
Lelantos: A Blockchain-based Anonymous Physical
Delivery System

Riham AlTawy∗, Muhammad ElSheikh†, Amr M. Youssef†, and Guang Gong∗
∗Electrical and Computer Engineering Department, University of Waterloo, Ontario, Canada.

†Concordia Institute for Information Systems Engineering, Concordia University, Québec, Canada.

Abstract—Real world physical shopping offers customers the
privilege of maintaining their privacy by giving them the option
of using cash, and thus providing no personal information
such as their names and home addresses. On the contrary,
electronic shopping mandates the use of all sorts of personally
identifiable information for both billing and shipping purposes.
Cryptocurrencies such as Bitcoin have created a stimulated
growth in private billing by enabling pseudonymous payments.
However, the anonymous delivery of the purchased physical goods
is still an open research problem.

In this work, we present a blockchain-based physical de-
livery system called Lelantos1 that within a realistic threat
model, offers customer anonymity, fair exchange and merchant-
customer unlinkability. Our system is inspired by the onion
routing techniques which are used to achieve anonymous message
delivery. Additionally, Lelantos relies on the decentralization and
pseudonymity of the blockchain to enable pseudonymity that is
hard to compromise, and the distributed consensus mechanisms
provided by smart contracts to enforce fair irrefutable transac-
tions between distrustful contractual parties.

I. INTRODUCTION

Cryptocurrencies such as Bitcoin enable digital monetary
transactions to be carried out without the presence of a trusted
intermediary [1]. Additionally, transacting parties get to keep
their real entity private by using pseudonyms [2] which are
very hard to link to their actual identities. While the use of
cryptocurrencies is very attractive for individuals who want to
keep their anonymity, this attractive feature soon disappears
when transactions involve physical goods, particularly, because
purchasers are required to provide their address information
for shipping the purchased goods. The issue of anonymous
physical delivery has been an open problem for all the use
cases of cyptocurrencies. Fortunately, the current rich and
broad transactional platform offered by blockchains such as
Ethereum [3] which support the distributed execution of smart
contracts enables us to offer a solution to this problem.

Lelantos is a blockchain-based system that offers the service
of anonymous delivery of physical goods. This system allows
the customer, merchant, and a set of customer chosen delivery
companies to engage in a delivery smart contract [4]. Such
a contract acts as a trusted intermediary to enforce fair
monetary transactions and to enable the contractual parties
to communicate. Lelantos is composed of an onchain part
which is the smart contract on the blockchain, and offchain
components which are user-side applications and a web server.

1Lelantos is the Titan god of the unseen in Greek mythology, and the name
means to move unobserved.

The core functionality of the system is executed in an onchain
smart contract. The web server advertises and certifies all
the delivery companies offering the service, and the user-
side applications are used by different contractual parties to
communicate with the smart contract. Our system also bor-
rows concepts from Crowds [5] and onion routing techniques
[6]. Specifically, in the route of the package delivery, every
delivery company has knowledge of only two other locations
which are the one before it and the one after it. Thus, linking a
specific customer to an individual merchant is very hard unless
all the contractual delivery companies were compromised or
are collaborating with the merchant. Additionally and inspired
by the delivery process in Crowds [5], the customer can
dynamically decide, in real time, to pick the package up from
any location on the chosen route, so none of the delivery
companies knows a priori that its location is the chosen pickup
one.

A. Motivation

While Bitcoin at the first glance may seem to provide e-
commerce anonymity, this anonymity completely vanishes if
delivery of physical goods is required. Regardless of how the
legitimacy of this degree of anonymity might be perceived
by the public [7], [8], protecting one’s personally identifiable
information is essential in many cases. In fact, over the past
two decades, there has been a rise in businesses offering
privacy protection services in the real world. Specifically, one
of the first such businesses that operated in the late 1990s is
a company called iPrivacy LLC [9] whose services included
obfuscation of one’s street address that can only be translated
by the delivery company software when it reaches the local
postal area. Alternatively, and similar to our proposal, this
company offered a service in which the recipient would go
to a local delivery depot to pick the package up herself after
being anonymously verified. Also, there are some patented
protocols [10], [11] aiming to hide the identity of the cus-
tomers from the merchants by utilizing a proxy service that
makes the shipping information available only to the delivery
company. However, these patents do not provide unlinkability
because the delivery company knows both the customer and
the merchant. Currently, there are commercial mail-receiving
agencies such as Private Box in New Zealand [12] which
offers the service of having an actual mailbox that do not
carry one’s home address. Examples of actual businesses that
offer to receive packages, repackage them and then forward

them to addresses that are chosen by customers include Mail
ghost [13] in the UK, and Snail mail [14] and Rapid Remailer
[15] in the U.S. where one can even use their services to send
a package as if it is originating from another address. It has
been reported that Snail mail is used by Jimmy Carter for
communication with other leaders and politicians to avoid the
NSA surveillance programs [16]. Even Amazon provides the
option of depo delivery in some parts of the U.S. via its locker
service, where one may ship Amazon purchases to the locker
address and then go pickup the package using a secret code
after it is delivered. All these services offer a weak level of
anonymity because linking senders to receivers or vice versa
is simply accomplished by compromising the proxy service
[17].

Strong anonymity is desirable for legitimate uses in many
scenarios, some of which are listed below:

- Wrong profiling based on reading habits: It has been
known that security agencies are conducting mass surveil-
lance on the public in terms of their Internet browsing
and telecommunication patterns. One can simply imagine
a scenario where an academic conducting research on
terrorism, war machinery, or any topic beyond the socially
accepted norm, and thus buying specialized kind of
books, to be wrongfully profiled and end up in some sort
of a watch list. Profiling people based on the material
they read has been used since World War I, where
librarians were asked and sometimes volunteered to pro-
vide information about individuals who read communist
material [18]. Currently, under the Patriot Act, the U.S.
government, without a probable cause, can acquire library
records through a secret court order. In fact, last year,
the U.S. government issued a subpoena to Amazon.com
to obtain the identities of customers purchasing books
through the Amazon marketplace [19]. This subpoena
was a step towards an attempt to profile the psychology
of the U.S. citizens by data mining their book purchasing
habits .

- Merchandise that makes an individual a target for bur-
glary: People often worry about letting a stranger into
their houses because then, they will be exposing their
belongings and can possibly make them a valuable target
for theft. The purchase of high value merchandise can
trigger the same effect without the need to physically
step into the house. One might imagine a scenario where
an individual is buying an expensive safe from a com-
promised merchant or using a corrupted shipping agency
to be highly susceptible to burglary which can further
endanger the lives of his/her family.

