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Abstract

Aggregator oblivious encryption was proposed by Shi et al. (NDSS 2011), where an aggregator can
compute an aggregated sum of data and is unable to learn anything else (aggregator obliviousness).
Since the aggregator does not learn individual data that may reveal users’ habits and behaviors,
several applications, such as privacy-preserving smart metering, have been considered. In this paper,
we propose aggregator oblivious encryption schemes with public verifiability where the aggregator is
required to generate a proof of an aggregated sum and anyone can verify whether the aggregated sum
has been correctly computed by the aggregator. Though Leontiadis et al. (CANS 2015) considered the
verifiability, their scheme requires an interactive complexity assumption to provide the unforgeability
of the proof. Our schemes are proven to be unforgeable under a static and simple assumption (a
variant of the Computational Diffie-Hellman assumption). Moreover, our schemes inherit the tightness
of the reduction of the Benhamouda et al. scheme (ACM TISSEC 2016) for proving aggregator
obliviousness. This tight reduction allows us to employ elliptic curves of a smaller order and leads to
efficient implementation.

1 Introduction

1.1 Aggregator Oblivious Encryption

Aggregator oblivious encryption was proposed by Shi et al. [52], where an aggregated sum of n users’
data (such as energy consumption from smart meters) can be computed in a privacy-preserving manner.
In brief, an honest dealer generates secret keys for users and an aggregator. A user i encrypts data xi,t
at time t, and sends the ciphertext ci,t to the aggregator. The aggregator can compute the aggregated
sum Xt =

∑n
i=1 xi,t from {ci,t}i∈[1,n] and sends Xt to a data analyzer (such as an energy provider). It

is particularly worth noting that the aggregator learns Xt and nothing else and this security notion has
been formalized as aggregator obliviousness. Note that if homomorphic encryption [26, 49] is simply
employed, then the aggregator has the capability to decrypt each ci,t and can obtain xi,t. Since xi,t may
reveal consumer habits and behaviors, e.g., when a certain consumer turns the air conditioner on, it
may appear when the consumer returns home, aggregator oblivious encryption is better to preserve the
privacy of users. Moreover, the aggregator is not required to be a fully trusted authority and is modeled
as honest-but-curious. That is, the data analyzer can collect the aggregated sum of xi,t via the aggregator
in a privacy-preserving manner. In addition, only a unidirectional channel is required from each user to
the aggregator. This could be an advantage compared to the schemes that require bidirectional channels
between the smart meters and the aggregator [50, 25]. Though the Shi et al. scheme is not tolerant of
user failures (i.e., if even a single user fails to respond in a certain aggregation round, the aggregation
algorithm does not work), Chan et al. [15] proposed a fault-tolerant solution such that the aggregator
can still compute the aggregated sum from the remaining users.

∗An extended abstract appears in the 22nd Australasian Conference on Information Security and Privacy (ACISP
2017) [22].
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The Shi et al. scheme is aggregator obliviousness under the Decisional Diffie-Hellman (DDH) as-
sumption in the random oracle model. They employed the lifted ElGamal encryption approach [17] and
therefore Xt =

∑n
i=1 xi,t needs to be suitably small since the aggregator is required to solve the discrete

logarithm gXt with respect to basis g. Later, Joye and Libert [34] proposed an aggregator oblivious en-
cryption scheme with large plaintext spaces by employing the Paillier-type homomorphic operation [49].
The Joye-Libert scheme is aggregator obliviousness under the Decision Composite Residuosity (DCR)
assumption in the random oracle model. Both schemes [34, 52] were generalized by Benhamouda, Joye,
and Libert (BJL) [10]. They gave a generic construction of aggregator oblivious encryption from smooth
projective hash functions [18] with an extra additively homomorphic property over the key space, with
both DDH and DCR-based instantiations. An attractive point of the BJL construction is its tight re-
duction. Namely, the reduction loss is O(tmax) whereas that of the Shi et al. scheme [52] is O(tmaxn

3)
where tmax is the maximum time to be supported by the system and n is the number of users. If we
consider the exact security [9, 45], then tight reduction is important. As in Benhamouda et al. [10], we
set that n = tmax = 220 ≈ 106 which approximately allows the computation of an aggregation every
15 minutes for 30 years throughout a city like Paris. Then, the security loss of the Shi et al. scheme
is approximately 280. That is, That is, for achieving 112-bit security, the Shi et al. scheme requires
approximately 7,680-bit public key or elliptic curves with 384–511-bit order, which is recommended by
NIST [5] for achieving 192-bit security. On the other hand, the security loss of the Benhamouda et
al. scheme is approximately 220, and to achieve 112-bit security, approximately 3,072-bit public key or
elliptic curves with 256–383-bit order is required.1

1.2 Aggregator Oblivious Encryption with Public Verifiability

As mentioned above, the aggregator is modeled as honest-but-curious and is assumed to output Xt

correctly. For stronger security, Leontiadis et al. [39] considered a new model: a user i produces a tag
σi,t in addition to ci,t, and sends (ci,t, σi,t) to the aggregator, and the aggregator is required to generate
a publicly verifiable proof σt that proves the decryption result of {ci,t}i∈[1,n] is exactly Xt. Of course, it
is required that the aggregator cannot produce a forged σt for some Xt ̸=

∑n
i=1 xi,t, and this security

notion is formalized as aggregator unforgeability. Since the data analyzer can recognize whether the
aggregator correctly computed the aggregated sum, this functionality can be seen as a kind of verifiable
computation [3, 24].

Though the Leontiadis et al. approach is interesting, one drawback of their construction is the under-
lying complexity assumption. They introduced an interactive assumption called the LEOM assumption
for proving aggregator unforgeability. The LEOM assumption is defined as follows.

Definition 1 (LEOM Assumption [39]) Let D = (p, e, g1, g2,G1,G2,GT ) be bilinear groups. Choose

α
$← G1 and δ, γ1, . . . , γn

$← Zp and set Γ = gγ2 and ∆ = g
∑n

i=1 γi
2 . The LEOM oracle OLEOM takes as

input (t, {xi,t}ni=1), chooses βt
$← G1, and returns (α, βt, {βγi

t αδxi,t}ni=1). If a query at t contains i′ ∈ [1, n]
such that xi,t ̸= x′i,t, then OLEOM returns ⊥. Assume that OLEOM is called once at each t. We say that
the LEOM assumption holds if for any probabilistic polynomial time (PPT) adversary A, the advantage
AdvLEOM (λ) := Pr[AOLEOM(·,·)(D,Γ,∆) → (t, z, c)] is negligible where A has queried (t, {xi,t}ni=1) and

z ̸=
∑n

i=1 xi,t and c = β
∑n

i=1 γi
t αzδ holds.

However, as explained by Naor [46], it is better to avoid interactive assumptions as much as possible
to prevent circular arguments. Making cryptographic primitives secure under weak assumptions is one
of the important topics of cryptography. To name a few, verifiable random functions [30, 31], group
signatures [41, 42], structure-preserving signatures [2], identity-based encryption [54], attribute-based
encryption [48, 53], oblivious transfer [28] and so on, and constructing an aggregator oblivious encryption
scheme with public verifiability from static and simple assumptions are still left as open problems.

1This key-length is recommended by NIST [5] for achieving 128-bit security. To be precise, the Benhamouda et al.
scheme archives 108-bit security under this key length. Thus, a slightly longer key is required to achieve 112-bit security.
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Table 1: Comparison of DL-based Aggregator Oblivious Encryption

Scheme Ciphertext Tag Secret Key Public Parameter
Size (ci,t) Size (σi,t) Size Size (params+ vk)

BJL (DDH) [10] |G1| - 2|Zp| |G1|+ 2 hash
LEOM [39] |G1| |G1| 2|Zp|+ |G1| |G1|+|G2|+ 1 hash
Ours 1 |G1| |G1| 3|Zp|+ |G1| |G1|+ (1 + tmax)|G2|+ |GT |+6 hash1

Ours 2 |G1| |G1| 2|Zp|+ |G1| |G1|+ |G2|+ |GT |+5 hash

Scheme |p|‡ Reduction Loss Encryption Aggregator Complexity Assumptions Bulletin
AO/AU2 Algorithm Unforgeability for proving AO/AU2 Board

BJL (DDH) [10] 256 O(tmax)/- Deterministic - DDH/- -
LEOM [39] 1031 O(tmaxn

3)/O(1) Deterministic Full DDH/LEOM3 -
Ours 1 383 O(tmax)/O(1) Deterministic Weak DDH/mCDH4 -
Ours 2 383–1031 O(tmax)/O(t2max) Probabilistic Semi-Adaptive DDH/DDH&mCDH4 Required

† Zp, |G1|, |G2|, and |GT | denote the bit-length of an element of Zp, G1, G2, and GT , respectively.
‡ |p| denotes the bit-length of p for 112-bit security. Here, we set n = tmax = 220 [10]. For the BJL scheme, we refer the
NIST recommendation [5] since the BJL scheme is pairing-free. For the LEOM scheme and ours, we refer the result by
Menezes, Sarkar, and Singh [44] who re-evaluated parameters of pairing-friendly elliptic curves by considering the result
by Kim and Barbulescu [37]. Since it is not clear how large p is required for 152-bit security, we denote |p|: 383–1031
for the second scheme.

