
A multi-start heuristic for multiplicative depth
minimization of boolean circuits

Sergiu Carpov, Pascal Aubry, Renaud Sirdey

May 29, 2017

Abstract

In this work we propose a multi-start heuristic which aims at minimiz-
ing the multiplicative depth of boolean circuits. The multiplicative depth
objective is encountered in the field of homomorphic encryption where ci-
phertext size depends on the number of consecutive multiplications. The
heuristic is based on rewrite operators for multiplicative depth-2 paths.
Even if the proposed rewrite operators are simple and easy to under-
stand the experimental results show that they are rather powerful. The
multiplicative depth of the benchmarked circuits was hugely improved.
In average the obtained multiplicative depths were lower by more than
3 times than the initial ones. The proposed rewrite operators are not
limited to boolean circuits and can also be used for arithmetic circuits.

1 Introduction and related works
An encryption scheme describes the way of encrypting and decrypting plain-
text messages such that finding which is the plaintext message from encrypted
data (denoted ciphertext in what follows) is either very hard or even impossi-
ble without a secret. An encryption scheme is said to be homomorphic when
some operations on plaintext messages can be done homomorphically, that is
directly in the space of ciphertexts (and without decrypting them). When addi-
tion and multiplication operations are supported, the homomorphic encryption
(HE) scheme is functionally complete. Since the seminal work of Gentry [8],
introducing the first practical (to some extent) homomorphic encryption many
other simpler and more efficient schemes have been proposed [5, 6]. A HE scheme
with a binary plaintext space allows to execute any boolean circuit directly over
encrypted data.

A noise component is added to the ciphertext during the encryption for secu-
rity reasons. The noise component is a common characteristic for HE schemes.
Each new homomorphic operation applied on the ciphertexts increases the noise
component in the resulting ciphertext. After a (predefined) number of homo-
morphic operations the noise is so large that the correctness of the decryption

1

cannot be not ensured anymore. Usually the noise growth induced by the ad-
dition operation is smaller than the noise growth induced by the multiplication
operation. That is why many authors consider only the multiplicative depth1

of evaluated circuits when HE schemes are parametrized. In order to support
the evaluation of larger multiplicative depth circuits, for an equivalent security
level, the ciphertext sizes must be increased and respectively the cost of ho-
momorphic operations increases also. Another solution to this problem is to
use ciphertext bootstrapping [9]. The bootstrapping procedure takes a noisy
ciphertext as input and executes homomorphically the HE scheme decryption.
The noise of the resulting “bootstrapped” ciphertext is lower than the noise of
the input ciphertext.

Obtaining low multiplicative depth circuits is a major issue in the practi-
cal use of homomorphic encryption. With every new multiplicative level the
HE scheme parameters increase in size. Therefore the execution time of the
whole boolean circuit increases accordingly. Many works found in the litera-
ture treat the problem of boolean circuit optimization for hardware targets or
more generally the problem of hardware synthesis. We refer to the open-source
software system used for hardware synthesis ABC [3]. It is an open-source envi-
ronment providing implementations of the state-of-the-art circuit optimization
algorithms. The most common objectives used in hardware synthesis are circuit
area and circuit depth (latency). To the best of our knowledge none of these
algorithms were designed for multiplicative depth minimization.

Cryptographic literature mostly focused on the minimization of multiplica-
tive complexity of circuits, i.e. the number of AND gates in circuits where
the XOR gates are for free [4, 10, 13]. The authors of Armadillo compilation
chain [7] studied the use of ABC tools for minimizing the multiplicative depth
of boolean circuits in the context of a compilation chain targeting homomorphic
execution.

Several works [12, 11, 2] study the minimization of bootstrappings in boolean
circuits problem. Bootstrapping is a computational heavy procedure. It is
straightforward to see that minimizing the number of bootstraps in a homo-
morphic evaluation of a circuit increases its execution performance. Although
the problem we study in this paper shares the same goal (i.e. increase the ho-
momorphic execution performance of boolean circuits) the employed methods
to achieve it are orthogonal.

In this work we introduce and study multiplicative depth-2 path rewrite
operators which decrease the multiplicative depth of a boolean circuit. We
furthermore propose a heuristic method which makes use of these operators. The
goal of the heuristic is to minimize the boolean circuit multiplicative depth. The
paper is structured as follows, in section §2 are described the proposed circuit
rewrite operators and the heuristic itself, section §3 presents experimental results
we have performed and finally section §4 concludes the paper and discuss some
perspectives.

