifically,
in all previous works the focus was in the watermarking of a cryptographic functionality, in
the sense of constructing a new scheme (say, public-key encryption or digital signature) for
which one can argue the basic properties of watermarking (unremovability, unforgeability,
functionality preserving) or watermarking a circuit directly. In other words, the starting
point was the cryptographic functionality and the solution was a specific construction re-
alizing it or the starting point was a fixed program. While this is sensible as in the first
case it permeates the way cryptographic primitives are proposed and realized in general
and in the second it resembles the definition of obfuscation, for the case of watermarking it
appears also important to be able to watermark a specific cryptographic implementation of
a functionality, which is a probability distribution ensemble of programs (with each sample
containing both code and keys). In plain words, a marking service may want to watermark,
say, ElGamal public-key encryption because this particular implementation of public-key
encryption is the one that is standardized, backwards compatible, or sufficiently efficient for
the context within which the cryptographic system is used. This of course can be achieved
by watermarking a circuit implementing ElGamal decryption but definitionally this can
be relaxed and the objective, can be seen to lie in between the objectives of designing a
watermarked public-key encryption and watermarking arbitrary circuits.

Following the above we formulate secure watermarking both for the case of functionali-
ties and implementations, focusing on the public-key setting. We also validate our model by
showing that watermarking a given implementation of a functionality is a stronger notion

1In [6] a similar relaxation of the marking algorithm is given, in the sense that the algorithm does not
receive as input a specific circuit to be marked, but instead samples a key to be marked and returns it
together with the marked circuit. However, their watermarking model is restricted to watermarking PRFs
only.

2This partition of the space to marked and unmarked programs is the reason why the impossibility result
of [4] does not apply in our setting – applying iO to a marked program in our model would not remove the
marking.

3

than merely watermarking a functionality (i.e., producing a watermarked implementation of
the functionality). Note that, existing work in formalizing watermarking is either done for
circuit classes [10] or even more restricted, for pseudorandom functions [21]. Our definition
is more general, encompasses any public-key cryptographic functionality and implemen-
tation and is consistent to existing work. Cohen et al. [10] attempted to provide specific
definitions for watermarking public-key cryptographic primitives, i.e. “Watermarkable Pub-
lic Key Encryption and “Watermarkable Signature Scheme”. Our definitional framework is
more general and encompasses any public-key cryptographic functionality and implemen-
tation and is consistent with theirs for these functionalities. Thus, any construction that is
described in their model for watermarkable encryption and signatures will be syntactically
compliant and secure in our more general model as well.

Once we set our new definitional model we present two constructions. In Section 5 we
propose a scheme for watermarking cryptographic implementations, precisely a watermark-
ing scheme for watermarking any public key encryption implementation. This construction
works for private detection of watermarked programs. It assumes a shared state of loga-
rithmic size in the security parameter between the Mark and Detect algorithms while the
running time of the detection algorithm depends on the number of marked programs so
far. We stress that these relaxations to the notion of watermarking do not appear to hurt
the applicability of the scheme in a real world setting, where e.g., an organization wishes
to issue watermarked versions of cryptographic algorithms (embedded in VPN clients). In
such scenarios private detection is the default requirement and given that detection of mali-
cious clients happens with much lower frequency compared to marking, a detection process
with linear running time to the number of clients can be reasonable. Countering these
downsides, our construction enjoys security against both unremovability and unforgeability
attacks, actually achieving unconditional unremovability for any public-key encryption im-
plementation. Moreover, the only assumption needed for unforgeability is the existence of
one-way functions (that we utilize as a facilitator for a PRF function). This suggests that
the security of watermarking comes essentially “for free” since the security of the underlying
public-key encryption would imply the existence of one-way functions already.

Our second construction achieves watermarking for the public key encryption function-
ality. It is based in identity-based encryption (IBE) [5], also assumes a shared state of
logarithmic size in the security parameter between the Mark and Detect but, as opposed to
our first construction, it allows for public key detection of the watermark. This is the first
construction in the literature for watermarking a cryptographic functionality with public-
key detection when only based on standard assumptions (i.e. without using iO).

In a high level, both our constructions exploit the notion of a PRF [16], to create a
compact “dictionary” of marked objects that is subsequently scanned and compared with
the adversarial implementation. Our proposed constructions are simple and use well-known
building blocks and are secure under minimal standard assumptions. Despite their simplic-
ity, our schemes require a very careful analysis in order to comply with the complex security
properties of watermarking. Finally, we would like to note that we view the simplicity of
our constructions as an advantage, and a testament to the fact that rethinking and per-
forming small relaxations to the model of watermarking public-key functionalities can allow
for quite substantial improvements, both in terms of efficiency and security assumptions,
that remain relevant to practice.

4

Related work and comparison to our model. One of the earliest works related to
software watermarking is due to Naccache et al. [22] that considered the problem of “copy-
righting” public-key encryption schemes in a setting that is akin to traitor tracing [9]; im-
plementations are fingerprinted and the detection mechanism should be collusion resilient.
Note that this type of fingerprinting an object is distinct from the one we consider here.
Indeed, watermarking is about establishing the ownership of a certain object whereas fin-
gerprinting is about controlling its distribution. A number of heuristic methods for software
watermarking were later presented in [12]. Another related notion is leakage-deterring pub-
lic key cryptography as defined in [20]. The idea there is that some personal information is
embedded to the public key of a user such that, if she decides to share her secret key (or
a partial working implementation of her decryption function) the recipient can extract the
private information embedded in the public key. This notion is different from watermarking
since it focuses on private information embedding in a cryptosystem that remains hidden
unless the secret key is shared. Privacy is not an issue in watermarking thus construction
techniques are technically and conceptually different. Finally, leakage deterring schemes
require the embedded information to be of high entropy while in watermarking it is mean-
ingful, depending on the application, to embed arbitrary messages or even not include a
message at all.

In [3, 4], Barak et al. study theoretically obfuscation of programs and their main result
is an impossibility result showing that virtual black box obfuscation is impossible. They also
put forth weaker notions of obfuscation called indistinguishability obfuscation (iO) 3. This
work is also the first that gives a formal definition for software watermarking and explores
its relation with iO. The authors provide an impossibility result showing that if a marked
circuit has exactly the same functionality as the original one, then under the assumption of
indistinguishability obfuscation (iO), watermarking is impossible. Note that the definition
of watermarking is not included in original version [3] and is only added in the more recent
full version [4].

Nishimaki, [23] (cf. also [24]), inspired by the definitions of watermarking given in [17]
(for static objects), suggests a new model for watermarking cryptographic functions mod-
eling both notions unremovability and unforgeability and proposes a watermarking scheme
for Lossy Trapdoor functions [26]. The construction is vulnerable, in light of the impossi-
bility result of [4], to an obfuscation attack, i.e., the application of iO to a marked circuit
which would effectively remove the mark. It should be noted that [23] circumvents the im-
possibility result by considering more restricted adversaries whose outputs in the security
games should preserve the format of the original functions but, naturally, this leaves open
the question of considering general adversaries.

More recently, Cohen et al. [10] motivated by the fact that the iO impossibility result
does not hold if a marked circuit is approximately close to the original unmarked one
(they formulate this as statistical correctness), they propose a watermarking scheme for
any puncturable PRF family. This scheme relies on iO, features public key detection and
satisfies unremovability without placing any restriction to the adversarial strategy. Based on
this scheme and the constructions given by Sahai and Waters [29] for public key encryption
and signatures, Cohen et al. [10] describe how to construct “Watermarkable Public-key

3A first candidate construction was given in [15].

5

Encryption” and “Watermarkable Signatures”. Both constructions rely on iO. Furthermore,
the definitions for these primitives do not consider the notion of unforgeability, however there
are some preliminary results related to this notion in [11] (but they are not conclusive).

Boneh et al. [6] provide a watermarking construction for a class of PRFs, called private
programmable PRFs, as an application of private constrained PRFs. Their construction
achieves unremovability and unforgeability in the private key setting (i.e. private key de-
tection), but relies on iO.

Concurrently to our work, Kim and Wu [21] suggest a watermarking scheme for a family
of PRFs based on standard lattice assumptions. In particular, they first introduce a new
primitive called private translucent PRFs for which they give a lattice-based construction.
Based on that, they provide a construction for a watermarkable family of PRFs that allows
private key detection.

Apart from the differences in our definitional models, we also highlight the following
differences between [10, 21] and our work. We achieve watermarking of both public key
encryption implementations and functionalities instead of only constructing watermarkable
instances of public-key cryptographic functionalities (as done by [10]). Our first construc-
tion takes advantage of a small shared state while at the same time being very efficient
during marking; in fact it is as efficient as the underlying public-key cryptographic im-
plementation and does not require any additional intractability assumptions. Our second
construction for watermarking PKE functionalities is the first to achieve both unforgeabil-
ity and unremovability with public detection which is an open problem in the setting of
both [10, 21].

Paper Outline. The rest of the paper is organized as follows. In Section 2 we set notation,
overview some basic background and give formal definitions of the notions of cryptographic
functionalities and implementations. In Section 3 we present our watermarking security
model and the desired security properties. The definitions in Section 3 are focused on
watermarking cryptographic functionalities while in the next Section (Sec. 4) we explain
how our definitions apply to the setting of watermarking cryptographic implementations.
In Section 5 we present our first construction: a watermarking scheme for implementations
of public key encryption and prove it secure under the existence of pseudorandom functions.
Finally, in Section 6 we present our second construction that is watermarking the public
key encryption functionality assuming IBE.