- Sensitive purchases of important individuals: Top govern-
ment and highly influential individuals, and celebrities are
high value targets for snooping on their personal lives.
The knowledge of some personal vulnerabilities maybe
used for blackmailing or even causing them to lose their
jobs. Consequently, if such an important individual is
buying medications for HIV or any other medical condi-

tion that is crucial to be kept private, regular shipping or
even weak anonymous services are not satisfactory.

Privacy is a fundamental right for all individuals and it is
only them who decide what to share and what to keep secret.
Following the techniques available for anonymizing one’s
electronic communication and transactions, we believe such
techniques should be extended to our physical world, and our
system is a step in that direction.

Our Contribution: In this paper, we propose Lelantos, a
blockchain based anonymity-preserving physical delivery sys-
tem which employs package routing through multiple delivery
companies. Lelantos combines a blockchain smart contract
interface to fairly and anonymously intermediate the delivery
process without the need of a trusted third party, a web service
to advertise and register delivery companies that offer the
requested service, and contractual party-side applications to
monitor the state of the smart contract and interact with it
based on the role of the contractual party. We define the
functionality of our system’s smart contract and offchain
components keeping in mind a lightweight implementation
of the onchain operations to minimize the onchain code
execution and thus gas expenditure [3]. Moreover, we analyze
the security of the basic properties of the systems in terms
of anonymity and unlinkability, fair exchange, and authorized
pickup. As a proof of concept, we have implemented a working
prototype of the Lelantos smart contract and it is available
as an open-source project2. Our anonymous delivery system
is built upon a realistic operational and threat model, and it
offers the following features:

- Fair exchange: The package delivery is moderated by a
decentralized smart contract which ensures fair transfer
of funds to both merchants and delivery companies, and
that the package is delivered to the intended customer.

- Customer anonymity: No private information related to
the customer who is using a pseudonym is revealed to
any of the contractual parties.

- Customer-merchant unlinkability: the scope of package
routing knowledge of any contractual party except the
customer is limited to a maximum of two hops.

II. BACKGROUND

In this section, we give a brief overview on the technologies
used to construct Lelantos.

Blockchain-enabled cryptocurrencies and smart contracts:
Next generation blockchain-enabled cryptocurrencies such as
Ethereum [3] builds on top of Bitcoin’s blockchain technology
a broad alternative platform which not only moderates mon-
etary transactions but also extends to building decentralized
applications. Ethereum implements a blockchain with a built-
in Turing-complete programming language which enables
writing smart contracts which are programs that autonomously
execute the terms of an agreement. Smart contracts were first
proposed in [4] as a way to make legal agreements fair and

2https://github.com/mhgharieb/Lelantos-Smart-Contract

precisely executed. On Ethereum, smart contracts are executed
on the network nodes, also known as miners, and their results
are enforced by a consensus protocol implemented by the
netwrok [20]. These results are used to update the states of
the contracts on the blockchain. Contract states are actual part
of the blocks that are continually appended to the blockchain
and entities can send or receive money and data to a contract.
The open code nature and network consensus on the output of
contracts execution enable smart contracts to build applications
that allow mutually distrustful parties to transact safely without
trusted third parties.

Entities on Ethereum transact using pseudonyms where each
pseudonym is associated with a public key whose correspond-
ing private key is owned by this entity. However, unlike
public key infrastructure (PKI), the link between a specific
public and secret key pair to a real world identity is not
important unless a given entity willingly chooses to advertise
its pseudonym (e.g., entities offering public services). The state
of the Ethereum blockchain is made up of accounts, where
each account has its own address, balance, storage, and code
(if present). Accounts can either be externally owned accounts,
also sometimes known as wallets, or contract accounts. The
state of a wallet is controlled by its owner’s private key which
is used to transfer funds by digitally signing transactions to
another wallet.

A contract account is controlled by its code, although it
is incepted by an externally owned account. Once on the
blockchain, a smart contract behaves autonomously and its
code cannot be modified unless it is wiped by its owner
using the suicide opcode. A contract implements one or more
functions that represent its execution entry points which are
determined by its creator. These functions accept messages
as inputs in the form of function calls. Accordingly, a spe-
cific contract code executes in response to either receiving
a message from another contract or a transaction from an
externally owned account. Also, a contract has the ability
to change the state of the ledger by enforcing monetary
transactions in response to certain messages or transactions.
Both terms “message” and “transaction” are sometimes used
interchangeably, but a message usually refers to transactions
generated by smart contracts, and a transaction refers to that
originating from an externally owned account.

Smart contracts are executed on the Ethereum network
nodes which exert computational power for running its code.
Accordingly, to mitigate DoS attacks where an attacker can
keep calling functions within contracts and thus crippling
the network by aimlessly using its resources, Ethereum en-
forces the purchase of a resource called gas to power the
execution of contracts or mining of transactions. So gas is
considered the price one pays for mining nodes to execute
code on the contract or to verify and commit a transaction
on the blockchain. Every operation requires a fixed amount
of gas units and accordingly transactions include a parameter
“gaslimit” which is set by the sender to specify the maximum
amount of gas units she is willing to spend so that her
transaction and its subsequent computations are verified by

the network nodes. The price of gas unit is determined in the
transaction as well and it is expressed in Ethers (Ethereum’s
cryptocurrency unit). Nevertheless, a transaction goes through
if the initiating account has enough funds to cover the price of
the “gaslimit” and if miners accept the set price in exchange
for their resources.

Onion routing: Onion routing [6] is a technique inspired by
Chaum’s MixNets [21] with the aim of building anonymous
connections within a network of onion routers. In an onion
network, a sender who wants to maintain her anonymity runs
an onion client application to encapsulate her messages in
layers of encryption, similar to the layers of an onion. The
encrypted message is then forwarded to its destination through
a series of network nodes called onion routers, each of which
can only decrypt one layer of encryption thus, revealing the
next destination to which the message is to be forwarded. After
the last layer is decrypted, the message arrives to its intended
recipient. For a given receiver, a message is received from the
last onion router, and as long as the number of hops is greater
or equal to two, the sender is anonymous because each onion
router knows only the address of the immediately preceding
and following nodes. While in onion routing, the nodes on
the path are deterministically chosen, Crowds [5] aims to hide
the identity of the sender by employing a real time randomly
selected path of nodes where the message can be delivered to
the recipient by any node on this path based on a coin flip.
Accordingly, in our system we borrow ideas from both onion
routing and Crowds to enable the real-time dynamic pickup of
the package from any delivery company on a deterministically
selected path.