1Multiplicative depth is the number of sequential homomorphic multiplications which can
be done on freshly encrypted ciphertexts in order to be able to decrypt and retrieve the result
of multiplications.

2

2 Multiplicative depth minimization multi-start
heuristic

2.1 Preliminary definitions
A boolean circuit is a directed acyclic graph C = (V,E) with a set of nodes
V and a set of edges E. Circuit nodes represent boolean functions (gates) and
circuit edges are connections between nodes. The set of nodes can be split into
2 independent sub-sets:

• Nodes without a predecessor define circuit inputs. An input node can be
either a boolean input variable or a boolean constant (e.g. logic “0” or
logic “1” inputs).

• Nodes each representing a gate applying a basic boolean function to the
values of its predecessors. The input degree of gates is 2. A sub-set
of gate nodes represent circuit outputs. Without loss of generality we
suppose that the set of output nodes is the same as the set of nodes with
zero output degree. In this work we suppose that the boolean circuits use
AND and XOR operators only. The set {AND,XOR} together with the
constant “1” is functionally complete [14]. This means that any boolean
function can be expressed using these operators.

We denote by pred: V → 2V and succ : V → 2V the functions giving the set of
predecessors, respectively successors, of a node v ∈ V in a boolean circuit C.

The number of successively executed AND operators, also called multiplica-
tive depth, influences the parameters of a HE scheme. The minimization of the
multiplicative depth allows not only to obtain smaller ciphertext sizes but also
to minimize2 the overall execution time of the boolean circuit. Let us define a
function d : V → {0, 1} which returns one for AND nodes and zero otherwise.
Only the nodes for which d (v) = 1 influence circuit multiplicative depth.

Let l : V → N be a function which gives the multiplicative depth of circuit
nodes. The multiplicative depth of node v is equal to the maximal number of
AND gates on any path beginning in an input node and ending in node v. The
multiplicative depths for circuit nodes are computed recursively using relation:

l (v) =

{
0 if |pred (v)| = 0,

maxu∈pred(v) l (u) + d (v) otherwise.

Let r : V → N be a function which gives the reverse multiplicative depth of
circuit nodes. The reverse multiplicative depth of node v is the maximal number
of AND gates on any path beginning in a successor of node v and ending in an
output node. It is somewhat equivalent to the multiplicative depth function
except that it does not include the depth due to the node itself. The reverse
multiplicative depths for circuit nodes are computed recursively using:

2As we shall further see, more precisely it depends on the relative computational cost of
circuit AND gates with respect to scheme multiplicative depth.

3

r (v) =

{
0 if |succ (v)| = 0,

maxu∈succ(v) (r (u) + d (u)) otherwise.

The overall multiplicative depth of a circuit C is the maximal multiplicative
depth of its nodes:

lmax = max
v∈V

l (v) = max
v∈V

r (v) .

The critical nodes of a circuit C are the nodes for which relation (1) is
verified. We denote critical circuit the sub-circuit containing all the critical
nodes of a circuit C. A critical path is a path in this circuit.

l (v) + r (v) = lmax, v ∈ V (1)

2.2 Multiplicative depth-2 path rewrite operators
The multiplicative depth of a boolean circuit equals to the multiplicative depth
of its critical part. Decreasing the multiplicative depth of the critical part will
necessarily decrease the overall circuit multiplicative depth. In this section we
introduce two rewrite operators which when applied to the critical part of a
boolean circuit potentially minimize the multiplicative depth of a circuit. The
idea behind these operators is to rewrite critical paths of multiplicative depth
2 in such a way that the overall multiplicative depth decreases. We firstly
describe an operator which rewrites simple paths composed of two AND gates
only. Afterwards, a second rewrite operator is described which allows to obtain
such a simple path (from two AND gates) from any path of multiplicative depth
2. Additionally, we introduce the conditions these paths should verify so that
the multiplicative depth is lowered after the rewrite operators are applied.

Let P denote the set of all critical paths beginning and ending in an AND
gate and containing exactly 2 AND nodes, i.e. the set of paths of multiplicative
depth 2. A path p ∈ P contains at least 2 nodes: 2 AND gates separated by
zero or more XOR gates. Figure 1 illustrates such a critical path.