2 Preliminaries

Notation. We first set the notation to be used throughout the paper. By λ ∈ N we denote
the security parameter and by negl(·) a function negligible in some parameter. The left arrow
notation, x ← D, denotes that x is chosen at random from a distribution D. PPT stands
for probabilistic polynomial time. C will always denote an unmarked algorithm/circuit and
C̃ a watermarked one.

Chernoff bounds. Let X be a random variable such that X =
∑n

i=1Xi, where all Xi

are discrete, independent, random variables and Xi = 0 with probability pi and Xi = 1

6

with probability 1− pi. Then µ = E[X] =
∑n

i=1 pi. Then, it holds that

1. Pr[X ≥ (1 + δ)µ] ≤ e−
δ2

2+δ
µ, for all 0 < δ < 1.

2. Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2, for all 0 < δ < 1.

Pseudorandom functions [16]. A function F : {0, 1}k × {0, 1}n → {0, 1}` is a pseu-
dorandom function if the following conditions hold:

1. Given a key k ∈ {0, 1}k and x ∈ {0, 1}n, F (k, x) is computed in polynomial time.

2. For any p.p.t. algorithm A,
∣∣Prk←{0,1}k [AF (k,·) = 1] − Prf←F [Af(·) = 1]

∣∣ ≤ negl(λ),

where F = {f |f : {0, 1}n → {0, 1}`}.

Relations between circuits. In this paragraph we define some notions of “closeness”
between circuits which are crucial in defining properties of a watermarking scheme like
unforgeability and unremovability as we will see later. These notions are defined with
respect to a distribution D over an input space X.

Definition 2.1 (ρ-closeness). We say that two circuits C1, C2 are ρ-close with respect to
distribution D over a space X if they agree on at least ρ-fraction of the inputs chosen
according to D. Namely,

Pr
x←D

[C1(x) = C2(x)] ≥ ρ.

We denote ρ-closeness by C1 ∼ρ,D C2.

Definition 2.2 (γ-farness). We say that two circuits C1, C2 are γ-far with respect to a
distribution D over a space X, if they agree on at most (1−γ)-fraction of the inputs chosen
according to D. Namely,

Pr
x←D

[C1(x) = C2(x)] ≤ 1− γ.

We denote γ-farness by C1 �γ,D C2.

2.1 Defining cryptographic objects

We now define the notions of cryptographic functionalities and implementations. The goal
of the cryptographic functionality definition is to capture cryptographic objects (such as:
an encryption scheme, a pseudorandom function, etc.) in an abstract ideal way, focusing
on the properties it should satisfy (one could think of this as the ideal functionality of a
cryptographic scheme). On the other hand, the notion of a cryptographic implementation is
used to describe a specific implementation of a cryptographic functionality (i.e. the ElGamal
encryption scheme [14] is an implementation of the encryption functionality).

Definition 2.3 (Cryptographic functionality). A cryptographic functionality CF consisting
of m algorithms4, (C1, . . . , Cm), is defined by a set of n properties and their corresponding
probabilities (G

propi
A , πpropi)

n
i=1. Each property G

propi
A is described in a game fashion: it

4We consider protocols to also be described as a set of algorithms.

7

receives as input m algorithms (that constitute an instance of a candidate implementation
of the functionality) and interacts with any PPT adversary A that attempts to “break” the
desired property.

Remark 1. In a more complex definition we could associate each property with a parameter
ti(λ) which would define the running time of the adversary. For simplicity, in Definition 2.3,
we opt to define all the properties with respect to PPT adversaries. However, some prop-
erties may also hold for super-polynomial adversaries (e.g. correctness-related properties).

Example. Consider the public key encryption functionality as an example, which can be
defined as a pair of algorithms 〈Enc,Dec〉 that should satisfy the properties of correctness
and IND-CPA security. Correctness can be defined as a security game where an adversary is
challenged to provide an encryption of a messageM which is decrypted to a message different
than M . The IND-CPA security property is defined in the standard way. In Appendix B,
we give a concrete definition of both properties for the public key encryption functionality
in a game fashion. Corresponding to our definitions, the games will receive as input the
encryption/decryption algorithms for a specific key pair. Given that the definition of a
cryptographic functionality describes the “ideal” scenario, correctness would always hold
with probability 0 (perfect correctness) while in IND-CPA property the adversary would
have probability of success of exactly 1/2.

Definition 2.4 (Cryptographic Implementation). Let CF be a cryptographic functionality
with m algorithms and n properties (G

propi
A , πpropi)

n
i=1. An implementation of the crypto-

graphic functionality CF consists of an (m+1)-tuple of algorithms/protocols (Gen, C1, . . . , Cm)
such that, for every security parameter λ and each property propi for i ∈ {1, . . . , n} and for
any corresponding PPT adversary A, it holds that :

Pr

[
(k1, . . . , km)← Gen(1λ) :
G

propi
A (C1(k1, ·), . . . , Cm(km, ·)) = 1

]
≤ πpropi + negl(λ).

In Definition 2.4 we consider single-instance properties. This means that the input of
the property game is a specific instance of the implementation’s algorithms under a fixed
key. One could also define multi-instance properties, where the corresponding game would
receive as inputs multiple versions of the algorithms all under different keys.

3 Watermarking Cryptographic Functionalities

We now define the notion of watermarking cryptographic functionalities. The main idea of
our definition follows [4, 10, 6, 21] however notice that: (1) we define watermarking of a
functionality rather than a circuit class, (2) our marking algorithm is not given a specific
algorithm/circuit to mark but selects and outputs only an instance of the functionality
being marked (i.e. the tuple of the corresponding algorithms), and last (3) our definition
allows for a shared public state between the Mark and Detect algorithms. In this section
we will refer to the algorithms of a cryptographic functionality as circuits.

8

3.1 Syntax of a watermarking scheme

Let CF be a cryptographic functionality with m algorithms/circuits and n properties (Gpropi
A ,

πpropi)
n
i=1 and let {Mλ}λ∈N denote the message space (of the messages to be embedded on

the watermarked scheme), where λ is a security parameter. The entities that are involved
in a watermarking scheme are a set of clients, and a “marking service”, MarkService.

Definition 3.1 (Watermarking Scheme). A stateful watermarking scheme for a crypto-
graphic functionality CF , consists of three probabilistic polynomial time algorithms 〈WGen,
Mark,Detect〉 whose input/output behavior has as follows:

• WGen : On input 1λ, it outputs public parameters param and a pair of keys (mk, dk),
where mk is the marking key and dk is the detection key. It also initializes a public
variable state which can be accessed by all the parties.

• Mark : On input mk, param, a message msg ∈ Mλ (which is sent by a client to
the MarkService) and current state, the marking algorithm outputs a tuple of circuits
(C̃1, C2, . . . , Cm), an efficiently sampleable and representable distribution D on the
inputs of the circuit C̃1

5, and the updated state state′.

• Detect : On input dk, param, state and a circuit C ′1, it outputs a message msg′ or
unmarked.

Despite the fact that the marking service outputs a tuple of circuits (as many as the
algorithms of CF), only one circuit among them is considered marked. By convention,
this would be the first circuit in a tuple produced by the Mark algorithm. It is trivial to
extend this definition for the case where more than one circuits are considered marked. The
Detect algorithm, as in previous definitions, will run on input any circuit C ′1. A stateless
watermarking scheme can be described in the same way, by either assuming that the variable
state is an empty string or by modifying Definition 3.1 so that state doesn’t exist.

Remark 2. Notice that a new feature of our definition of watermarking is that the Mark
algorithm outputs a distribution D on the inputs of marked circuit. This distribution is
relevant to our definitions of closeness and farness between circuits (cf. Definitions 2.1, 2.2)
and essentially defines on which inputs we expect that circuits are similar or not.

3.2 Security Model

For our security model, we define oracles Challenge, Detect and Corrupt in Figure 1. The
Challenge oracle calls the Mark algorithm, and returns to the client a tuple of all output
circuits except the one that is considered marked (i.e. the first one) along with an index
i that shows how many times the Mark algorithm is invoked so far. The Corrupt oracle
outputs the whole tuple of circuits generated by the Mark algorithm for a specific i and
works for queries the indices of which were previously returned the Challenge oracle. The
Detect oracle runs the Detect algorithm with input a given circuit. Finally, given that state
is public, we assume that all oracles have access to it.

5The marking algorithm, Mark, can output the distribution D in the form of an algorithm that samples
inputs for the circuit C̃1.

9

ChallengeOracle(msg, ·):

1. i← i+ 1;

2.
(
(C̃i1, C

i
2, . . . , C

i
m),Di, state′

)
←

Mark(param,mk,msg, state);

3. Marked ← Marked ∪
{
(
i, (C̃i1, C

i
2, . . . , C

i
m),Di,msg

)
};

4. Set state← state′;

5. Return (i, (Ci2, . . . , C
i
m),Di, state);

CorruptOracle(i):

1. Retrieve (i, (C̃i1, . . . , C
i
m),Di,msgi)

from Marked;

2. Corrupted ← Corrupted ∪
{
(
i, (C̃i1, C

i
2, . . . , C

i
m),Di,msgi

)
};

3. Return
(
(C̃i1, . . . , C

i
m),Di

)
;

DetectOracle(C):

1. msg ← Detect(dk, param,C, state);

2. Return msg ;

Figure 1: The Challenge, and Detect and Corrupt oracles.

Remark. Notice that for marked (but not corrupted tuples) the adversary does not have

access to the marked circuit C̃1. This might be restrictive for certain schemes and properties.
Consider for instance the case of CCA security for a public key encryption scheme. Then,
the marked algorithm would be the decryption one. Although the adversary should not
receive Decsk, he should still be able to query it on ciphertexts of his choice. Thus, we could
define one more oracle name QueryOracle that would take as input an index i and an input
x and would return the output of the i-th watermarked circuit produced by ChallengeOracle.