III. SYSTEM ARCHITECTURE

The main functionality of Lelantos is implemented in an
onchain smart contract Lsc that fairly intermediates the
delivery process between an anonymous customer (C),
a merchant (M), and a set of n delivery companies
(DC1, DC2, · · · , DCn) chosen by the customer. Our system
also runs an offchain web server (Lws) that advertises and
certifies the public keys of the delivery companies and mer-
chants that want to offer anonymous delivery and sale services,
respectively. A delivery company operating under Lelantos is
required to further run a courier side application Appdc the
monitors the state of contract and interacts with it through
messages from its wallet Wdc. A merchant operating under
Lelantos is expected to advertise its wallet account Wm and
run a merchant side application Appm to monitor the state of
Wm, and when prompted with an order from Lsc, Appm also
monitors the state of the smart contract. Finally, a customer
who wants to use Lelantos to anonymize the delivery of the
purchased goods is required to run a customer side application
Appc to communicate with both the merchant and delivery
companies through Lsc, and to direct and monitor the delivery
progress of the package. The general architecture of Lelantos
depicting how the onchain smart contract interacts with the
rest of the system’s components is shown in Figure 1. In
what follows, we give a more detailed description of the

functionality of each component and how they interact with
each other.

Fig. 1. Interaction between the onchain and offchain components of
Lelantos. The dotted arrow denotes an optional interaction. Green
components are trusted by the contractual parties

Lelantos smart contract (Lsc): The onchain part of Lelantos
that mediates the interaction between the contractual parties
which are: a customer C, a merchant M , and a set of chosen
delivery companies DCs. Lsc is designed with multiple func-
tions that enable parties to relay messages to each other and
to allow an anonymous C to monitor and direct the delivery
route. Particularly, a customer first uses Lsc to place an order
and relay the prepared encrypted addresses of the DCs on the
route of her choice to M and other DCs who use them for
package labeling. In other words, the merchant is required to
place the first prepared ciphertext in a barcode readable format
labels on the package so that first DC can read and decrypt
its contents. Similarly, each DC is supposed to prepare a new
lable for the following DC. The customer also includes an
encrypted message for the merchant to privately know where
to drop off the package. Lsc also implements functions to (i)
Update the package tracking information, and (ii) Let the client
decide whether to allow a given delivery company to forward
the message to the next one, or to physically go and pick the
package up. Finally, Lsc is responsible for fairly distributing
the payments among the merchant and delivery companies.
Lelantos web server (Lws): The web server is an offchain part
of Lelantos that advertises registered merchants and delivery
companies. In other words, every merchant and delivery com-
pany offering anonymous delivery under Lelantos is required
to register its locations and a long term public-key to be used
by the customer in the preparation of the cipher layers. In
this sense, one may think of Lws as an entity that vouches
for the advertised merchants and delivery companies to make
sure that they are not frauds. However, Lws has no means to
know which set of delivery companies the customer already
chose and once the cipher layers are prepared, Lws cannot
track a package to a specific destination. The only way that
Lws can monitor packages on a delivery route is if it advertises
made-up delivery companies with public keys which Lws owns
the corresponding private keys, thus, it can decrypt all the
leyered ciphers and know the final destination. We consider
this scenario highly unrealistic because in this case, Lelantos
has also to physically run different shipping locations and
we assume that the advertised delivery companies are well
known reputable ones. Nevertheless, a customer not wanting
to trust Lws, is free to pickup her own trusted merchant and

delivery companies, and still use Lelantos’s smart contract and
applications to mediate the delivery process.
Customer-side application (Appc): This is one of the user-
side offchain applications that can optionally connect anony-
mously (e.g. using Tor [22]) to Lws to select the delivery
companies on the chosen delivery route, and then Appc
generates one encrypted message for each one using the
corresponding public key. Appc also monitors the state of
the smart contract and accordingly, based on the customers
decisions forwards messages to Lsc. Particularly, acting as
Wc, Appc initially creates the contract, places the order, then
monitors the progress of the package delivery through its
tracking information as the package moves from one delivery
company to the other.
Merchant-side application (Appm): This application is run
by a merchant and it monitors the associated wallet account
Wm and delivery contracts that the merchant is engaged in.
Once a merchant’s Wm receives a transaction/message from
Lsc indicating the requested product, Appm forwards the
merchants response to Lsc, and monitors its state to get the
uploaded ciphertext for labeling the package.
Courier-side application (Appdc): This application is run by
every delivery company to act as Wdc and forward messages
containing tracking information to Lsc on the blockchain.
Afterwards, Appdc monitors the state of Lsc to determine if it
is going to forward the package to the next delivery company
or if the package is going to be picked up from its current
location.

IV. OPERATIONAL AND ADVERSARIAL ASSUMPTIONS

The main objective of Lelantos is to mimic the regular
shipping process in the real world while at the same time
providing customer anonymity and fair exchange of funds for
merchants and delivery companies. In our model, we do not
consider external attacks where an individual or a GPS device
can be used to track the package or the use of cameras at
pickup locations which can be utilized to identify customers.
Additionally, we do not consider the case of international
shipping because it involves regulations that are beyond the
scope of this paper. We assume that appropriate packaging
of the goods is applied in order to obfuscate the contents.
Also, we assume that our system has a large number of
users and that delivery companies also offer regular shipping
services, otherwise it is trivial to track packages if delivery
companies are dedicated to this anonymous delivery business.
Accordingly, we can reason about our contractual parties,
system components, and operational environment using the
following assumptions:

- A customer is interested in getting the purchased goods
and maintaining her anonymity. However, due to the use
of unadvertised pseudonyms, there is no actual customer
accountability. Accordingly, a customer might act as
an adversarial entity where she attempts to abort the
protocol amid delivery, thus causing financial loss for
other contractual parties.

- A merchant is keen to keep clients satisfied in order to

grow the business. Also, although the client is anony-
mous, the merchant is not. In fact, merchants are vouched
for by Lelantos where it certifies their registered public
keys. Accordingly they can be rated based on a reputation
system by pseudonyms that have been in contracts with,
thus can lose business with Lelantos in the case of
repeated complaints. Nevertheless, it is reasonable to
assume that a given merchant can be curious to know
the identity of a given client and may collaborate with
the drop off delivery company for information exchange.

