
Efficient Compilers for After-the-Fact Leakage:
from CPA to CCA-2 secure PKE to AKE

Suvradip Chakraborty1, Goutam Paul2 and C. Pandu Rangan1

1 Department of Computer Science and Engineering,
Indian Institute of Technology Madras, India
{suvradip1111, prangan55}@gmail.com

2 Cryptology and Security Research Unit (CSRU),
R. C. Bose Centre for Cryptology and Security,

Indian Statistical Institute, Kolkata, India
goutam.paul@isical.ac.in

Abstract. The goal of leakage-resilient cryptography is to construct cryptographic
algorithms that are secure even if the adversary obtains side-channel information
from the real world implementation of these algorithms. Most of the prior works
on leakage-resilient cryptography consider leakage models where the adversary has
access to the leakage oracle before the challenge-ciphertext is generated (before-
the-fact leakage). In this model, there are generic compilers that transform any
leakage-resilient CPA-secure public key encryption (PKE) scheme to its CCA-2
variant using Naor-Yung type of transformations. In this work, we give an efficient
generic compiler for transforming a leakage-resilient CPA-secure PKE to leakage-
resilient CCA-2 secure PKE in presence of after-the-fact split-state (bounded)
memory leakage model, where the adversary has access to the leakage oracle even
after the challenge phase. The salient feature of our transformation is that the
leakage rate (defined as the ratio of the amount of leakage to the size of secret key)
of the transformed after-the-fact CCA-2 secure PKE is same as the leakage rate of
the underlying after-the-fact CPA-secure PKE, which is 1− o(1).

We then present another generic compiler for transforming an after-the-fact
leakage-resilient CCA-2 secure PKE to a leakage-resilient authenticated key ex-
change (AKE) protocol in the bounded after-the-fact leakage-resilient eCK (BAFL-
eCK) model proposed by Alawatugoda et al. (ASIACCS’14). To the best of our
knowledge, this gives the first compiler that transform any leakage-resilient CCA-2
secure PKE to an AKE protocol in the leakage variant of the eCK model.

1 Introduction and Related Works

Most of the real-world attacks on a cryptosystem target the physical implementation
of the device in which it is implemented. Such “physical attacks” are usually based on
the side-channel information about the internals of the cryptographic device, which the
adversary may get via myriads of side-channel attacks like timing measurements, power
analysis, fault injection attacks, electromagnetic measurements, microwave attacks, mem-
ory attacks and many more [KJJ99,Koc96,HSH+09]. Leakage-resilient cryptography was
introduced to deal with this problem from a theoretical standpoint. It guarantees the
security of the cryptosystems even in the face of side-channel attacks and analyzes the ef-
fectiveness of side-channel countermeasures in a mathematically rigorous way. The broad
idea is that in addition to the usual interfaces with which the adversary can interact with
the cryptographic primitive, he/she can choose arbitrary leakage functions (subject to
some technical constraints) and get back the result of applying these functions on the
secret state of the system.

Based on the restrictions on the leakage functions, various leakage models have evolved
in the literature over the past decade. In their pioneering work named “physically observ-
able cryptography”, Micali and Reyzin [MR04] put up a comprehensive framework to

model side-channel attacks called only computation leaks information (OCLI). Their ax-
iom relies on the assumption that leakage happens as a result of computation and there
is no leakage in the absence of computation. Inspired by the “cold-boot attack” Hal-
derman [HSH+09], Akavia and Goldwasser [AGV09] formalized the notion of “bounded
memory leakage” model. This model removes the restriction that leakage only happens
from computation. Instead it allows the adversary to learn any arbitrary information
about the secret state of the system stored in memory, with the only restriction that the
amount of leakage is bounded. A generalization of the above model called the continuous
leakage model was proposed by Dodis et.al [DHLAW10a] and Brakerski et al. [BKKV].
This model places no bound on the overall size of the leakage. The secret key of the cryp-
tosystem is refreshed periodically (erasing the old one) keeping the public key same, and
the adversary can obtain bounded leakage in between any two successive key refreshes.

After-The-FactLeakage. Most of the prior formulations of leakage-resilientPKE[AGV09,
NS09, BKKV, QL13, QL14] considered leakage before the challenge ciphertext is made
available to the adversary. So, even if one bit of the secret key leaks in the post-challenge
phase, the security of the previously encrypted messages may not be guaranteed. This
severely restricts the meaning and applicability of this security notion and also the re-
sulting constructions. However, this seems to be a necessary restriction, as otherwise an
adversary may design a leakage function by simply encoding the decryption function along
with the challenge ciphertext and the two messages (submitted in the challenge phase)
to leak exactly the bit that we are trying to hide using encryption.

Halevi and Lin [HL11] proposed the first meaningful security notion of after-the-fact
leakage(AFL) in the context of PKE schemes. Since achieving security against after-the-
fact leakage in its full generality is impossible, they considered the split-state leakage
restriction, where it is assumed that the secret key is split into two parts (in general can
be multiple) and each of them is stored in separate memory locations. The adversary can
get leakages from each of this memory locations, but independently of each other. Then
they showed how to construct an AFL-CPA-secure PKE scheme under their new security
model. The leakage rate (defined as the ratio of the leakage tolerated by the scheme to
the size of the secret key) of their construction approached 1 − o(1) under appropriate
choice of parameters. Later, Dziembowski and Faust [DF11] gave a construction of a
AFL-CCA-2 secure PKE scheme in the continuous leakage model under the split-state
assumption, with the further restriction that leakage only happens from computation
(OCLI axiom). The leakage rate tolerated by their construction is also far from the optimal
1− o(1) rate obtained by the CPA-secure construction of Halevi and Lin [HL11]. Zhang
et al. [ZCC15] proposed a generic transformation from AFL-CPA-secure PKE scheme
to a AFL-CCA-2-secure PKE scheme. Their transformation preserves the leakage rate
of the AFL-CPA-secure PKE scheme, and hence achieves a leakage rate of 1 − o(1).
However, the main drawback of their transformation is that it is very inefficient since
it uses simulation-sound non-interactive zero-knowledge proof system, which is far from
practical. Fujisaki et al. [FKN+15] constructed a multiple-challenge CCA-secure PKE
that simultaneously tolerates post-challenge secret key and sender-randomness leakage in
the split-state leakage model. However, in their construction that randomness is also split
into two parts, unlike ours, where we consider only the secret key to be spitted, and not
the randomness. Also, the scheme of [FKN+15] cannot support split-state decryption as
defined in [HL11] and also in this work. Hence, the two approaches are incomparable.

Leakage-resilient AKE. Authenticated Key Exchange (AKE) protocols allow two par-
ties to jointly compute a unique shared secret key and also to mutually authenticate each
other with the assurance that the shared key is known only to them. In our work, we
consider the case of 2-party AKE setting. The traditional security models for AKE pro-
tocols [BR94,Sho99,CK01,Kra05,LLM07,MU08,SEVB10,Cre11] do not incorporate the

2

possibility of side-channels and hence the AKE protocols analyzed in these models may
be completely insecure in the face of side-channel attacks.

Alwen et al. [ADW09] gave the first construction of leakage-resilient AKE (LR-AKE)
protocol in the RO model. However, the protocol requires three passes and also does
not capture after-the-fact leakage. Later, Moriyama and Okamoto [MO11] proposed a
two-pass (one round) LR-AKE protocol by extending the eCK model to the setting of
bounded memory leakage introduced in [AGV09]. However, it also does not capture after-
the-fact leakage. In the context of key exchange, after-the-fact leakage was first modeled
by Alawatugoda et al. [ASB14] in both the bounded and continuous leakage setting.
They also gave somewhat generic constructions of LR-AKE protocols in their new models
[ASB14, ASB15]. Unfortunately, both these protocols have been shown insecure in their
respective models in the subsequent works (see [YL16], [Too15]). Recently, Chen et al.
[CMY+16] gave a generic framework for constructing LR-AKE protocols in the presence
of after-the-fact leakage in the bounded memory leakage model (they called their model
challenge-dependent eCK (CLR-eCK) model).

2 Our Contributions

In this work we continue the study of after-the-fact leakage in the context of CCA-2 secure
public key encryption (PKE) schemes and authenticated key exchange (AKE) protocols.
Our contributions are two-fold and described below.

1. As our first contribution, we give a generic compiler from a AFL-CPA-secure PKE
scheme to to a AFL-CCA-2 secure PKE scheme. The salient feature of our compiler is
that it preserves the leakage rate in the CPA to CCA transformation mentioned above.
In other words, the amount of leakage than can be tolerated by our AFL-CCA-2 secure
PKE scheme is the same as the amount of leakage tolerated by the underlying AFL-
CPA secure PKE scheme. Besides, our compiler is also much more efficient than the
compiler proposed in [ZCC15]. So, on one hand our AFL-CCA-2 secure PKE scheme
achieves the optimal leakage rate of 1 − o(1), and on the other hand is much more
efficient than the state-of-the-art AFL-CCA-2 secure PKE constructions.

2. As our second contribution, we propose a generic compiler from AFL-CCA-2 secure
PKE scheme to an after-the-fact leakage-resilient AKE protocol in the BAFL-eCK
security model (which is leakage analogue of the eCK model for AKE protocols)
proposed in [ASB14]. Note that such a compiler from a CCA-2 secure PKE to a eCK-
secure AKE protocol in the standard (non-leakage) model was already proposed by
Alawatugoda [Ala15a]. They left such a transformation in the context of leakage as a
future open problem. Our compiler from AFL-CCA-2 secure PKE scheme to BAFL-
eCK secure AKE protocol can be seen as a leakage-resilient implementation of the
compiler presented in [Ala15a], and hence we solve the above open problem.

We now give the high level ideas for each of these contributions.

2.1 Compiler for after-the-fact leakage-resilient CCA-2 secure PKE
schemes.

As our first contribution, we give a generic compiler from a AFL-CPA-secure PKE scheme
to to a AFL-CCA-2 secure PKE scheme. The main tool used in our transformation is
true-simulation extractable non-interactive zero-knowledge (tSE-NIZK) argument system
[DHLAW10b]. This notion of tSE-NIZK is similar to the notion of simulation extractable
NIZK [Gro06], except that the adversary gets to see proofs of true statements only rather
than proofs of arbitrary statements as in simulation extractable NIZK. In particular, the
adversary can see simulated proofs for true statements in the relation, and in addition
there is an extractor that can extract a witness from any proof (with the help of an
extraction trapdoor) produced by a malicious prover. We show that the CCA-2 secure

3

PKE scheme of Dodis et. al [DHLAW10b] secure against before-the-fact3 leakage is also
secure against after-the-fact leakage under the split-state assumption. The starting point
of our transformation is the AFL-CPA secure PKE scheme of Halevi and Lin [HL11].
Note that the AFL-CPA secure PKE scheme can already handle pre- and post-challenge
leakage queries of the adversary, since it is secure against after-the-fact leakage. So we
need to show that adding decryption queries in the pre- and post-challenge phase does
not provide any extra leakage to the adversary. We first encrypt the message m using the
above AFL-CPA secure PKE scheme and prove knowledge of the underlying plaintext
and randomness r (used to encrypt m) using the tSE-NIZK argument system. In this
case the plaintext-randomness pair (m, r) acts as our witness. The decryption queries of
the adversary is then answered by the extractor of the tSE-NIZK argument system by
using the extraction trapdoor, which can extract the witness (in our case the underlying
plaintext messages) to answer the decryption queries. Since the extraction trapdoor is
never used in the real encryption scheme, the adversary gets no leakage from it. This
essentially makes the decryption oracle useless and the adversary learns no extra leakage
from the decryption process. So the leakage at this point only happens from memory
which can be handled by the underlying AFL-LR-CPA-secure PKE scheme.