Comparing our security model with previous work. In the security model of [10], [21] (note
that [21] is specific to PRFs), the adversary has access to both marking and challenge oracles.
Their marking oracle receives as input an unmarked circuit and returns the corresponding
marked one, while the challenge oracle samples a circuit and returns it marked without
revealing the sampled, unmarked one. In the security model of [6], the marking oracle
receives a message as input, and returns an unmarked PRF key and a marked circuit
embedded with this message. Note that [6, 21] give only definitions for PRFs and not
circuit classes in general. Although the security model of [6] seems closer to our model,
the existence of a marking oracle, as this is defined in [10, 21] and [6], does not comply
with our model. The Mark algorithm in our case neither takes as input an unmarked
circuit nor returns an unmarked circuit together with the marked one as output. Another
difference with the model of [6, 10, 21] is that our challenge oracle does not return the
marked circuit of the tuple, i.e. the first one by convention. The corrupt oracle is the one
that returns the marked cicruit for a previously sampled marked instance of a functionality
or implementation. Notice that our challenge oracle does not play any important role
for functionalities with a single algorithm like a PRF but it is crucial for multi-algorithm
functionalities. For example, in the public-key encryption functionality if the decryption
function, i.e. a secret key, is the one which is marked, it is reasonable that the adversary
should be given the corresponding public key.

10

3.3 Security Properties

Next, we define the properties that should be satisfied by a watermarking scheme.
We start by detection correctness which informally states that a valid watermarked cir-

cuit should be detected as such with a non-negligible probability. Our definition guarantees
that any update on the state, after each execution of Mark, does not affect the detection
correctness of previously marked circuits.

Definition 3.2 (Detection Correctness). We say that a watermarking scheme satisfies de-
tection correctness if for any PPT advrersary A against the security game described in
Figure 2, it holds that:

Pr[Gdet−corr(1λ) = 1] ≤ negl(λ).

The next property we define is ρ-unremovability. Informally, an adversary after querying
the Challenge and Corrupt oracles, should not be able to output a circuit that is ρ-close to
any of the queried ones, and at the same time is unmarked or is marked under a different
(than the original) mark. In Figure 3 we first describe the unremovability security game
and then we provide the definition below.

Definition 3.3 (ρ-Unremovability). We say that a watermarking scheme satisfies the ρ-
unremovability property if for any PPT adversary A against the security game described
in Figure 3, it holds that

Pr[Gunrmv
A (1λ, ρ) = 1] ≤ negl(λ).

We then define γ-unforgeability which informally states that an adversary, after receiving
marked circuits through oracle queries, should not be able to output a marked circuit that
is γ-far from the received, marked ones. Note that A only receives marked circuits through
the Corrupt oracle, thus if he manages to forge a circuit that is close to a marked (but not
corrupted one) he should still win the game. The unforgeability security game is described
in Figure 4.

Gdet−corr
A (1λ):

1. The Challenger runs WGen(1λ) which outputs (param, (mk, dk), state). It gives
param to the adversary A. A has also access to the public variable state. If detec-
tion is public, A also receives dk from the Challenger. The Challenger initializes
the sets Marked and Corrupted as empty and i← 0.

2. A makes queries to DetectOracle, ChallengeOracle and CorruptOracle.

3. A outputs an index j.

4. Output 1 iff
(
j, (C̃j1 , ·),Dj ,msg

)
∈ Marked and Detect(dk, param, C̃j1 , state) 6=

msg.

Figure 2: The Detection-Correctness game

Definition 3.4 (γ-Unforgeability). We say that a watermarking scheme satisfies γ-unforgeability
if for any PPT adversary A against the security game defined in Figure 4 it holds that

Pr[Gunforge
A (1λ, γ) = 1] ≤ negl(λ).

11

Gunrmv
A (1λ, ρ):

1. The Challenger runs WGen(1λ) which outputs (param, (mk, dk), state). It gives
param to the adversary A. A has also access to the public variable state. If detec-
tion is public, A also receives dk from the Challenger. The Challenger initializes
the sets Marked and Corrupted as empty and i← 0.

2. A makes queries to DetectOracle, ChallengeOracle and CorruptOracle.

3. A outputs a circuit C∗.

4. The game outputs 1 iff there exists
(
j, (C̃j1 , ·),Dj ,msg

)
∈ Marked such that

C∗ ∼ρ,Dj C̃
j
1 and Detect(dk, param,C∗, state) 6= msg.

Figure 3: The ρ-Unremovability game

Gunforge
A (1λ, γ):

1. The Challenger runs WGen(1λ) which outputs (param, (mk, dk), state). It gives
param to the adversary A. A has also access to the public variable state. If detec-
tion is public, A also receives dk from the Challenger. The Challenger initializes
the sets Marked and Corrupted as empty and i← 0.

2. A makes queries to DetectOracle, ChallengeOracle and CorruptOracle.

3. A outputs a circuit C∗.

4. The game outputs 1 iff

(a) For all C̃j1 such that
(
j, (C̃j1 , ·),Dj ,msg

)
∈ Corrupted it holds that C∗ �γ,Dj

C̃j1 .

(b) Detect
(
dk, param,C∗, state) 6= unmarked.

Figure 4: The γ-Unforgeability game

Finally, we define the functionality property-preserving notion. Informally, this no-
tion captures the requirement that a watermarked cryptographic functionality CF should
preserve the properties of the original (non-marked) functionality. In other words, the prob-
ability that an adversary A breaks a property propi of a watermarked functionality should
be less or equal to the probability that an adversary breaks the same property for the
non-watermarked functionality (plus a negligible factor). We define functionality property-
preserving with the aid of the game in Figure 5. In that game, the adversary A decides the
instance of the algorithms for which they will play the security property game G

propj
A , choos-

ing among the watermarked ones he received by the ChallengeOracle. Note that A cannot
pick an instance that has previously corrupted. If the selected instance was a corrupted
one, then the security property propj could have been trivially broken by A.

Definition 3.5 (Functionality Property-preserving). A watermarking scheme is property-
preserving for a cryptographic functionality CF with m algorithms and n properties (G

propj
A ,

12

G
wm−propj
A (1λ) :

1. The Challenger runs WGen(1λ) which outputs (param, (mk, dk), state). It gives
param to the adversary A. A has also access to the public variable state. If detec-
tion is public, A also receives dk from the Challenger. The Challenger initializes
the sets Marked and Corrupted as empty and i← 0.

2. A can make queries to DetectOracle, the ChallengeOracle and the CorruptOracle.

3. A chooses i such that (i, (C̃i1, C
i
2, . . . , C

i
m),Di,msg) ∈ Marked\Corrupted and sends

i to the Challenger.

4. Then, the Challenger runs the game G
propj
A with A but on input (C̃i1, C

i
2, . . . , C

i
m)

(notice that only challenger knows C̃i1).

5. The game G
wm−propj
A (1λ) outputs whatever G

propj
A outputs.

Figure 5: The Functionality property-preserving game for a property propj .

πpropj)
n
j=1 if for any PPT adversary A against the security game defined in Figure 5, and

for any property propj, it holds that

Pr[G
wm−propj
A (1λ) = 1] ≤ πpropj + negl(λ).

Note. There may be property games where the adversary is not given all the circuits
Ci2, . . . , C

i
m but only a subset of them. We could give an alternative definition capturing

such cases, however we omit it for simplicity reasons. We also described property-preserving
for the scenario when A is not given the marking key mk. One could also consider an al-
ternative, stronger definition, where A has mk, marks objects by himself and then for a
state of his choice, runs the security game for the particular property using the algorithms
returned by Mark in the chosen state.

Note (Functionality-preserving). The notion of functionality-preserving was defined in the
literature but with a different meaning of what functionality means. In particular in [23]
(revised eprint version [24]) it was used to capture that for any input x the outputs of
the unmarked and the corresponding marked circuits should remain the same (i.e. C(x) =
C̃(x)). The notion was also used in a similar way in [11]. This notion is implied by our
property-preserving property which more generically captures the fact that the properties of
the watermarked scheme should be preserved, in the sense that it should be almost equally
(but a negligible factor) difficult for an adversary to break them.

Note (Meaningfulness). In the literature, the meaningfulness of a watermarking scheme
(i.e., the vast majority of circuits is unmarked) is also considered as a required security
property. As observed in [11] though, it is captured by unforgeability: if an adversary can
sample a circuit that is marked with good probability, then it can directly forge a circuit
without making any oracle queries.

13

G
mi−propj
A (1λ) :

1. Set i← 0.

2. A can make queries to MultiInstanceOracle and the CorruptOracle.

3. A chooses i such that (i, (Ci1, C
i
2, . . . , C

i
m),Di,msg) ∈ Instances \ Corrupted and

sends i to the Challenger.

4. Then, A runs with the Challenger the game G
propj
A but on input (Ci1, C

i
2, . . . , C

i
m).

5. The game G
mi−propj
A (1λ) outputs whatever G

propj
A outputs.

Figure 6: The multi-instance security game for a property propj .

4 Watermarking Cryptographic Implementations

Let (Gen, C1, . . . , Cm) be an implementation of a cryptographic functionality CF . The syntax
of a watermarking scheme for cryptographic implementations is exactly the same with the
syntax for cryptographic functionalities. The reason is that in practice the Mark algorithm of
the watermarking scheme acts as (replaces in a sense) the Gen algorithm of a cryptographic
implementation and outputs an instance of the implementation algorithms under a specific
key. What differentiates these two definitions is only the property-preserving notion. The
rest of the security properties (detection correctness, ρ-unremovability, γ-unforgeability)
remain the same as in Section 3.