Let us examine a critical path p of length 2, i.e. p =
(
v1, v|p|

)
where v1 and

v|p| are AND gates. Such a path is shown on the left-hand side of figure 2. Path
p can be rewritten using AND associativity rule: (x · y) · z = x · (y · z). The
right-hand side of figure 2 illustrates the circuit part obtained after this rewrite
operator is applied to path p. Rewritten path multiplicative depth decreases
only if the multiplicative depth of nodes y and z are less than the multiplicative
depth of node x, i.e. l (y) < l (x) and l (z) < l (x). In this case the multiplicative
depth of gate v|p| decreases by one, from l (x) + 2 to l (x) + 1. The number of
AND gates in the resulting circuit either increases by one or rests the same if
node v1 does not have other successors than node v|p|.

In case of critical paths of length larger than 2, the inner XOR gates prevents
the direct use of the rewrite operator defined above. A second rewrite operator
allows to move an AND gate up the critical path by one place. We call it AND
gate move up operator. This operator uses XOR distributivity rule: (x � y)·z =

4

Figure 1: Critical path of multiplicative depth 2. Thick edges represent the
critical path.

Figure 2: Length 2 critical path
(
v1, v|p|

)
rewrite operator. Dotted line AND

gate v1 is kept only if needed.

5

Figure 3: AND gate move up operator. Dotted line XOR gate v|p|−1 is kept
only if needed.

(x · z)�(y · z). An illustration of initial and resulting paths after the application
of this operator is shown in figure 3. In the resulting circuit the number of AND
gates increases by one and potentially the number of XOR gates increases by
one also.

Suppose that we need to move up an AND gate over a path containing
k XOR gates. Let (((x⊕ y1)⊕ . . .)⊕ yk) · z be the formula of this circuit.
The direct application of the AND gate move up operator adds an AND gate
for each XOR gate on the path. Observing that the initial formula can be
rewritten as (x⊕ (y1 ⊕ . . .⊕ yk)) · z (XOR associativity) we can transform it
into (x · z)⊕ (y1 ⊕ . . .⊕ yk) · z. This new formulation is functionally equivalent
to the one obtained using direct application of AND gate move up operator
except that the number of additional AND gates is only one.

Let p =
(
v1, v2, . . . , v|p|

)
be the critical path illustrated in figure 1, we recall

that v1 and v|p| are AND gates. The AND gate move up operator is used
to move node v|p| next to node v1. Afterwards, a critical path of length 2 is
obtained, which is rewritten using the first operator. Condition (2) insures that
the multiplicative depth of the rewritten node v|p| decreases. It is equivalent to
the condition defined earlier for length 2 paths.

min
u∈pred(v)

l (u) < l (v1)− 1, v ∈
{
v1, v|p|

}
(2)

We shall note that the overall boolean circuit multiplicative depth does not
necessarily decrease after the above defined rewrite operators are applied, as
the critical circuit can contain several parallel critical paths. All these critical
paths have to be rewritten in order to decrease the overall circuit multiplicative
depth by one.

2.3 Multi-start heuristic
In this section we introduce a multi-start heuristic which uses rewrite operators
defined above in order to minimize the multiplicative depth of a boolean cir-
cuit. Algorithm 1 is a priority based heuristic which rewrites critical paths of
multiplicative depth 2. The path to rewrite is chosen using a priority function

6

Algorithm 1 Multiplicative depth minimization heuristic.
Input: C – input boolean circuit
Input: prior_func – priority function
Output: Cout – multiplicative depth optimized boolean circtuit
1: Cout ← C
2: while termination conditions are not verified do
3: P ← critical paths of multiplicative depth 2 from circuit C
4: P ← filter paths p ∈ P respecting condition (2)
5: if |P | = 0 then
6: break
7: end if
8: p← prior_func (P) . get highest priority path
9: p← rewrite multiplicative depth-2 path p

10: if lmax (Cout) > lmax (C) then
11: Cout ← C
12: end if
13: end while

(introduced later). The algorithm stops either when a termination condition
(e.g. time, number of iterations) is verified or when there are no more reducible
critical paths, i.e. paths which respect condition (2). If the set of critical paths
P is not empty, the algorithm chooses a path from it according to a priority
function prior_func and rewrites this path using operators presented in previ-
ous section. If the multiplicative depth of the obtained circuit lowers then this
new circuit is memorized as output circuit (variable Cout).