1 Remark that no user is required to have the large-size verification key.
2 AO/AU: Aggregator Obliviousness/Aggregator Unforgeability
3 LEOM: Leontiadis-Elkhiyaoui-Önen-Molva. An interactive complexity assumption.
4 mCDH: modified Computational Diffie-Hellman. A static complexity assumption.

1.3 Our Contribution

In this paper, we propose two aggregator oblivious encryption schemes with public verifiability from
static and simple assumptions (a variant of the Computational Diffie-Hellman (CDH) assumption). See
Table 1 for detailed comparisons. For aggregator obliviousness, both schemes are tightly reduced to
the BJL scheme. That is, our schemes inherit the tightness of the reduction of the Benhamouda et al.
scheme. This tight reduction allows us to employ elliptic curves with a smaller order and leads to efficient
implementation. On the other hand, the Leontiadis et al. scheme is reduced to the Shi et al. scheme
and has a loose reduction. Remark that Benhamouda et al. [10] also show that a degradation factor
of at least Ω(n2) is unavoidable in the Shi et al. scheme. They show that any blackbox nonrewinding
reduction from the Shi et al. scheme to a noninteractive problem loses a factor of at least n2. That is,
this bound cannot be improved in the Shi et al. scheme, and the Leontiadis et al. scheme also.

The first scheme provides weak aggregator unforgeability, where an adversary can obtain ciphertexts
and tags {(ci,t, σi,t)}ni=1 of xi,t chosen by the encryption oracle. Note that in the smart meter setting,
xi,t (such as power consumption) is measured by the meter. Thus, we believe that weak aggregator
unforgeability is still meaningful in the actual usage. One drawback to the first scheme, beside weak

aggregator unforgeability, is the large-size verification key vk = {vkt := g
∑n

i=1 vi,t
2 }t∈[1,tmax] where tmax

is the maximum time to be supported by the system. If we employ Barreto-Naehrig (BN) curves [6]
with a 383-bit order, then approximately 100MByte-sized verification keys need to be published when
tmax = 220 ≈ 106 [10]. Note that no user is required to have the large-size verification key. Moreover,
verification keys for past times can be removed. In addition, if we can assume that these keys are
updated by the dealer every time over a certain time period (i.e., periodic inspection of meters every
one to two years), or if we can set a relatively small tmax, then we can significantly reduce the size of
the keys to be stored. Remark that, if a user manages all vi,t as its secret key, then the secret key size
also depends on tmax. To avoid such a large-size secret key, we additionally introduce a hash function H
and a time-independent secret key vi, and we compute vi,t = H(vi, t). This helps us to reduce the secret
key size. For weak aggregator unforgeability, the first scheme provides a tight reduction loss from the
advantage of the the mCDH problem.

Though we can reduce the verification key size according to the tmax settings, it would be better
to support constant-size keys. Our second scheme solves the large-size key problem by choosing vi,t on
the fly. That is, in the second scheme a user i chooses vi,t in the encryption phase, whereas in the first
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scheme all keys are generated by an honest dealer, as in previous works [52, 10, 34, 39]. Though the Enc
algorithm becomes probabilistic, this strategy allows us to prove that the scheme provides aggregator
unforgeability with semi-adaptive chosen message attack where an adversary can obtain ciphertexts and
tags {(ci,t, σi,t)}ni=1 of xi,t chosen by the adversary. Here, semi-adaptive means that the adversary is
required to send all {xi,t}ni=1, and obtains the corresponding {(ci,t, σi,t)}ni=1. Though vk can be removed
from the public value, a drawback of the second scheme is that a malicious aggregator could modify
vk. Thus, we additionally need to introduce public channels equipped with memory, such as a bulletin
board [29] that is publicly readable and that every user can write to, but nobody can delete from. See
Section 4 for a more detailed explanation. Another drawback is its reduction loss. Though aggregator
obliviousness of the second scheme is tightly reduced to the BJL scheme (this requires O(tmax) reduction
loss from the advantage of the DDH problem), semi-adaptive aggregator unforgeability of the second
scheme requires additional reduction loss. Concretely, O(t2max) reduction loss from the advantage of the
DDH problem. Thus, we need to employ elliptic curves with a relatively large order.

1.4 Related Work

Aggregator oblivious encryption considers collecting the aggregated sum of users (e.g., the total consump-
tion of customers) in a certain region for each time period. This could be employed for privacy-preserving
energy management systems. On the other hand, collecting the aggregated sum of a particular user might
be desired for a certain reason. For example, if an energy provider would like to send an invoice to a
customer and would like to know the total amount of the consumption of the customer. This could be
employed for privacy-preserving supplier billing systems [32, 51]. Some schemes support both billing
and energy management functionality [7, 47, 20]. Ohara et al. [47] in particular proposed such a smart
metering scheme with verifiability of the integrity of the total amount of consumption or the billing
price.

In our setting (as in [10, 34, 39, 52]), the number of users n is selected and fixed during the setup
phase. Some papers considered dynamic joins and leaves [40, 15, 33, 38]. Chan et al. [15] proposed a
binary interval tree technique that reduces the communication cost for joins and leaves, and Jawurek et
al. [33] further improved the communication overhead of the Chan et al. scheme. Although the Chan
et al. and Jawurek et al. schemes require public key settings, Li and Cao [40] proposed a more efficient
scheme that only requires symmetric key settings. Though these schemes assume an honest dealer that
issues keys to the users and the aggregator via a secure channel, Leontiadis et al. [38] proposed a key
update mechanism that does not require any trusted dealer. They introduced an additional semi-trusted
party called the collector that collects partial key information from users via a secure channel.

Datta and Joye [21] showed that a protocol for computing an aggregate sum proposed by Jung, Li,
and Wan [35] is universally breakable, where anyone can recover private data from ciphertexts.

Some schemes employ bilinear groups with composite order N = pq [43, 23]. This could be a
bottleneck since we need to assume that N is difficult to be factorized and is selected as sufficiently
large. In the meantime, our schemes are constructed over bilinear groups with a prime order.

Zhuo et al. [55] proposed a privacy-preserving verifiable data aggregation. They employed homomor-
phic encryption [14]. As in our scheme, the correctness of computation results can be verified. However,
no formal security definition is given (especially unforgeability of the computation results), and thus its
security is not analyzed in the sense of provable security.

Corrigan-Gibbs and Boneh [16] proposed a privacy-preserving system for computing aggregate statis-
tics, which they call Prio. Though there is a single aggregator in aggregator oblivious encryption, whereas
in the Prio system, a set of servers compute statistical functions over the values of all clients. It is as-
sumed that at least one server is honest. Then, the servers learn nothing about the clients private data
except information obtained from the aggregate statistics.

Benhamouda et al. [10] mentioned that multi-input functional encryption [27] implies aggregator
oblivious encryption. Since Badrinarayanan et al. [4] proposed verifiable functional encryption and
also considered its multi-input setting, we might be able to construct verifiable aggregator oblivious
encryption from verifiable multi-input functional encryption. Though, as in Benhamouda et al., we leave
this attempt in this paper due to the efficiency point of view.
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Beimel et al. [8] proposed non-interactive secure multiparty computation (NIMPC), and they men-
tioned that NIMPC can be viewed as a simplified and restricted form of multi-input functional encryption.
Moreover, they also gave a NIMPC protocol for summation (in a group G). The construction idea is
essentially the same as that of the Shi et al. aggregator oblivious encryption scheme. Briefly, R1, . . . , Rn

are randomly chosen from G, and set Rn = −
∑n−1

i=1 Ri. Each user encrypts a value xi ∈ G such that
Mi := xi+Ri, and the summation can be computed by

∑n
i=1Mi. In the Shi et al. scheme, the random-

ness is prepared by a hash function and a secret key, i.e., Ri at time t can be seen as log(H(t)ski), and
thus the randomness is not required to be distributed at each time.

1.5 Differences from the Proceedings Version

In the proceedings version [22], we claimed that the second scheme provides full aggregator unforgeability
where an adversary is allowed to adaptively choose xi,t, and can obtain the corresponding ciphertext and
tag (ci,t, σi,t). Intuitively, in the security proof, the simulator responds the encryption query (i, t, xi,t) for
i ∈ [1, n− 1] by preparing a ciphertext and tag of ri,t for some random ri,t ∈ Zp (regardless of xi,t), and
for the encryption query (n, t, xn,t), the simulator prepares a ciphertext and tag of

∑n
i=1 xi,t−

∑n−1
i=1 ri,t.