In order for a watermarked implementation to be property-preserving it needs to hold
that the watermarked implementation preserves the properties of the non-watermaked one,
which in turn preserves the properties of the corresponding cryptographic functionality it
implements. Notice that, when we watermark a cryptographic implementation we naturally
want to achieve multi-instance security for the properties of the implementation (multi-
instance versions of security definitions are encountered in the literature for various types
of cryptographic functionalities, i.e. [18]). This arises by the fact that the ChallengeOracle
is called multiple times by the adversary, who thus receives multiple instances of imple-
mentations and then chooses for which one he will attempt to break the property of the
implementation. Therefore we first define the multi-instance version of the security game
for a property propi in Figure 6. The MultiInstanceOracle called in the game is identical
to the ChallengeOracle but instead of calling the Mark algorithm it calls the key generation
algorithm Gen of the implementation and stores all the created instances of generated algo-
rithms to a set Instances. The security game G

propj
S is defined as in the previous definition.

Definition 4.1 (Implementation Property-preserving). We say that a watermarking scheme
satisfies implementation property-preserving with error ε for a cryptographic implementa-
tion (Gen, C1, . . . , Cm) if for any p.p.t. adversary S there is a PPT adversary A such that∣∣Pr[Gwm−propj

S (1λ) = 1]− Pr[G
mi−propj
A (1λ) = 1]

∣∣ ≤ ε.
Proposition 4.1. If a watermarking scheme is implementation property-preserving, it is

14

also functionality property-preserving, i.e. Definition 4.1 implies Definition 3.5, when ε is
negligible to the security parameter.

5 A watermarking scheme for implementations of PKE

We describe a construction of an efficient watermarking scheme for a cryptographic im-
plementation of a public key encryption scheme. One could view our construction as a
compiler that takes as input an existing public key encryption scheme and converts it into
a watermarked public key encryption scheme.

Public key detection via linear size state vs secret-key detection via logarithmic
size state. Given that our definition of a watermarking scheme (Def. 3.1) allows for a
public state one could design a watermarking scheme for an implementation of a public
key encryption scheme by assuming a state with size linear to the number of markings.
Specifically, assume that the shared state is represented as a public table which can be
accessed by both the Marking Service and any party that runs Detect algorithm. For any
marking request, Mark generates a fresh pair of keys (pk, sk) using the key generation
algorithm of the public key encryption scheme that is being watermarked. Then, it stores
the generated public key pk to the state table and outputs (Encpk,Decsk). Thus, state will
hold all the public keys generated by Mark so far. Now, how does Detect work given the
public state? When Detect receives as input a (decryption) algorithm/circuit C, it will
check for any public key stored in the public table state, whether the circuit can decrypt
correctly a number of ciphertexts which is above a certain threshold.

Such a construction could be proven to be a secure watermarking scheme for public key
encryption however the use of a state that grows linearly to the number of markings is not
very appealing in practice especially for implementations where the public keys are large.
We overcome this problem by focusing on private detection watermarking. In Figure 7, we
suggest a watermarking scheme with logarithmic state and private key detection where the
same key is being used for both marking and detection.

Overview of our construction. Our proposed construction is given in Figure 7 and
assumes a state of logarithmic size (in the security parameter). We use a PRF function F
with a random key K and set marking and detection keys equal to K and state to be a
counter of the number of markings so far. Whenever, Mark is run it will compute (pk, sk)
by running F (K, state + 1), set state = state + 1 and output Encpk,Decsk. In order for the
detection algorithm to correctly identify whether a decryption circuit C is marked or not, it
will first re-generate all possible key pairs by running F (K, i) for every i ≤ state. Then, for
each produced pki it will check whether an encryption of a random plaintext under it, can
be correctly decrypted with C. As it turns out by our security analysis it is not enough to
check for a single plaintext, in fact, it will check the decryptions of λ/ρ randomly selected
plaintexts.

Notice that in the above watermarking scheme of Figure 7 if the number of circuits to
be marked was upper bounded by N (where N is polynomial to the security parameter),
then our construction works without state. The only difference is in the Detect algorithm:

15

Detect on input a circuit C will start testing all possible pairs (pki, ski) for i ∈ [1, . . . , N].
If for a key pair it detects marked then it stops. In the worst case (where C is not marked)
Detect will have to test all N possible keys (which is still polynomial running time).

A note about state. Note that the state information in our construction is public and
it should be immutable for the system to work in practice. A potential solution for storing
the state would be by using a public bulletin board or a blockchain system. For example,
every time the state is updated, the marking service signs it and posts a new transaction
in the blockchain with the new state and the signature. Even though storing information
in the blockchain is an expensive operation, our scheme, with its logarithmic size state, is
suitable for a blockchain deployment. We leave a detailed analysis under a formal blockchain
security model for future work.

Security analysis of our construction. In our analysis we consider key-generation
algorithms which create their random tape by choosing keys uniformly at random. This
aligns with the key generation algorithms of all the well-known encryption schemes. We
provide below the security theorem for our construction.

Theorem 5.1. Let 〈Gen,Enc,Dec〉 be an implementation of the Public Key Encryption
functionality that has plaintext space of exponential size (in the security parameter) and
satisfies (multi-instance) perfect correctness6 and (multi-instance) IND-CPA security. Let
F : K × {0, 1}n ← {0, 1}` be a pseudorandom function, where K is the key space. Then,
the scheme in Figure 7 is a watermarking scheme for the implementation 〈Gen,Enc,Dec〉.
Namely, it satisfies Detection Correctness, Implementation property-preserving with error
εprf , ρ-Unremovability and (1− ρ/3)-Unforgeability, where εprf is the security of the PRF
and ρ is a parameter with ρ ≥ 1

poly(λ) .

We prove Theorem 5.1 by proving separately each property of a watermarking scheme
in a sequence of Lemmas, i.e. Lemmas 1, 2, 3, 4.

Lemma 1 (Detection Correctness). The scheme in Figure 7 satisfies Detection Correctness
as this is defined in Definition 3.2.

Proof. Proving Detection Correctness is trivial since Detect algorithm in Figure 7 recon-
structs exactly the same circuits already produced by Mark. Namely, for any j chosen by
an adversary at step 3 of the game of Figure 2, in our construction we have that j ≤ state.
Therefore, Detect algorithm will just reconstruct C̃j at the j-th iteration and will decrypt
correctly all λ/ρ ciphertexts.

Lemma 2 (Implementation property-preserving). If the public key encryption scheme
〈Gen,Enc,Dec〉 satisfies (multi-instance) IND-CPA security, perfect correctness, and F :
K × {0, 1}n → {0, 1}` is a pseudorandom function, then the watermarking scheme of Fig-
ure 7 satisfies Definition 4.1.

6Our proofs could also be extended for implementations which have a negligible decryption error.

16

• WGen: On input 1λ, it chooses uniformly at random a key K for a pseudorandom function
F : K × {0, 1}n → {0, 1}`. It outputs mk = dk = K and initializes the public variable
state← 0.

• Mark: On input K, state, marked, compute i = state+1 and run Gen(1λ) with randomness
F (K, i). The output is a public-secret key pair (pki, ski) and the algorithm returns a pair
of circuits (Encpki ,Decski). Set as Di the distribution of the ciphertexts that correspond
to plaintexts chosen uniformly from the plaintext space. Then, set state← state + 1.

• Detect: On input K, a circuit C and state, for i = 1 to state:

– Run Gen(1λ) with randomness F (K, i) (as the Mark algorithm does) in order to
obtain (pki, ski).

– Choose k = λ/ρ plaintexts uniformly at random and encrypt them under pki, i.e.
compute the ciphertexts c1, . . . , ck.

– For j = 1 to k check whether C(cj) = mj . If this is true for at least λ/2 ciphertexts,
return marked.

Otherwise, return unmarked.

Figure 7: Watermarked Public Key Encryption Implementation

Proof. We prove this lemma in the following two claims.
Claim 2.1:(IND-CPA security) Assuming that F is a pseudorandom function then, for any
PPT adversary S, there is a PPT adversary A such that∣∣Pr[Gwm−IND−CPA

S (1λ) = 1]− Pr[Gmi−IND−CPA
A (1λ) = 1]

∣∣ ≤ εprf ,
where εprf is the security of the PRF.

Sketch. This claim is proven by using a sequence of games. We first define as G0 =
Gwm−IND−CPA
S (1λ) (for a fixed S). Then we define G1 by substituting any call to the PRF

function F for a key K to generate tuples (Decski ,Encpki) by a call to a random function
f : {0, 1}n → {0, 1}`. Observe that G1 matches the multi-instance IND-CPA security game
and therefore the claim holds due to the security of the PRF.
Claim 2.2:(Correctness) For any PPT adversary S, there is a PPT adversary A such that∣∣Pr[Gwm−COR

S (1λ) = 1]− Pr[Gmi−COR
A (1λ) = 1]

∣∣ = 0, under the assumption that the encryp-
tion scheme 〈Gen,Enc,Dec〉 is perfectly correct.

Sketch. By assumption, we have that Pr[Gmi−COR
A (1λ) = 1] = 0. We have to show that

Pr[Gwm−COR
S (1λ) = 1] = 0. This means that for any pair of public-secret keys generated by

Gen, the adversary wins the multi-instance game with probability 0 by a counting argument.
This argument holds if we replace Gen with another algorithm Gen′ with a different sampling
distribution but under the restriction the support set of Gen′ is a subset of the support set
of Gen. This holds for the support set of the PRF.

Lemma 3 (ρ-Unremovability). The scheme in Figure 7 satisfies ρ-Unremovability according
to Definition 3.3 under the assumption that the underlying public-key encryption scheme

17

〈Gen,Enc,Dec〉 satisfies perfect correctness. (without introducing any negligible decryption
error.)

