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Abstract. Electronic payment systems have leveraged the advantages
offered by the RFID technology, whose security is promised to be
improved by applying the notion of Physically Unclonable Functions
(PUFs). Along with the evolution of PUFs, numerous successful attacks
against PUFs have been proposed in the literature. Among these are
machine learning (ML) attacks, ranging from heuristic approaches to
provable algorithms, that have attracted great attention. Our paper pur-
sues this line of research by introducing a Fourier analysis based attack
against PUFs. More specifically, this paper focuses on two main aspects
of ML attacks, namely being provable and noise tolerant. In this regard,
we prove that our attack is naturally integrated into a provable Proba-
bly Approximately Correct (PAC) model. Moreover, we show that our
attacks against known PUF families are effective and applicable even in
the presence of noise. Our proof relies heavily on the intrinsic proper-
ties of these PUF families, namely arbiter, Ring Oscillator (RO), and
Bistable Ring (BR) PUF families. We believe that our new style of ML
algorithms, which take advantage of the Fourier analysis principle, can
offer better measures of PUF security.
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Degree Algorithm, Machine Learning, PAC Learning.

1 Introduction

Payment systems, including electronic payment and ticketing systems, provide
one of the prominent examples of the diversified applications of RFID-tags. As
an effective and cost-efficient security mechanism for these tags, PUFs have
been introduced in the literature cf. [10, 48, 49]. The design of PUFs relies on
inherent manufacturing process variations, being uncontrollable, but exploitable
by a circuitry to generate either a source of randomness or an instance-specific
fingerprint [18]. The growing need for using PUFs in several applications stems
from two main issues. On the one hand, the ineffectiveness of traditional security
measures, e.g., secure key generation/storage, has been widely accepted. On the
other hand, the inevitable fact that overbuilt and counterfeit hardware primitives
can be used in various important applications further contribute to this need for



robust security measures [26]. Since the notion of PUFs has been introduced to
address the aforementioned issues, several studies have focused on the advantages
and disadvantages of this concept. Designing such circuits and their respective
security assessments, more particularly, cryptanalysis of PUFs are within two
ends of the wide spectrum of these studies.

In addition to invasive and semi-invasive attacks, e.g., [20,37,45–47], a broad
range of cryptanalysis of PUFs is covered by non-invasive attacks, for instance [42].
A great variety of these frameworks and numerous models have been developed
around the principles of linear algebra [11], stochastic optimization [5], and ma-
chine learning (ML) [12, 14–16, 23, 42]. When launching the latter attacks, the
adversary observes only a small subset of challenges and their corresponding re-
sponses (i.e., the inputs and the outputs of the PUF) in order to build a model
of the challenge-response behavior of the PUF. Therefore, when compared with
invasive and semi-invasive attacks, these attacks are cost-effective and nonde-
structive, and consequently, attractive for adversaries.

Applying empirical ML algorithms (e.g., [42]) in the assessment of the secu-
rity of PUFs marked the beginning of an era, after which the well-established
concepts and existing algorithms in the field of ML were applied to analyze the se-
curity of these primitives. Beyond the early heuristic methods, probably approx-
imately correct (PAC) learning frameworks have been developed to prove vul-
nerabilities for the known families of intrinsic PUFs to ML attacks [12,14–16,19].
The results of these studies have been acknowledged, and form now a solid basis
for the design of PUFs, c.f. [51]. Albeit being useful for this purpose, the ques-
tion remains open whether practical aspects of the design of PUFs have been
adequately reflected by the PAC learning frameworks. More specifically, except
the proof provided for XOR-arbiter PUFs [15], PAC learning in the presence of
noise has not been discussed in the literature so far.

This issue is of twofold importance. First, the term “noise” in the PUF-
related literature refers to the observation that applying the same challenge may
result in obtaining different responses due to the environmental changes, see,
e.g. [30]. These noisy responses reveal some information about the challenge-
response behavior of the PUF, in a similar way to side channel information,
which can be beneficial to model the PUF [5,8,9]. Understanding the mechanisms
of generating noisy responses is therefore essential for designing a PUF that is
robust against such hybrid attacks. Secondly, the gap between the existing noise
models in the ML- and PUF-related literature should be bridged primarily by
a thorough understanding of differences and similarities between these models.
Accordingly, a refined model of noisy PUFs should be established, which provides
a firm basis for analyzing the security of these primitives against ML attacks.
This paper aims to address these issues by providing the following contributions.

Establishing a refined model of noisy PUFs that is in line with
models widely accepted in ML theory. In our model, we take into consid-
eration the impact of noise on the final response of a PUF and as well at the
inter-stage behavior of a PUF. We demonstrate that this model agrees with the
noise models in ML theory, namely, attribute and classification noise.