Though the decryption result of these ciphertexts is exactly
∑n

i=1 xi,t that the adversary queried, we
need to show that ciphertexts and tags of ri,t (resp.

∑n
i=1 xi,t −

∑n−1
i=1 ri,t) and those of xi,t (resp xn,t)

are indistinguishable. Though we can reduce this indistinguishability to aggregator obliviousness, for
simulation, the adversary is required to send all {xi,t}ni=1. Thus, we re-claim that the second scheme
is aggregator unforgeability secure against semi-adaptive chosen message attack. Due to the additional
reduction, the reduction loss of the second scheme becomes O(t2max). Thus, we need to reconsider the
order of the underlying bilinear groups.

2 Preliminaries

Let p is a λ-bit prime, G1,G2 and GT are groups of order p, e : G1×G2 → GT is a bilinear map, and g1
and g2 are generators of G1 and G2, respectively. We use the (type 3) asymmetric setting, i.e., G1 ̸= G2,
and no efficient isomorphism between G1 and G2 is known.

Next, we define the Decisional Diffie-Hellman (DDH) assumption on G1 as follows.

Definition 2 (DDH Assumption) Let D := (p, e, g1, g2,G1,G2,GT ), g
′
1

$← G1 and r1, r2
$← Z∗

p where
r1 ̸= r2. We say that the DDH assumption holds on G1 if for any PPT adversary A, the advantage
AdvDDH(λ) := |Pr[A(D, g′1, g

r1
1 , g′1

r1)→ true]− Pr[A(D, g′1, g
r1
1 , g′1

r2)→ true]| is negligible.

Next, we define a new complexity assumption. This is a variant of the Computational Diffie-Hellman
(CDH) assumption. We call this assumption the modified CDH (mCDH) assumption.2

Definition 3 (Modified CDH Assumption) Let D := (p, e, g1, g2,G1,G2,GT ), and a, b
$← Z∗

p. We
say that the Modified CDH assumption holds if for any PPT adversary A, the advantage AdvmCDH(λ) :=

Pr[A(D, ga1 , g
1/a
1 , gb1, g

a
2)→ gab1 ] is negligible.

We can check that the mCDH assumption holds in the generic bilinear group model by reducing the
mCDH problem to the following problem: given (g1, g

a
1 , g

a2
1 , gb1, g2, g

a
2) ∈ G4

1 × G2
2 for random a, b ∈ Zp,

compute e(g1, g2)
a2b. We can assume that the problem is difficult to be solved since it belongs to the Uber

assumption family [12]. This reduction can be easily done by setting g′1 := g
1/a
1 and B := ab. Then, an

instance of the mCDH problem (g1, g
a
1 , g

1/a
1 , gb1, g2, g

a
2) is represented as: given (g′1

a, g′1
a2 , g′1, g

′
1
B, g2, g

a
2),

compute gab1 = g′1
a2b = g′1

aB. We rewrite it: given (g1, g
a
1 , g

a2
1 , gb1, g2, g

a
2), compute gab1 . That is, if the

mCDH problem can be solved, then we can compute e(gab1 , ga2) = e(g1, g2)
a2b.

2Kiltz and Vahlis [36] defined the modified Decisional Bilinear Diffie-Hellman (mDBDH) assumption where given

(g, gx, gy, gy
2

, gz, Z) decide whether Z = e(g, g)xyz or not. That is, compared to the original DBDH assumption, the

element gy
2

is additionally given to the adversary. In our assumption, if we set g
1/a
1 := g′1 then (g

1/a
1 , g1, g

a
1 ) can be seen as

(g′1, g
′
1
a
, g′1

a2

). That is, the element g′1
a2

is added to an instance of the CDH assumption. Hence, we call the assumption
mCDH.
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3 Definitions of Verifiable Aggregator Oblivious Encryption

In this section, we give the syntax of verifiable aggregator oblivious encryption and its security definitions
(aggregator obliviousness and aggregator unforgeability), and introduce the DDH-based BJL scheme [10].
As in Shi et al. we consider encrypt-once security where each user only encrypts once at each time t.

3.1 Syntax of Verifiable Aggregator Oblivious Encryption

Definition 4 (Verifiable Aggregator Oblivious Encryption [39])

Setup: The setup algorithm takes as input a security parameter λ, and outputs a public parameter param
and a secret key of aggregator skA, a set of user secret keys {ski}ni=1, and the aggregate verification
key vk. We assume that the maximum time tmax is contained in param, and tmax is a polynomial of
the security parameter. We assume that t ∈ [1, tmax] and the verification key at t vkt is contained
in vk.

Enc: The encryption algorithm takes as input param, t, a value xi,t ∈ ZM , and ski, and outputs a
ciphertext ci,t and a tag σi,t. Here, M is some fixed integer contained in param.

AggrDec: The aggregation and decryption algorithm takes as input param, t, and a set of ciphertexts and
tags {(ci,t, σi,t)}ni=1, and skA, and outputs Xt :=

∑n
i=1 xi,t mod M , and the proof σt.

VerifySum: The verification of aggregation algorithm takes as input param, t, vkt, and (Xt, σt), and
outputs 1 or 0.

We require the following correctness. For all (param, skA, {ski}ni=1, vk) ← Setup(1λ), and (ci,t, σi,t) ←
Enc(param, t, xi,t, ski), and (Xt, σt) ← AggrDec(param, t, {(ci,t, σi,t)}ni=1, skA), VerifySum(param, t,Xt, σt,
vkt) = 1, and Xt =

∑n
i=1 xi,t mod M hold.

Let us introduce the entities of the system and how to run the algorithms above as follows. We
consider four entities, a trusted dealer, an aggregator, users, and a data analyzer. First, the dealer
runs (param, skA, {ski}ni=1, vk) ← Setup(1λ), and issues skA to the aggregator and ski to the user i,
respectively, and publishes (param, vk).3 At time t, each user i encrypts xi,t such that (ci,t, σi,t) ←
Enc(param, t, xi,t, ski), and sends (ci,t, σi,t) to the aggregator. The aggregator runs (Xt, σt)← AggrDec(param,
t, {(ci,t, σi,t)}ni=1, skA), and sends (Xt, σt) to the data analyzer. The data analyzer checks whether the
computed aggregated sum Xt is correct by running 1/0← VerifySum(param, t,Xt, σt, vkt).

3.2 Security Definitions

Next, we define aggregator obliviousness. This requires that the aggregator cannot learn anything more
than the aggregate value Xt for each time t. We additionally require that tags σi,t do not affect the
security. Let st be state information that A can preserve any information, and st is used for transferring
state information to the other stage. Let U be the whole set of users for which, at the end of the game,
no encryption queries have been made on t∗ and no corruption queries have been made. The adversary
indicates St∗ ⊆ U and obtains (ci,t∗ , σi,t∗) for all i ∈ St∗ . Remark that the AggrDec algorithm works
only when all ciphertexts are collected. That is, if St∗ is a proper subset of U (St∗ ⊊ U), then there
exist at least one ciphertext ci,t∗ such that i ∈ U \ St∗ . In this case, the adversary cannot run the
AggrDec algorithm. Thus, as in the definition of Benhamouda et al. [10] and Shi et al. [52], we require

that
∑

i∈St∗ x
(0)
i,t∗ mod M =

∑
i∈St∗ x

(1)
i,t∗ mod M must be hold if skA is compromised by the adversary

and St∗ = U. Though in the definition of Leontiadis et al. [39], skA is always given to the adversary

and always the condition
∑

i∈St∗ x
(0)
i,t∗ mod M =

∑
i∈St∗ x

(1)
i,t∗ mod M is required, we follow the definition

given in [10, 52] where the adversary is allowed to select whether the adversary compromises skA or not.

3In the definition of Leontiadis et al. [39], each user i chooses a tag value tki, and sends its encoding value to the dealer
in the Setup phase. The dealer computes vk from all tki. Here we simply assume that vk is generated by the dealer since
the dealer is modeled as a trusted entity. Later, we consider the case that vk is generated by users in the encryption phase.
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Definition 5 (Aggregator Obliviousness [10, 39]) For any PPT adversary A and a security pa-
rameter λ ∈ N, we define the experiment ExpAO

A (λ) as follows. If skA is compromised at the end of the

game and St∗ = U, then it is required that
∑

i∈St∗ x
(0)
i,t∗ mod M =

∑
i∈St∗ x

(1)
i,t∗ mod M .