Proof. We prove this lemma using counting arguments which are independent of the adver-
sary’s strategy. In particular, we fix (i, (Decski ,Encpki),Di) ∈ Marked and we assume that
C∗ is ρ-close to the function Decski with respect to Di. Then, we prove that Detect returns
unmarked only with negligible probability.

We define the random variable Xi,j as follows:

Xi,j =

{
1, if C∗(cj) = Decski(cj) where cj ← Di
0, otherwise

(1)

We have that Pr[Xi,j = 1] ≥ ρ. Then we define the random variable Xi =
∑λ/ρ

j=1Xi,j ,
where the random variables Xi,j for j = 1, . . . , λ/ρ are independent. Thus, we have that

µ = E[Xi] =
∑λ/ρ

i=1E[Xi,j] ≥
∑λ/ρ

i=1 ρ = λ.
By Claim 2.2, we have that the watermarking scheme preserves perfect correctness of the

encryption scheme 〈Gen,Enc,Dec〉 (without introducing any decryption error). This means
that the random variable Xi counts the number of ciphertexts from Di (out of k = λ/ρ)
which are correctly decrypted by C∗ under ski. We will compute an upper bound on
Pr[Xi < λ/2] using the following Chernoff bound:

Pr[Xi ≤ (1− δ)µ] ≤ e−µ·
δ2

2 , for all 0 < δ < 1. (2)

First, we have that Pr[X < λ/2] ≤ Pr[Xi ≤ λ/2] ≤ Pr[Xi ≤ µ/2]. If we set δ = 1/2 in
(2) we have that Pr[Xi ≤ µ/2] ≤ e−µ/8 ≤ e−λ/8, which is negligible in λ. Consequently,
Pr[Xi ≥ λ/2] ≥ 1 − e−λ/8 which means that Detect will return marked with probability
1− negl(λ).

Lemma 4 ((1−ρ/3)-Unforgeability). If the function F : K×{0, 1}n → {0, 1}` satisfies PRF
security and the public key encryption scheme 〈Gen,Enc,Dec〉 satisfies IND-CPA security
and perfect correctness, then the scheme in Figure 7 satisfies (1− ρ/3)-unforgeability.

Proof. Assuming that there is a PPT adversary A that breaks (1−ρ/3)-unforgeability prop-
erty of our watermarking scheme with non-negligible probability α, we will construct a PPT
adversary B which breaks IND-CPA security of the encryption scheme 〈Gen,Enc,Dec〉. At
first, observe that by the security of the PRF function F , A breaks (1− ρ/3)-unforgeability
property with non-negligible probability for a modified watermarking scheme, where any
call to the pseudorandom function F (K, i) (for a random key K), is substituted by a uni-
formly chosen string in {0, 1}` (i.e. the range of the PRF). Therefore, B will simulate a
(1− ρ/3)-unforgeability experiment with A by choosing uniformly at random a string from
{0, 1}`, whenever Gen(1λ) is invoked for some index i ∈ {0, 1}n. This string will remain the
same in any invocation of the algorithm for the same index i throughout the simulation.

In this proof, we will use the notion of IND-CPA security for multiple messages as this is
defined in Appendix B.1. Specifically, the challenge will be two tuples of length λ/ρ (which
is polynomial in λ). Without loss of generality, we assume that A makes m1 queries to the

18

Description of B:

1. B receives pk from the Challenger of the IND-CPA security game.

2. B chooses i∗ ∈ {1, . . . ,m1} uniformly at random and initializes state ← 0, i ← 0
and Marked← ∅. From now on, we will refer to pk as pki∗ .

3. B gives param to A and simulates the oracle queries as follows:

ChallengeOracle queries: When A makes a query to the ChallengeOracle, B
sets i ← i + 1 and state ← state + 1. If i 6= i∗, B chooses uniformly a string ri
from S, runs Gen(1λ) with randomness ri and generates a pair (pki, ski). Then, B
stores

(
i, (Decski ,Encpki),Di

)
to the table Marked and sends

(
i,Encpki ,Di

)
to A.

If i = i∗, then B returns (i∗,Encpki∗ ,Di∗) to A.

CorruptOracle queries: When A makes a query i ≤ m1 to the Corrupt Oracle,
B checks if i = i∗. If this holds, B outputs a random bit b ∈ {0, 1} and the game
stops. This happens because B cannot simulate correctly this query since it does
not hold the secret key that corresponds to the public key pki∗ . If i 6= i∗, B sends(
i, (Decski ,Encpki),Di

)
to A.

DetectOracle queries: When A makes a query C, B runs the algorithm Detect
by utilizing the encryption functions stored at the table Marked.

4. A outputs C∗.

5. B chooses two tuples of messages (M0,1, . . . ,M0,λ/ρ), (M1,1, . . . ,M1,λ/ρ) and sends
them to the Challenger. Each message of the tuple is chosen by B uniformly at
random from the message space.

6. Upon receiving (cb,1, . . . , cb,λ/ρ) from the Challenger, where cb,j = Enc(pk,Mb,j),
B initializes three counters count0, count1, count⊥ to 0. Then B runs Detect on
input C∗ in a way that at round i∗, it uses the ciphertexts (cb,1, . . . , cb,λ/ρ) given
by the Challenger. Then, for j = 1, . . . , λ/ρ, B does the following:

• If C∗(cb,j) = M0,j , it sets count0 ← count0 + 1

• If C∗(cb,j) = M1,j , it sets count1 ← count1 + 1

• Otherwise it sets count⊥ ← count⊥ + 1

If count0 ≥ λ/2 or count1 ≥ λ/2, then B outputs 0 or 1 respectively. Otherwise,
it outputs a random bit.

Figure 8: Unforgeability to IND-CPA reduction

ChallengeOracle, m2 queries to the CorruptOracle and m3 queries to the DetectOracle. The
reduction is described in Figure 8. Then, we provide a description of the analysis of our
reduction.

19

Remark 3. Notice that in step 5 of the reduction of Figure 8 there is a probability for
messages in the same positions of the two tuples to be equal, i.e. M0,i = M1,i. In that
case the reduction would fail. However, the probability of this event is very small since the
plaintext space has exponential size. For simplicity, we ignore this event in the probability
analysis below assuming that all probabilities are also conditioned on the event that the
reduction does not fail.

Outline of the analysis. In order to compute the probability that B wins, we have to
compute the probabilities Pr[B wins|A wins] and Pr[B wins|¬A wins]. We start by the
case where A wins. If A wins, this means that there is j∗ such that C∗ is (1−ρ/3)-far from
Decskj but Detect returns marked. First, using counting arguments, we essentially rule out
all the decryption functions that belong to the Corrupted set (i.e. returned by CorruptOracle
upon request). Then, given that j∗ does not belong the Corrupted set, we distinguish two
different cases depending on whether B guesses j∗ correctly, or not. B guesses correctly j∗

with probability 1/m, since the best it can do is choosing in the beginning uniformly at
random i∗ ∈ {1, . . . ,m} and plug into the i∗-th ChallengeOracle query for this index the
public key given by the IND-CPA Challenger. If B guesses correctly j∗ (i.e. j∗ = i∗), since
pkj∗ is the key given to B by the IND-CPA Challenger, B will win as well. If B does not
guess correctly j∗, this means that A produces a “forgery” but for a decryption function
which is already known to B. The question is whether in such case B could benefit in
guessing the correct bit at the end or not. Therefore, we should analyze how C∗ behaves
on input the tuple of ciphertexts (cb,1, . . . , cb,λ/ρ) returned by the Challenger.

There are three cases. First, if C∗ decrypts at least λ/ρ− λ/2 ciphertexts of the tuple
(which are encrypted under pkj∗) to messages completely irrelevant to the corresponding
plaintexts of both tuples challenged in step 5 (i.e. C∗(cb,i) 6= M0,i and C∗(cb,i) 6= M1,i),
then B outputs a random bit and wins with probability 1/2. In the second case, if C∗

decrypts correctly at least λ/2 ciphertexts of the tuple (cb,1, . . . , cb,λ/ρ), then B guesses
the correct bit and wins. In other words, in this case C∗ decrypts correctly a portion of
ciphertexts encrypted under two different keys. Although it would be interesting to explore
under which conditions this may happen or not (and with what probability), it does not
affect our probability analysis as we can just set the probability that B guesses the correct
bit in this case to be at least 1/2. The last case is having C∗ decrypt at least λ/2 out of
λ/ρ ciphertexts in corresponding plaintexts of the opposite tuple (the one not selected by
the Challenger). To make this more clear, assume that the Challenger chooses b = 0, and
therefore encrypts the plaintexts (M0,1, . . . ,Mλ/ρ) under pkj∗ . In this case, C∗ decrypts
c0,j to M1,j (for at least λ/2 values of j). This scenario may happen only with negligible
probability since the plaintexts in the two tuples are chosen uniformly at random from a
plaintext space of exponential size. To sum up, for the case where B does not guess correctly
j∗, B wins only with probability at least 1/2.

At this point we move to the case where A does not win (1−ρ/3)-unforgeability game.
One possible case is that A makes a CorruptOracle query for the index i∗ and since B cannot
provide the corresponding secret key, it aborts and outputs a random bit. Supposing that
B does not just abort, two possible scenarios can take place if we consider the (1 − ρ/3)-
unforgeability definition: (1) Either Detect returns unmarked or (2) there is a decryption
function Decski such that C∗ is not (1 − ρ/3)-far from Decski . In the former case B will

20

• WGen(1λ): Run IBE.Setup(1λ) which outputs (msk, IBE.param). Set mk = msk,
param = IBE.param, dk = IBE.param, and initialize state← 0.