Introducing a new ML attack relying on the principles of Fourier
analysis. Thanks to the representation of PUFs as Boolean functions, we explore
the properties of PUFs from the Fourier analysis perspective. We introduce the
notion of noise sensitivity of Boolean functions representing PUFs as a powerful
analysis tool. Moreover, for known and widely-used PUFs a so-called low degree
algorithm approximating the Fourier coefficients of the corresponding Boolean
functions is presented in this paper.

Provability of our ML attack, even in the presence of attribute and
classification noise. Eventually, we prove that for known families of PUFs our
attack can be launched to learn their challenge-response behavior, with pre-
scribed levels of accuracy and confidence, even if the challenge-response pairs
are noisy.

2 Notation and preliminaries

2.1 PUFs

First, we stress that our paper does not cover the topics of formalization and
formal definitions of the PUFs. For more details on these topics see, e.g., [3,4].
Note that hereafter the term “PUF” refers to the most popular, and known
families of standalone PUFs: arbiter PUFs, Ring Oscillator (RO) PUFs, and
Bistable Ring (BR) PUFs. Here, a standalone PUF means a PUF that is not
composed of a combination of some PUFs (e.g., XOR arbiter PUFs) or other
means. Generally speaking, PUFs are physical mappings from the inputs to
the outputs, i.e., from the given challenges to the respective responses. These
mappings are characterized by physical properties of the platform, on which the
PUF is implemented. From among several security properties of PUFs, here we
consider solely unclonability. Let the mapping fPUF : C → Y, where fPUF(c) = y,
describes a PUF. Ideally, for a given PUF fPUF unclonability reflects the fact that
creating a clone, i.e., a (physical) mapping gPUF 6= fPUF, is virtually impossible,
where the challenge-response behavior of gPUF is similar to fPUF [3].

2.2 Boolean Functions as representations of PUFs

Similar to the most relevant studies on PUFs, we adopt the general definition of
PUFs that is the physical mappings (see Sec. 2.1). This enables us to represent
PUFs as Boolean functions over the finite field F2. To this end, consider Vn =
{c1, c2, . . . , cn} that is the set of Boolean attributes or variables, being either
true or false denoted by “1” and “0”, respectively. Moreover, let Cn = {0, 1}n
be the set of all binary strings with n bits, and an assignment be a mapping
from Vn to {0, 1}. Therefore, an assignment can be thought of as an n-bits string,

where the ith bit associated with the value of ci (i.e., “0” or “1”).
A Boolean formula is a mapping that assigns values from the set {0, 1} to an

assignment. In this regard, each Boolean attribute is also a formula, i.e., ci is a
possible formula. If the Boolean formula assigns “1” to a Boolean assignment, it
is a positive example of the concept, otherwise a negative example. Furthermore,
a Boolean function f : Cn → {0, 1} defines a Boolean formula accordingly.



In general, Boolean functions can be represented by several different classes
of functions, e.g., juntas, Linear Threshold functions (LTFs), and Decision Lists
(DLs), cf. [38, 41]. A k-junta is a Boolean function, whose output is deter-
mined solely by an unknown set of k variables. A list L containing r pairs
(f1, v1), . . . , (fr, vr) is called a DL, where the Boolean formula fi is a conjunc-
tion of Boolean attributes, and vi ∈ {0, 1} with 1 ≤ i ≤ r − 1. For i = r, we
have vr = 1. When representing a Boolean function by a decision list, L(c) = vj ,
where c ∈ Cn and j is the smallest index in L so that fj(c) = 1. Let k-DL denote
the set of DLs, where each fi is a conjunction of at most k Boolean attributes.

Before defining linear threshold functions, we define the encoding scheme
χ(0F2

) := +1, and χ(1F2
) := −1. Hence, the Boolean function f can be defined

as f : {−1,+1}n → {−1, + 1}. Such a function is called a linear threshold
function, if there are coefficients ω1, ω2, · · · ,ωn ∈ R and θ ∈ R such that f(c) =
sgn ((

∑n
i=1 ωici)− θ). Without loss of generality, we assume that

∑n
i=1 ωici 6= θ

for every c ∈ Cn.

Noise Sensitivity of Boolean Functions This term should not be mistaken
as the notion of noise discussed in the PUF-related literature. The noise sensitiv-
ity of the Boolean function f : {−1,+1}n → {−1,+ 1} can be defined as follows
(see Sec. 2.2 for more details on the encoding scheme required to define the noise
sensitivity). Let c be a string chosen randomly and uniformly. By flipping each
bit of this string independently with probability ε (0 ≤ ε ≤ 1) we obtain the
string c′. The noise sensitivity of f at ε is

NSε(f) := Pr[f(c) 6= f(c′)].

When studying the noise sensitivity of Boolean functions, applying method-
ologies developed for the spectral analysis of Boolean functions can provide a
better understanding of this notion. The Fourier expansion of a Boolean function
can be written as

f(c) =
∑
S⊆[n]

f̂(S)χS(c),

where [n] := {1, . . . , n}, χS(c) :=
∏
i∈S ci, and f̂(S) := Ec∈U [f(c)χS(c)]. Note

that Ec∈U [·] indicates the expectation over examples chosen uniformly.