ExpAO
A (λ) :

(param, skA, {ski}ni=1, vk)← Setup(1λ)

(St∗ , t∗, {(x(0)i,t∗ , x
(1)
i,t∗)}i∈St∗ )← A

Oenc,Ocorrupt(param, vk, st); St∗ ⊆ U; b
$← {0, 1}

For all i ∈ St∗

(ci,t∗ , σi,t∗)← Enc(param, t, x
(b)
i,t∗ , ski)

b′ ← AOenc,Ocorrupt({(ci,t∗ , σi,t∗)}i∈St∗ , st)
If b = b′, then return 1 and 0 otherwise

• Oenc: This encryption oracle takes as input a tuple (i, t, xi,t), and returns (ci,t, σi,t)← Enc(param, t,
xi,t, ski). Note that A is not allowed to input (i, t∗, ·) where i ∈ St∗ to this oracle.

• Ocorrupt: This corruption oracle takes as input i ∈ [0, n], and returns ski. If i = 0, then the oracle
returns skA. Note that A is not allowed to input i ∈ St∗ to this oracle.

We say that an encryption scheme is aggregator obliviousness if the advantage AdvAO
A (λ) := 2|Pr[ExpAO

A (λ) =
1]− 1/2| is negligible for any PPT adversary A.

Next, we define aggregator unforgeability. This requires that an adversary (modeled as the malicious
aggregator) cannot produce a forged tag σt that is accepted by the VerifySum algorithm. As in the
definition of unforgeability given by Leontiadis et al. [39], we consider two cases: an adversary is required
either the adversary does not obtain ciphertexts and tags at the challenge time t∗ (type I forgery) or the
adversary has obtained all ciphertexts and tags {(ci,t∗ , σi,t∗)}ni=1 (type II forgery). In the type II forgery
case, it is assumed that ciphertexts and tags are honestly generated, and A obtains ciphertexts and tags
of all users in the system. Type I adversary captures the case that the aggregator tries to generate a
forged tag σt at a future time t (i.e., users have not generated (ci,t, σi,t)). Type II adversary captures
the case that the aggregator tries to generate a forged tag σt at a past/current time t (i.e., users have
generated (ci,t, σi,t)).

Definition 6 (Aggregator Unforgeability [39]) For any PPT adversary A and a security parameter
λ ∈ N, we define the experiment ExpAU

A (λ) as follows.

ExpAU
A (λ) :

(param, skA, {ski}ni=1, vk)← Setup(1λ)

(t∗, Xt∗ , σt∗)← AOenc(param, skA, vk)

If one of the followings hold, then return 1 and 0 otherwise

(Type I) : VerifySum(param, t∗, Xt∗ , σt∗ , vkt∗) = 1

∧No encryption oracle is called at t∗

(Type II) : VerifySum(param, t∗, Xt∗ , σt∗ , vkt∗) = 1

∧Xt∗ ̸=
n∑

i=1

xi,t∗ mod M

• Oenc: This encryption oracle takes as input a tuple (i, t, xi,t), and returns (ci,t, σi,t)← Enc(param, t,
xi,t, ski).

We say that an encryption scheme is aggregator unforgeable if the advantage AdvAU
A (λ) := Pr[ExpAU

A (λ) =
1] is negligible for any PPT adversary A.
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Next, we slightly weaken the definition of Leontiadis et al. in the following. In their definition, the
adversary (modeled as the malicious aggregator) can adaptively choose xi,t and can obtain the corre-
sponding (ci,t, σi,t) from the encryption oracle. This definition is an analogy of Existential Unforgeability
against Chosen Message Attack (EUF-CMA) in the signature context where an adversary is allowed to
obtain signatures on messages which are (adaptively) chosen by the adversary. However, in the actual
situation, the aggregator does not decide xi,t, and just receives ci,t sent from users. Actually, in the smart
meter setting, xi,t (such as power consumption) is measured by the meter. Thus, it seems reasonable to
propose that the adversary just queries (i, t) to the encryption oracle, and the oracle chooses xi,t and
returns the corresponding (ci,t, σi,t) to the adversary. Our definition is an analogy of Existential Un-
forgeability against Random Message Attack (EUF-RMA) in the signature context where an adversary
is given signatures on randomly chosen messages.

Definition 7 (Weak Aggregator Unforgeability) For any PPT adversary A and a security param-
eter λ ∈ N, the experiment ExpwAU

A (λ) is the same as ExpAU
A (λ) except Oenc.

• Oenc: This encryption oracle takes as input a tuple (i, t). The oracle chooses xi,t and returns
(ci,t, σi,t)← Enc(param, t, xi,t, ski).

We say that an encryption scheme is weakly aggregator unforgeable if the advantage AdvwAU
A (λ) :=

Pr[ExpwAU
A (λ) = 1] is negligible for any PPT adversary A.

Next, we introduce semi-adaptive aggregator unforgeability which is stronger than the weak one but
is weaker than the full aggregator unforgeability.

Definition 8 (Semi-Adaptive Aggregator Unforgeability) For any PPT adversary A and a se-
curity parameter λ ∈ N, the experiment ExpsaAU

A (λ) is the same as ExpAU
A (λ) except Oenc.

• Oenc: This encryption oracle takes as input tuples {(i, t, xi,t)}ni=1. The oracle computes (ci,t, σi,t)←
Enc(param, t, xi,t, ski) for all i ∈ [1, n], and returns {(ci,t, σi,t)}ni=1.

We say that an encryption scheme is semi-adaptive aggregator unforgeable if the advantage AdvsaAU
A (λ) :=

Pr[ExpsaAU
A (λ) = 1] is negligible for any PPT adversary A.

3.3 The DDH-based BJL Scheme

Benhamouda, Joye, and Libert (BJL) [10] gave a generic construction of aggregator oblivious encryption
from smooth projective hash functions [18]. Here, we introduce its DDH instantiation. The underlying
idea is essentially the same as that of the She et al. aggregator oblivious encryption. The aggregator
has keys (s0, t0) where s0 +

∑n
i=1 si = 0 and t0 +

∑n
i=1 ti = 0, and this structure allows the aggregator

to cancel out a part of ciphertext H1(t)
∑n

i=1 si and H2(t)
∑n

i=1 ti .

Setup: Let G1 be a DDH-hard group with λ-bit prime order p = M and g1 be a generator of G1.

LetHi : Z→ G1 (i = 1, 2) be hash functions. Choose s1, . . . , sn, t1, . . . , tn
$← Zp, set s0 = −

∑n
i=1 si

and t0 = −
∑n

i=1 ti. Output param = ((p, g1,G1),H1,H2), skA = (s0, t0) and ski = (si, ti).

Enc: Parse ski = (si, ti). For xi,t ∈ Zp, compute ci,t = g
xi,t

1 H1(t)
siH2(t)

ti and output ci,t.

AggrDec: Parse skA = (s0, t0). Compute Vt = H1(t)
s0H2(t)

t0
∏n

i=1 ci,t = gXt
1 where Xt =

∑n
i=1 xi,t, and

solve the discrete logarithm Vt with respect to basis g1. Output Xt.

4 Proposed Constructions

In this section, we propose two schemes. For aggregator obliviousness, both schemes are tightly reduced
to the DDH-based BJL scheme. The first scheme only provides weak aggregator unforgeability, whereas
the second scheme provides semi-adaptive aggregator unforgeability. The unforgeability of both schemes
relies on the mCDH assumption and the second scheme additionally requires public channels with mem-
ory, such as a bulletin board [29] (which is publicly readable, and every user can write to, but nobody
can delete from). Moreover, users are required to generate random numbers in the Enc algorithm. Thus,
the Enc algorithm in the second scheme is probabilistic whereas that of the first scheme is deterministic.
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4.1 High-level Description

Aggregator Obliviousness: We employ (type 3) elliptic curves where G1 ̸= G2 and no efficient
isomorphism between G1 and G2 is known. Then, we run the BJL scheme [10] over the DDH-hard
group G1, and borrow the ciphertext form ci,t and secret keys skA and ski. Since the BJL scheme is
aggregator obliviousness under the DDH assumption, we can expect that our scheme is also aggregator
obliviousness. In order to directly reduce the aggregator obliviousness of our scheme to that of the BJL
scheme, we independently prepare the verification part. That is, we introduce vi,t for each user i and
in the security proof, vi,t can be chosen independently from the BJL scheme. This setting allows us to
compute the tag σi,t from ci,t and vi,t in the security proof. More precisely, the challenge ciphertexts and
tags of our scheme {(ci,t∗ , σi,t∗)}i∈St∗ can be constructed from the challenge ciphertext of the BJL scheme
{ci,t∗}i∈St∗ and the corresponding vi,t. Thus, we can construct an algorithm that breaks the aggregator
obliviousness of the BJL scheme by using an adversary of our scheme. Remark that σi,t has the similar
form of ci,t in our scheme due to this reason. This strategy has been considered by Leontiadis et al.
[39]. They provided a reduction of their scheme to the Shi et al. scheme [52]. However, as mentioned
by Benhamouda et al. [10], the security loss is O(tmaxn

3) in the Shi et al. scheme, whereas it is O(tmax)
in the BJL scheme. Thus, we have chosen the BJL scheme as the underlying scheme in this paper.