- A delivery company is mostly interested in maximizing
its profit and thus shipping the package is its first pri-
ority. Although, we require that delivery companies use
different pseudonyms for different contracts, they remain
identifiable to the customer who deals with them using
their published public keys which are vouched for by
Lelantos. Accordingly, we assume that there is some
degree of accountability. We also assume that delivery
companies do not depend on specific merchants because
in our protocol, they are independently selected by the
customer. Consequently, there is no obvious motivation
for sharing information except for curiosity.

- Lelantos smart contract (Lsc) is publicly exposed on the
blockchain and its code is openly executed on the net-
work, and hence, we assume that it behaves as expected.

- Offchain applications Appc, Appm, Appdc are assumed
to relay authenticated publicly visible transactions/mes-
sages from the wallets of the contractual parties. Ac-
cordingly, we assume that the integrity of messages is
protected by the digital signature of the originating wallet.

- The blockchain is trusted for correctness, availability, and
integrity but not confidentiality as its state is publicly
visible by everyone.

- Network communication attacks are assumed to affect
the timely execution of the system but not the correct-
ness. More specifically, an active adversary may tamper,
drop, or reorder messages from different parties to the
blockchain but cannot forge them.

A. Security Properties

The main aim of Lelantos is the protection of the privacy of
the customer. Such a property is realized by the use of the
blockchain which allows transactions using pseudonyms and
the confusion generated by the multiple layers of encryption
associated with package hops. Our system also guarantees
fairness for other contractual parties when a customer is
behaving in an adversarial manner. Also, the blockchain
model [23] allows an entity to create an unrestricted number
of pseudonyms when interacting with the onchain accounts.
Accordingly, our system leverages all the features provided
by the blockchain model in addition to the logic of our smart
contract to provide the following properties

- Customer anonymity: The identity of a customer who
engages in a delivery smart contract is guaranteed to be
kept private. Moreover, all the information regarding the
shipping route is also kept hidden.

- Fair exchange of services: Merchants and delivery com-
panies are paid when the package is dropped off and
validated by the chosen next destination and the customer
is guaranteed to receive a package if all the employed
delivery companies are paid.

- Protection against customer early protocol aborts: At any
time during the package delivery process, parties who did
their job are guaranteed to get paid even if the customer
decides to abort the protocol.

- Authorized pickup: The package is delivered to the
intended customer and no other entity can successfully
claim it.

In what follows, we give a detailed description of our system,
formal description of the flow of the messages message, and
formal abstraction of the proposed smart contract Lsc.

V. CONVENTIONS AND PROTOCOL DESCRIPTION

We adopt the same notational conventions for writing contracts
as described in [23], specifically, the following notation is used
in our contract.

- A given entity can generate many pseudonyms by gen-
erating many public keys, where each pseudonym is
the result of hashing the corresponding public key. In
the contract description, we denote a given entity by
X , where X is used as its corresponding pseudonym.
The adopted blockchain model [23] provides a wrapper
for smart contracts which handles pseudonym generation
and the message signing for sending transactions so as
to abstract all these details when writing the contract
program.

- Transfer of cryptocurency takes place when operations
involve ledger[X] are invoked, where ledger[X] denotes
the balance of X in the global ledger. Variables that are
preceded with the $ sign denote a monetary value and do
not affect a specific entity’s balance unless an operation
takes place on the ledger.

- Functions defined in the contract execute when they
receive messages of a corresponding type. Generally,
these functions may accept messages from any entity,
but when a function is written as “upon receiving a
message from party X”, it is assumed that X is already
added (known) in the contract. If the entity’s pseudonym
is preceded by the word “some” then this enables the
addition of a new entity to the contract.

- A contract may have a Timer function that is invoked
at the beginning of each round. The blockchain timer
advances in rounds whenever a new block is mined. The
current time is encoded in the variable T .

This adopted blockchain model which is formalized in [23],
does not only offer convenience when writing contract de-
scription but is also backed up by exact and formal definitions
based upon the Universal Composability framework [24]. For
more details on the blockchain and smart contracts formal
modeling, the reader is referred to [23].

A. Lelantos protocol description

From a high level perspective, the Lelantos protocol de-
scription proceeds as follows. First, the customer C picks
the desired product and records its identifier Pid from the
merchant’s online store. Then using her application Appc, the
customer connects anonymously to Lelantos’s web server Lws

and selects the merchant’s identity and a set of n ≥ 2 delivery
companies ordered by a desired sequence of their locations.
Unlike the conventional onion routing, we do not have a
message to protect/hide, so we do not need the encapsulation.
We only want to have the addresses of the chosen n delivery
companies along with other information encrypted in a specific
order. Accordingly, we form a set of ciphertext marked by
their order. More specifically, Appc forms n + 1 ciphertexts
for all the n delivery companies and the merchant using their
registered public keys. Each ciphertext for a delivery company
contains the contract address, a tracking number, and the
address of the next drop-off location masked by a unique
masking value. The ciphertext for the merchant includes the
address of the drop-off delivery company. Next, the client
creates the contract by uploading all the hash commitment
of all tracking numbers, the hash of secret to be verified on
pickup and further sends the merchant a blockchain order
message as an invitation to engage in the created delivery
contract to acquire the first generated ciphertext and prepare
the package label.

After the merchant drops off the package at DC1, each
delivery company starts to sequentially join the contract by
uploading the tracking number and running Appdc to monitor
its state. Now, once a contracts’s state shows that a track-
ing number is uploaded, a user can either upload the next
ciphertext for labeling and masking function so that the current
delivery company can reveal the address where it must ship
the package to, or she may go pick it up by letting the
contract verify her pseudonymous identity through answering
a committed challenge.

Figure 2 depicts our proposed contract for mediating the
delivery protocol. The functions of the offchain applications
(APPc), (APPm), and (APPdc) which monitor the state and
communicate with Lsc as Wc, Wm, and Wdc, respectively are
explained in what follows.