2.3 PAC Learning Model [24]

Consider a PAC learner that is a learning algorithm, which is given access to
a set of examples to generate an approximately correct hypothesis, with high
probability. More formally, suppose that F = ∪n≥1Fn denotes a target concept
class, i.e., a set of Boolean functions over the instance space Cn = {0, 1}n. In
this paper, we are interested in a useful extension of the PAC model, in which
each example is drawn from the instance space Cn with regard to the uniform
distribution U . The hypothesis h ∈ Fn that is a Boolean function over Cn is an
ε-approximator for f ∈ Fn, if

Pr
c∈UCn

[f(c) = h(c)] ≥ 1− ε.



The complexity of a target concept f ∈ F is assessed by measuring the size of
that under a target representation. In order to define the size of a target concept
f ∈ F , size(f), we define the mapping size : {0,1}n → N, relating a natural
number size(f) with a target concept f ∈ F . A polynomial-time algorithm A,
i.e., our learner, is provided with labeled examples (c, f(c)), where f ∈ Fn, and
c is chosen uniformly at random from Cn. Here we concentrate on the strong
uniform PAC learning algorithms, defined as follows.

Definition 1 A strong uniform PAC learning algorithm A for the target con-
cept class F is given a polynomial number of labeled examples to generate an
ε-approximator for f under the uniform distribution U , with probability at least
1− δ. In this regard, for any n ≥ 1, any 0 < ε, δ < 1, and any f ∈ Fn, the run-
ning time of the algorithm A is poly(n, 1/ε, size(f), 1/δ), where poly(·) denotes
a polynomial function.

3 Noise: its Origin and Models

In this section we aim to come up with a model for PUFs enabling us to un-
derstand, how the noise can affect the functionality of a PUF. As mentioned
in Sec. 1, in the PUF-related literature the response to a challenge is noisy, if
repeated evaluations of the PUF with the respective challenge results in different
responses. This is due to environmental variations and their impact on the func-
tionality of physical components forming the PUF, e.g., the stages in an arbiter
PUF. Environmental variations cover a wide range of uncontrollable random
noise, e.g., thermal noise, uncertainties in measurement, cross talk, and power
supply noise [3, 50]. According to the lessons from performance specifications
of circuits, these random variations can be conventionally modeled as random
variables following Gaussian distributions [2, 36,44].

3.1 Impact of the Noise on a Single Stage

To provide a better understanding of the impact of the environmental variations
on the internal functionality of a PUF, we focus on a single constitutive phys-
ical component of the PUF, hereafter called a stage. As carefully formulated
in [29], although the consideration of low-level physical details is a tedious task,
(measurable) physical processes can be approximated by “hidden variables”,
namely the process variable and the noise variable. The latter variable corre-
sponds to the effect of random noise on a single stage of the PUF. This variable
follows a Gaussian distribution Ni, with realization ni for each evaluation of the
PUF. The definition of process variable determines the effect of manufacturing
process variations on a single stage of the PUF [29]. As discussed before, this
variable dented by Xi follows a Gaussian distribution. Similarly and indepen-
dently, X1, · · · , Xn can be defined, where n denotes the number of stages. In
this manner, the mean value of the respective distribution (µ) is reported by
manufactures as the nominal value, and the standard deviation σi is the result
of the process variations, cf. [8, 16, 34]. Two realizations of the random variable
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Fig. 1: (a) The Gaussian random variable Xi that corresponds to the ith physical
component of the PUF, and its two realizations xi,1 and xi,0. In a meta-stable
state these two realizations will be very close together. (b) Our simple Proba-
bilistic (labeled) Transition Systems (PTS) describing how the noise can affect
each stage in a PUF. The expressions included in parentheses denote the la-
bels, whereas the information given in brackets refers to the probability of the
transition between the states.

Xi, namely xi,1 and xi,0, are generated during manufacturing. Without loss of

generality, suppose that the following holds. When ci = 1 is applied to the ith

stage, the realization xi,1 is chosen to be involved in generating the final re-
sponse of the PUF, whereas xi,0 corresponds to ci = 0. Moreover, suppose that
the order relation between these realizations is xi,1 > xi,0. Now, the total impact
of hidden variables on a stage can be formulated as Zi = Xi + Ni (1 ≤ i ≤ n),
where Z is clearly a Gaussian random variable. In addition, the realizations of
this random variable are zi,1 = xi,1 + ni,1 and zi,0 = xi,0 + ni,0, relating to the
challenge bit applied to the PUF. Since the realizations zi,1 and zi,0 are related
to two different evaluations of the PUF (with ci = 1 and ci = 0, respectively),
the noise realizations vary, as indicated by different indices. As defined in [29],
the final response of the PUF is determined by these realizations. Obviously,
the difference between zi,1 and zi,0 is the main factor contributing to the final

response of the PUF. Now consider the ith stage that is a meta-stable state, see
Fig. 1(a). Here by meta-stable condition we refer to the fact that the realizations
of the random variable Xi, i.e., xi,1 and xi,0 can be very close together so that
under the effect of environmental noise one realization can be equal to another:
zi,0 = xi,1 or zi,1 = xi,0, depending on the value of the challenge bit ci [7]. To
explain this, a simple Probabilistic (labeled) Transition Systems (PTS) can be
defined as follows [40].