Aggregator Unforgeability: For public verification, we pay attention to that the form of the cipher-
text ci,t of the BJL scheme is similar to a decryption key of the Boneh-Boyen identity-based encryption
(IBE) scheme [11].4 Due to the above reason, the tag σi,t has the similar form of ci,t in our schemes.
Since secure IBE implies a signature [19] (informally, ID is regarded as a message to be signed, and its
decryption key is regarded as a signature), we can expect that σi,t is unforgeable. However, to utilize
the Boneh-Boyen technique, Xt needs to be embedded into vk in the security proof. Here, we have two
choices: whether vk is fixed in the setup phase or not. If vk is chosen by the honest dealer and is fixed in
the setup phase, Xt is also required to be fixed in the setup phase (to utilize the security proof technique
of selective-ID security of Boney-Boyen IBE), and therefore only weak aggregator unforgeability is pro-
vided. Moreover, since one Xt is embedded with one vk, long verification keys is also required where the

size lineally depends on tmax. We set vk = {vkt}t∈[1,tmax] and vkt := g
∑n

i=1 vi,t
2 for t ∈ [1, tmax]. We remark

that no user is required to have the large-size verification key. Moreover, if a user i manages all vi,t for
t ∈ [1, tmax] as its secret key ski, the secret key size also depends on tmax. To avoid such a large-size secret
key, we additionally introduce a hash function H and a time-independent secret key vi, and we compute
vi,t = H(vi, t). That is, in the scheme vi,t is computed by H(vi, t) whereas in the security proof, vi,t is
selected so as to utilize the Boneh-Boyen technique, and set H(vi, t) := vi,t. This helps us to reduce the
secret key size.

4.2 The Proposed Scheme 1: Providing Weak Aggregator Unforgeability

We give the first scheme as follows. As mentioned above, vk is chosen in the setup phase.

Setup(1λ): Choose (p, e, g1, g2,G1,G2,GT ) where G1, G2 and GT are groups of λ-bit prime order p = M ,
g1 ∈ G1 and g2 ∈ G2 are generators, and e : G1×G2 → GT is a bilinear map. LetH : Zp×[1, tmax]→
Zp andHi : Z→ G1 (i = 1, 2, 3, 4, 5) be hash functions. Choose γ, s1, . . . , sn, t1, . . . , tn, v1, . . . , vn

$←
Zp, compute vi,t = H(vi, t) for all i ∈ [1, n] and t ∈ [1, tmax] and set s0 = −

∑n
i=1 si, t0 = −

∑n
i=1 ti,

h = gγ1 , and Z = e(h, g2). Output param = ((p, e, g1, g2,G1,G2,GT ), Z,H,H1,H2,H3,H4,H5),

skA = (s0, t0), ski = (si, ti, vi, h), and vk = {vkt}t∈[1,tmax] where vkt = g
∑n

i=1 vi,t
2 .

Enc(param, t, xi,t, ski): Parse ski = (si, ti, vi, h). Compute

vi,t = H(vi, t), ci,t = g
xi,t

1 H1(t)
siH2(t)

ti , and σi,t = hxi,tH3(t)
siH4(t)

tiH5(t)
vi,t

and output (ci,t, σi,t).

4A decryption key of the Boneh-Boyen IBE scheme is informally described as (gαHBB(ID)r, gr) for a master key α and
a random r, the Boneh-Boyen hash HBB. In our first construction, α, ID, and r are regarded as xi,t, t, and vi,t respectively.
Thus, the number of verification keys depends on tmax.
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AggrDec(param, t, {(ci,t, σi,t)}ni=1, skA): Parse skA = (s0, t0). Compute

Vt = H1(t)
s0H2(t)

t0

n∏
i=1

ci,t = gXt
1

where Xt =
∑n

i=1 xi,t, and solve the discrete logarithm Vt with respect to basis g1. Moreover,
compute

σt = H3(t)
s0H4(t)

t0

n∏
i=1

σi,t

Output (Xt, σt).

VerifySum(param, t,Xt, σt, vkt): Output 1 if

e(σt, g2)

e(H5(t), vkt)
= ZXt

holds. Otherwise, output 0.

The correctness cleary holds from the following equations.

H1(t)
s0H2(t)

t0

n∏
i=1

ci,t = H1(t)
s0H2(t)

t0

n∏
i=1

g
xi,t

1 H1(t)
siH2(t)

ti

= H1(t)
s0−

∑n
i=1 siH2(t)

t0−
∑n

i=1 tig
∑n

i=1 xi,t

1

= gXt
1

σt = H3(t)
s0H4(t)

t0

n∏
i=1

σi,t

= H3(t)
s0H4(t)

t0

n∏
i=1

hxi,tH3(t)
siH4(t)

tiH5(t)
vi,t

= hXtH5(t)
∑n

i=1 vi,t

e(σt, g2) = e(hXtH5(t)
∑n

i=1 vi,t , g2) = e(h, g2)
Xte(H5(t), g

∑n
i=1 vi,t

2 )

= ZXte(H5(t), vkt)

Theorem 4.1 Our scheme 1 is aggregator obliviousness under the DDH assumption on G1 in the ran-
dom oracle model.

We consider the following two games. Game 0 is the original game. Game 1 is the same as Game
0 except that H3 and H4 are computed as H3(t) = H1(t)

γ and H4(t) = H2(t)
γ for some γ ∈ Zp. Since

(H1(t),H2(t),H3(t),H4(t)) is a DDH tuple, this modification does not affect the security under the DDH
assumption on G1. Briefly, let (g1, g

′
1, g

r1
1 , g′1

r2) ∈ G4
1 be an DDH instance on G1. For t ∈ [1, tmax], choose

t̃1, t̃2
$← Zp, and set H1(t) := gt̃11 , H2(t) := g′1

t̃2 , H3(t) := (gr11 )t̃1 , and H4(t) := (g′1
r2)t̃2 . Clearly, if the

instance is not a DDH tuple, i.e., r1 ̸= r2, then we simulate Game 0, and if the instance is a DDH tuple,
i.e., r1 = r2, then we simulate Game 1. In Game 1, we construct an algorithm B that breaks aggregator
obliviousness of the BJL scheme as follows.

Proof: Let A be the adversary of our scheme, and C be the challenger of the BJL scheme. We construct
an algorithm B that breaks aggregator obliviousness of the BJL scheme as follows. First, C prepares

(p, e, g1, g2,G1,G2,GT ,H1, H2) and sends it to B. B chooses γ, v1, . . . , vn, v1,1, . . . , vn,tmax

$← Zp. B
computes h = gγ1 , Z = e(h, g2), vki,t = g

vi,t
2 for i ∈ [1, n] and t ∈ [1, tmax], and vkt = g

∑n
i=1 vi,t

2 . B
sets H(vi, t) := vi,t for i ∈ [1, n] and t ∈ [1, tmax]. Remark that if A sends a hash query t, then
B forwards it to C when A requests H1(t) or H2(t). For H3 and H4, B sets H3(t) = H1(t)

γ and
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H4(t) = H2(t)
γ , and returns the hash values. For H5, B just returns a random value. B sends param =

((p, e, g1, g2,G1,G2,GT ), Z,H,H1,H2,H3, H4,H5), {vkt}t∈[1,tmax], and vk to A.
If A sends an encryption query (i, t, xi,t) to B, then B forwards it to C as an encryption oracle, and

obtains ci,t. B computes cγi,tH5(t)
vi,t = hxi,tH3(t)

siH4(t)
tiH5(t)

vi,t , and returns (ci,t, σi,t) to A. If A sends
a corruption query i ∈ [0, n] to B, B forwards it to C as a corruption query, and obtains skA (if i = 0) or
(si, ti) (if i ∈ [1, n]). If i = 0, then B returns skA to A. If i ∈ [1, n], then B sets ski = (si, ti, vi, h), and
returns ski to A. We remark that if A sends a hash query (vi, t), then B responds vi,t to A.