Comparison of our work with [ZCC15]. As mentioned in the introduction, Zhang et.
al [ZCC15] also proposed a transformation from AFL-CPA secure PKE scheme to a AFL-
CCA-2 secure PKE scheme achieving an optimal leakage rate of 1−o(1) as ours. However,
there are two fundamental differences between our work and the work of [ZCC15]. Firstly,
in the CPA to CCA transformation of [ZCC15], they use a simulation-sound NIZK (SS-
NIZK) proof system. SS-NIZK argument systems are extremely inefficient and far from
practical. Instead, we observe that tSE-NIZK argument system is sufficient for the same
purpose and hence we use tSE-NIZK argument system for our transformation. As already
shown in [DHLAW10b], a tSE-NIZK argument can be constructed relying only on stan-
dard (labeled) CCA-2 secure PKE scheme and a regular NIZK argument system, and
hence is much more efficient and practical than SS-NIZK argument system. . Secondly,
the transformation presented in [ZCC15] is not direct, in the sense that they showed a two
level transformation. First, they showed a transformation from an entropic CPA-secure
PKE scheme (a notion introduced in [HL11] for achieving full-fledged AFL-CPA security)
to a entropic CCA-secure PKE scheme and then they showed a construction of AFL-
CCA-2 secure PKE from such an entropic CCA-secure PKE scheme using two-source
extractors and additionally a (one-time) strongly unforgeable signature scheme. On the
other hand, we show a direct (one-level) transformation from an AFL-CPA-secure PKE
to a AFL-CCA-2 secure PKE scheme without taking the route of entropic PKE schemes.
Hence, our transformation is more efficient than the one presented in [ZCC15].

2.2 Compiler for leakage-resilient AKE.

As our second contribution, we propose a second generic compiler from AFL-CCA-2
secure PKE scheme to an after-the-fact leakage-resilient AKE protocol in the BAFL-eCK
security model (which is leakage analogue of the eCK model for AKE protocols) proposed
in [ASB14].

The BAFL-eCK model allows the adversary to obtain leakage from computation apart
from all other capabilities of an adversary in the eCK model [LLM07]. Our compiler can be
seen as leakage-resilient implementation of the compiler of Alawatugoda et. al [Ala15b].
Each party has a pair of long-term Diffie-Hellman (DH) public and secret keys and a
pair of public-private key from the CCA-2 secure PKE scheme. Each party computes a
DH ephemeral public key and encrypts it using the AFL-CCA-2 secure PKE scheme.

3 Recall that in before-the-fact leakage model the adversary gets access to the leakage oracle
only before the challenge phase, in contrast to after-the-fact leakage, where the adversary has
the leakage oracle access even after the challenge phase.

4

The other party can decrypt the ciphertext using its secret key of the PKE scheme and
perform DH type computation to derive the session keys. Since the PKE scheme AFL-
CCA-2 secure, the AKE protocol is also secure against after-the-fact leakage in split-state.
However, the PKE scheme addresses leakage only from the public-secret key pair of the
PKE scheme. However, each party also has a DH long-term key pair, and the adversary
also gets leakage from this key pair. So, we have to store the long-term DH keys in a
leakage-resilient manner and also compute the shared session key in a leakage-resilient
fashion.

How to make the Diffie-Hellman key exchange protocol leakage-resilient? The
main idea is to use the leakage-resilient storage (LRS) scheme of [DF11]. The LRS scheme
stores a secret value securely in the presence of leakage (in split-state). However, directly
using the LRS scheme does not work in our case. This is because in DH key exchange the
process of session key derivation is done by manipulating the DH keys in the exponent.
So, we need to perform DH exponentiation in a leakage-resilient fashion. For this, we
use the ideas used in [ABS14, Ala15b] to perform leakage-resilient exponentiation using
the LRS encoding scheme. Combined with the security of the AFL-CCA-2 secure PKE
scheme and the security of the LRS scheme, we achieve a generic BAFL-eCK-secure AKE
protocol.

3 Organization

The rest of the paper is organized as follows. In Section 4, we provide the necessary
preliminaries required for our constructions. In Section 5, we give the security model
for after-the-fact leakage resilient CCA-2 secure (AFL-CCA-2) PKE in split-state state
(Section 5.1) and present our compiler from CPA to CCA-2 secure PKE in the same
model (Section 5.2). In Section 6, we present our generic compiler from CCA-2 secure
PKE in the above model to a BAFL-eCK-secure AKE in the standard model. We give
the BAFL-eCK model in Section 6.1 and then present our compiler from AFL-CCA-2
secure PKE to BAFL-eCK-secure AKE in Section 6.2. Finally Section 7 concludes the
paper.

4 Preliminaries

In this section, we provide some basic notations, definitions and tools needed throughout
the paper.

4.1 Notations

Throughout this work, we denote the security parameter by κ. We assume that all the
algorithms take as input (implicitly) the security parameter represented in unary, i.e., 1κ.
For an integer n ∈ N, where N denotes the set of natural numbers, we use the notation

[n] to denote the set [n]
def
= {1, . . . , n}. For a randomized function f , we write f(x; r) to

denote the unique output of f on input x with random coins r. We write f(x) to denote
a random variable for the output of f(x; r), over the random coins r. For a set S, we
let US denote the uniform distribution over S. For an integer r ∈ N, let Ur denote the
uniform distribution over {0, 1}r, the bit strings of length r. For a distribution or random
variable X, we denote by x ← X the action of sampling an element x according to X.

For a set S, we write s
$←− S to denote sampling s uniformly at random from the S. A

function µ is negligible iff ∀c ∈ N, ∃n0 ∈ N such that ∀n ≥ n0, µ(n) < n−c. We sometimes
use negl(κ) to denote the set of negligible functions µ(κ). We denote an ensemble X as a
collection of distributions {Xκ}κ∈N. We sometimes drop the subscript κ when clear from
context and write x ← X instead of x ← Xκ to denote sampling an element x from Xκ.
For two matrices A and B, we denote A � B to denote the multiplication of A and B.

5

Let G be a group of prime order p such that log2(p) ≥ κ. Let g be a generator of G,
then for a (column/row) vector A = (A1, · · · , An) ∈ Znp , we denote by gA the vector

C = (gA1 , · · · , gAn). Furthermore, for a vector B = (B1, · · · , Bn) ∈ Znp , we denote by CB

the group element X =
∏n
i=1 g

AiBi = g
∑n
i=1 AiBi .

4.2 Entropy and Randomness Extraction

We begin with some definitions and then state an useful result.

Definition 1. (Min-Entropy). The min-entropy of a random variable X, denoted as

H∞(X) is defined as H∞(X)
def
= -log(maxx Pr[X = x]). This is a standard notion of

entropy used in cryptography, since it measures the worst-case predictability of X.

Definition 2. (Average Conditional Min-Entropy). The average-conditional min-
entropy of a random variable X conditioned on a (possibly) correlated variable Z, denoted

as H̃∞(X|Z) is defined as

H̃∞(X|Z) = - log
(
Ez←Z [maxx Pr[X = x|Z = z]

)
= - log

(
Ez←Z [2H∞(X|Z=z)]

)
.

This measures the worst-case predictability of X by an adversary that may observe a
correlated variable Z.

The following bound on average min-entropy was proved in [DORS08].

Lemma 1. [DORS08] For any random variable X, Y and Z, if Y takes on values in
{0, 1}l, then

H̃∞(X|Y,Z) ≥ H̃∞(X|Z)− l and H̃∞(X|Y) ≥ H̃∞(X)− l.

Definition 3. (Randomness Extractor). We say that an efficient randomized function
Ext: X × S → Y is an (υ, ε)-extractor if for all (correlated) random variables X, Z such

that the support of X is X and H̃∞(X|Z) ≥ υ, we get (Z, S,Ext(X;S)) ≈ε (Z, S, UY),
where S is uniform over S, and UY denotes the uniform distribution over the range of the
extractor Y.

4.3 Leakage-resilient Storage

We review the definitions of leakage-resilient storage according to Dziembowski and Faust
[DF11]. The idea is to split the storage of elements into two parts using a randomized
encoding function. As long as leakage is limited from each of its two parts, no adversary
can learn useful information about an encoded element.

For any m,n ∈ N, the storage scheme Λn,mZ∗p
efficiently stores elements s ∈ Z∗p where:

– Encoden,mZ∗p
(s) : sL

$←− (Z∗p)n \{(0n)}, and sR ← (Z∗p)n×m such that sL� sR = s, where

sL and sR are interpreted as (1× n) and (n×m) matrices respectively. The function
finally outputs (sL, sR).

– Decoden,mZ∗p
(sL, sR) : outputs sL � sR = s.

Definition 4. (λS-limited adversary). If the amount of leakage obtained by the ad-
versary from each of sL and sR is limited to λSL and λSR bits respectively, the adversary
is known as a λS-limited adversary, where λS = (λSL , λSR).

Definition 5. (λΛ, ε1-secure leakage-resilient storage scheme). We say that Λ = (Encode,Decode)

is a (λΛ, ε1)-secure leakage-resilient, if for any s0, s1
$←−M, and any λΛ-limited adversary

C, the leakage from Encode(s0) = (s0L , s0R) and Encode(s1) = (s1L , s1R) are statistically
ε1 close. For an adversary-chosen leakage function f = (f1, f2), and a secret s such that
Encode(s) = (sL, sR), the leakage is denoted as (f1(sL), f2(sR)).

Lemma 2. ([DF11]). Suppose that m < n/20. Then Λn,mZ∗p
= (Encoden,mZ∗p

(s),Decoden,mZ∗p
(sL, sR))

is (λS , negl(κ))-secure for some negligible function negl and λS = (0.3·n log p, 0.3·n log p).

6

4.4 (Pseudo-random functions).