– There are two processes (i.e., sequences of events) corresponding to the value

of the challenge bit applied to the ith stage: ci = 1 and ci = 0, see Fig. 1(b).

– In both processes, the set of states S contains two states denoted by s0 and
s1. The state s0 represented the case that the challenge bit ci = 0 is applied
and in an ordinary condition (i.e., not meta-stable) we expect that xi,0 would



be involved in generating the final response of the PUF. Similarly, the state
s1 can be defined.

– sint ∈ S is the initial state in each process, shown by dashed circles in each
process. And the set of action labels is L.

– A transition probability function T : S × L× S → [0,1] represents, under
which circumstances and what degree of probability the system transits from
one state to another. Clearly,

∑
(li,sj)∈L×S T (sint, li, sj) = 1.

Precisely defining our PTS, the tuple Ai represents the process related to the
case, when the challenge bit ci is applied: Ai = (S,L, T ).

In each of the processes, as illustrated in Fig. 1(b), the PTS may transit from
one state to another with probability ε, otherwise it remains in its initial state.
For instance, applying the challenge bit ci = 0, the initial state s0 indicates
that xi,0 would contribute to the final response of the PUF. However, if this

stage (the ith stage) is in a meta-stable state, i.e., zi,0 = xi,1, it is not possible to
differentiate whether xi,1 or zi,0 would be involved to generate the final response

of the PUF1. In other words, it can be thought that ci = 1 is applied and the
final response is under the influence of xi,1, i.e., the PTS is in s1 state. More
precisely, we define a discrete random variable A corresponding to the event of
a transition between s0 and s1. Formally, let Ω := {transition, stay} denote the
sample space of the random variable A defined as A(ω) = 1 if ω = transition,
and otherwise, A(ω) = 0. Obviously, this random variable follows a Bernoulli
distribution with the success probability ε, i.e., A ∼ Bern (ε).

Furthermore, as described above, we have translated the impact of noise on
a single stage to a transition from one state to another state. Consequently, this
change in the states can be seen as a probabilistic change of a challenge bit,
e.g., the challenge bit ci = 0 is flipped to challenge bit ci = 1 or vice versa. To
precisely summarize, with regard to our model, when applying the challenge c
that is a Boolean string, the input to the PUF fPUF can be written as c ⊕ a,
where ⊕ denotes the bit-wise XOR operator and a is a random string composed
of bits generated independently from the distribution Bern (ε).

3.2 Impact of the Noise on the Measuring Element of the PUF

In the second phase, we should take into consideration the impact of uncertainty
on the generation of the final response. In the literature this issue has been al-
ready explored, when discussing the precision of the measuring element (e.g., the
arbiter in the case of arbiter PUFs), which makes a decision whether the response
of the PUF to the respective challenge is “0” or “1” [8, 16, 32]. Clearly, being
limited in the precision, such component may change the output of the PUF. For
the purpose of this paper, we are not interested in the real-world distribution of
this noise, but in how the effect of this noise on the responses can be precisely
described. A useful interpretation of this effect is given in [15], namely that after
generating the response of the PUF an unfair coin (Head with probability 1−η)

1
Note that such transition does not always lead to a change in the response of the
PUF.
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Fig. 2: Schematic of an arbiter PUF composed of n stages and an arbiter termi-
nating the chain. When applying a challenge bit to a respective stage, either the
realizations xi,1 or the realization xi,0 is chosen to be involved in generating the
response of the PUF. For instance, we have xi,1 = δia − δid and xi,0 = δib − δic .

is flipped. Depending on the outcome, the final response is determined: when
the outcome is Head, the response generated by the PUF remains unchanged, or
otherwise, the response of the PUF is flipped. Here we follow the same principle
to model the uncertainty with regard to the final response. Let a random vari-
able B represent the impact of a limited precision of the physical component that
makes the decision about the final answer. As explained above, this random vari-
able also follows a Bernoulli distribution with the success probability 1− η, i.e.,
B ∼ Bern (1− η). For the sake of readability hereafter we denote Bern (1− η) by
R, and Bern (ε) by D. We have already defined the random string a containing
independent random bits drawn according to the distribution D (see Sec. 3.1),
and the random bit b drawn from the distribution R. Hence, the final response
of the PUF can be formalized as y = fPUF(c⊕ a)⊕ b.