In the challenge phase, A sends (St∗ , t∗, {(x(0)i,t∗ , x
(1)
i,t∗)}i∈St∗ ) to B. Then, B forwards it to C as the chal-

lenge, and obtains {ci,t∗}i∈St∗ . As in the response of encryption queries, B computes σi,t∗ = cγi,t∗H5(t)
vi,t∗

for i ∈ St∗ , and returns {(ci,t∗ , σi,t∗)}i∈St∗ to A.
B responds queries sent from A as in the previous phase. Finally, A outputs a bit b′. B outputs b′

and then B can break aggregator obliviousness of the BJL scheme with the same advantage of A. This
concludes the proof since the BJL scheme is aggregator obliviousness under the DDH assumption on G1

in the random oracle model. □

Theorem 4.2 Our scheme 1 is weakly aggregator unforgeable under the mCDH assumption in the ran-
dom oracle model.

For the proof of Type I forgery, we employ the following assumption: given (ga1 , g
b
1, g

a
2) compute gab1 .

Since this is equivalent to the CDH assumption if the symmetric pairing setting is employed, we simply
call the assumption the CDH assumption in this paper. Remark that this is weaker than mCDH since

g
1/a
1 is not contained in the instance. Since no encryption oracle is called at t∗, the proof is relatively easy.
We embed the instance ga1 to vi,t and gb1 to the response of the random oracle H5 respectively. At time t∗,
A outputs (σt∗ , Xt∗). From the verification equation, (σt∗ , Xt∗) must satisfy σt∗ = H5(t

∗)
∑n

i=1 vi,thXt∗ .
Since H5(t

∗)
∑n

i=1 vi,t contains gab1 , we can solve the CDH problem. Remark that this proof strategy
requires O(tmax) reduction loss from the advantage of the CDH problem. However, we can achieve a
tight reduction (i.e., O(1) reduction loss) from the advantage of the mCDH problem (see below).

For the proof of Type II forgery, our proof strategy is explained as follows. Again, (σt∗ , Xt∗) must
satisfy σt∗ = H5(t

∗)
∑n

i=1 vi,thXt∗ . Though Z = e(h, g2) is published, h itself is not published (contained
in ski). Thus, we set h = gab1 and simulate the encryption oracle by using the Boneh-Boyen technique.
We embed 1/a to xi,t such that xi,t := x′i,t/a for x′i,t ∈ Zp. This setting helps us to compute hxi,t =

(gab1 )x
′
i,t/a = (gb1)

x′
i,t without knowing h = gab1 . Remark that ciphertexts {ci,t} must be decryptable by

the adversary, i.e., the discrete logarithm logg1 Vt must be sufficiently small. If all xi,t are related to
1/a as above, then logg1 Vt∗ = (

∑n
i=1 x

′
i,t)/a is not computable. Thus, for relatively small X ′

t, we set

xi,t := x′i,t/a for i ∈ [1, n − 1] and set xn,t := X ′
t −

∑n−1
i=1 x′i,t/a. Then,

∑n
i=1 xi,t = X ′

t holds and
logg1 Vt = X ′

t is computable by the adversary as in the scheme. For simulation, we need to decide each
X ′

t in the setup phase, and embed it to vn,t for utilizing the Boneh-Boyen technique. This is the reason
why our scheme is weak aggregator unforgeable (xi,t is chosen by the oracle), and the size of verification
keys linearly depend on tmax. Remark that we can achieve a tight reduction (i.e., O(1) reduction loss)
from the advantage of the mCDH problem, and this proof also works well for Type I forgery (simply we
assume that the encryption oracle at t∗ is not sent from A, choose X ′

t∗ randomly, and Xt∗ ̸= X ′
t∗ holds

with overwhelming probability 1− 1/p).

Proof:

Type I Forgery : Let (p, e, g1, g2,G1,G2,GT , (g
a
1 , g

b
1, g

a
2)) be an instance of the CDH problem. We

construct an algorithm B that computes gab1 by using an adversary A that breaks weak aggregator
unforgeability of our scheme as follows. B sets param = (p, e, g1, g2,G1,G2,GT ), chooses γ, si,

ti, and skA as usual, chooses v′i,t
$← Zp for i ∈ [1, n] such that

∑n
i=1 v

′
i,t ̸= 0, and chooses t ∈

[1, tmax], and implicitly sets vi,t := v′i,ta. B computes vkt = (ga2)
∑n

i=1 v
′
i,t . B sends (params, skA, vk =

{vkt}t∈[1,tmax]) to A.

Moreover, B guesses t∗ (with success probability 1/tmax). For a time t, B chooses t̃
$← Zp and sets

H5(t) as
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H5(t) =

{
gt̃1 (t ̸= t∗)

(gb1)
t̃∗ (t = t∗)

For other hash functions, B just returns a random value. For responding an encryption query (i, t)

where t ̸= t∗, B chooses xi,t and computes ci,t as usual, and computes σi,t = hxi,tH3(t)
siH4(t)

ti(ga1)
v′i,t t̃ =

hxi,tH3(t)
siH4(t)

ti(gt̃1)
av′i,t = hxi,tH3(t)

siH4(t)
tiH5(t)

vi,t . Remark that A does not send an encryp-
tion query at time t∗ in this type.

Finally, at time t∗, A outputs (σt∗ , Xt∗). From the verification equation, (σt∗ , Xt∗) must satisfy
σt∗ = H5(t

∗)
∑n

i=1 vi,thXt∗ . That is,

σt∗h
−Xt∗ = H5(t

∗)
∑n

i=1 vi,t∗ = ((gb1)
t̃∗)a

∑n
i=1 v

′
i,t∗

holds. B solves the CDH problem by computing (σt∗h
−Xt∗ )1/t̃

∗ ∑n
i=1 v

′
i,t∗ = gab1 .

Type II Forgery : Let (p, e, g1, g2,G1,G2,GT , (g
a
1 , g

b
1, g

1/a
1 , ga2)) be an instance of the Modified CDH

problem. We construct an algorithm B that computes gab1 by using an adversary A that breaks
weak aggregator unforgeability of our scheme as follows. B sets param = (p, e, g1, g2,G1,G2,GT ),
chooses γ, si, ti, skA, and vi,t for i = [1, n − 1] and t ∈ [1, tmax] as usual. For t ∈ [1, tmax], B
chooses v′n,t

$← Zp, and also chooses X ′
t

$← Zp such that the size of X ′
t is sufficiently small where

the discrete logarithm problem gXt
1 with respect to basis g1 can be solved. This is the necessary

condition that ciphertexts can be decrypted by the adversary as in the scheme. For t ∈ [1, tmax],

B chooses t̃
$← Zp and sets H5(t) as (gb1)

t̃. B implicitly sets vn,t = v′n,t + (−aX ′
t)/t̃. B computes

vkt = (ga2)
−X′

t/t̃g
v′n,t+

∑n−1
i=1 vi,t

2 . B implicitly sets h = gab1 and computes Z = e(gb1, g
a
2) = e(h, g2). B

sends (params, skA, vk = {vkt}t∈[1,tmax]) to A.

For responding an encryption query (i, t), B computes (ci,t, σi,t) as follows. B chooses x′i,t
$← Zp

for i ∈ [1, n− 1] and implicitly sets xi,t as

xi,t =

{
x′i,t/a (i ∈ [1, n− 1])

X ′
t −

∑n−1
i=1 x′i,t/a (i = n)

and computes

i ∈ [1, n− 1] : ci,t = (g
1/a
1 )x

′
i,tH1(t)

siH2(t)
ti

= g
x′
i,t/a

1 H1(t)
siH2(t)

ti = g
xi,t

1 H1(t)
siH2(t)

ti

i = n : ci,t = g
X′

t
1 (g

1/a
1 )−

∑n−1
i=1 x′

i,tH1(t)
siH2(t)

ti

= g
X′

t−
∑n−1

i=1 x′
i,t/a

1 H1(t)
siH2(t)

ti

= g
xi,t

1 H1(t)
siH2(t)

ti

and
i ∈ [1, n− 1] : σi,t = (gb1)

x′
i,tH3(t)

siH4(t)
tiH5(t)

vi,t

= (gab1 )x
′
i,t/aH3(t)

siH4(t)
tiH5(t)

vi,t

= hxi,tH3(t)
siH4(t)

tiH5(t)
vi,t

i = n : σi,t = (gb1)
−

∑n−1
i=1 x′

i,t+t̃v′n,tH3(t)
siH4(t)

ti

= (gab1 )X
′
t(gb1)

−
∑n−1

i=1 x′
i,t(g−ab

1 )X
′
t(gb1)

t̃v′n,tH3(t)
siH4(t)

ti

= (gab1 )X
′
t(gab1 )−

∑n−1
i=1 x′

i,t/a(g−ab
1 )X

′
t(gb1)

t̃v′n,tH3(t)
siH4(t)

ti

= (gab1 )X
′
t−

∑n−1
i=1 x′

i,t/aH3(t)
siH4(t)

ti((gb1)
t̃)v

′
n,t+(−aX′

t)/t̃

= hxi,tH3(t)
siH4(t)

tiH5(t)
vi,t

Remark that
∑n

i=1 xi,t = X ′
t and {ci,t}i∈[1,n] can be decrypted by the adversary who has skA.
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Finally, A outputs (t∗, Xt∗ , σt∗) where t∗ ∈ [1, tmax] and Xt∗ ̸= X ′
t∗ . From the verification

equation, (σt∗ , Xt∗) must satisfy σt∗ = H5(t
∗)