We say that F :Σk×Σm→ Σn is a (εprf , sprf , qprf)-secure pseudo-random function (PRF)
if no adversary of size sprf can distinguish F (instantiated with a random key) from a
uniformly random function, i.e., for any A of size sprf (viewed as a circuit) making qprf

oracle queries we have:

| Pr
K

$←−ΣK [AF (K,.) → 1]− PrRm,n [ARm,n(.) → 1] | ≤ εprf .

where R(m,n) is the set of all functions from Σm → Σn.

4.5 Complexity Assumption

The complexity assumption required for our AKE construction is the standard Decisional
Diffie-Hellman (DDH) problem.

Definition 6. Computation Diffie-Hellman Problem (CDH) - Given (g, ga, gb)
$←−

G3 for unknown a, b ∈ Z∗p, where G is a cyclic prime order multiplicative group with g as

a generator and p the order of the group, the CDH problem in G is to compute gab.

The advantage of any probabilistic polynomial time algorithm A in solving the CDH
problem in G is defined as

AdvCDH
A (κ) = Pr

[
A(g, ga, gb) = gab | a, b ∈ Z∗p

]
.

The CDH Assumption is that, for any probabilistic polynomial time algorithm A, the
advantage AdvCDH

A (κ) is negligibly small.

Definition 7. Decisional Diffie-Hellman Problem (DDH) - Given (g, ga, gb, h)←
G4 for unknown a, b

$←− Z∗p, where G is a cyclic prime order multiplicative group of order

p with g as a generator, the DDH problem in G is to determine whether h
?
= gab or a

random group element.

The advantage of any probabilistic polynomial time algorithm A in solving the DDH
problem in G is defined as

AdvDDH
A (κ) = |Pr

[
A(g, ga, gb, gab) = 1

]
− Pr

[
A(g, ga, gb, h) = 1

]
| a, b ∈ Z∗q |

The DDH Assumption is that, for any probabilistic polynomial time algorithm A, the
advantage AdvDDH

A (κ) is negligibly small.

4.6 True Simulation Extractable Non-interactive Zero Knowledge
Argument System

In this section we recall the notion of (same-string) true-simulation extractable non-
interactive zero knowledge argument (tSE-NIZK) first introduced in [DHLAW10b]. This
notion is similar to the notion of simulation-sound extractable NIZKs [Gro06] with the
difference that the adversary has oracle access to simulated proofs only for true state-
ments., in contrast to any arbitrary statement as in simulation-sound extractable NIZK
proof system.

Let < be an efficiently computable binary relation. For pairs (y, x) ∈ <, we call y
the statement and x the witness. Let L = {y | ∃ x s.t. (y, x) ∈ <} be the language
consisting of statements in <. A NIZK argument system consists of three algorithms
(CRSGen,Prove,Verify) such that: (1) Algorithm CRSGen takes as input 1κ and generates
a common reference string (CRS) crs, a trapdoor TK and an extraction key EK; (2)
Algorithm Prove takes as input the statement-witness pair (y, x) and crs and outputs an
argument π such that <(y, x) ∈ 1; (3) Algorithm Verify takes as input crs, a statement y,
and a purported argument π and outputs 1 if the argument is acceptable and 0 otherwise.
We require the following properties to hold:

7

1. Perfect Completeness: For all (y, x) ∈ <, (crs,TK)← CRSGen(1κ), if π ← Prove(crs, (y, x)),
then Verify(crs, x, π) = 1.

2. Soundness: For all malicious provers P∗ we have,

Pr
[
Verify(crs, y, π∗) = 1, y /∈ < | (crs,TK)← CRSGen(1κ), (y, π∗)← P∗(1κ, crs)

]
≤ negl(κ).

3. (Composable) Zero-Knowledge: There exists a PPT simulator Sim such that for
all PPT adversaries A the probability that the experiment below outputs 1 is at most
1/2 + negl(κ).

(a) The challenger samples (crs,TK)← CRSGen(1κ), gives (crs,TK) to A.
(b) The adversary A chooses (y, x) ∈ < and gives it to the challenger.

(c) The challenger samples π0 ← Prove(y, x, crs), π1 ← Sim(y,TK), b
$←− {0, 1}, and

gives πb to A.
(d) The adversary A outputs a bit b′ as guess for b; output 1 if b′ = b, else output 0.

4. Strong True-simulation f-Extractability: We start by defining the simulation
oracle SIMTK(.). A query to the simulation oracle consists of a statement-witness
pair (y, x). The oracle checks if (y, x) ∈ <. If true, it outputs a simulated argument
Sim(TK, y), otherwise it outputs ⊥. Let f be a fixed efficiently computable function.
There exists a PPT algorithm EXT(y, π,EK) such that for all PPT adversaries P∗,
we have Pr[P∗ wins| ≤ negl(κ) in the following game.

(a) The challenger samples (crs,TK,EK)← CRSGen(1κ), and gives crs to P∗.
(b) P∗SIMTK(.) can adaptively access the simulation oracle SIMTK(.) as defined

above.

(c) Finally, the adversary P∗ outputs a tuple (y∗, π∗).

(d) The challenger runs z∗ ← EXT(y∗, π∗,EK)

(e) P∗ wins if (a) (y∗, π∗) 6= (y, π) for all pairs (y, π) returned by the simulation oracle
SIMTK(.); (b) Verify(crs, y∗, π∗) = 1 and (c) for all x′ such that f(x′) = z∗, we
have <(y∗, x′) ∈ 0. (,i.e., the adversary P∗ wins if the extractor cannot extract a
good value z∗ on at least one valid witness x′; i.e., f(x′) = z∗.)

5 CPA to CCA-2 transformation in the presence of after-the-fact
leakage

In this section we present our generic compiler for transforming a leakage-resilient CPA-
secure PKE to leakage-resilient CCA-2 secure PKE in the presence of after-the-fact leak-
age. We first give our model for after-the-fact CCA-2 secure PKE scheme in Section 5.1,
followed by the details of our compiler in Section 5.2.

5.1 CCA-2 security in a split state model

We consider the bounded split-state leakage model similar to [HL11]. Here the secret
key of the cryptosystem is split into two parts, and the adversary can obtain leakage
from each of these two parts independently, but not a joint leakage from both the secret
key components. Note that the independent leakage assumption may seem to be a strong
assumption, since in practice leakage appears to be a global function of the computation’s
intermediate values, for e.g., the power consumption of a device modeled by Hamming
weights. However, it turns out many relevant global leakage functions can in fact be
computed based only on local leakages. This holds true for all affine leakage functions,
which also subsumes the Hamming weight leakage. This was also pointed out in [DF11,
HL11]. So the split state model is already powerful enough to capture broad class of
practically relevant side-channel attacks. Note that the split-state assumption is necessary
for our construction since the starting point of our compiler is the PKE scheme of [HL11],
and also there does not exist any construction of after-the-fact leakage-resilient CPA
secure PKE in the non-split state model as a starting point for the compiler.

8

Definition 8. (Split state encryption) [HL11]. A 2-split state encryption scheme
E = (E .Gen, E .Enc, E .Dec) has the following structure:

– E .Gen(1κ): The key generation algorithm comprises of two subroutines namely, E .Gen1

and E .Gen2. On input the security parameter 1κ, the key generation subroutine E .Geni
(i ∈ {1, 2}) generates the public-secret key pair, i.e, (pki, ski)← E .Geni(1

κ, ri) where
ri ∈ {0, 1}∗. The public key consists of the pair pk = (pk1, pk2) and the secret key
consists of the pair sk = (sk1, sk2).

– E .Encpk=(pk1,pk2)(m): The (randomized) encryption algorithm takes as input a mes-
sage m and outputs the ciphertext c.

– E .Dec(1κ, c, sk = (sk1, sk2)): The decryption consists of two partial decryption sub-
routines E .Dec1, E .Dec2 and a combining subroutine Comb. The decryption subroutine
E .Deci (i ∈ {1, 2}) takes as input the ciphertext c and the secret key ski and outputs
the partial decryption ti, i.e., ti ← E .Deci(c, ski). Finally, Comb takes the ciphertext
and the pair (t1, t2) to recover the plaintext m, i.e., m← Comb(c, t = (t1, t2)).

We want the usual correctness requirement to hold for the 2-split state encryption scheme
E , i.e., ∀(pki, ski)← E .Geni(1

κ) (i ∈ {1, 2}),∀m ∈M, we have, E .Dec(sk = (sk1, sk2), c =
E .Encpk(m)) = m.

We now define the notion of CCA-2 security of PKE schemes in the presence of after-the-
fact split-state memory leakage.

Definition 9. (CCA-2 security of split state PKE against after-the-fact leakage
(`(κ))-AFL-CCA-2 security)). Letκ ∈ Nbe the security parameter and let `pre(κ) and
`post(κ) be the upper bound on the amounts of memory leakage before and after the
challenge phase respectively. A 2-split state PKE E = (E .Gen, E .Enc, E .Dec) is resilient to
`(κ) =

(
(`pre(κ), (`post(κ)

)
leakage in the split-state model, if for all PPT adversaries A,

the probability that the experiment below outputs 1 is at most 1
2 + negl(κ).

1. Key Generation: The challenger chooses r1, r2 ∈ {0, 1}∗ at random and computes
(pki, ski)← E .Geni(1

κ, ri) (i ∈ {1, 2}) and sends pk = (pk1, pk2) to the adversary.

2. Pre-Challenge Leakage queries: The adversary makes an arbitrary number of
leakage queries (fpre

1,i , f
pre
2,i) adaptively. Upon receiving the i-th leakage query the chal-

lenger sends back (fpre
1,i (sk1), fpre

2,i (sk2)), provided
n(κ)∑
i=1

|fpre
1,i (sk1)| ≤ `pre(κ) and

n(κ)∑
i=1

|fpre
2,i (sk2)| ≤ `pre(κ), where n(κ) denotes the number of pre-challenge leakage

queries made in this phase.

3. Pre-Challenge Decryption queries: The adversary A may ask decryption queries
adaptively. The challenger returns the plaintexts mi corresponding to the queried
ciphertexts ci.

4. Challenge: In this phase the challenger chooses b
$←− {0, 1} and computes c∗ =

E .Encpk(mb) and gives it to A.

5. Post-Challenge Leakage queries: The adversary makes an arbitrary number of
leakage queries (fpost

1,j , f
post
2,j) adaptively. Upon receiving the j-th leakage query the

challenger sends back (fpost
1,j (sk1), fpost

2,j (sk2)), provided
n′(κ)∑
j=1

|fpost
1,j (sk1)| ≤ `post(κ) and

n′(κ)∑
j=1

|fpost
2,j (sk2)| ≤ `post(κ), where n′(κ) denotes the number of post-challenge leakage

queries made in this phase.