• Mark: On input mk, param, compute i = state + 1 and set idi = i. Run
IBE.Extract(msk, f(param, idi)) which outputs a secret key ski for the identity
idi. Return to the Client (Decski ,Encpki). Set as Di the distribution of the cipher-
texts that correspond to plaintexts chosen uniformly from the plaintext space. Set
state← state + 1.

• Detect: On input dk and a circuit C, for i = 1 to state:

– Compute pki = f(param, idi).

– Choose k = λ/ρ plaintexts uniformly at random from the the plaintext space
and encrypt them under pki. We denote the corresponding ciphertexts as
c1, . . . , ck.

– If for at least λ/2 plaintexts it holds that C(ci) = mi then return marked

Otherwise return unmarked.

Figure 9: Watermarked Public Key Encryption Functionality from IBE

output a random bit. The latter case splits in two subcases, (a) there is Decski such that
C∗ is not (1 − ρ/3)-far from Decski and Detect returns unmarked, and (b) there is Decski
such that C∗ is not (1−ρ/3)-far from Decski and Detect returns marked. In case (a), B will
output a random bit. In case (b), we should examine how C∗ behaves on input the tuple
of ciphertexts (cb,1, . . . , cb,λ/ρ) given by the Challenger. Using the same analysis with the
case where A wins but B does not guess j∗ correctly described in the previous paragraph,
we show that B wins with probability at least 1/2.

We provide the detailed probability analysis in Appendix C where we conclude that if A
wins with non-negligible probability α, then, B breaks IND-CPA security with probability
at least 1

2 + α
2m − negl(λ).

6 Watermarking PKE funtionality from IBE

Finally, we present a watermarking scheme for the public key encryption functionality. Our
construction relies on identity-based encryption (IBE) [5] and will allow for public detection
of the watermark. The state, as before, will be of logarithmic size to the security parameter.
As a reference, we provide the IBE definition and the security properties in the section D
of the appendix.

Assuming an IBE scheme, one can construct a watermarking scheme for the public-key
encryption functionality based on the following idea: The private marking key equals the
master secret key of the IBE scheme. Then, the marking service (i.e., the Mark algorithm
of the watermaking scheme), when invoked, sets pki = f(param, idi) for some deterministic
function f7 and then runs the private key generator of IBE, IBE.Extract(msk, f(param, idi)),

7In standard IBE the id of the user (i.e. email address or other unique identifier) serves as pk. Here,

21

to get the corresponding ski. The identities, idi, are not given as input to Mark, instead,
each identity is the next value of a counter that keeps the number of keys generated so far
(which is stored at state). Detection works in a similar way to our construction in Section 5:
try every possible public key (since by state you know the number of keys generated) and
check if the given decryption circuit is watermarked by checking if for any of these public
keys it correctly decrypts ciphertexts. We present our construction in Figure 9.

Theorem 6.1. Let 〈IBE.Setup, IBE.Extract, IBE.Encrypt, IBE.Decrypt〉 be an IBE scheme
with plaintext space of exponential size which satisfies correctness and IND-ID-CPA security.
Then, the scheme of Figure 9 is a watermarking scheme for the public key encryption func-
tionality. Namely, it satisfies Detection-correctness, is Functionality property-preserving,
and achieves ρ-Unremovability and (1− ρ/3)-Unforgeability with ρ ≥ 1

poly(λ) .

The scheme of Figure 9 is based on the same idea as the scheme of Section 5, thus,
the proofs for detection correctness, ρ-Unremovability and (1−ρ/3)-Unforgeability are very
similar and thus omitted. However, this is a scheme showing how to watermark a cryp-
tographic functionality and not an implementation and therefore we prove that it satisfies
property-preserving as this is defined in Definition 3.5. We prove this property in Lemma 5
of Appendix D.

References

[1] André Adelsbach, Stefan Katzenbeisser, and Helmut Veith. Watermarking schemes
provably secure against copy and ambiguity attacks. In ACM workshop on Digital
rights management, 2003.

[2] Foteini Baldimtsi, Aggelos Kiayias, and Katerina Samari. Watermarking public-key
cryptographic functionalities and implementations. In ISC, 2017.

[3] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO,
2001.

[4] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2),
2012.

[5] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
SIAM J. Comput., 32(3), 2003.

[6] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions
privately. In PKC, 2017.

[7] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their appli-
cations. In ASIACRYPT, 2013.

since id’s are just a short counter value one might want to extend them in some deterministic way - else f
could also the identity function.

22

[8] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In PKC, 2014.

[9] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In CRYPTO, 1994.

[10] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. Watermarking cryptographic capabilities. In STOC, 2016.

[11] Aloni Cohen, Justin Holmgren, and Vinod Vaikuntanathan. Publicly verifiable software
watermarking. IACR Cryptology ePrint Archive, 2015.

[12] Christian S. Collberg and Clark D. Thomborson. Watermarking, tamper-proofing, and
obfuscation-tools for software protection. IEEE Trans. Software Eng., 28(8), 2002.

[13] Ingemar J Cox, Matthew L Miller, Jeffrey Adam Bloom, and Chris Honsinger. Digital
watermarking, volume 1558607145. Springer, 2002.

[14] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In CRYPTO. Springer-Verlag New York, Inc., 1985.

[15] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013.

[16] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions (extended abstract). In FOCS, 1984.

[17] Nicholas Hopper, David Molnar, and David Wagner. From weak to strong watermark-
ing. In TCC, 2007.

[18] Jonathan Katz. Analysis of a proposed hash-based signature standard”. Intern. Con-
ference on Research in Security Standardisation (SSR), 2016.

[19] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In CCS, 2013.

[20] Aggelos Kiayias and Qiang Tang. How to keep a secret: leakage deterring public-key
cryptosystems. In CCS, 2013.

[21] Sam Kim and David J. Wu. Watermarking cryptographic functionalities from standard
lattice assumptions. In CRYPTO, 2017.

[22] David Naccache, Adi Shamir, and Julien P. Stern. How to copyright a function? In
PKC, 1999.

[23] Ryo Nishimaki. How to watermark cryptographic functions. In EUROCRYPT, 2013.

[24] Ryo Nishimaki. How to watermark cryptographic functions. IACR Cryptology ePrint
Archive, 2014.

[25] Ryo Nishimaki and Daniel Wichs. Watermarking cryptographic programs against ar-
bitrary removal strategies. IACR Cryptology ePrint Archive, 2015.

23

GCOR
A (Encpk,Decsk):

1. The challenger sends Encpk to the
adversary A.

2. A sends a message M to the chal-
lenger.

3. The challenger checks if
Decsk(Encpk(M)) 6= M .

4. The game outputs 1 iff
Decsk(Encpk(M)) 6= M .

Figure 10: The game for the correctness
property with πCOR = 0.

GIND−CPA
A (Encpk,Decsk):

1. The challenger C sends Encpk to the
adversary A.

2. A sends two messages M0,M1 to the
challenger.

3. C chooses randomly b ∈ {0, 1} and
sends cb = Encpk(Mb) to A.

4. A sends b∗ ∈ {0, 1} to C.

5. The game outputs 1 iff b = b∗.

Figure 11: The game for IND-CPA security
property with πIND−CPA = 1/2.

[26] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
STOC, 2008.

[27] Christine I Podilchuk and Edward J Delp. Digital watermarking: algorithms and
applications. IEEE signal processing Magazine, 18(4), 2001.

[28] Vidyasagar M Potdar, Song Han, and Elizabeth Chang. A survey of digital image
watermarking techniques. In INDIN. IEEE, 2005.

[29] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In STOC, 2014.

A (IND-CPA secure) Public Key Encryption Functionality

In this section we give a concrete example of a cryptographic functionality that is useful
for our constructions. The public-key encryption functionality can be defined as a pair
of algorithms 〈Enc,Dec〉 that should satisfy the properties of Correctness and IND-CPA
security, as they are defined in Figures 13 and 14.

For the correctness definition note that we define it as a game (as per our Definition 2.3):
an adversary would break correctness if he could come up with a message M such that its
ciphertext, when encrypted under the challenge public key, would not decrypt correctly. A
public key encryption functionality should be correct with probability πCOR = 0.

Also, in both correctness and IND-CPA games, notice that according to Definition 2.3
they should get as input two algorithms C1, C2 that correspond to an instance of the
candidate implementation. Thus, in Figures 13 and 14 the challenger receives as input
(Encpk,Decsk) for some key pair (sk, pk). In a cryptographic implementation these keys
would have been generated by the corresponding Gen algorithm.

24

Gm−IND−CPA
A (Encpk,Decsk):

1. The challenger C sends Encpk to the adversary A.

2. A sends two tuples of messages (M0,1, . . . ,M0,`), (M1,1, . . . ,M1,`) to the challenger.

3. C chooses randomly b ∈ {0, 1}, and sends (cb,1, . . . , cb,`) to A, where cb,j =
Encpk(Mb,j), for j ∈ {1, . . . , `}.

4. A sends b∗ ∈ {0, 1} to C.

5. The game outputs 1 iff b = b∗.

Figure 12: IND-CPA security property for multiple messages, ` is polynomial in the security
parameter λ.

A.1 IND-CPA security for multiple messages.

In Figure 15, we define the game for IND-CPA security for multiple-messages, where the
adversary sumbits two tuples of messages to the Challenger instead of two different messages,
as in the stardard IND-CPA security game. Using a hybrid argument, we can show that
IND-CPA security implies IND-CPA security for multiple messages.

B (IND-CPA secure) Public Key Encryption Functionality

In this section we give a concrete example of a cryptographic functionality that is useful
for our constructions. The public-key encryption functionality can be defined as a pair
of algorithms 〈Enc,Dec〉 that should satisfy the properties of Correctness and IND-CPA
security, as they are defined in Figures 13 and 14.