Informally, the Lelantos smart contract is initialized by
defining a hash function and the maximum fee a delivery
company can charge. The contract steps and functions are
described as follows:

- Contract creation: A customer C creates a delivery con-
tract Lsc by invoking the Create function and uploading
a commitment denoted by com, where com = h(secret)
where secret is chosen by C and the customer further up-
loads the hash of all tracking numbers {hi = h(tni)}ni=1

which she has selected for the delivery companies so that
the contract can verify them when a new tracking number
is uploaded. This step is essential to deter anyone from
uploading a random tracking number and invoking the
receive function which triggers the release of funds to

Fig. 2. The pseudocode for the proposed smart contract Lsc

a party that may had not done a drop off yet. Formally,
for each delivery company DCi in the ordered set of

chosen n delivery companies where i = 1, 2, · · · , n,
the customer’s application Appc generates the following
ciphertext: ci = Encpki(tni, Lsc, addnextdc ⊕ maski),
where pki is the long term public key of DCi which
is vouched for by Lelantos, tni is a random tracking
number generated by C, Lsc denotes the address of the
smart contract account, addnextdc denotes the address of
DCi+1 on route, and maski is a the ith random masking
value that conceals the value of addnextdc from DCi

until C decides either to invoke Next to upload maski
or go to DCi where Pickup is invoked by Appdc to
verify C (note that for the last delivery company DCn,
the nextdc value is all zeros).Now that the contract gets
n hashes, the Create function computes the maximum
delivery fee $max del fee = n× $max hop fee. The
amount $max hop fee is set by Lelantos and advertised
on Lws, and thus it is agreed upon by all delivery
companies offering the service. However, according to
the size or weight of the package delivery companies may
charge lesser fees and at the end, the contract returns the
difference to the customer’s balance again.

- Place an order: A customer C invokes the Order func-
tion by sending a message containing the pseudonym of
the merchant M , the requested product identifier pid, the
product price $price which C is willing to pay for the
product, the maximum allowed delay for a customer to
wait for a response from the merchant to accept an order
Tend after which the order is aborted, and the address of
the first delivery company addDC1 where the merchant
should drop off the package at. However, the address
is uploaded to the contract as mc0 which is the result
of encrypting the address probabilistically by the public
key of the merchant pkm so as to keep all the physical
addresses private on the blockchain. C further sends the
first encrypted label c1 so M places it on the package to
be decrypted by DC1. After asserting that funds equal to
$price + $max del fee are transfered from ledger[C]
to the contracts balance to ensure fair payments to the
contractual parties, the contract then sends an order
message to M whose account state is monitored by Appm
and accordingly, M can either ignore the order request
or engage in the contract by accepting the order through
invoking the Accept function.

- Accept an order: A merchant M willing to engage in
Lsc invokes the Accept function by sending a message
indicating the pid. Now M decrypts mc0 to reveal the
address of DC1 and places the cipher label c1 on the
package and drops it off at DC1

- Receive a package: When M or DCi drops off the
package at DC1 or DCi+1, respectively, the respective
ci label is decrypted and the current DCi uploads tni to
the provided address Lsc. Now the contract verifies the
uploaded tni against the one committed by C and only
upon successful verification, Lsc transfers the owed fees
to the balance of the entity which executed the drop off.
In the meantime, Appdc keeps monitoring the state of

Lsc waiting for either maski to unmask the address of
DCi+1 and the next label ci+1 so it can ship the package
or the customer physically going to its location where she
provides secret to invoke the function Pickup which
verifies her identity for pickup.

- Forward the package: A customer C invokes the function
Next when she wants the package to be forwarded to the
next delivery company in the sequence. Next is invoked
by a message from Appm which using Wm, sends a
message to Lsc containing maski and ci+1 so that DCi

labels and ships the package to DCi+1.
- Picking up the package: The function Pickup is invoked

by a given delivery company to verify a customer who
claims that she is the owner of a given package. The
customer provides secret which is uploaded by Appdc
to Lsc through the message to the function Pickup.
This function then verifies secret against the commitment
that was used during creation of the contract to verify
the customer. A delivery company only dispenses the
package to a customer when the state of Lsc changes
to verified.

Figure 3 shows how the currency flows between the wal-
lets of the contractual parties. In all the depicted currency
transactions, we assume that gas fees are accounted for in
the requested product price and delivery fees, and thus we
omit the need to deal with them separately. However, all the
code in the smart contract is executed by every miner in
the network and hence to minimize the gas expenditure, we
adopt a lightweight onchain code and delegate all the heavy
execution involved with public key encryption to the offchain
applications. Our protocol runs a web server where merchants

Fig. 3. Currency flow between the wallets of the contractual parties.

and delivery companies are registered and are required to
engage in the smart contract with customers to mediate all
the purchase and delivery processes. One can also think of an
alternative procedure where customers create only purchase
contracts with merchants and let the delivery companies handle
package tracking and forwarding on their own websites (e.g.
UPS and DHL). However, smart contracts lack network access
outside of the blockchain so it cannot get tracking updates
and thus the protocol will not work. A solution for this is
the use of an authenticated data feed such as the recently
proposed Town Crier [25] which uses Intel’s SGX extensions
[26] to relay authenticated https traffic to contracts in the
blockchain via an onchain contract interface. Nevertheless, in

our protocol and for a given customer, the tracking numbers
are already authenticated because they are transfered to the
delivery companies encrypted with their public keys in a
challenge response manner. Hence, if a tracking number is
successfully uploaded to the contract, then it means that
the intended delivery company received the package, if it is
tampered with, it will simply get rejected by the contract
because it will fail being verified against its committed value.
Figure 4 depicts a general overview of the protocol flow. Note
that Figure 4 shows messages that invoke respective functions
in the contract after it has been created.

Fig. 4. An illustration of the Lelantos protocol steps. Messages and
physical actions are numbered by the order in which they take place.
Solid arrows denote onchain communications and dotted arrows
denote physical actions such as drop off and pickup.

VI. SECURITY ANALYSIS

In this section, given our operation and adversarial assump-
tions, we reason about our security claims for the properties
provided by Lelantos. Note that we do not intend to give
formal proofs for such properties, mainly because our system
relies heavily on the physical world and modeling the physical
world is outside of the scope of this work.