In order to decrease the overall multiplicative depth of a boolean circuit by
one, all the parallel critical paths of this circuit must be rewritten. As we have
observed empirically, the decrease of circuit multiplicative depth makes the new
critical circuit wider and wider, that is to say the number of parallel critical
paths increases. Respectively, the number of newly added gates (due to rewrite
operators) increase in a non-linear way in the worst-case scenarios.

From the perspective of boolean circuit homomorphic execution, the mini-
mization of multiplicative depth is beneficial (in terms of execution time) if the
number of additional AND gates does not exceed a threshold. This threshold is
defined by the ratio between the AND gate execution time at the previous mul-
tiplicative level and the AND gate execution time at the current multiplicative
level. In order to obtain the best boolean circuit for homomorphic execution
one can either stop when the number of newly added AND gates exceeds this
threshold or store all the obtained circuits Cout (algorithm line 11) and choose
afterwards the circuit for which the homomorphic execution time is minimal.

We introduce several functions which prioritize the path selection (ties are
broken randomly):

• multiplicative depth of first path node: increasing order (d) and decreasing
order (D),

7

• total number of critical predecessors of all path nodes: increasing order
(i) and decreasing order (I),

• total number of critical successors of all path nodes: increasing order (o)
and decreasing order (O),

• total number of critical predecessors and successors of all path nodes:
increasing order (p) and decreasing order (P),

• critical path length: increasing order (l) and decreasing order (L).

Additionally to non-random priority functions3 we have implemented a random
priority function. Using different random seeds we obtain various search space
explorations.

The multi-start heuristic consists in executing algorithm 1 several times with
different priority functions. In our experimentations we test two versions of the
multi-start heuristic. In the first version an input circuit is optimized one time
for each non-random priority function (10 executions) and in the second one
the input circuit is optimized 10 times using random priority with different
seeds. In both cases the best obtained solution (minimal multiplicative depth
and minimal number of AND gates in case of equal multiplicative depths) is kept
as multi-start heuristic result. In the next section we present the results of the
experimentations we have performed for both multi-start algorithm versions.

3 Experimental results
Boolean circuits from the EPFL Combinational Benchmark Suite were used for
experimentations. This set of benchmarks contains exclusively combinational
circuits. Three types of circuits are provided: arithmetic, random/control and
very large (multi-million gate designs). Please refer to [1] for more details about
these benchmarks. In our experiments we have used only the first two types of
benchmarks4: 10 arithmetic and 10 random/control circuits. Before using the
benchmarks we have optimized and mapped them with ABC commands resyn2
and map. The last command was used to obtain boolean circuits with AND and
XOR gates only. Table 1 shows the characteristics of the obtained benchmarks
after these commands were performed.

The heuristic described in the previous section was implemented in C lan-
guage. The binary uses ABC as helper library. The two versions of the multi-
start heuristic were executed on each benchmark circuit. Algorithm 1 execution
terminates early if either the number of iterations is greater than 2 times the
number of AND gates in the input circuit or the execution time exceeds 1 hour.
A middle-end server with AMD Opteron 6172 processors (2.1GHz) was used as
execution platform.

3By abuse of language we denote so the above defined priority functions
4We assume that multi-million gate designs are out of reach for homomorphic execution,

at least for the current state of HE schemes.

8

Circuit name #input #output ×depth #AND
adder 256 129 255 509
bar 135 128 12 3141
div 128 128 4253 25219
hyp 256 128 24770 120203
log2 32 32 341 20299
max 512 130 204 2832

multiplier 128 128 254 14389
sin 24 25 161 3699
sqrt 128 64 4968 15571

square 64 128 247 9147
arbiter 256 129 87 11839
ctrl 7 26 8 108
cavlc 10 11 16 658
dec 8 256 3 304
i2c 147 142 15 1161

int2float 11 7 15 213
mem_ctrl 1204 1231 110 44795
priority 128 8 203 676
router 60 30 21 167
voter 1001 1 36 4229

Table 1: EPFL Combinational Benchmark Suite characteristics after initial op-
timization with ABC.

Obtained results are shown in table 2. The solutions for first version (column
“non-random”) and second version (column “random”) of multi-start heuristic are
illustrated in this table. The initial characteristics of circuits are also recalled
(column “initial”). The notations we use are the multiplicative depth (“×depth”),
the number of AND gates (“#AND”), the ratio between the multiplicative depth
of the input circuit and the optimized one (“ratio”) and the non-random priority
for which the best solution was obtained (“priority”).