For the correctness definition note that we define it as a game (as per our Definition 2.3):
an adversary would break correctness if he could come up with a message M such that its
ciphertext, when encrypted under the challenge public key, would not decrypt correctly. A
public key encryption functionality should be correct with probability πCOR = 0.

Also, in both correctness and IND-CPA games, notice that according to Definition 2.3
they should get as input two algorithms C1, C2 that correspond to an instance of the
candidate implementation. Thus, in Figures 13 and 14 the challenger receives as input
(Encpk,Decsk) for some key pair (sk, pk). In a cryptographic implementation these keys
would have been generated by the corresponding Gen algorithm.

B.1 IND-CPA security for multiple messages.

In Figure 15, we define the game for IND-CPA security for multiple-messages, where the
adversary sumbits two tuples of messages to the Challenger instead of two different messages,
as in the stardard IND-CPA security game. Using a hybrid argument, we can show that
IND-CPA security implies IND-CPA security for multiple messages.

25

GCOR
A (Encpk,Decsk):

1. The challenger sends Encpk to the
adversary A.

2. A sends a message M to the chal-
lenger.

3. The challenger checks if
Decsk(Encpk(M)) 6= M .

4. The game outputs 1 iff
Decsk(Encpk(M)) 6= M .

Figure 13: The game for the correctness
property with πCOR = 0.

GIND−CPA
A (Encpk,Decsk):

1. The challenger C sends Encpk to the
adversary A.

2. A sends two messages M0,M1 to the
challenger.

3. C chooses randomly b ∈ {0, 1} and
sends cb = Encpk(Mb) to A.

4. A sends b∗ ∈ {0, 1} to C.

5. The game outputs 1 iff b = b∗.

Figure 14: The game for IND-CPA security
property with πIND−CPA = 1/2.

Gm−IND−CPA
A (Encpk,Decsk):

1. The challenger C sends Encpk to the adversary A.

2. A sends two tuples of messages (M0,1, . . . ,M0,`), (M1,1, . . . ,M1,`) to the challenger.

3. C chooses randomly b ∈ {0, 1}, and sends (cb,1, . . . , cb,`) to A, where cb,j =
Encpk(Mb,j), for j ∈ {1, . . . , `}.

4. A sends b∗ ∈ {0, 1} to C.

5. The game outputs 1 iff b = b∗.

Figure 15: IND-CPA security property for multiple messages, ` is polynomial in the security
parameter λ.

26

C (1− ρ/3)-Unforgeability proof of Section 5.

Recall that if A wins (ρ/3)-unforgeability game then, according to the security game of
Figure 4, the following two conditions hold:

1. C∗ is (ρ/3)-far from all the Decryption functions returned by the CorruptOracle, e.g.
Decski1 , . . . ,Decskiq .

2. The algorithm Detect returns marked. This means that there is (j∗, ·) ∈ Marked such
that C∗ decrypts correctly under skj∗ at least λ/2 out of λ/ρ ciphertexts distributed
according to Dj .

We will first compute Pr[B wins|A wins]. Based on condition (ii), we define the
event Ecor =“ (j∗, ·) ∈ Corrupted” The complementary event defined as ¬Ecor =“(j∗, ·) /∈
Corrupted” (i.e. j∗ ∈ Marked \ Corrupted). Therefore, we have that

Pr[B wins|A wins] = Pr[B wins ∧ Ecor|A wins] + Pr[B wins ∧ ¬Ecor|A wins] (3)

Pr[B wins ∧ Ecor|A wins] = Pr[B wins|A wins,Ecor]Pr[Ecor|A wins]. (4)

We will compute Pr[Ecor|A wins]. Since A wins, by condition (i) we have that for all
(j, ·) ∈ Corrupted it holds that C∗ �γ,Dj Decskj . Similarly to the ρ-unremovability proof, we
denote as Xj the random variable which counts the number of ciphertexts from distribution
Dj (out of λ/ρ) for which the circuit C∗ returns the same output with Decskj . By claim 2.2,
we have that the watermarking scheme preserves perfect correctness without introducing
any decryption error and therefore Xj counts the number of ciphertexts from Dj which are
correctly decrypted by C∗ under skj .

We have that µ = E[Xj] ≤ λ
ρ ·

ρ
3 = λ/3. We define X̂j the random variable with µ = λ/3.

Therefore, we have that Pr[Xj ≥ λ/2] ≤ Pr[X̂j ≥ λ/2]. By using the following Chernoff
bound

Pr[Xj ≥ (1 + δ)µ] ≤ e−
δ2

2+δ
µ, for all 0 < δ < 1

and setting δ = 1/2, we have that Pr[X̂j ≥ λ/2] ≤ e−λ/30. Thus, it holds that Pr[Xj ≥
λ/2] ≤ e−λ/30 which is negligible in λ. Since A makes q queries to the CorruptOracle, we
have that

Pr[Ecor|A wins] ≤ q · e−λ/30, which is also negligible in λ. (5)

To simplify the presentation of the proof, we set Pr[Ecor|A wins] = negl(λ). By (3),(4), (5),
we have that

Pr[B wins|A wins] = negl(λ) + Pr[B wins ∧ ¬Ecor|A wins]. (6)

We now compute Pr[B wins ∧ ¬Ecor|A wins].

Pr[B wins ∧ ¬Ecor|A wins] = Pr[B wins|Awins,¬Ecor] · Pr[¬Ecor|A wins]

= Pr[B wins|Awins,¬Ecor](1− Pr[Ecor|A wins]). (7)

By (5), we have that

Pr[B wins ∧ ¬Ecor|A wins] = (1− negl(λ))Pr[B wins|Awins,¬Ecor]. (8)

We will now compute Pr[B wins|A wins,¬Ecor]. We define the event

27

Guess =“B guesses j∗ where (j∗, ·) ∈ Marked and C∗ decrypts correctly under skj∗ at least
λ/2 out of λ/ρ ciphertexts distributed according to Dj∗ .”

Based on that event we have that

Pr[B wins|A wins,¬Ecor] = Pr[B wins ∧ Guess|A wins,¬Ecor]+
Pr[B wins ∧ ¬Guess|A wins,¬Ecor]. (9)

We first compute Pr[B wins ∧ Guess|A wins,¬Ecor].

Pr[B wins ∧ Guess|A wins,¬Ecor] = Pr[B wins|A wins,¬Ecor,Guess]·
Pr[Guess|A wins,¬Ecor]

= 1 · Pr[Guess|A wins,¬Ecor]. (10)

Then,

Pr[B wins ∧ ¬Guess|A wins,¬Ecor] = Pr[B wins|A wins,¬Ecor,¬Guess]·
Pr[¬Guess|A wins,¬Ecor].

We continue by computing Pr[B wins|A wins,¬Ecor,¬Guess]. As we will see below, we
need the following claim.
Claim 4.1: Assume that a circuit C∗ decrypts correctly λ/2 out of λ/ρ ciphertexts which cor-
respond to encryptions of uniformly chosen plaintexts under a public key pki. Let pki∗ a pub-
lic key different than pki and two tuples of unifomly chosen plaintexts (M1, ...,Mλ/ρ), (M

∗
1 , ...,M

∗
λ/ρ).

If C∗ is given as input (c1, ..., cλ/ρ) where ci = Encpki∗ (M1) (for i = 1, ...mλ/ρ), then C∗

decrypts ci to M∗i for at least λ/2 values if i only with negligible probability.
As already discussed in the outline of the analysis there are three cases:

• C∗ decrypts at least λ/ρ − λ/2 ciphertexts of the tuple (which are encrypted under
pkj∗) to messages completely irrelevant to the corresponding plaintexts of both tuples
challenged in step 5 (i.e. C∗(cb,i) 6= M0,i and C∗(cb,i) 6= M1,i). In this case, B outputs
a random bit and wins with probability 1/2.

• C∗ decrypts correctly at least λ/2 ciphertexts of the tuple (cb,1, . . . , cb,λ/ρ) and there-
fore B guesses the correct bit and wins. In other words, in this case C∗ decrypts
correctly a portion of ciphertexts encrypted under two different keys. we can just set
the probability that B guesses the correct bit in this case to be at least 1/2.

• C∗ decrypts at least λ/2 out of λ/ρ ciphertexts in corresponding plaintexts of the
opposite tuple (the one not selected by the Challenger). Namely, if the Challenger
chooses b = 0, and encrypts the plaintexts (M0,1, . . . ,Mλ/ρ) under pkj∗ , this would
mean that C∗ decrypts c0,j to M1,j (for at least λ/2 values of j). By claim 4.1, this
holds only with negligible probability and and therefore the B guesses the correct bit
with probability 1/2.

As a result, we have that Pr[B wins|A wins,¬Ecor,¬Guess] ≥ 1/2. Then,

Pr[B wins ∧ ¬Guess|A wins,¬Ecor] ≥
1

2

(
1− Pr[Guess|A wins,¬Ecor]

)
(11)

28

By (9),(10),(11), we have that

Pr[B wins|A wins,¬Ecor] ≥
1

2
+

Pr[Guess|A wins,¬Ecor]
2

=
1

2
+

1

2m
. (12)

By (8),(12), we have that

Pr[B wins ∧ ¬Ecor|A wins] ≥ (1− negl(λ))
(1

2
+

1

2m

)
. (13)

By (6),(13),

Pr[B wins|A wins] = negl(λ) + (1− negl(λ))
(1

2
+

1

2m

)
. (14)

We will now compute Pr[B wins|¬A wins]. We first define the event Abort = “B aborts”.
Recall that this event happens only if the adversary A makes a query to the CorruptOracle
for the public key pki∗ which is given to B by the IND-CPA challenger. Therefore, we have
that

Pr[B wins|¬A wins] = Pr[B wins∧Abort|¬A wins] + Pr[B wins∧¬Abort|¬A wins] (15)

Pr[B wins ∧ Abort|¬A wins] = Pr[B wins|¬A wins,Abort]Pr[Abort|¬A wins]

=
1

2
Pr[Abort|¬A wins]. (16)

We now compute Pr[B wins|¬A wins,¬Abort]. We define the two possible events which
may hold in the case that B does not abort and A does not win.