9

6. Post-Challenge Decryption queries: The adversary may continue querying the
decryption oracle adaptively with different ciphertexts ci with the only restriction
that ci 6= c∗.

7. Guess: Finally, the adversary outputs a bit b′ for a guess of the bit b chosen the
challenger. If b′ = b, output 1, else output 0.

We define the advantage of A as AdvAFL-CCA-2
A (κ) = |Pr[b′ = b]− 1

2 |.

5.2 The Generic Transformation

In this section, we give the generic transformation from after-the-fact leakage-resilient
CPA-secure (AFL-CPA) PKE to after-the-fact leakage-resilient CCA-2 secure (AFL-
CCA-2) PKE. The main tool we will be using for our transformation is true-simulation
extractable NIZK argument system (tSE-NIZK) as defined as section 4.6.

Let E = (E .Gen, E .Enc, E .Dec) be the `(κ) = (`pre(κ), `post(κ))-leakage-resilient 2-split state
CPA-secure PKE from above, and let Π = (CRSGen,Prove,Verify) be a one-time, strong
f -tSE NIZK argument for the relation

<enc = {(m, r), (pk, c) | c = Encpk(m; r)}

where f(m, r) = m, i.e., the extractor only requires to extract the message m and not the
randomness r of encryption. We show how to construct a leakage-resilient CCA-2 secure
PKE E ′ = (E ′.Gen, E ′.Enc, E ′.Dec) secure against after-the-fact leakage.

1. E ′.Gen(1κ) : Output p̂k = (pk, crs), ŝk = sk, where (pk, sk)← E .Gen, and (crs,TK,EK)←
CRSGen(1κ).

2. E ′.Enc(p̂k,m) : Output the ciphertext C = (c, π), where c ← E .Encpk(m; r) and
π ← Prove(crs, (pk, c), (m, r)).

3. E ′.Dec(sk, C) : Parse C = (c, π). If Verify(crs, (pk, C), π) = 1, output E .Dec(sk, c), else
output ⊥.

Theorem 1. Assume that E is a `(κ) =
(
`pre(κ), `post(κ)

)
-AFL-LR-CPA-secure PKE

and Π is a one-time strong f -tSE NIZK argument system for the relation <enc where,
for any witness (m, r), we define f(m, r) = m. Then the scheme E ′ defined above is(
`pre(κ), `post(κ)

)
-AFL-LR-CCA-2-secure PKE.

Proof. The proof of this theorem follows via series of games argument. All the games are
variant of the original `(κ)-AFL-CCA-2 security game. These games differ in how the
challenger ciphertext C∗ = (c∗, π∗) is generated and the answers to the decryption oracle
queries are simulated.

Game 0. This is the original `(κ)-AFL-LR-CCA-2 security game. The challenger correctly

generates the public key p̂k = (pk, crs) as in the key generation algorithm and gives it to
the adversary. When the adversary submits two challenge messages m0,m1, the challenger
computes the challenge ciphertext correctly as in the construction. The answers to the
decryption queries are also answered correctly. In other words the challenger does the
following:

1. Compute (pk, sk) ← E .Gen, and (crs,TK,EK) ← CRSGen(1κ). Sets the secret key as

ŝk = sk and gives the public key p̂k = (pk, crs) to the adversary A.

2. Chooses bit b
$←−{0, 1} and compute c∗←E .Encpk(mb; r), π

∗←Provecrs((pk, c
∗),

(mb, r)), and output C∗ = (c∗, π∗) as challenger ciphertext. Finally give C∗ to the
adversary.

10

3. The pre- and post-challenge decryption queries (Ci, πi) made by A are answered using
E ′.Dec(sk, C ′i).

4. When the adversary asks pre- and post-challenge leakage queries (fpre
1,i , f

pre
2,i) and

(fpost
1,i , f

post
2,i), the challenger returns (fpre

1,i (sk1), fpre
2,i (sk2)) and (fpost

1,i (sk1),

fpost
2,i (sk2)) respectively, provided the leakage does not exceed `pre and `post on both

the coordinates in the pre- and post-challenge leakage phase.

Game 1. In this game the CRS for Π is generated along with a simulation trapdoor TK
and the argument π∗ in the challenge ciphertext is simulated using the zero-knowledge
simulator SIMTK. The pre- and post-challenge decryption and leakage queries are an-
swered as in Game 0. In other words the challenger does the following:

1. Compute (pk, sk) ← E .Gen, and (crs,TK,EK) ← CRSGen(1κ). Sets the secret key as

ŝk = sk and gives the public key p̂k = (pk, crs) to the adversary A.

2. Chooses bit b
$←−{0, 1} and compute c∗←E .Encpk(mb; r), π

∗←SIMTK(pk, c∗), and
output C∗ = (c∗, π∗) as challenger ciphertext. Finally give C∗ to the adversary.

The decryption and leakage queries are handled in a similar manner as Game 0. The
indistinguishability of Game 0 and Game 1 follows from the NIZK property of the
tSE-NIZK argument system Π.

Game 2. In this game the CRS for Π is generated together with a simulation trapdoor
TK and an extraction trapdoor EK. The challenge ciphertext is simulated using the zero-
knowledge simulator similarly as Game 1. However the decryption queries are handled
in a different manner. The decryption queries Ci = (ci, πi) are answered by running the
extractor on the arguments πi to extract f(mi, ri) = mi. In other words the challenger
does the following:

1. Compute (pk, sk) ← E .Gen, and (crs,TK,EK) ← CRSGen(1κ). Sets the secret key as

ŝk = sk and gives the public key p̂k = (pk, crs) to the adversary A.

2. Chooses bit b
$←−{0, 1} and compute c∗←E .Encpk(mb; r), π

∗←SIMTK(pk, c∗), and
output C∗ = (c∗, π∗) as challenger ciphertext. Finally give C∗ to the adversary.

3. When the adversary queries to the decryption oracle using Ci = (ci, πi), the challenger

runs EXT((p̂k, ci), πi,TK) to extract the message mi.

The answers to the leakage queries are answered similarly as in Game 0. The indistin-
guishability of Game 1 and Game 2 follow from the strong one-time true-simulation
extractability property of the tSE-NIZK argument system Π. The adversary A sees only
one simulated proof of a true statement, namely, the argument π∗ in the challenge ci-
phertext C∗ = (c∗, π∗). Therefore by the strong one-time true simulation extractability
property of Π, A cannot produce any new statement-argument pair (ci, πi) 6= (c∗, π∗) for
which the argument πi verifies but the extractor fails to extract the correct mi.

Game 3. This is the final game. In which game the challenger changes the way in which
the challenge ciphertext c∗ is generated. Instead of encrypting the message mb, the chal-
lenger produces the challenge ciphertext as an encryption of 0 (or any fixed message in the
message space), i.e., the challenger computes the challenge ciphertext as C∗ = (c∗, π∗),
where c∗ ← E .Encpk(0; r) and π∗ ← SIMTK(pk, c∗). The decryption queries are still
answered using the extraction trapdoor as in Game 2. The leakage queries are answered
using the leakage oracle of the AFL-LR-CPA secure scheme E . We show that Game 2
and Game 3 are indistinguishable.

Claim. Game 2 and Game 3 are indistinguishable by the `(κ) = (`pre(κ), `post(κ))-AFL-
CPA security of the PKE scheme E.

11

Proof. If Game 2 and Game 3 can be distinguished we can build an adversaryA′ against
the `(κ)-AFL-CPA secure PKE E . The adversary A′ simulates the execution environment
for A as follows:

1. A′ receives the public key pk∗ and computes (crs,TK,EK) ← CRSGen(1κ). It then

sends the public key p̂k = (pk∗, crs) to A.
2. When A makes pre- and post-challenge decryption oracle queries Ci = (ci, πi), A′

uses the extraction trapdoor of the tSE-NIZK argument system Π to simulate the
response to these queries, i.e., it computes EXT((p̂k, ci), πi,TK) to extract mi. As
already argued above (indistinguishability of Game 1 and Game 2) this properly
simulates the decryption oracle responses (except with negligible probability) by the
strong one-time true simulation extractability property of Π.

3. When A makes pre- and post-challenge leakages queries, A′ forwards them to the
leakage oracle of the challenger of the `(κ)-AFL-LR-CPA-secure PKE scheme E , and
returns back the response to A.

4. When A makes the challenge query with two messages m0 and m1, A′ forwards them
to its challenger. It gets back the ciphertext c∗ and computes π∗ ← SIMTK(pk, c∗).
Finally, it returns C∗ = (c∗, π∗) to A.

5. When A output a bit b′, A′ also outputs the same bit b′.

With all but negligible probability, the above represents a proper simulation of the envi-
ronment for A by A′. Thus if the advantage of A is negligible, the advantage of A′ is also
negligible. This proves the above claim.

The above claim shows that Game 2 and Game 3 are indistinguishable. Now, note that
Game 3 is completely independent of the bit b, and hence the advantage of any adversary
in Game 3 is exactly 0. So, by the indistinguishability of the Games 0-3, the advantage of
any adversary in Game 0 is negl(κ). This concludes the proof of the above theorem. ut

Remark 1. Note that the leakage tolerance of the AFL-LR-CCA-2 secure PKE E ′ is ex-
actly same as the leakage tolerance of the underlying AFL-LR-CPA-secure PKE E . This
is because in Games 2 and 3 the decryption secret key sk is never used for answering the
decryption oracle queries. Instead, the extractor trapdoor of the tSE-NIZK is used for
simulating the decryption queries and also it is never used in the real scheme. In other
words, the decryption oracle responses do not leak any useful information to the adver-
sary, and the leakage that happens from the construction due to adaptive access of the
leakage oracle by the adversary is taken care of by the underlying AFL-CPA-secure PKE.
This essentially allows us to tolerate the same amount of leakage, namely ` = (`pre, `post)
bits of leakage as the underlying CPA-secure scheme E .

6 Compiler for After-the-Fact leakage-resilient AKE protocols

We give a generic framework for designing a bounded after-the-fact leakage eCK-secure
(BAFL-eCK) AKE protocol using an arbitrary AFL-LR-CCA-2 secure public key encryp-
tion scheme, an arbitrary pseudo-random function and a leakage-resilient storage scheme
as defined in Section 4.3. We prove the security of our protocol in the standard model,
assuming the hardness of the DDH problem.