∑n
i=1 vi,t∗hXt∗ . Here, σt∗ = H5(t

∗)
∑n

i=1 vi,t∗hXt∗ =

((gb1)
t̃∗)v

′
n,t∗+(−aX′

t∗/t̃
∗)+

∑n−1
i=1 vi,t∗ (gab1 )Xt∗ = (gab1 )Xt∗−X′

t∗ (gb1)
t̃∗(v′

n,t∗+
∑n−1

i=1 vi,t∗ ) holds. B computes

(σt∗/(g
b
1)

t̃∗(v′
n,t∗+

∑n−1
i=1 vi,t∗ ))1/(Xt∗−X′

t∗ ) = gab1

and solves the mCDH problem. □

4.3 The Proposed Scheme 2: Providing Semi-Adaptive Aggregator Unforgeability

In the first scheme, vi,t is chosen in the setup phase. This leads to large-size verification keys, and
is the reason why the first scheme provides weak aggregator unforgeability. As mentioned before, as

another choice, a user i chooses vi,t
$← Zp at time t on the fly (i.e., in the encryption phase), computes

vki,t := g
vi,t
1 , and sends vki,t to the aggregator together with (ci,t, σi,t). Then vkt =

∏n
i=1 vki,t is used

in the VerifySum algorithm. In this case, Xt, chosen by the adversary in the security proof, can be
embedded to vkt on the fly in the encryption oracle. Moreover, one hash function H and vk can be
removed from the public value, and vi can also be removed from ski.

One problem with this strategy is that the Enc algorithm becomes probabilistic. That is, a user
is required to generate a random number vi,t for each time t. This could be problematic if users have
limited computational power. Another problem is that the aggregator (which is an adversary of the
aggregator unforgeability game) could modify vkt, and the VerifySum algorithm is run by a maliciously
generated vkt. Then, no security is guaranteed. One solution is to use a bulletin board [29] which is
publicly readable and every user can write to, but nobody can delete from. The bulletin board can be
considered a public channel with memory. That is, a user i writes vki,t to the bulletin board BB. Remark
that the computation cost of vkt =

∏n
i=1 vki,t is almost similar to that of Vt = H1(t)

s0H2(t)
t0
∏n

i=1 ci,t.
That is, if a data analyzer who runs the VerifySum algorithm computes vkt, then the data analyzer
does not need to delegate the computation of the aggregated sum to the aggregator, and this leads to a
wag-the-dog situation. So, we assume that the aggregator computes vkt, and vki,t written in BB acts as
a deterrent against the aggregator that modifies vkt, since the data analyzer can check anytime whether
vkt provided by the aggregator is computed by {vki,t}ni=1 or not.5 In summary, we slightly modify the
syntax such that the bulletin board BB is added as an input of the Enc algorithm, and the AggrDec
algorithm outputs vkt together with (Xt, σt).

We give the second scheme as follows.

Setup(1λ): Choose (p, e, g1, g2,G1,G2,GT ) where G1, G2 and GT are groups of λ-bit prime order p = M ,
g1 ∈ G1 and g2 ∈ G2 are generators, and e : G1 × G2 → GT is a bilinear map. Let Hi : Z → G1

(i = 1, 2, 3, 4, 5) be hash functions. Choose γ, s1, . . . , sn, t1, . . . , tn
$← Zp, set s0 = −

∑n
i=1 si,

t0 = −
∑n

i=1 ti, h = gγ1 , and Z = e(h, g2). Output param = ((p, e, g1, g2,G1,G2,GT ), Z,H1,H2,H3,
H4,H5), skA = (s0, t0), ski = (si, ti, h), and vk = ∅.

Enc(param, t, xi,t, ski,BB): Parse ski = (si, ti, h). Choose vi,t
$← Zp, compute vki,t := g

vi,t
1 , and compute

ci,t = g
xi,t

1 H1(t)
siH2(t)

ti and σi,t = hxi,tH3(t)
siH4(t)

tiH5(t)
vi,t

and output (ci,t, σi,t, vki,t). Moreover, write vki,t to the bulletin board BB.

AggrDec(param, t, {(ci,t, σi,t, vki,t)}ni=1, skA): Parse skA = (s0, t0). Compute

Vt = H1(t)
s0H2(t)

t0

n∏
i=1

ci,t = gXt
1

5Under this assumption, it may be enough to add ciphertexts of the BJL scheme to BB since the data analyzer, who is
also assumed to have skA, can check anytime whether the summation provided by the aggregator is correctly computed or
not by running the AggrDec algorithm by myself. Then, no tag is required for verification. However, in this case, the data
analyzer is required to solve the discrete logarithm problem which is not required in the second scheme. Thus, for reducing
the computational cost of the data analyzer, we choose the current setting but there is room for argument on this point.
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where Xt =
∑n

i=1 xi,t, and solve the discrete logarithm Vt with respect to basis g1. Moreover,
compute

σt = H3(t)
s0H4(t)

t0

n∏
i=1

σi,t and vkt =
n∏

i=1

vki,t

Output (Xt, σt, vkt).

VerifySum(param, t,Xt, σt, vkt): Output 1 if

e(σt, g2)

e(H5(t), vkt)
= ZXt

holds. Otherwise, output 0.

Theorem 4.3 Our scheme 2 is aggregator obliviousness under the DDH assumption on G1 in the ran-
dom oracle model.

This is essentially the same as that of the first scheme. We omit it.

Theorem 4.4 Our scheme 2 is semi-adaptively aggregator unforgeable under the DDH and mCDH as-
sumptions in the random oracle model.

Proof: The simulation is almost similar to that of the first scheme. Remark that ci,t is not a ciphertext
of xi,t in the simulation. We can regard ci,t is a ciphertext of ri,t for some random ri,t ∈ Zp, and cn,t is
a ciphertext of

∑n
i=1 xi,t −

∑n−1
i=1 ri,t. Thus, we need to show that these modifications do not affect the

security. We reduce the indistinguishability to aggregator obliviousness as follows. We define sequential
of games. Let Game0 be the original game, and Game1 be the same as Game0 except that ciphertexts and
tags are computed as above. We define subgames Gamej for j ∈ [1, tmax + 1] where Gametmax := Game1.
Let C be the challenger of aggregator obliviousness that prepares (param, skA, {ski}ni=1), and B be the
simulator. B requests skA to C, and sends (param, skA) to the adversary A. Let {(i, j, xi,j)}ni=1 be

the j-th encryption query. B randomly chooses ri,j
$← Zp for i ∈ [1, n − 1], and sets the challenge

message (U, j := t∗, {(x(0)i,j , x
(1)
i,j )}i∈U) where x

(0)
i,j = xi,j for i ∈ [1, n], x

(1)
i,j = ri,j for i ∈ [1, n − 1],

and x
(1)
n,j =

∑n
i=1 xi,j −

∑n−1
i=1 ri,j . Remark that

∑n
i=1 x

(0)
i,j =

∑n
i=1 x

(1)
i,j holds. If b = 0, then it simulates

Gamej−1, and if b = 1, then it simulates Gamej . Thus, two games are indistinguishable due to aggregator
obliviousness. This modifications require O(tmax) reduction loss, and require O(t2max) reduction loss from
the advantage of the DDH problem.

In Gametmax := Game1, for each encryption query {(in, t, xin,t)}ni=1, choose x′i,t
$← Zp (regardless of

xi,t) and vi,t
$← Zp for i ∈ [1, n− 1], compute

ci,t = (g
1/a
1 )x

′
i,tH1(t)

siH2(t)
ti and σi,t = (gb1)

x′
i,tH3(t)

siH4(t)
tiH5(t)

vi,t

For i = n, choose v′i,t
$← Zp, compute X ′

t =
∑n

i=1 xi,t from queries {(i, t, xi,t)}i∈[1,n], and compute

ci,t = g
X′

t
1 (g

1/a
1 )−

∑n−1
i=1 x′

i,tH1(t)
siH2(t)

ti and σi,t = (gb1)
−

∑n−1
i=1 x′

i,t+t̃v′n,tH3(t)
siH4(t)

ti

Here, H5(t) is set as (g
b
1)

t̃ as in the proof of the first scheme. Return {(ci,t, σi,t, vki,t)}ni=1 to A, and write

vki,t = g
vi,t
2 for i ∈ [1, n− 1] and vki,t = (ga2)

−X′
t/t̃g

v′n,t

2 to BB. We note that {ci,t}i∈[1,n] can be decrypted
by the adversary, and the decryption result is exactly

∑n
i=1 xi,t that the adversary queried.