3.3 Practical Implications of the Noise Model

In this section, we explain, how a relation between the parameters introduced
in Sec. 3.1-3.2) and real-world PUFs can be established.

Arbiter PUFs: First we consider the impact of the noise on a single stage
of an arbiter PUF. For the arbiter PUF family, the realizations xi,0 and xi,1 are
associated with the difference between the delays of crossed and straight signal
paths, namely, δia−δid = xi,1 and δib−δic = xi,0, see Fig. 2. When the difference
between these variables is small and the challenge bit ci is applied to the stage,
in the presence of the noise it is not possible to make a decision whether xi,0 or
xi,1 has impacted the final response of the PUF.

Moreover, the impact of the noise on the response of the PUF can be ex-
plained by considering the limited precision of the arbiter terminating the chain,
see Fig. 2 [16]. In this case, if after the final stage the delay difference between
the upper and the lower paths is smaller than the precision of the arbiter, the
arbiter could enter a metasable state and thus generate a wrong response.

Ring Oscillator (RO) PUFs: The response of this PUF is generated ac-
cording to the difference between the frequencies of two ROs selected by the



challenge. In other words, the challenge determines a pair of ROs that con-
tributes to the final response of the PUF. When the frequency differences of
ROs in two pairs vary insignificantly, under noisy conditions one of those RO
pairs can mimic another one. Therefore, it can be thought that some of the bits
of the challenge applied to the PUF are flipped so that another RO pair makes
impact on the final response of the PUF.

Furthermore, the limited precision of the counters measuring the frequencies
of the ROs can affect the response of the PUF. More precisely, if the difference in
the oscillation frequencies of a selected RO pair is not significant, the counters
cannot measure the frequencies with high precision. Comparison of uncertain
frequency measurements can lead to the generation of a wrong response.

Bistable Ring (BR) PUFs: Although a precise analytical model of the
BR PUF is missing in the literature [12], we can still describe the impact of the
noise on individual stages. For a given challenge in the BR PUF, n inverters are
selected, and upon setting the reset signal to low, the created inverter ring starts
to oscillate until it settles down to a valid logical state. In this case, the process
variables can be intrinsic differences in the propagation delays and electrical gains
of each inverter. Therefore, based on the environmental conditions, the noise
can be added to the realization of the process variables. However, in contrast to
the arbiter and RO PUFs, there is no explicit measuring element in this PUF
architecture. But the required additional measurement element which introduces
noise for this type of PUF is explicitly discussed in [12,21,22].

3.4 Modeling the Noise from the Perspective of Machine Learning

With regard to the discussion from the previous sections 3.1- 3.3, PUFs can
be thought of as Boolean functions, whose input-output behavior is determined
by random process variations as well as the inevitable impact of random noise.
In line with this view, a model of PUFs as illustrated in Fig. 3 can be es-
tablished. This model can be seen as an extension of a model introduced and
evaluated practically in [29]. Our model is composed of two components: random
and deterministic components. The random component represents the random
environmental noise, whereas the deterministic component accounts for the de-
terministic Boolean function realized in the chip. In other words, in the absence
of noise, the response of the PUF to a challenge applied repeatedly remains the
same. The building blocks as well as the parameters related to the model have
been introduced previously, although their interpretations in the machine learn-
ing context have not yet been considered. As the next step in our framework,
this section elaborates on how the functionality of a noisy PUF, as shown in
Fig. 3, can be described from the point of view of machine learning. To this end,
the following Lemma plays an important role, cf. [6].

Lemma 1 Consider U , D and R that are a uniform, and two arbitrary distribu-
tions2 over the space {0, 1}, respectively. Moreover, let the function f : Fn2 → F2

2
Regarding the physical properties of noisy PUFs we have defined the distributions
D and R precisely, but in general these distribution can be arbitrary.



Fig. 3: Our model composed of blocks representing a noisy PUF. The random
string a contains independent random bits drawn according to the distribution
D (see Sec. 3.1), and the random bit b is drawn from the distribution R (see
Sec. 3.2). From the machine learning point of view, they refer to attribute noise
and classification noise, respectively.

be an arbitrary Boolean function. Let C ∈U Fn2 , A ∈D Fn2 and B ∈R F2 be
independent random strings and a random variable, respectively. The random
variables (C,f(C ⊕A)⊕B) and (C ⊕A,f(C)⊕B) follow identical distribution.

For the proof of this Lemma, we refer to [6]. The conclusions drawn from it
are of great importance for us. First, from the machine learning point of view,
the noise represented by the random variable A is called the “attribute noise”,
whereas the random variable B corresponds to the “classification noise”. The
issue of attribute and classification noise learnability has been well addressed in
the relevant literature, see, e.g., [6, 52]. Secondly, thanks to the seminal paper
published by Bshouty et al. [6], a relationship between machine learning under
noisy conditions and the noise sensitivity of Boolean functions has been estab-
lished. The consequence of this relation is that efficient algorithms developed to
estimate the Fourier coefficients of an unknown function can be applied to learn
the respective function even under noisy conditions.