6.1 The Bounded After-the-fact Leakage-eCK (BAFL-eCK) Model

The BAFL-eCK model [ASB14] can be seen as a (bounded) leakage analogue of the eCK
model [LLM07]. Here, the secret key of the cryptosystem is split into n parts and it is
assumed that the adversary gets independent leakage from each split. This is modeled by
allowing the adversary to send a tuple leakage function f = (f1, · · · , fn), where the size
n of the tuple is protocol-specific (for our purpose n = 2, since we consider 2-split state
model). The total amount of leakage from each split of the secret key is bounded by the

12

leakage parameters. In particular, if the total leakage bound on the i-th split of the secret
key is λi, then the condition

∑
|fi(ski)| ≤ λi should hold, where ski denote the ith split

of the secret key sk. In the BAFL-eCK model it is also assumed that leakage happens as
a result of computation following the “Only Computation leaks” (OCLI) axiom [MR04].

Execution environment. In the execution environment, we fix a set of n honest par-
ties U = {U1, · · · , Un}n∈N, each modeled by a probabilistic polynomial time Turing ma-
chine (PPTM). We assume the identities are unique and also lexicographically indexed
via variable i ∈ [n]. We further assume that the parties U1, . . . , Un are connected over
point-to-point links over which the messages can be exchanged between them. The term
principal is used to identify a party involved in a protocol instance. Each party Ui, where
i ∈ [n] is associated with long-term key pairs (pkUi , skUi). The term session is used to
identify a protocol instance at a principal. Each honest party Ui can sequentially and
also concurrently execute multiple sessions. The oracle ΠsU,V represents the s-th session
at the owner principal U with intended partner principal V . The party who sends the
first message is called the initiator of the session and the party which responds to the
first protocol message of a session is called the responder of the session.

Adversarial Model. An adversary A is a PPT Turing Machine taking as input the
security parameter 1κ and the public information (e.g. generic description of above en-
vironment). It has full control on the communication network , i.e, it can insert, delete,
drop, alter, schedule messages in transit accordingly. It may interact with these oracles
by issuing the following queries.

1. Send(U, V, s,m, f): When this query is issued the oracle ΠsU,V computes computes
the next protocol message according to the protocol specification and sends it to
the adversary A. In addition the adversary also gets the output of the tuple leakage
function f(skU) following the OCLI framework as mentioned above. The adversary
can also activate a new session with blank m and f .

2. SessionKeyReveal(U, V, s): The session key of the oracle ΠsU,V is given A, provided the
session is complete, else the session key is not generated yet and return ⊥ in that case.

3. EphemeralKeyReveal(U, V, s): The ephemeral secret key of the oracle ΠsU,V is given A.

4. Corrupt(U): The long-term secret key skU of principle U is given to A.

5. Test(U, V, s): If the oracle ΠsU,V is complete, the challenger chooses a fair coin b
$←−

{0, 1}. If b = 0, it samples a random element K0 from the session key space K; if
b = 1, the actual session key K1 is returned to A. Finally, the key Kb is returned.
The Test query is allowed only once and it captures the notion of semantic security
for key exchange protocols.

Remark 2. It may seem paradoxical to consider both leakage and corrupt queries at the
same time. However, as argued in [ASB14], in case of key compromise impersonation
(KCI) attacks the adversary gets the secret key of the owner of the cryptosystem before
the activation of the test session and he/she has to impersonate other parties to the owner.
In BAFL-eCK model, the adversary additionally gets leakage from the partner of the test
session also.

We now define the freshness condition of a session in the BAFL-eCK model.

Definition 10. (λ-BAFL-eCK-freshness). Let the vector λ = (λ1, · · · , λn) denote the
leakage bound on the secret key of the cryptosystem, i.e., λi represents the leakage bound
on the i-th split ski of the secret key sk. Then the oracle πsi is said to be fresh if none
of the following holds: An oracle ΠsU,V is said to be λ-BAFL-eCK-fresh if and only if:

– The oracle ΠsU,V or its partner Πs
′

V,U (if it exists) has not been asked SessionKeyReveal
query.

13

– The partner Πs
′

V,U exists and the following combinations are not asked:

a. Corrupt(U) and EphemeralKeyReveal(U, V, s).

b. Corrupt(V) and EphemeralKeyReveal(V,U, s′).

– The partner Πs
′

V,U does not exist and the following combinations are not asked:

a. Corrupt(V).

b. Corrupt(U) and EphemeralKeyReveal(U, V, s).

– For all Send(., U, ., ., f) queries,
∑
|fi(skUi)| ≤ λi.

– For all Send(., V, ., ., f) queries,
∑
|fi(skVi)| ≤ λi.

Definition 11. (BAFL-eCK security game). Security of a key exchange protocol
in the BAFL-eCK model is defined using the following security game, played between
between a challenger C and an adversary A.

1. At the beginning of the game, the challenger C implements the collection of oracles
ΠkUi,Uj , where i, j ∈ [n] and k ∈ [`], where ` is the maximum no. of sessions that can

be executed by a party simultaneously. It generates n long-term key pairs (pkUi , skUi)
for all honest parties Ui for i ∈ [n]. C gives adversary A all identities and public keys
{(U1, pkU1), · · · , (Un, pkUn)} as input.

2. A may issue polynomial number of aforementioned queries adaptively, namely A
makes Send, EphemeralKeyReveal, Corrupt and SessionKeyReveal.

3. At some point, A may issue a Test query during the game only once.

4. A may continue to issue Send, EphemeralKeyReveal, Corrupt and SessionKeyReveal
queries adaptively, provided the λ-BAFL-eCK freshness conditions are not violated.

5. At the end of the game, the A may terminate with returning a bit b′ as its guess for
b of Test query. Return 1, if b′ = b, otherwise return 0.

Definition 12. (BAFL-eCK security). A protocol P is said to be BAFL-eCK-secure
if there is no PPT algorithm A that can win the BAFL-eCK security game with non-
negligible advantage. The advantage of an adversary A is defined as AdvBAFL-eCK

P (A) =
|Pr[b′ = b]− 1

2 |.

6.2 Generic BAFL-eCK secure AKE protocol in standard model

In this section we present a generic construction of BAFL-eCK secure key exchange proto-
col P using an arbitrary AFL-LR-CCA-2 secure PKE scheme, a LRS encoding scheme and
an arbitrary pseudo-random function. We then prove the security of our AKE protocol in
the standard model assuming the security of the above primitives and the hardness of the
DDH problem. Suppose κ is the security parameter. Let G denotes a cyclic multiplicative
group of prime order p generated by g. The main building blocks used in our construction
of the AKE protocol are as follows:

– `(κ)-after-the-fact leakage-resilient 2-split state CCA-2 (AFL-CCA-2) secure PKE
E = (E .Gen,
E .Enc, E .Dec) with key space K, message space M.

– Λn,1Z∗p
= (Encoden,1Z∗p

(s),Decoden,1Z∗p
(sL, sR)) be a (λS , ε1) leakage-resilient storage scheme

– F : G× {0, 1}∗ → SK be a (εprf , sprf , qprf)-secure PRF family

14

Overview of our Construction. We denote the two protocol participants as UA and
UB . We assume that UA is the initiator and UB is the responder. Alawatugoda [Ala15b]
gave a generic transformation of a CCA2-secure PKE scheme to an eCK-secure key ex-
change protocol in the standard model. Our compiler can be viewed as leakage-resilient
implementation of the compiler of Alawatugoda [Ala15b]. We denote the public-secret
key pair of parties UA and UB as (pkUA , skUA) and (pkUB , skUB) respectively. We denote
(a,A) and (b, B) as the long-term Diffie-Hellman (DH) secret and public keys of UA and
UB respectively. We also denote (eskA, epkA) and (eskB , epkB) as the ephemeral secret
and public keys of UA and UB respectively.

The main idea of the construction of [Ala15b] is that it computes epkA and epkB as DH
public keys and eskA and eskB as DH secret keys. It then encrypts the epkA and epkB
using a CCA-2 secure PKE. The other party who has the secret key can successfully
recover epkA and epkB respectively. In the session key generation generation phase both
the parties perform two DH session key derivation. The first session key derivation involves
the ephemeral public and secret keys of both the parties, whereas the second DH session
key generation involves the DH long-term keys of both the parties. Finally both the parties
use a PRF to derive the final session key.

Our generic AKE construction also follows this simple design strategy. However, the
adversarial model is stronger than the eCK model. This is because the BAFL-eCK model
trivially implies the eCK model, but the other way is not true. In particular, apart from all
the information the adversary gets in the eCK model, additionally it also obtains leakage
from the secret key of the parties, i.e. both the secret key of the cryptosystem as well
as the DH long-term secret key of parties. The leakage that happens from the secret key
of the CCA-2 secure PKE can be countered by using a AFL-CCA-2 secure encryption
scheme. However, apart from this the leakage from the DH long-term secret keys also
needs to be accounted. For this, we use leakage-resilient storage (LRS) scheme. However,
directly using the LRS scheme does not work for our purpose since the secret values in our
case are exponents of DH public keys. So we need a way to perform exponentiation in a
leakage-resilient fashion. The possibility of leakage-resilient exponentiation was mentioned
in [Ala15b]. However, no formal derivation was present. Here, we show the leakage-resilient
exponentiation operation explicitly and show its correctness.

Leakage-resilient exponentiation. We use the LRS scheme to perform secure expo-
nentiation in the presence of leakage. Suppose that x is the exponent (DH secret key)
and we need to compute the DH public key X = gx. We first encode x using the LRS

scheme as (xL, xR)← Encoden,1Z∗p
(x), where xL

$←− (Z∗p)n\{(0n)}, xR ← (Z∗p)n×1\{(0n×1)}
and xL � xR = x. To compute X = gx, we use the two encodings (xL, xR), and finally
erase x from memory. The computation of exponentiations is also split into two parts.
More precisely, we first compute X ′ = gxL = (gxL1 , gxL2 , · · · , gxLn), and then compute

X = (X ′)xR =
n∏
i=1

gxLi ·xRi = g

n∑
i=1

xLi ·xRi
= gx.

In our AKE protocol the party party UA (k ∈ {A,B}) chooses aL
$←− (Z∗p)n \ {(0n)},

aR
$←− (Z∗p)n×1 \ {(0n×1)} and the value of the ephemeral DH exponent a is implicitly set

as aL�aR. Party UB also performs similar operation. In the key generation process if we
first choose the long-term DH secret key a it must be securely erased from memory after
getting the encoded values aL and aR of a. However, in practice secure erasure may not be
possible always and some traces of the secret key may be leaked to the adversary. In order
to avoid such a vulnerability, two values aL and aR are picked at random and we use them
as the encodings of the long-term DH exponent a. In this way we refrain from using the
long-term DH secret key a directly. Note that, this approach is identical to first picking
a random element a ∈ Z∗p and then encoding it to obtain aL and aR. Thus our approach

15

avoids the vulnerability of exposing the secret DH exponent and hence avoid leaking
directly from the exponents a and b. Since the value a is not available to the adversary,
it can get only bounded and independent leakage (under split-state assumption) from
aL and aR respectively. We can then use the security of the LRS scheme from to argue
security of our AKE protocol.