The best solution (in terms of multiplicative depth and number of AND
gates) was obtained using a non-random priority in 9 cases and using a random
priority in 11 cases. For the ctrl and i2c benchmarks both heuristic versions
obtained the same result. Multiplicative depth of the obtained circuits is signif-
icantly smaller when compared to the multiplicative depth of input circuits. In
average the multiplicative depth decreases by more than 3 times. As expected,
the price to pay for a smaller multiplicative depth is an increase in the number
of AND gates (approximatively 1.2 times more in average).

The most substantial decrease is obtained for the adder benchmark, which
is the usual 128-bit ripple carry adder. The proposed heuristic achieves an
impressive result being able to transform a ripple carry adder with multiplicative
depth 255 into “some sort of” carry-lookahead adder with a multiplicative depth

9

Circuit initial non-random random
×depth #AND ×depth #AND ratio priority ×depth #AND ratio

adder 255 509 12 911 21.2 P 11 1125 23.2
bar 12 3141 12 3141 1.0 - 12 3141 1.0
div 4253 25219 1852 29329 2.3 l 1463 31645 2.9
hyp 24770 120203 24563 120293 1.0 P 24562 120307 1.0
log2 341 20299 141 27362 2.4 p 150 22266 2.3
max 204 2832 27 4751 7.6 P 27 4660 7.6

multiplier 254 14389 60 21884 4.2 p 59 17942 4.3
sin 161 3699 76 5922 2.1 p 81 4473 2.0
sqrt 4968 15571 4225 18435 1.2 i 4391 16785 1.1

square 247 9147 28 10478 8.8 d,i 29 9731 8.5
arbiter 87 11839 42 8652 2.1 P 42 8582 2.1
ctrl 8 108 5 109 1.6 L 5 109 1.6
cavlc 16 658 9 669 1.8 D,I,o 10 658 1.6
dec 3 304 3 304 1.0 - 3 304 1.0
i2c 15 1161 8 1185 1.9 D,o 8 1185 1.9

int2float 15 213 8 216 1.9 D,o 9 214 1.7
mem_ctrl 110 44795 45 54889 2.4 p 45 49175 2.4
priority 203 676 102 1121 2.0 l 102 1106 2.0
router 21 167 11 261 1.9 o 11 204 1.9
voter 36 4229 30 4288 1.2 P 30 4340 1.2

Table 2: Best obtained solutions for heuristic aggregated by priority function
(non-random and random). Bold font is used to emphasize the best solution.
The best solution considers the multiplicative depth as well as the number of
AND gates.

11 only.
The multiplicative depth of 2 benchmark circuits was not improved by the

heuristic. In both cases the heuristic was not able to find any reducible multi-
plicative depth-2 paths. The dec benchmark (a 8 to 256 decoder) was already at
its lowest possible multiplicative depth. As for the bar circuit (barrel shifter) we
suppose that the proposed rewrite operators are too weak in terms of expressive
power and more complex rewrite operators (e.g. circuit cone rewrite operators)
are needed for dealing with such type of circuits.

There is not a single priority function which performs well (i.e. for which the
best solution is found) on all benchmarks. The best solutions for 13 benchmarks
are found using two priority functions: the total number of critical predecessors
and successors of all path nodes (p,P), total number of critical successors of
all path nodes in increasing order (o). We assume that each priority function
performs well for a specific topology of boolean circuits.

The heuristic finished early because of time limit in the case of 5 benchmarks:
div, hyp, sqrt, arbiter andmem_ctrl. The obtained multiplicative depths for these

10

Figure 4: Number of AND gates as a function of the multiplicative depth for
the benchmark adder. Final multiplicative depth is 11.

benchmarks are not the lowest possible ones. Allocating more execution time
to heuristic will potentially increase the quality of presented results. We have
rerun the tests for the 5 benchmarks with time limit increased to 2 hours. The
multiplicative depth further lowered for div (from 1463 to 675), hyp (from 24562
to 24417), sqrt (from 4225 to 3709), arbiter (from 42 to 11) and mem_ctrl (from
45 to 43) benchmarks. The exploration did not finish for 3 benchmarks: div,
hyp and sqrt.