Anonymity claim: Intuitively, and given our threat model, in
our protocol, anonymity means that an adversary including a
corrupt merchant or delivery company cannot infer the real
identity of the customer from monitoring the state of the
contract. Assuming that a customer uses a different pseudonym
for different deliveries and her transactions goes through
multiple mixes [8] before cashing the funds, Lelantos provides
anonymity. Formally, given a global passive adversary and
the set of all blockchain pseudonyms Ψ, if the customer real
identity u uses C ∈ Ψ as a pseudonym for sending or receiving
a message m, then we claim that U(C,m)(u) ≈ 1/|Ψ|, where
U(C,m)(u) denotes the attacker’s a posteriori probability of
C ∈ Ψ having the identity u with respect to message m.
Proof (sketch): According to the above claim, an a posteriori
knowledge may be acquired by an adversary that is monitoring
a specific actual identity using either a pre-known pseudonym

or a pseudonym that is being associated with frequent change-
transactions to a known pseudonym, or a customer who is
known to pick a specific delivery route each time. Particularly,
we refer to accounts that are advertised or used to deal with
other real life entities that enforce the Know Your Client
principal [8] as known pseudonyms and change-transactions
are transactions that are used to send the change remaining
from an actual transaction to another account associated with
the sender. Subsequently, we argue that if the customer follows
the operation assumption defined in the claim, then such a
posteriori knowledge is infeasible to acquire. Also, delivery
companies are required to generate different pseudonyms for
new contracts. Accordingly, even if a given delivery company
has a long term public key that identifies it on Lelantos’s web
server, its temporary blockchain entity cannot be linked to this
public key except by the customer and the two delivery com-
panies preceding and following it on the route. Subsequently,
even if a specific real life identity is known to use the same
delivery companies on a given route, such a route is freshly
pseudonymized with each new contract.

Customer-merchant unlinkability claim: In our protocol,
we informally describe unlinkability [17] as the inability of
an adversary to trace a given customer back to the merchant
or the other way around either by passively observing the state
of the contract or by being a collaborating proper subset of
the chosen set of delivery companies. More specifically, given
the customer chosen set of n delivery companies, from the
perspective of an adversary including at most (n− 1) corrupt
delivery companies, the customer and merchant involved in
the smart contract are no more or less related after observing
the contract states than they are related given the regular a
priori knowledge.
Proof (sketch): For an observing adversary, Lelantos lets the
customer select the route where the package to be shipped
through a set N of n delivery companies of her choice. For
each delivery company, the customer prepares an encrypted
message containing a tracking number of her choice and the
address of the next delivery company masked by a number of
her choice too. All the ciphertexts are sent encrypted to the
contract, and tracking and masking numbers are meaningful
only to the customer. Accordingly, all the information related
to the package route, addresses of all delivery companies are
confidential except for the customer and each pair of consecu-
tive delivery companies. Therefore, if the set K of all delivery
companies registered at Lelantos has k members, then an
observer has a success probability of 1/

(
k
n

)
to link a merchant

to a specific customer. For a set S of s corrupted collaborating
delivery companies, the proof can be inferred from onion
routing techniques where unlinkability is compromised when
all the onion routers in the selected path are compromised. In
our case, unlinkability is compromised iff the customer chose
N ⊆ S companies from the set K for her route. Assuming
that s<<k because delivery companies are vouched for by
Lelantos, the probability of getting a full compromised route
≈ (s/k)n. Accordingly, we can reason that getting a full
compromised route has negligible probability.

Fair exchange of services claim: In our protocol, we
define fair exchange [27] as the guarantee of getting paid the
expected fee when the job is done correctly. We should note
that fair exchange does not imply commission fairness [7]. In
other words, our protocol guarantees that if all the delivery
companies operate correctly, the customer receives a package
for what she paid for. However, it does not guarantee that the
contents of the package is what she is expecting. We reason
about this using our realistic operational assumptions that both
sets of merchants and delivery companies are not anonymous
and that their best interest is to maximize their profit through
maintaining their customers satisfied. We claim that Lelantos
smart contract (Lsc) ensures fair exchange of services where
given an adversarial customer, the merchant and the n chosen
delivery companies are guaranteed to get paid what they ask
for when a successful drop off is executed. Also, a customer is
guaranteed to receive her package if all the delivery companies
are paid
Proof (sketch): When a merchant accepts an order, the contract
withdraws funds equal to $price + $max del fee, where
$price denotes the price of the product as accepted by the
merchant and $max del fee is the max delivery fee a given
delivery company can charge multiplied by n. Indeed, upfront,
the fees for the selected route are guaranteed and are out of the
customers balance in the global ledger. Now, both the merchant
and delivery companies get paid only when they successfully
drop off the package at the following delivery company which
decrypts its corresponding ciphertext and sends the tracking
information to the smart contract. We assume that given that
both the merchant and delivery companies are publicly known
and registered in Lelantos’s system, then they can exchange
physical receipts between each drop-off, so if a delivery
company did not upload its tracking info, the preceding entity
can hold it accountable because of payment loss.

Authorized pickup claim: Our protocol ensures that the
package is delivered to the customer C who invokes the
Create function in the smart contract or someone that is
delegated by C.
Proof (sketch): When a customer first creates the contract, she
commits to a secret that only she should know. This commit-
ment is provided in the form of a 256-bit hash of secret using
SHA-3. At the pickup delivery company, the customer is asked
to provide secret which is uploaded to the contract and hashed
for verification against the stored commitment. Accordingly,
for an adversary who only knows the commitment to correctly
claim and pickup the package, it has to successfully launch
a preimage attack on SHA-3 which is completely infeasible.
Formally, the adversary must find secret or x ̸= secret such
that h(x) = h(secret) = commitment, and the success
probability of this preimage attack is = 2−256.

VII. IMPLEMENTATION

As a proof of concept, we have implemented a working
prototype of Lelantos smart contract which is available as an
open source project3. The smart contract is implemented in

3https://github.com/mhgharieb/Lelantos-Smart-Contract

92 lines of Solidity. The full contract code is available in
Appendix A. Note that because Ethereum does not support
timer activated functions, we have implemented Timer as a
withdraw function that is triggered by an explicit withdrawal
request from the customer. Using this implementation, the gas
cost estimates for deploying/running the Lelatos smart contract
are provided using Remix Solidity IDE in Table I. These
estimates are evaluated based on the following parameter byte
sizes: tni = 4bytes, next label = 96 bytes, maski = 64 bytes,
and secret = 16 bytes. As of May 2017, 1 unit of gas =
18× 10−9 ether, and 1 ether = 86.24 USD.

TABLE I
ESTIMATES FOR GAS COST IN USD ASSOCIATED WITH DEPLOYING AND

RUNNING DIFFERENT FUNCTIONS OF THE LELANTOS CONTRACT‘ .