Thus combined with the security of the AFL-CCA-2 secure encryption, LRS scheme and
security of DH key exchange (DDH assumption),we obtain a BAFL-eCK-secure AKE
protocol in standard model. The details of the protocol is presented in Table 1.

UA UB

Key Generation

Public parameters: (G, p, 〈g〉)
aL

$←− (Z∗p)n \ {(0n)}, bL
$←− (Z∗p)n \ {(0n)},

aR
$←− (Z∗p)n×1 \ {(0n×1)} bR

$←− (Z∗p)n×1 \ {(0n×1)}
A′ = gaL , A = (A′)aR = gaL·aR = ga B′ = gbL , B = (B′)bR = gbL·bR = gb

(pkUA , skUA)← E .Gen(1κ), (pkUB , skUB)← E .Gen(1κ)

Session Execution

eskA
$←− Z∗p, epkA ← geskA eskB

$←− Z∗p, epkB ← geskB

CA ← E .EncpkUB (epkA) CB ← E .EncpkUA (epkB)
UA,UB ,CA−−−−−−−−−−−−−−−−→
UB ,UA,CB←−−−−−−−−−−−−−−−−

Session Key Generation

Set sid = (UA||UB ||CA||CB) Set sid = (UA||UB ||CA||CB)

epkB ← E .DecskUA (CB), epkA ← E .DecskUB (CA),

Z′A1
= (B)aL , ZA1 = (Z′A1

)aR , Z′B1
= (A)bL , ZB1 = (Z′B1

)bR ,

ZA2 = epkeskAB , ZB2 = epkeskBA ,

SK = F (ZA1 , sid)⊕ F (ZA2 , sid) SK = F (ZB1 , sid)⊕ F (ZB2 , sid)
Table 1. Proposed BAFL-eCK secure AKE protocol P

Correctness: The correctness of the protocol is easy to verify. It is enough to show that
ZA1 = ZB1 and ZA2 = ZB2 . The correctness of the decrypted values epkB and epkA at
both the parties UA and UB respectively follow from the correctness of the AFL-CCA-2
secure PKE scheme.

We have ZA1 = (Z ′A1
)aR = ((B)aL)aR = BaL·aR = Ba = (gb)a = gab.

Similarly, ZB1
= (Z ′B1

)bR = ((A)bL)bR = AbL·bR = Ab = (ga)b = gab = ZA1
.

The value ZA2 = epkeskAB = (geskB)eskA = (geskA)eskB = epkeskBA = ZB2 .

6.3 Security proof

In this section we proof the following theorem:

Theorem 2. If E = (E .Gen, E .Enc, E .Dec) is a `(κ)-AFL-CCA-2-secure PKE, Λn,1Z∗p
be a

(λΛ, ε1) leakage-resilient storage scheme, F is a (εprf , sprf , qprf) PRF, and the DDH as-
sumption holds in G of prime order p generated by g, then the above AKE protocol P is
(`(κ), λΛ)-BAFL-eCK-secure. In particular,

AdvBAFL-eCK
P (A) ≤ n2`2 max

(
(2ε1 + AdvDDH

B (κ) + εprf), (AdvAFL-CCA-2
S (κ) + εprf)

)
.

where n is the total no. of protocol principles/parties and ` is the maximum no. of sessions
that can be executed by a party concurrently.

16

Proof Sketch. Before giving the detailed proof , we first give an overview of our proof here.

According to the freshness condition as in Def. 10 we have to consider the following cases
and sub-cases:

1. A partner to the test session exists.

(a) Adversary corrupts both the owner and the partner principals to the test session.

(b) Adversary corrupts neither the owner nor the partner principal to the test session.

(c) Adversary corrupts the owner to the test session, but does not corrupt the partner
to the test session.

(d) Adversary corrupts the partner to the test session, but does not corrupt the owner
to the test session.

2. A partner to the test session does not exist.

(a) Adversary corrupts the owner to the test session.

(b) Adversary does not corrupt the owner to the test session.

Case 1(a). In this case, the adversary corrupts both the owner and the peer to the test
session. So the adversary knows both the long-term Diffie-Hellman (DH) keys a and b of
the parties UA and UB respectively. Besides, it also learns the secret keys of the AFL-
CCA-2 secure encryption scheme E , namely, skUA and skUB of UA and UB respectively.
However, the adversary does not learn the ephemeral secret keys of the test session and
its matching session. So, the secrecy of the session key lies in the secrecy of the values ZA2

and ZB2
. Note that the adversary can get both epkA and epkB by using the encryption

secret keys. So the value ZA2
= ZB2

= geskAeskB is hard to distinguish from a random
value by the DDH assumption. In our proof we replace it with a random value. Finally,
we replace the session key with a random value from the same space. This change is again
oblivious to the adversary by the security of the PRF F used for deriving the final session
key. Also note that the leakage queries in this case does not make much sense since the
adversary already knows the long-term keys of both the principles. In any case, since the
challenger has the secret keys of all the parties it can easily simulate the leakage queries.

Case 1(b). In this case the adversary learns the ephemeral secret keys eskA and eskB
of parties UA and UB respectively corresponding to the test session and its matching
session. The adversary does not know the long-term DH keys and the secret keys of the
AFL-CCA-2 secure PKE scheme E . However, the adversary may obtain leakage from both
of them via Send queries according to the BAFL-eCK security model. In this case, the
challenger knows neither of the long-term secrets of UA and UB , so it cannot simulate
the leakage queries by itself. Instead the challenger uses the leakage oracle of the AFL-
CCA-2 secure PKE scheme and the LRS scheme to respond to the leakage queries. The
LRS scheme Λn,1Z∗p

ensures that even if the adversary obtains bounded leakage from the

two encodings of the secret key independently, it cannot learn any information about the
secret value. Given that the adversary does not learn any information about the long-term
DH keys, the security of the DH shared key ZA1

= ZB1
ensures the secrecy of the session

key. In particular, given the DH public keys ga and gb, it is hard to distinguish the value
ZA1 = ZB1 = gab from random value by the DDH assumption. Similar to the above case,
we then replace this value with a random value. Finally, we replace the session key with
a random value from the same space. This change is again oblivious to the adversary by
the security of the PRF F used for deriving the final session key.

Case 1(c). In this case the adversaryA learns the long-term DH key of UA, i.e., a = aL·aR
and the secret key skUA . For party UB , the adversary learns the ephemeral secret key
eskB . In his case, the challenger knows skUA and a, so it can simulate the leakage queries
for party UA by itself. However, for party UB , it does not know its long-term secret

17

keys. It uses the leakage oracle of the AFL-CCA-2 secure PKE scheme and the LRS
scheme to answer leakage queries for UB . Note that, the adversary can compute the value
ZA1

= ZB1
= gab. So the secrecy of the session key in this case depends on the security

of the values ZA2
and ZB2

. Also note that the adversary knows the value eskB . However,
the ephemeral public key epkA is protected by the security of CA, since the long-term
secret key skB is not revealed to the adversary A.

Case 1(d). The security in this case is similar to that of Case 1(c). Here the adversary
A learns the long-term DH key of UB , i.e., b = bL · bR, the secret key skUB and the
ephemeral secret key eskA of party UA. In this case, challenger uses the leakage oracle
of the AFL-CCA-2 PKE scheme and the LRS scheme to answer leakage queries for UA.
As before, the adversary can compute the value ZA1 = ZB1 = gab. So the secrecy of the
session key in this case depends on the security of the values ZA2

and ZB2
. The adversary

also knows the value eskA. However, the ephemeral public key epkB is protected by the
security of CB , since the long-term secret key skA is not revealed to the adversary A.

In Case 2 , the partner to the test session does not exist. By the freshness condition,
the adversary is not allowed to corrupt the peer to the test/challenge session. The proof
for Case 2(a) is similar to the proof of Case 1(c). The situation that the ephemeral secret
key of the partner to the test session is given to A is the same as the case that the
test session has no matching session because A can decide arbitrary ephemeral key. By a
similar argument the proof for Case 2(b) is also similar to the analysis for Case 1(d).

Proof. We split the proof of Theorem 2 into two main cases: when the partner to the test
session exists, and when it does not. The proof of this theorem will proceed via the game
hopping technique [Sho04]: define a sequence of games and relate the adversary’s advantage
of distinguishing each game from the previous game to the advantage of breaking one of
the underlying cryptographic primitive. We use AdvGameδ(M) to denote the advantage
of the adversary M in Game δ. We also assume that there are n honest users/parties
denoted as {U1, · · · , Un}, and ` is the maximum number of sessions that can be executed
by a party simultaneously with other parties.

6.4 Partner to the test session exists

Let ΠsU,V be the oracle involved in the Test session and let Πs
′

V,U denote the partner oracle.
This case can be further split into the following sub-cases:
(1) The adversary A issues Corrupt(U) and Corrupt(V).

(2) A issues EphemeralKeyReveal(U, V, s) and EphemeralKeyReveal(V,U, s′).

(3) A issues Corrupt(U) and EphemeralKeyReveal(V,U, s′).

(4) A issues EphemeralKeyReveal(U, V, s) and Corrupt(V).

Analysis of Case B.1.1.

Game 0. This is the original game. When the Test query is asked, the Game 0 challenger

chooses a random bit b
$←− {0, 1}. If b = 1, the real session key is given toM, otherwise a

random value chosen from the same session key space is given. So, we have:

AdvGame0(M) = AdvBAFL-eCK
P (A). (1)

Game 1. Same as Game 0 with the following exception: before M begins, two dis-

tinct random principals U∗, V ∗
$←− {U1, U2, · · · , Un} are chosen and two random numbers

s, s′
$←− [`] are chosen. If A poses Test query to an oracle except ΠsU∗,V ∗ and the matching

session is not the j-th session of party V ∗, i.e. Πs
′

V ∗,U∗ , the experiment halts. The proba-

bility of Game 1 to be halted due to incorrect choice of the test session is (1− 1
n(n−1)`2).

Unless the incorrect choice happens, Game 1 is identical to Game 0. Hence,

18

AdvGame1(M) ≥ 1

n2`2
AdvGame0(M). (2)

Game 2. Same as Game 1 with the following exception: the challenger randomly chooses

z
$←− Z∗q and computes SK ← F (CDH(U, V), sid) ⊕ F (gz, sid). When the adversary asks

the Test(U∗, V ∗, s∗) query, Game 2 challenger will answer with SK.