4 Fourier Analysis Based Attacks against PUFs

To mount our attack, we apply an algorithm proposed by Linial, Mansour, and
Nisan [28] to estimate the Fourier coefficients of an unknown function (i.e., so-
called LMN-style algorithm). The rationale behind the LMN-style algorithm,
originally called “low degree” algorithm [35], is that some classes of Boolean
functions can be approximated by taking into account solely a small number
of their Fourier coefficients (called “low” coefficients), corresponding to small
subsets of [n] (see Sec. 2.2).

Theorem 1. (Low degree algorithm) [28, 35, 39] Assume that an algorithm

can determine a set S ⊆ 2[n] containing subsets of [n] so that
∑
S∈S f̂(S)2 ≥ 1−ε.

The algorithm is given a pre-defined confidence level δ and access to a polynomial
number of input-output pairs of the Boolean function f that are chosen uniformly
at random. With probability 1 − δ the algorithm delivers a Boolean function h
that is an ε-approximator of the Boolean function f such that∑

S⊆[n]

(
f̂(S)− ĥ(S)

)2
≤ ε.



The running time of the algorithm is poly (|S|, n, 1/ε, log2(1/δ)).

For the proof of this theorem, we refer the reader to [28, 35], in which the
mechanism for determining the set S, and the lower bound on the number of
input-output pairs required by the algorithm has been discussed extensively.

4.1 An LMN-style Algorithm for RO PUFs

Although the security of these PUFs can be easily broken by simply reading out
all CRPs, launching a machine learning attack in the specific circumstance of
having limited access to the CRPs (e.g., eavesdropping them) has been addressed
in the literature, see for instance [14, 42]. In the present case, learning of noisy
RO PUFs has not been discussed. Our proof of the existence of an LMN-style
algorithm for RO PUFs relies on the fact that these PUFs can be represented
by k-DLs [14].
Theorem 2. [27, 35] An LMN-style algorithm can be employed that with
probability 1 − δ delivers a Boolean function h approximating a decision list
L, which represents an RO PUF. The running time of this algorithm is
poly (n, log2(1/ε), log2(1/δ)).

The proof sketch can be summarized as follows. According to results pre-
sented in [14], an RO PUF can be represented by a DL. Furthermore, Mansour
proved that a DL could be approximated by a Boolean function h, whose Fourier
coefficients concentrate only on a small set of variables, namely, log2(1/ε) vari-
ables [35]3. To find this set of variables, the low degree algorithm can be applied
to deliver h and the running time of that is poly (n, log2(1/ε), log2(1/δ)).

4.2 An LMN-style Algorithm for Arbiter PUFs

To prove the existence of an LMN-style algorithm for arbiter PUFs we argue as
follows. It is known that if a Boolean function exhibits a bounded, small noise
sensitivity, its Fourier coefficients are mainly low coefficients. More precisely, the
following Corollary can be proved (for the proof see Corollary 2.3.3 in [39]) that
forms the basis for proof.
Corollary 1 [39] Consider α : [0,1/2] → [0,1] that is a strictly increasing

continuous function so that NSε(f) ≤ α(ε). We have
∑
|S|≥m f̂(S)2 ≤ ε, where

m = 1/α−1(ε/2.32)) and α−1(·) denotes the inverse of the function α(·).
Now Corollary 2 states how Corollary 1 can be applied to prove the existence of
an LMN-style algorithm for arbiter PUFs.
Corollary 2 Representing an arbiter PUF by an LTF, a Boolean function h ap-
proximating this LTF can be delivered by an LMN-style algorithm, whose running
time is polynomial in n, 1/ε2, and log2(1/δ).

Proof: Thanks to the results reported in [18,33,42], LTFs are appropriate rep-
resentations of arbiter PUFs. For any LTF f its noise sensitivity is a bounded,
small value depending only on ε, namely we have NSε(f) ≤ 8.54

√
ε [25]. Now

fix α(ε) =
√
ε. According to Corollary 1, the running time of the LMN-style

algorithm is polynomial in O(nm), where m = 1/α−1(ε/2.32). �
3

Here we do not discuss the details of the proof. For the proof cf. [35].



4.3 An LMN-style Algorithm for BR PUFs

Similar to the proof of the existence of an LMN-style algorithm for arbiter PUFs,
we take advantage of the properties of the Boolean functions representing BR
PUFs. More specifically, we rely on the fact that a BR PUF can be represented
by k-junta, where k is a (relatively) small constant value for practical values of
n, as demonstrated in [12]. Moreover, the noise sensitivity of a k-junta function
is a bounded, small value: NSε(f) ≤ kε/2., see, e.g., [17]. Now the following
corollary of can be formulated to prove the existence of an LMN-style algorithm
for BR PUFs.