Finally, A outputs (t∗, Xt∗ , σt∗) where t∗ ∈ [1, tmax] and Xt∗ ̸= X ′
t∗ . From the verification equation,

(σt∗ , Xt∗) must satisfy σt∗ = H5(t
∗)

∑n
i=1 vi,t∗hXt∗ . B computes

(σt∗/(g
b
1)

t̃∗(v′
n,t∗+

∑n−1
i=1 vi,t∗ ))1/(Xt∗−X′

t∗ ) = gab1

and solves the mCDH problem. □
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5 Regarding Message Space

As in the definition of previous works [10, 52, 39], for some fixed integer M , we assume that xi,t ∈ ZM

and aggregator obliviousness requires the condition
∑

i∈St∗ x
(0)
i,t∗ mod M =

∑
i∈St∗ x

(1)
i,t∗ mod M (when

St∗ = U and skA is compromised). Since M = p, xi,t might be a large value even its summation is
required to be sufficiently small. In the definitions of aggregator obliviousness and full/semi-adaptive
aggregator unforgeability, an adversary chooses xi,t, and thus selecting such a large xi,t is acceptable
(since this is just a strategy of the adversary). On the other hand, in the definition of weak aggregator
unforgeability, the encryption oracle randomly chooses xi,t from ZM . If it is desirable to restrict xi,t
to be small, then we can modify the definition of the encryption oracle such that the encryption oracle
randomly chooses xi,t from a small message space. Then, each xi,t is not rounded up when its summation
is computed by modulo p. Remark that this modification requires an additional reduction loss O(tmax).
In the security proof of the weak aggregator unforgeability, a part of mCDH instance a is embedded
into xi,t, and thus xi,t is a random value of Zp. So, as in the security proof of the second scheme,
we need to define sequential of games, and replace ciphertexts and tags of xi,t to those of ri,t ∈ Zp or∑n

i=1 xi,t−
∑n−1

i=1 ri,t. This requires O(tmax) reduction loss, and requires O(t2max) reduction loss from the
advantage of the DDH problem in total.

6 Conclusion and Open Problem

In this paper, we propose two aggregator oblivious encryption schemes with public verifiability from
static and simple assumptions. The first scheme just provides weak aggregator unforgeability, and it
seems still meaningful in the smart meter settings since power consumption is measured by the meter.
Though the scheme requires O(tmax)-size verification keys, and it could be a bottleneck for supporting
long-term period, the scheme still efficiently works for a relatively short-term period. The second scheme
provides semi-adaptive aggregator unforgeability and constant-size verification keys, whereas we need to
additionally assume the existence of public channels with memory, such as bulletin board [29]. Thus,
proposing aggregator oblivious encryption scheme providing full aggregator unforgeability from simple
and static assumptions is still open problem. In our schemes, a value h is shared by all users as their
secret key. The value has a crucial role for providing unforgeability. Obviously, if h is revealed, then
anyone can easily produce a forged tag. That is, our scheme is vulnerable against the corruption attack
where an adversary (modeled as a malicious aggregator) obtains secret keys of corrupted users. So, it
is desirable to provide unforgeability with the collusion resistance. Moreover, as in [10], proposing a
generic construction of aggregator oblivious encryption with public verifiability (containing a Paillier-
type instantiation) also could be an interesting open problem. Since we consider summation as the
aggregation function, constructing (verifiable) aggregator oblivious encryption with rich aggregation
functions from (verifiable) multi-input functional encryption [1, 4, 27, 13] also could be an interesting
open problem.
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[7] G. Barthe, G. Danezis, B. Grégoire, C. Kunz, and S. Z. Béguelin. Verified computational differential
privacy with applications to smart metering. In IEEE Computer Security Foundations Symposium,
pages 287–301, 2013.

[8] A. Beimel, A. Gabizon, Y. Ishai, E. Kushilevitz, S. Meldgaard, and A. Paskin-Cherniavsky. Non-
interactive secure multiparty computation. In CRYPTO, pages 387–404, 2014.

[9] M. Bellare and P. Rogaway. The exact security of digital signatures - how to sign with RSA and
Rabin. In EUROCRYPT, pages 399–416, 1996.

[10] F. Benhamouda, M. Joye, and B. Libert. A new framework for privacy-preserving aggregation of
time-series data. ACM Trans. Inf. Syst. Secur., 18(3):10, 2016.

[11] D. Boneh and X. Boyen. Efficient selective-ID secure identity-based encryption without random
oracles. In EUROCRYPT, pages 223–238, 2004.

[12] X. Boyen. The Uber-assumption family. In Pairing-Based Cryptography, pages 39–56, 2008.

[13] Z. Brakerski, I. Komargodski, and G. Segev. Multi-input functional encryption in the private-key
setting: Stronger security from weaker assumptions. In EUROCRYPT, pages 852–880, 2016.

[14] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security
for key dependent messages. In CRYPTO, pages 505–524, 2011.

[15] T. H. Chan, E. Shi, and D. Song. Privacy-preserving stream aggregation with fault tolerance. In
Financial Cryptography, pages 200–214, 2012.

[16] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and scalable computation of aggregate
statistics. In USENIX NSDI, pages 259–282, 2017.

[17] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient multi-authority
election scheme. In EUROCRYPT, pages 103–118, 1997.

[18] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In EUROCRYPT, pages 45–64, 2002.

[19] Y. Cui, E. Fujisaki, G. Hanaoka, H. Imai, and R. Zhang. Formal security treatments for IBE-to-
signature transformation: Relations among security notions. IEICE Transactions, 92-A(1):53–66,
2009.

[20] G. Danezis, C. Fournet, M. Kohlweiss, and S. Z. Béguelin. Smart meter aggregation via secret-
sharing. In ACM Workshop on Smart Energy Grid Security, pages 75–80, 2013.

16



[21] A. Datta and M. Joye. Cryptanalysis of a privacy-preserving aggregation protocol. IEEE Trans.
Dependable Sec. Comput., 2017, to appear.

[22] K. Emura. Privacy-preserving aggregation of time-series data with public verifiability from simple
assumptions. In ACISP, pages 193–213, 2017.

[23] C. Fan, S. Huang, and Y. Lai. Privacy-enhanced data aggregation scheme against internal attackers
in smart grid. IEEE Trans. Industrial Informatics, 10(1):666–675, 2014.

[24] D. Fiore, R. Gennaro, and V. Pastro. Efficiently verifiable computation on encrypted data. In ACM
CCS, pages 844–855, 2014.

[25] F. D. Garcia and B. Jacobs. Privacy-friendly energy-metering via homomorphic encryption. In
Security and Trust Management, pages 226–238, 2010.

[26] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.

[27] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F. Liu, A. Sahai, E. Shi, and H. Zhou.
Multi-input functional encryption. In EUROCRYPT, pages 578–602, 2014.

[28] M. Green and S. Hohenberger. Practical adaptive oblivious transfer from simple assumptions. In
TCC, pages 347–363, 2011.

[29] M. Hirt and K. Sako. Efficient receipt-free voting based on homomorphic encryption. In EURO-
CRYPT, pages 539–556, 2000.

[30] D. Hofheinz and T. Jager. Verifiable random functions from standard assumptions. In TCC-A,
pages 336–362, 2016.

[31] T. Jager. Verifiable random functions from weaker assumptions. In TCC, pages 121–143, 2015.

[32] M. Jawurek, M. Johns, and F. Kerschbaum. Plug-in privacy for smart metering billing. In Privacy
Enhancing Technologies, pages 192–210, 2011.

[33] M. Jawurek and F. Kerschbaum. Fault-tolerant privacy-preserving statistics. In Privacy Enhancing
Technologies, pages 221–238, 2012.

[34] M. Joye and B. Libert. A scalable scheme for privacy-preserving aggregation of time-series data. In
Financial Cryptography, pages 111–125, 2013.

[35] T. Jung, X. Li, and M. Wan. Collusion-tolerable privacy-preserving sum and product calculation
without secure channel. IEEE Trans. Dependable Sec. Comput., 12(1):45–57, 2015.

[36] E. Kiltz and Y. Vahlis. CCA2 secure IBE: standard model efficiency through authenticated sym-
metric encryption. In CT-RSA, pages 221–238, 2008.

[37] T. Kim and R. Barbulescu. Extended tower number field sieve: A new complexity for the medium
prime case. In CRYPTO, pages 543–571, 2016.

[38] I. Leontiadis, K. Elkhiyaoui, and R. Molva. Private and dynamic time-series data aggregation with
trust relaxation. In CANS, pages 305–320, 2014.
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