Function Gas units Gas cost (USD)
Deployment 1200583 1.86
Create 202808 0.31
Order 210102 0.33
Accept 68952 0.12
Receive 47138 0.07
Next 129350 0.20
PickUp 18617 0.02
Withdraw 10921 0.02

VIII. RELATED WORK

The idea of untraceable payments using cryptography was
first introduced by Chaum [17] where digital blind signature
schemes were used to achieve the desired level of anonymity.
In early 2009, Bitcoin was proposed by Satoshi Nakamoto (a
pseudonym used by the inventor(s) of Bitcoin) and presented
the blockchain technology which offered a practical model for
anonymous monetary transactions using public key and hash-
ing primitives [1]. While initially gaining popularity among
tech-savvies, Bitcoin technologies soon caught up the inter-
est of academic researchers who were motivated to analyze
various features of the blockchain. Specifically, investigating
the blockchain anonymity emerged as an interesting area
for research, where published works were either trying to
undermine it or offer solutions to strengthen it. The work
on the analysis of the Bitcoin blockchain anonymity includes
the results presented by Ron and Shamir [29] where they
analyzed the whole Bitcoin blockchain graph in an effort to
group transactions which share certain patterns and assign
them to specific entities. Ron and Shamir also showed that
the FBI could not identify all the Bitcoins of Ross Ulbricht
(the operator of the drug selling site Silk Road) [30]. Another
work that confirmed the difficulty of de-anonymizing multiple
mix transactions on the blockchain is presented in [8].

Our work leverages the pseudonymity and fair monetary
exchange features offered by the blockchain [27] to present a
system for the anonymous purchase and delivery of physical
goods. In particular, we were inspired by two previous propos-
als that deal with the anonymous delivery of physical goods.
The first proposal is presented by Androulaki and Bellovin
[31], where they proposed a system that employs onion routing
and blind group signatures to build a chain of blind tickets

that the customer initially gets form the merchant to use with
the delivery company and then the system’s central authority.
This proposal differs from ours in that they employ a central
authority where the chosen hops at the route are known by
the central authority. However, the order in which they will
be used or if all of them will be included in the route or not
is not revealed to the central authority. Another difference is
that the system in [31] does not ensure fair exchange for the
delivery companies. In other words, even though the customer
commits the total delivery fee upfront, payment distribution of
these fees on the employed delivery companies is controlled
by the customer. Whereas in our system, delivery fee payments
are controlled by the smart contract which guarantees that each
delivery company is fairly paid what it asked for. Furthermore,
unlike our system, the pickup location is determined before
the package is shipped from the merchant so the last delivery
company always knows that the customer is picking up the
package from its location. Also, the system in [31] offers
tracking capabilities to the merchant as well as the customer
which is accomplished by the presence of the central authority
and the chain of trust due to the group signature scheme.
The second system is proposed by Aı̈meur et al. [32] where
they propose an anonymous delivery system based on Chaum’s
MixNets [21]. Their system assumes that the package passes
between a fixed ordered set of delivery companies on what
they call a horizontal rotary surface. Each package on this
rotary is examined by each delivery company it passes by,
and according to the encapsulated layers of encryption, only
those companies with the right public key are able to peel
one encryption layer until the package reaches the pickup
delivery company which removes it from the revolving rotary
until the customer arrives for delivery. Similar to our proposal,
the system’s central authority does not know which delivery
companies are chosen by the customer. However, the last
delivery company always knows that it is the pickup point.
Other than the presence of a central authority that manages
the delivery process, the most important difference between
Lelantos and both of the proposals in [31], [32] is that they
do not deal with the anonymous payment, they only assume an
anonymous payment of funds that cover the price of goods and
the maximum delivery fee is made to the merchant who can
be charged by the delivery central authority afterwards. On the
other hand, our blockchain-based solution using smart contract
integrates the whole anonymous purchase and delivery process
in a decentralized, correct and always available environment
and also, guarantees fair exchange.

IX. CONCLUSION

In this paper, we have proposed a blockchain-based system for
the delivery of physical good. Our system employs techniques
from Crowds and onion routing and further, leverages the
decentralization, correctness, availability, and pseudonymity
features of the smart contract enabled blockchain technology
to offer anonymity, customer-merchant unlinkability, and fair
exchange. Our system is composed of an onchain contract, a
web server, and a set of offchain applications. In our proposal,

we report the description of a smart contract that mediates the
process of anonymously purchasing and delivering physical
goods between a customer, a merchant, and a set of delivery
companies. Moreover, we define the security properties of
the system and reason about their proofs. We have also,
implemented the Lelantos smart contract as an open source
prototype and reported the estimated gas costs for its different
functions. As compared to existing proposals, our protocol
eliminates the need of a trusted third party and thus grants
service availability, integrates the whole purchase and delivery
process in one trusted smart contract which ensures fair
exchange between contractual parties, and finally the offered
anonymity is piggybacked from both the blockchain and onion
routing protocols.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer to peer electronic cash system,” 2008,
https://bitcoin.org/bitcoin.pdf.

[2] A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf, “Pseudonym
systems,” in International Workshop on Selected Areas in Cryptography.
Springer, 1999, pp. 184–199.

[3] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” 2014, http://gavwood.com/paper.pdf.

[4] N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, 1997.

[5] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transac-
tions,” ACM Trans. Inf. Syst. Secur., vol. 1, no. 1, pp. 66–92, 1998.

[6] D. Goldschlag, M. Reed, and P. Syverson, “Onion routing,” Communi-
cations of the ACM, vol. 42, no. 2, pp. 39–41, 1999.

[7] A. Juels, A. Kosba, and E. Shi, “The ring of Gyges: Investigating the
future of criminal smart contracts,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’16. ACM, 2016, pp. 283–295.

[8] M. Möser, R. Böhme, and D. Breuker, “An inquiry into money laun-
dering tools in the Bitcoin ecosystem,” in APWG eCrime Researchers
Summit, 2013, pp. 1–14.

[9] B. Rosenberg, Handbook of financial cryptography and security, 1st ed.
CRC Press, 2011.

[10] S. Stolfo, J. Smith, and J. Chung, “Method and system for private
shipping to anonymous users of a computer network,” 2001, uS Patent
App. 09/754,897.

[11] R. Johnson, “eDropship: Methods and systems for anonymous ecom-
merce shipment,” 2011, uS Patent App. 12/910,952.

[12] Privatebox, “Manage your PO box online and mail forwarding,” https:
//www.privatebox.co.nz/.