Corollary 3 An LMN-style algorithm can be applied to deliver an ε-
approximator for a k-junta representing a BR PUF. The running time is poly-
nomial in n, 1/ε, and log2(1/δ).

4.4 Provability in the Sense of PAC Model

The low degree algorithm mainly aims to provide an approximator of a Boolean
function with a given probability, when it is given a polynomial number of input-
output pairs of the Boolean function that are chosen uniformly at random. How-
ever, its existence has a serious consequence. More specifically, if the set S is
composed of all the subsets of low degree, Theorem 1 introduces a PAC learning
algorithm under the uniform distribution [39]. Before formulating this precisely,
we first shift our focus to the issue of dealing with noise.

As explored in Sec. 3.4, we take the attribute and the classification noise into
account. The question is how these processes affect the functionality and the
efficiency of an LMN-style algorithm. This issue is well addressed by Bshouty et
al., [6], and here we briefly summarize their results. They have shown that the at-
tribute and the classification noise attenuate the Fourier coefficients, which the
LMN-style algorithm aims to estimate from the uniformly random examples.
To be exact, assume that an LMN-style algorithm attempts to estimate the
Fourier coefficient f̂(S). Under the noisy conditions, it delivers f̂(S)(1− 2η)αS ,
where (1 − 2η) and αS are attenuation factors corresponding to the classifi-
cation and attribute noise, respectively. While the former factor is known, see
e.g., [15], the latter requires more attention. The attenuation factor αS is the
defined as αS := Ea∈D[χS(a)], where Ea∈D[·] denotes the expectation over ran-
dom examples drawn from the known distribution D. As discussed in Sec. 3.4,
here we consider a that is a random string, whose bits are independently gen-
erated following a Bernouli distribution Bern (2ε) with ε ∈ (0,1/2]. Hence,

|αS | =
∏
i∈S(1 − 2ε) = (1 − 2ε)|S|. Note that the practical implication of the

attenuation factors ((1− 2η) and αS) is that after running the LMN-style algo-
rithm each Fourier coefficient delivered by the algorithm should be multiplied
by (1− 2η)−1 and α−1S to eliminate the impact of the noise.

Now we can summarize the above discussion and the results presented in
Section 4.1-4.3 in a more formal manner, as stated in Corollary 4.

Corollary 4 Consider a given PUF that is represented by a Boolean function
fPUF and can be learned by applying an LMN-style learning algorithm. Then



The number of
ROs N

# CRPs in
training set

# CRPs in test
set

|S| Accuracy η ε

256

5000

65536 1491

99.53 Noiseless
5000 97.45

0.1 0
5500 98.64
5000 93.22

0.2 0
7500 98.56
5000 89.06

0 0.1
12000 98.73
5000 85.45

0 0.2
20000 98.66

512

7500

262144 1681

99.26 Noiseless
7500 93.29

0.1 0
15000 98.66
7500 93.08

0.2 0
18000 98.72
7500 86.03

0 0.1
22000 99.01
7500 82.98

0 0.2
30000 98.67

Table 1: Results for learning RO PUFs with N rings.

the PUF is PAC learnable under the uniform challenge distribution, even in
the presence of attribute and classification noise. The running time of the PAC
learner is poly (|S|, n, 1/ε, log2(1/δ), (1/1− 2η)).

5 Results and Discussion

The effectiveness of our proposed attack is evaluated by conducting simulations
on data collected from PUFs that are implemented on FPGAs. The PUF sim-
ulators, as well as LMN algorithm, are implemented in Matlab [1]. To simulate
the challenge-response behaviors of the PUFs, we have taken the real physical
properties of the PUFs into account. For instance, the maximum delay deviation
of each inverter and the precision of the arbiter used in our arbiter PUF chain
are equal to 9 ps and 2.5 ps, respectively, as reported for a Xilinx Virtex-5 FPGA
(65 nm technology) [31,32]. The delays of the stages are generated with respect
to a Gaussian distribution with the above-mentioned maximum deviation. By
applying a random challenge chosen uniformly, the response of the arbiter PUF
is generated and stored in our data set. As for RO PUFs, similar to the ap-
proach introduced in [14], the publicly accessible measurement results from a
dataset [43] have been taken into account. These results contain 100 samples
of the frequency of each and every ring-oscillators, which comprise RO PUFs
with 512 rings implemented on 193 Xilinx Spartan-3 FPGAs (90 nm technol-
ogy). These frequencies are the inputs of our RO PUF simulator that mimics
the challenge-response behavior of RO PUFs with 256 and 512 ring-oscillators.
The RO PUF simulator randomly selects N (N = 256, 512) frequencies cor-
responding to N different ring-oscillators. Feeding the simulator with random
challenges a pair of rings is chosen and their frequency are compared to generate
the response.