Let U , V be the two long-term Diffie-Hellman public keys of the protocol principals U∗,
V ∗ respectively, such that U = gu, V = gv and CDH(U, V) = guv. We construct an
algorithm B against a DDH challenger, using the adversary A as a sub routine. B sets
all the long-term secret/public key pairs (Diffie-Hellman and encryption key pairs) to
all protocol principals. The DDH challenger sends values (gx, gy, gz) such that z = xy or

z
$←− Z∗p as the inputs to the algorithm B. Algorithm B simulates answers to the adversarial

queries as follows:

1. Send(U, V, s,m, f)- If U∗ is the initiator, B sends the ciphertext CA ← (pkV ∗ , epkA)
to A as the first message of the test session. Upon receiving the second protocol
message CB ← (pkU∗ , epkB) from V ∗ to U∗, B computes the session key as SK ←
F (CDH(U, V), U∗||CA||V ∗||CB)
⊕ F (gz, U∗||CA||V ∗||CB).

If U∗ is the responder, upon receiving the first protocol message CA ← (pkU∗ , epkA)
from V ∗ to U∗, B sends CB ← (pkV ∗ , epkB) to A as the second protocol message of the
test session, and computes the session key as SK ← F (CDH(U, V), V ∗||CA||U∗||CB)⊕
F (gz, V ∗||CA||U∗||CB). For all other cases, B can decrypt incoming protocol messages
and execute the protocol normally. Since B has the long-term secret keys of the all
the parties, it can compute the output of the leakage functions submitted by A for
both parties U and V and return back the output to A.

2. SessionKeyReveal(U, V, s)- SessionKeyReveal query is not allowed to the target session
or the partner of the target session as per the freshness conditions. B can compute all
the other session keys by executing the protocol normally.

3. EphemeralKeyReveal(U, V, s)- The adversary cannot make this query to the owner of
the test session and partner to the test session, i.e., when U = U∗, V = V ∗, s = s∗

and U = V ∗, V = U∗, s = s′∗, the adversary cannot ask this query. For all other
EphemeralKeyReveal queries B can answer correctly, because B has the ephemeral
keys.

4. Corrupt(U)- The adversary can corrupt queries on all the protocol principles including
the owner of the test session and partner to the test session. Since B has the long-term
of all the principles, it can answer the Corrupt query for all the principles.

5. Test(U, V, s)- When U = U∗, V = V ∗, s = s∗, B answers with SK as computed above
in the Send query. Otherwise it aborts the game.

If B’s input is a Diffie-Hellman triple, simulation constructed by B is identical to Game
1, otherwise it is identical to Game 2. If A can distinguish the difference between games,
then B can answer the DDH challenge. Hence,

|AdvGame2(A)− AdvGame1(A)| ≤ AdvDDH
B (κ). (3)

Game 3. Same as Game 2 with the following exception: the challenger randomly chooses

SK
$←− SK and sends it to the adversary A as the answer to the Test(U∗, V ∗, s∗) query.

If A can distinguish the difference between Game 2 and Game 3, then A can be used as a
subroutine of an algorithm D, which is used to distinguish whether the session key value
SK is computed using the real PRF with a hidden key, or using a random function. D
simulates the execution environment to A as follows:

19

1. Send(U, V, s,m)- If U∗ is the initiator, upon receiving the second protocol message CB
from V ∗ to U∗, it computes the session key as SK ← F (CDH(U, V), U∗||CA||V ∗||CB)⊕
OraclePRF(U∗||CA||V ∗||CB).

If U∗ is the responder, upon receiving the first protocol message CA from V ∗ to U∗, it
computes the session key as SK ← F (CDH(U, V), V ∗||CA||U∗||CB)⊕OraclePRF(V ∗||CA||U∗||CB).
For all the other cases of Send queries, D can execute the protocol normally. The leak-
age queries are also handled in a similar manner as defined above.

2. SessionKeyReveal(U, V, s)- SessionKeyReveal query is not allowed to the target session
or the partner of the target session as per the freshness conditions. D can compute
all the other session keys by executing the protocol normally.

3. EphemeralKeyReveal(U, V, s)- The adversary cannot make this query to the owner of
the test session and partner to the test session, i.e., when U = U∗, V = V ∗, s = s∗

and U = V ∗, V = U∗, s = s′∗, the adversary cannot ask this query. For all other
EphemeralKeyReveal queries D can answer correctly, because D has the ephemeral
keys.

4. Corrupt(U)- The adversary can corrupt queries on all the protocol principles including
the owner of the test session and partner to the test session. Since D has the long-term
of all the principles, it can answer the Corrupt query for all the principles.

5. Test(U, V, s)- When U = U∗, V = V ∗, s = s∗, D answers with SK as explained in the
Send query. Otherwise it aborts the game.

For A, the simulation by D is same as the Game 2 if the oracle is the PRF with hidden
key. Otherwise, the simulation by D is same as Game 3. Thus we have,

|AdvGame2(A)− AdvGame1(A)| ≤ εPRF. (4)

In this game, i.e., in Game 3, the session key in the Test session is perfectly randomized.
Thus, A cannot obtain any advantage from Test query. So we have, AdvGame3(A) = 0.

Using equations (1)-(4), we get:

AdvBAFL-eCK
P (A) ≤ n2l2 max(AdvDDH

B (κ) + εprf).

Analysis of Case B.1.2.

Game 0. Same as Game 0 of Case B.1.1.

Game 1. Same as Game 1 of Case B.1.1.

Game 2. Same as Game 1 with the following exception: The challenger randomly picks

a, b
$←− Z∗p and uses encodings of a and b to simulate the adversarial leakage queries

f = (f1j , f2j) of the protocol principles U∗ and V ∗. We construct an algorithm B against
the LRS protocol using the adversary A as a subroutine.

The (λΛ, ε1)-LRS protocol challenger chooses a0, a1
$←− Z∗p, b0, b1

$←− Z∗p and sends them to

the algorithm B. Further, the LRS protocol challenger randomly chooses a
$←− {a0, a1},

b
$←− {b0, b1}, and uses a and b as the long-term secrets to compute the leakage from

encodings of a and b respectively. Let λΛ = (λL, λR) be the leakage bound on the two
encodings of the secrets a and b. When the algorithm B get (a0, a1) and (b0, b1) as challenge
from the LRS challenger, it uses a0 and b0 as the long-term DH secret keys of the party
U∗ and V ∗ respectively, and computes the corresponding DH public keys. For all other
parties, it sets up the ephemeral secret/public keys by itself. B answers all the leakage
queries of all parties by computing the adversarial leakage function f itself except the
parties U∗ and V ∗. In order to obtain the leakage of the long-term secret key of U∗ and
V ∗, algorithm B queries the LRS protocol challenger with the adversarial leakage function
f , and passes that leakage to A.

20

If the secret a chosen by the LRS protocol challenger is a0 and the secret b chosen is b0,
the leakage of the DH long-term secret keys of U∗ and V ∗ simulated by B (with the aid
of the LRS protocol challenger) are the real leakages. Then the simulation is identical to
Game 1. Otherwise, the leakage of the long-term DH secret key of U∗ and V ∗ simulated
by B are leakages of random values. Then the simulation is identical to Game 2. Hence,

|AdvGame2(A)− AdvGame1(A)| ≤ 2 ε1. (5)

Game 3. Same as Game 2 with the following exception: the challenger randomly chooses

c
$←− Z∗q and computes SK ← F (gc, sid)⊕ F (CDH(epkA, epkB), sid). When the adversary

asks the Test(U∗, V ∗, s∗) query, Game 3 challenger will answer with SK. Besides, the
leakage queries are also handled differently as described below.

Let epkA, epkB be the (unencrypted) ephemeral DH public keys of the protocol principals
U∗, V ∗ respectively, such that epkA = geskA , epkB = geskB and CDH(epkA, epkB) =
geskAeskB . We construct an algorithm B against a DDH challenger, using the adversary
A as a sub routine. B sets U ← ga as the long term Diffie-Hellman public key of U∗

and V ← gb as the long term Diffie-Hellman public key of V ∗. Moreover,B sets all the
long-term secret/public key pairs (Diffie-Hellman and encryption key pairs) to all protocol

principals. The DDH challenger sends values (ga, gb, gc) such that c = ab or c
$←− Z∗p as

the inputs to the algorithm B. Algorithm B simulates answers to the adversarial queries
as follows:

1. Send(U, V, s,m, f)- If U∗ is the initiator, B sends the ciphertext CA ← (pkV ∗ , epkA) to
A as the first message of the test session. Upon receiving the second protocol message
CB ← (pkU∗ , epkB), B computes the session key as SK ← F (gc, U∗||CA||V ∗||CB) ⊕
F (CDH(epkA, epkB), U∗||CA||V ∗||CB).

If U∗ is the responder, upon receiving the first protocol message CA ← (pkU∗ , epkA)
from V ∗ to U∗, B sends CB ← (pkV ∗ , epkB) to A as the second protocol message
of the test session, and computes the session key as SK ← F (gc, U∗||CA||V ∗||CB)⊕
F (CDH(epkA, epkB), U∗||CA||V ∗||CB). For all other cases, B can decrypt incoming
protocol messages and execute the protocol normally.
The adversarial leakage queries for principles U∗ and V ∗ are answered using the
leakage oracle of the AFL-LR-CCA-2 secure PKE scheme and the leakage oracle of
the LRS encoding scheme. In other words, B forwards the tuple leakage function
f = (f1, f2) to the leakage oracle of the AFL-LR-CCA-2 secure PKE scheme E to
obtain leakage from the encryption secret keys skU∗ and skV ∗ . It also forwards the
leakage function f to the leakage oracle of the LRS encoding scheme. It then forwards
the responses of both these oracles to the adversary A.

2. SessionKeyReveal(U, V, s)- SessionKeyReveal query is not allowed to the target session
or the partner of the target session as per the freshness conditions. B can compute all
the other session keys by executing the protocol normally.

3. EphemeralKeyReveal(U, V, s)- B can answer all the EphemeralKeyReveal queries, since
it has all the the ephemeral keys.

4. Corrupt(U)- The adversary can corrupt queries on all the protocol principles excluding
the principles U∗ and V ∗. B can answer to all other Corrupt queries since it has the
long-term of all other principles.

5. Test(U, V, s)- When U = U∗, V = V ∗, s = s∗, B answers with SK as computed above
in the Send query. Otherwise it aborts the game.

If B’s input is a Diffie-Hellman triple, simulation constructed by B is identical to Game
2, otherwise it is identical to Game 3. If A can distinguish the difference between games,
then B can answer the DDH challenge. Hence,

21

|AdvGame3(A)− AdvGame2(A)| ≤ AdvDDH
B (κ). (6)

Game 4. Same as Game 3 with the following exception: the challenger randomly chooses

SK
$←− SK and sends it to the adversary A as the answer to the Test(U∗, V ∗, s∗) query.