In order to see how the multiplicative depth influences the number of AND
gates we have saved all the intermediary circuits obtained during heuristic ex-
ecution. The heuristic was executed on the adder circuit. The random priority
function (for which the smallest depth circuit was obtained in previous experi-
ments) was used. The dependence between the number of AND gates and the
multiplicative depth of intermediary circuits is illustrated in figure 4. We can
see that the number of AND gates increases faster when the multiplicative depth
is smaller. Moreover this increase is exponential for the last circuits (smallest
multiplicative depth ones).

4 Conclusions and perspectives
In this work we have proposed and studied a multi-start heuristic for minimizing
the multiplicative depth of boolean circuits. The heuristic uses rewrite operators
for boolean circuit critical paths. As a function of the used priority functions
several versions of the multi-start heuristic have been studied. We have tested
heuristic’s performance on a set of circuits found in the literature. In average the
multiplicative depth of benchmarked circuits was lowered by more than 3 times

11

by the proposed heuristic. In perspective we envisage to study more elaborate
heuristics together with new priority functions.

The optimization method described in this paper can also be applied to
arithmetic circuit. An arithmetic circuit is a generalization of boolean circuits
where instead of binary field operations higher degree field/ring operations are
used. An arithmetic circuit is functionally complete when defined over addition
and multiplication operations. It is easy to see that the optimization algorithm
proposed in this paper together with rewrite operators can also be directly
applied to arithmetic circuits and how to do so.

References
[1] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The

EPFL Combinational Benchmark Suite. In Proceedings of the 24th Inter-
national Workshop on Logic & Synthesis (IWLS), 2015.

[2] Fabrice Benhamouda, Tancrède Lepoint, Claire Mathieu, and Hang Zhou.
Optimization of Bootstrapping in Circuits. In SODA, pages 2423–2433.
SIAM, 2017.

[3] Berkeley Logic Synthesis and Verification Group. ABC: A Sys-
tem for Sequential Synthesis and Verification, Release 30308.
http://www.eecs.berkeley.edu/˜alanmi/abc/.

[4] Joan Boyar and René Peralta. Concrete Multiplicative Complexity of Sym-
metric Functions. In MFCS, volume 4162 of Lecture Notes in Computer
Science, pages 179–189, 2006.

[5] Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switch-
ing from Classical GapSVP. In Advances in Cryptology - Crypto 2012, vol-
ume 7417 of Lecture Notes in Computer Science, pages 868–886. Springer,
2012.

[6] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully
Homomorphic Encryption Without Bootstrapping. In Proceedings of the
3rd Innovations in Theoretical Computer Science Conference, ITCS ’12,
pages 309–325, 2012.

[7] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. Armadillo: A Compila-
tion Chain for Privacy Preserving Applications. In Proceedings of the 3rd
International Workshop on Security in Cloud Computing, SCC ’15, pages
13–19, 2015.

[8] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In
Proceedings of the Forty-first Annual ACM Symposium on Theory of Com-
puting, STOC ’09, pages 169–178, 2009.

12

[9] Craig Gentry, Shai Halevi, and Nigel P. Smart. Better Bootstrapping in
Fully Homomorphic Encryption. In Marc Fischlin, Johannes A. Buchmann,
and Mark Manulis, editors, Public Key Cryptography, volume 7293 of Lec-
ture Notes in Computer Science, pages 1–16, 2012.

[10] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. Im-
proved Garbled Circuit Building Blocks and Applications to Auctions and
Computing Minima. volume 5888 of Lecture Notes in Computer Science,
pages 1–20, 2009.

[11] Tancrède Lepoint and Pascal Paillier. On the Minimal Number of Boot-
strappings in Homomorphic Circuits. In Financial Cryptography Work-
shops, volume 7862 of Lecture Notes in Computer Science, pages 189–200,
2013.

[12] Marie Paindavoine and Bastien Vialla. Minimizing the Number of Boot-
strappings in Fully Homomorphic Encryption. In SAC, volume 9566 of
Lecture Notes in Computer Science, pages 25–43, 2015.

[13] Thomas Schneider and Michael Zohner. GMW vs. Yao? Efficient Secure
Two-Party Computation with Low Depth Circuits. In Financial Cryptog-
raphy, volume 7859 of Lecture Notes in Computer Science, pages 275–292,
2013.

[14] William Wernick. Complete sets of logical functions. Transactions of the
American Mathematical Society, 51(1):117–132, 1942.

13