Moreover, our BR PUF simulator relies on the results presented in [12],
where BR PUFs have been implemented on Altera Cyclone IV FPGAs (60 nm



The number of
stages n

# CRPs in
training set

# CRPs in test
set

|S| Accuracy η ε

64

2000

100000 1078

99.19 Noiseless
2000 97.30

0.1 0
2250 99.02
2000 97.06

0.2 0
2350 98.86
2000 97.09

0 0.1
2300 99.15
2000 97.97

0 0.2
2300 99.28

128

2100 99.51 Noiseless
2100 98.81

0.1 0
2300 99.06
2100 96.94

0.2 0
2500 99.29
2100 97.23

0 0.1
2500 99.23
2100 98.04

0 0.2
2500 99.45

Table 2: Results for learning arbiter PUFs with n stages.

technology). The internal functionality of these PUFs has been simulated by
taking k-juntas into account. This is valid since in a follow-up work [13], the
authors of [12] have demonstrated that a BR PUF (with practical values of n,
e.g., 32 and 64) belongs to the class of k-junta functions. Hence, to simulate the
challenge-response behavior of BR PUFs, the value k and the conjunctive rule
presented in above studies are considered.

For all PUFs, the procedure of adding classification and attribute noise is as
discussed in Sec. 3. In our experiments, we have δ = 0.01, and various levels of
noises: η = 0, 0.1, 0.2 and ε = 0.1, 0.2. All simulators and the LMN algorithms are
implemented on a MacBook Pro with 2.6 GHz Intel Core i5 processor and 8 GB
of RAM. The key difference between our approach and the methodology usually
employed in ML attack scenario is that an adversary applying LMN algorithm
needs to simply write a script (e.g., in Matlab), which computes a small set
of Fourier coefficients. To this end, according to Theorem 1, the total number
of relevant coefficients is |S| and the Fourier coefficients can be computed in a
straightforward manner as shown in Sec. 2.2.

Our results are presented in Table 1-3. The accuracy of the final model, i.e.,
the approximated the function fPUF generated by using the low degree Fourier
coefficients, is reported in these tables. For each experiment, the accuracy re-
ported in the table is the minimum accuracy over 5 repetitions of the experiments
that our algorithm achieves. First, as a reference, we conduct experiments on
noiseless CRPs collected from PUFs. By adding the noise, the accuracy of the
model decreases for the number of CRPs applied in the case of the noiseless
PUF. Afterwards, we increase the number of CRPs in the training set to achieve
virtually the same accuracy (with the maximum ±1% difference) in both cases.
The results demonstrate that as promised by Corollary 4, the increase in the
number of CRPs needed in the presence of noise is polynomial in noise levels.



The number of
stages n

# CRPs in
training set

# CRPs in test
set

|S| Accuracy η ε

32

500

100000

59

99.72 Noiseless
500 95.91

0.1 0
950 99.45
500 95.02

0.2 0
950 99.63
500 94.39

0 0.1
1000 99.55
500 94.72

0 0.2
1200 99.40

64

500

165

99.53 Noiseless
500 97.3

0.1 0
900 99.19
500 92.65

0.2 0
950 98.93
500 97.56

0 0.1
950 99.23
500 95.63

0 0.2
950 99.39

Table 3: Results for learning BR PUFs with n stages.

6 Conclusion and Remarks

Our paper presents the first study on the feasibility and the applicability of a
new attack, i.e., the LMN algorithm against PUFs. This algorithm has not been
applied in the context of PUFs, although being known to the ML community.
Thus, similar to other ML attacks against PUFs discussed in the literature,
the novelty of our approach is the introduction of a new attack against PUFs,
even applicable in the case of noisy CRPs. The proposed attack mainly relies
on approximating the low degree Fourier coefficients by applying a so-called low
degree algorithm developed in ML theory.

Moreover, our paper is the first to introduce the notion of noise sensitivity to
assess the security of PUFs. This notion not only reflects the physical properties
of a PUF (discussed in Section 3), but also it is closely related to the resilience of
a PUF against LMN attacks. In this respect, the implication of Corollaries 3 and
4 (related to the existence of an LMN algorithm for PUFs) is that since the noise
sensitivity of the Boolean functions representing the PUFs is a small, bounded
value, an attacker can launch the LMN attack. Moreover, in the case of noisy
PUFs, the attenuation factors can affect the efficiency of the LMN algorithm.
In other words, if the noise sensitivity is well adjusted by the designer, the
attacker cannot compute the Fourier coefficients. Hence, when designing a new
PUF, it is important to consider the noise sensitivity as an indicator of the
robustness of PUF against LMN attacks. We believe that in addition to the
proof of PAC learnability in the presence of noise, this paper provides several
interesting insights into not only the assessment of the security of PUFs, but
also the design of PUFs with better security-related characteristics.
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