[13] Mail ghost, “Anonymous mail forwarding,” http://mail-ghost.com/.
[14] Snail mail, “Anonymous snail mail - real world anonymity,” http://www.

ultimate-anonymity.com/snail-mail.htm.
[15] Rapid remailer, “Anonymous letter and package remailing service,” http:

//rapidremailer.com/.
[16] Reuters, “Jimmy Carter sticks to ’snail mail’ in missives to

world leaders,” http://www.reuters.com/article/us-usa-security-carter-
idUSBREA2M0QI20140323.

[17] D. Chaum, “Security without identification: Transaction systems to make
big brother obsolete,” Communications of the ACM, vol. 28, no. 10, pp.
1030–1044, 1985.

[18] P. Zwerling, The CIA on campus: Essays on Academic Freedom and the
National Security State, 1st ed. McFarland & Company, 2011.

[19] Biggovernmentnews, “Big brother U.S. government subpoenaed
Amazon.com to obtain book purchasing records of customers,”
2015, http://www.biggovernment.news/2015-12-03-big-brother-u-s-
government-subpoenaed-amazon-com-to-obtain-book-purchasing-
records-of-customers.html.

[20] A. Miller and J. J. LaViola Jr, “Anonymous Byzantine consensus from
moderately-hard puzzles: A model for Bitcoin,” http://nakamotoinstitute.
org/research/anonymous-byzantine-consensus, 2014.

[21] D. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Communications of the ACM, vol. 24, no. 2, pp. 84–90,
1981.

[22] The Tor Project, Inc., “Tor project: Anonymity online,”
torproject.org https://www.torproject.org/F. [Online]. Available:
https://www.torproject.org/

[23] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in 2016 IEEE Symposium on Security and Privacy, 2016,
pp. 839–858.

[24] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings of the 42nd IEEE Symposium
on Foundations of Computer Science. IEEE, 2001, pp. 136–145.

[25] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town Crier:
An authenticated data feed for smart contracts.”

[26] “Intel R⃝ Software Guard Extensions,” 2017, Software.intel.com.
[Online]. Available: https://software.intel.com/en-us/sgx

[27] I. Bentov and R. Kumaresan, “How to use Bitcoin to design fair
protocols,” in International Cryptology Conference. Springer, 2014,
pp. 421–439.

[28] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: ACM, 2016, pp. 254–269. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978309

[29] D. Ron and A. Shamir, “Quantitative analysis of the full Bitcoin trans-
action graph,” in International Conference on Financial Cryptography
and Data Security. Springer, 2013, pp. 6–24.

[30] ——, “How did Dread Pirate Roberts acquire and protect his Bitcoin
wealth?” in Financial Cryptography and Data Security. Springer, 2014,
pp. 3–15.

[31] E. Androulaki and S. Bellovin, “APOD: Anonymous Physical Object
Delivery,” in International Symposium on Privacy Enhancing Technolo-
gies Symposium. Springer, 2009, pp. 202–215.

[32] E. Aı̈meur, G. Brassard, and F. S. M. Onana, “Secure anonymous
physical delivery,” IADIS Int. J. WWW/Internet, vol. 4, no. 1, pp. 55–69,
2006.

APPENDIX

pragma solidity ˆ0.4.0;
contract Lelatos {

//State Machine
enum States {Init, Created, Ordered, Accepted,

Received, Next, Verified}

//Variables
States public state;
uint public maxHopFee;
address customer;
address merchant;
uint public pID;
uint public price;
bytes public nextLabel;
bytes32[] trackingComm;
bytes32 public commitment;
uint expirationTime;
uint maxDelFee;
uint8 index;
address currentHop;
uint currentHopFee;
bytes public mask;

//Checks as Modifiers
modifier checkState(States _state) {
if (state != _state) throw;
_;
}

modifier CheckCustomer() {
if (customer != msg.sender) throw;
_;
}

modifier CheckMerchant() {
if (merchant != msg.sender) throw;

_;
}

//Events
event NewOrder(address merchant, uint pID, uint

price, bytes label0, bytes nextLabel);
event NewAccept(address merchant, uint pID);
event NewReceiver(address currentHop);
event NextHop(bytes mask, bytes nextLabel);
event Pickup(States state);

function Lelatos(uint _maxHopFee) {
maxHopFee = _maxHopFee;
state = States.Init;
index = 0;
}

function create(bytes32 _commitment, bytes32[]
_trackingComm) checkState(States.Init) {

customer = msg.sender;
state = States.Created;
commitment = _commitment;
uint nHop = _trackingComm.length;
for (uint i; i < nHop; i++)

trackingComm.push(_trackingComm[i]);
maxDelFee = nHop * maxHopFee;
}

function order(address _merchant, uint _pID, uint
_price, bytes label0, bytes _nextLabel, uint
validityTime) payable CheckCustomer
checkState(States.Created) {

if (_price + maxDelFee > msg.value) throw;
merchant = _merchant;
pID = _pID;
price = _price;
nextLabel = _nextLabel;
expirationTime = now + validityTime;
state = States.Ordered;
NewOrder(merchant, pID, price, label0, nextLabel);
}

function accept(uint _pID) CheckMerchant
checkState(States.Ordered) {

if (pID != _pID) throw;
currentHop = merchant;
currentHopFee = price;
state = States.Accepted;
NewAccept(merchant, pID);
}

function receive(bytes trackingNum, uint _fee) {
if (state != States.Accepted && state !=

States.Next) throw;
if (trackingComm[index] != sha3(trackingNum)) throw;
if (_fee > maxHopFee) throw;
if (!currentHop.send(currentHopFee)) throw;
currentHop = msg.sender;
currentHopFee = _fee;
state = States.Received;
NewReceiver(currentHop);
}

function next(bytes _mask, bytes _nextLabel)
CheckCustomer checkState(States.Received) {

index++;
mask = _mask;
nextLabel = _nextLabel;
state = States.Next;
NextHop(mask, nextLabel);
}

function pickup(bytes secret)
checkState(States.Received) {

if (currentHop != msg.sender) throw;
if (commitment != sha3(secret)) throw;
if (!currentHop.send(currentHopFee)) throw;
state = States.Verified;
Pickup(state);
selfdestruct(customer);
}

function withdraw() CheckCustomer
checkState(States.Ordered) {

if (now < expirationTime) throw;
selfdestruct(customer);
}
}