• Unmarked =“C∗ is unmarked”.

• Notfar = “ There is (j, ·) ∈ Corrupted s.t. C∗ is not (ρ/3)-far from Decskj .”

Notice that these two events are not disjoint, since when the event Notfar takes place Detect
can return either marked or unmarked on input C∗. However, since A does not win, it
holds that

Pr[¬Unmarked|¬A wins,¬Abort] = Pr[¬Unmarked ∧ Notfar|¬A wins,¬Abort] (17)

In the case where Detect returns unmarked B will output a random bit. In the case where
Detect returns marked, we should examine how C∗ behaves on input the tuple of ciphertexts
(cb,1, . . . , cb,λ/ρ) given by the Challenger. For this case we distinguish three cases in exactly
the same way as in the analysis for the computation of Pr[B wins|A wins,¬Ecor,¬Guess].
Hence, using the claim 4.1, we conclude that when Notfar happens and Detect returns
marked on input C∗, B wins with probability at least 1/2. Therefore,

Pr[B wins|¬A wins,¬Abort] = Pr[B wins ∧ Unmarked|¬A wins,¬Abort]
+ Pr[B wins ∧ ¬Unmarked ∧ Notfar|¬A wins,¬Abort] (18)

Pr[B wins ∧ Unmarked|¬A wins,¬Abort] =
1

2
Pr[Unmarked|¬A wins,¬Abort]. (19)

29

Pr[B wins ∧ ¬Unmarked ∧ Notfar|¬A wins,¬Abort] =

Pr[B wins|¬A wins,¬Abort,Notfar,¬Unmarked] · Pr[¬Unmarked| ¬A wins,¬Abort] (20)

As we analyzed before, by claim 4.1

Pr[B wins|¬A wins,¬Abort,Notfar,¬Unmarked] ≥ 1/2. (21)

Then,

Pr[B wins ∧ ¬Unmarked ∧ Notfar|¬A wins,¬Abort] ≥ 1

2
Pr[¬Unmarked|¬A wins,¬Abort].

(22)

By (18),(19),(22), we have that

Pr[B wins|¬A wins,¬Abort] ≥ 1

2
. (23)

By (15),(16),(23), we have that

Pr[B wins|¬A wins] ≥ 1

2

(
1− Pr[¬Abort|¬A wins]

)
+

1

2
Pr[¬Abort|¬A wins] =

1

2
. (24)

Finally,

Pr[B wins] = Pr[B wins|A wins]Pr[A wins] + Pr[B wins|¬A wins]Pr[¬A wins] (25)

By (14), (24),

Pr[B wins] ≥ 1

2
+

α

2m
− negl(λ), (26)

Hence, B breaks IND − CPA security with non-negligible probability.

D Identity based encryption

D.1 IBE preliminaries

Following Definition 2.3 in Section 2, identity-based encryption is a functionality with three
algorithms IBE.Extract, IBE.Encrypt and IBE.Decrypt and two properties, i.e. correctness
and IND-ID-CPA security as these are defined in Figures 16, 17 respectively. Next, we give
a definition of an IBE scheme. We follow the definition of Boneh-Franklin paper [5].

Definition D.1 (IBE scheme). An IBE scheme consists of four algorithms, IBE.Setup,
IBE.Extract, IBE.Encrypt and IBE.Decrypt described as follows:

• IBE.Setup(1λ): outputs a master key msk for the private key generator (PKG) and
some system parameters param.

• IBE.Extract(param,msk, ID): outputs a private key for ID, skID for the identity ID.

• IBE.Encrypt(param, ID,M): produces the public key pkID for ID and outputs an en-
cryption C for the plaintext M under pkID.

• IBE.Decrypt(param, skID, C): outputs a plaintext M as the decryption of the cipher-
text C.

30

GCOR
A (IBE.Extractmsk, IBE.Encryptparam, IBE.Decrypt(IBE.Extractmsk)):

1. The Challenger sends IBE.Encryptparam to A.

2. The adversary sends an identity ID and a message M to the Challenger.

3. The Challenger checks if IBE.Decrypt(IBE.Extractmsk(ID),
IBE.Encryptparam(ID,M)) = M .

4. The game outputs 1 iff IBE.Decrypt(IBE.Extractmsk(ID),
IBE.Encryptparam(ID,M)) = M .

Figure 16: Correctness property with πCOR = 0.

GIND−ID−CPA
A (IBE.Extractmsk, IBE.Encryptparam, IBE.Decrypt(IBE.Extractmsk)):

1. A receives IBE.Encryptparam by the Challenger.

2. A can request private keys for a number of identities its choice, e.g. D1, . . . , IDq.
Given an identity IDi, the Challenger replies by running Extractmsk(IDi) which
outputs the corresponding secret key.

3. A sends ID,M0,M1 to the Challenger such that ID has not been issued as query
in the previous step and M0 6= M1.

4. The Challenger chooses uniformly at random b ← {0, 1}, computes Cb =
IBE.Encryptparam(ID,Mb) and returns Cb to the adversary.

5. A may repeat step 2 with the restriction that it cannot request the secret key for
the identity sent to the Challenger in the previous step.

6. A outputs b∗ ∈ {0, 1}.

7. The game outputs 1 iff b = b∗.

Figure 17: IND-ID-CPA property with πIND−ID−CPA = 1/2.

31

D.2 Proof of Theorem 2

Theorem D.1. Let 〈IBE.Setup, IBE.Extract, IBE.Encrypt, IBE.Decrypt〉 be an IBE scheme
with plaintext space of exponential size which satisfies correctness and IND-ID-CPA security.
Then, the scheme of Figure 9 is a watermarking scheme for the public key encryption func-
tionality. Namely, it satisfies Detection-correctness, is Functionality property-preserving,
and achieves ρ-Unremovability and (1− ρ/3)-Unforgeability with ρ ≥ 1

poly(λ) .

The scheme of Figure 9 is based on the same idea as the scheme of Section 5, thus,
the proofs for detection correctness, ρ-Unremovability and (1−ρ/3)-Unforgeability are very
similar and thus omitted. However, this is a scheme showing how to watermark a cryp-
tographic functionality and not an implementation and therefore we prove that it satisfies
property-preserving as this is defined in Definition 3.5. We prove this property in the
following lemma.

Lemma 5. If the IBE scheme satisfies perfect correctness and IND-ID-CPA security, then
the watermarking scheme of Figure 9 is property-preserving for the public key encryption
functionality according to Definition 3.5.

Proof. In the next two claims we show separately that the scheme of Figure 9 preserves
correctness and IND-CPA security, in the sense of Definition 3.5.
Claim 5.1: If the IBE scheme satisfies IND-ID-CPA security, then for any PPT adversary
A it holds that

Pr[Gwm−IND−CPA
A (1λ) = 1] ≤ 1

2
+ negl(λ).

Proof. Let A be a PPT adversary which breaks property-preserving game for IND-CPA
security with non-negligible advantage α, i.e. Pr[Gwm−IND−CPA

A (1λ) = 1] ≥ 1/2 + α. We
construct a PPT adversary B which breaks IND-ID-CPA security with the same probability
as follows. For simplicity, we omit the function f in this proof.

1. B receives IBE.Encryptparam by the IND-ID-CPA Challenger.

2. B initializes the variables i← 0, state← 0 8 and forwards to A the public parameters
IBE.Encryptparam.

3. Whenever A makes a ChallengeOracle query, B chooses as the next identity the value
i+ 1, and responds with IBE.Encryptparam(i+ 1). B updates state to state+ 1 and i to
i+ 1. When A makes a CorruptOracle query for an index i, B makes an Extract query
in order to receive the secret key ski for identity i, and sends Decski to A together
with the corresponding encryption function. B answers DetectOracle queries by just
running the algorithm Detect of the scheme.

4. A chooses an instance i, which means that the (standard) IND-CPA security game will
be run for the public key of identity ID = i, and then chooses to messages M0,M1.

5. B also submits ID = i and M0,M1 to the Challenger and receives a cipheretxt cb.

8The variables, i, state in this scheme have the same value.

32

6. B outputs whatever A outputs.

From the structure of above reduction, it is easy to show that B breaks IND-ID-CPA security
with the same advantage with A, which is non-negligible.

Claim 5.2: If the IBE scheme satisfies perfect correctness, then for any PPT adversary A
it holds that

Pr[Gwm−COR
S (1λ) = 1] ≤ negl(λ).

Proof. This proof is straghtforward. Due to the perfect correctness of the IBE scheme,
correctness of the watermarking scheme holds with no error.

33

	Introduction
	Preliminaries
	Defining cryptographic objects

	Watermarking Cryptographic Functionalities
	Syntax of a watermarking scheme
	Security Model
	Security Properties

	Watermarking Cryptographic Implementations
	A watermarking scheme for implementations of PKE
	Watermarking PKE funtionality from IBE
	(IND-CPA secure) Public Key Encryption Functionality
	IND-CPA security for multiple messages.

	(IND-CPA secure) Public Key Encryption Functionality
	IND-CPA security for multiple messages.

	(1-/3)-Unforgeability proof of Section 5.
	Identity based encryption
	IBE preliminaries
	Proof of Theorem 2