If A can distinguish the difference between Game 2 and Game 3, then A can be used as a
subroutine of an algorithm D, which is used to distinguish whether the session key value
SK is computed using the real PRF with a hidden key, or using a random function. D
simulates the execution environment to A as follows:

1. Send(U, V, s,m)- If U∗ is the initiator, upon receiving the second protocol message CB
from V ∗ to U∗, it computes the session key as SK ← OraclePRF(U∗||CA||V ∗||CB) ⊕
F (CDH(epkA, epkB), U∗||CA||V ∗||CB).

If U∗ is the responder, upon receiving the first protocol message CA from V ∗ to U∗, it
computes the session key as SK ← OraclePRF(U∗||CA||V ∗||CB)⊕F (CDH(epkA, epkB),
U∗||CA||V ∗||CB). For all the other cases of Send queries, D can execute the protocol
normally. The leakage queries are also handled in a similar manner as defined above.

2. SessionKeyReveal(U, V, s)- SessionKeyReveal query is not allowed to the target session
or the partner of the target session as per the freshness conditions. D can compute
all the other session keys by executing the protocol normally.

3. EphemeralKeyReveal(U, V, s)- B can answer all the EphemeralKeyReveal queries, since
it has all the the ephemeral keys.

4. Corrupt(U)- The adversary can corrupt queries on all the protocol principles excluding
the principles U∗ and V ∗. B can answer to all other Corrupt queries since it has the
long-term of all other principles.

5. Test(U, V, s)- When U = U∗, V = V ∗, s = s∗, B answers with SK as computed above
in the Send query. Otherwise it aborts the game.

For A, the simulation by D is same as the Game 3 if the oracle is the PRF with hidden
key. Otherwise, the simulation by D is same as Game 4. Thus we have,

|AdvGame2(A)− AdvGame1(A)| ≤ εPRF. (7)

In this game, i.e., in Game 3, the session key in the Test session is perfectly randomized.
Thus, A cannot obtain any advantage from Test query. So we have, AdvGame3(A) = 0.
Using the above equations in this case, we get:

AdvBAFL-eCK
P (A) ≤ n2`2 max(2ε1 + AdvDDH

B (κ) + εprf).

Analysis of Case B.1.3.

Game 0. Same as Game 0 of Case B.1.1.

Game 1. Same as Game 1 of Case B.1.1.

Game 2. Same as Game 1 with the following exception: the challenger randomly chooses
a ciphertext C from the ciphertext space as encryption of the ephemeral public key epkA
of the test session ΠsU∗,V ∗ , and sends it to the session Πs

′

V ∗,U∗ .

We construct an AFL-CCA-2 adversary S from A in Game 1 or Game 2 if A can distin-

guish between these games. S picks two random strings epkA0
, epkA1

$←− Z∗p, and passes
them to the challenger of the AFL-CCA-2 security game. From the AFL-CCA2 challenger,

S receives a challenge ciphertext C such that C ← (pkV ∗ , epkAb), where b
$←− {0, 1}. S

uses epkA1
as the decryption of C when answering queries. S performs the following steps

to simulate the execution environment to A.

22

1. Send(U, V, s,m, f)- We consider the following sub-cases:
– U = U∗, V = V ∗, s = s∗:
• If U∗ is the initiator, S sends the ciphertext C to Aas the first message of the

test session. Upon receiving the second protocol message, it computes the ses-
sion key SK ← F (CDH(U, V), U∗||CA||V ∗||CB)⊕F (CDH(epkA1 , epkB), U∗||CA||V ∗||CB).

• If U∗ is the responder, upon receiving the first protocol message sends C to
A, and computes the session key SK ← F (CDH(U, V), V ∗||CA||U∗||CB) ⊕
F (CDH(epkA1

, epkB),
V ∗||CA||U∗||CB).

– U = U∗, V = V ∗, s 6= s∗: Executes the protocol normally.

– U = U∗, V 6= V ∗: Executes the protocol normally.

– U = V ∗

• If U is the initiator and it is the first message, then executes the protocol
normally.

• If this is the initiator and the second protocol message, or the responder,
and if the incoming message is same as C, then use epkA1

as its decryption
(,i.e. the ephemeral public key). Else it uses the decryption oracle to decrypt
incoming messages.

– U , V 6= U∗ or V ∗: Executes the protocol normally.

The leakage queries of A for party V ∗ are answered using the leakage oracle of the
AFL-LR-CCA-2 secure PKE scheme E and the leakage oracle of the LRS scheme Λn,1Z∗p

.

For party U∗, S already knows the its long-term secret keys, and so it can respond
to the leakage queries.

2. SessionKeyReveal(U, V, s)- SessionKeyReveal query is not allowed to the target session
or the partner of the target session as per the freshness conditions. S can compute all
the session keys by executing the protocol.
– For sessions involving V ∗, if the incoming message is same as C, then use epkA1

as its decryption and also while computing the session key.

– For sessions involving V ∗, if the incoming message is different from C, use the
decryption oracle to decrypt the incoming messages.

– Otherwise, S can decrypt all the other incoming messages to protocol principals
by its own.

3. EphemeralKeyReveal(U, V, s): S can answer to this query since it has all the ephemeral
secret keys. Note that, in this case, A is not allowed to ask for EphemeralKeyRe-
veal(U∗, V ∗, s) query by the freshness condition.

4. Corrupt(U)- In this case the adversary cannot ask for Corrupt(V ∗) query, as per the
freshness condition. Apart from that, S can answer all the Corrupt queries since it has
all the secret keys.

5. Test(U, V, s)- When U = U∗, V = V ∗, s = s∗, S answers with SK as computed above
in the Send query. Otherwise it aborts the game.

If the value C is the encryption of the value epkA1 , the simulation constructed by S is
identical to the Game 1, otherwise it is identical to Game 2. Hence,

|AdvGame2(A)− AdvGame1(A)| ≤ AdvAFL-CCA-2
S (κ). (8)

Game 3. Same as Game 2 with the following exception: the challenger randomly chooses

SK
$←− SK and sends it to the adversary A as the answer to the Test(U∗, V ∗, s∗) query.

If A can distinguish the difference between Game 2 and Game 3, then A can be used as a
subroutine of an algorithm D, which is used to distinguish whether the session key value
SK is computed using the real PRF with a hidden key, or using a random function. D
simulates the execution environment to A as follows:

23

1. Send(U, V, s,m, f)- We consider the following sub-cases:

– U = U∗, V = V ∗, s = s∗:

• If U∗ is the initiator, upon receiving the second protocol message, it computes
the session key SK ← F (CDH(U, V), U∗||CA||V ∗||CB)⊕OraclePRF(U∗||CA||V ∗||CB).

• If U∗ is the responder, upon receiving the first protocol message computes the
session key SK ← F (CDH(U, V), U∗||CA||V ∗||CB)⊕OraclePRF(U∗||CA||V ∗||CB).

– U = U∗, V = V ∗, s 6= s∗: Executes the protocol normally.

– U = U∗, V 6= V ∗: Executes the protocol normally.

– U = V ∗

• If U is the initiator and it is the first message, then executes the protocol
normally.

• If this is the initiator and the second protocol message, or the responder, and
if the incoming message is same as C, then use OraclePRF. Else, it executes
the protocol normally.

– U , V 6= U∗ or V ∗: Executes the protocol normally.

If U∗ is the initiator, upon receiving the second protocol message CB from V ∗ to U∗, it
computes the session key as SK ← OraclePRF(U∗||CA||V ∗||CB)⊕F (CDH(epkA, epkB),
U∗||CA||V ∗||CB).

If U∗ is the responder, upon receiving the first protocol message CA from V ∗ to U∗, it
computes the session key as SK ← OraclePRF(U∗||CA||V ∗||CB)⊕F (CDH(epkA, epkB),
U∗||CA||V ∗||CB). For all the other cases of Send queries, D can execute the protocol
normally. The leakage queries are also handled in a similar manner as defined above.

2. SessionKeyReveal(U, V, s)- SessionKeyReveal query is not allowed to the target session
or the partner of the target session as per the freshness conditions. D can compute
all the other session keys by executing the protocol normally.

3. EphemeralKeyReveal(U, V, s)- B can answer all the EphemeralKeyReveal queries, since
it has all the the ephemeral keys.

4. Corrupt(U)- The adversary can corrupt queries on all the protocol principles excluding
the principles U∗ and V ∗. B can answer to all other Corrupt queries since it has the
long-term of all other principles.

5. Test(U, V, s)- When U = U∗, V = V ∗, s = s∗, B answers with SK as computed above
in the Send query. Otherwise it aborts the game.

For A, the simulation by D is same as the Game 2 if the oracle is the PRF with hidden
key. Otherwise, the simulation by D is same as Game 3. Thus we have,

|AdvGame2(A)− AdvGame1(A)| ≤ εPRF. (9)

In this game, i.e., in Game 3, the session key in the Test session is perfectly randomized.
Thus, A cannot obtain any advantage from Test query. So we have, AdvGame3(A) = 0.

Using the above equations in this case, we get:

AdvBAFL-eCK
P (A) ≤ n2`2 max(AdvAFL-LR-CCA-2

S (κ) + εprf).

Analysis of Case B.1.4.

This case is symmetric to the above case, i.e., Case B.1.3. Only the roles of Corrupt and
EphemeralKeyReveal gets swapped from the above case. So we get,

AdvBAFL-eCK
P (A) ≤ n2`2 max(AdvAFL-LR-CCA-2

S (κ) + εprf).

24

6.5 Partner to the test session does not exist

In this case we consider that the partner to the test session does not exist, i.e., ΠsU∗,V ∗
do not have a matching session. Note that when the matching session to the test session
does not exist, the adversary cannot obtain the long-term secret key of the peer to the
test session. We consider the following sub-cases under this case:

(1) The adversary A issues Corrupt(U) query.

(2) A issues EphemeralKeyReveal(U, V, s) query.

Analysis of Case B.2.1. Here the adversary gets the long-term secret key of the owner
of the test session by issuing the query Corrupt(U). The proof in this case is essentially the
same as Case B.1.3. The situation that the ephemeral secret key of Πs

′

V ∗,U∗ is given to A
is the same as ΠsU∗,V ∗ has no matching session because A can decide arbitrary ephemeral
key. Thus the analysis follows from Case B.1.3.

Analysis of Case B.2.2. Here the adversary gets the ephemeral secret key of the session
ΠsU∗,V ∗ . The proof in this case is essentially the same as Case B.1.2. The situation that

the ephemeral secret key of Πs
′

V ∗,U∗ is given to A is the same as ΠsU∗,V ∗ has no matching
session because A can decide arbitrary ephemeral key. Thus the analysis follows from
Case B.1.2.

Thus combining all the cases we get:

AdvBAFL-eCK
P (A) ≤ n2l2 max

(
(2ε1 + AdvDDH

B (κ) + εprf), (AdvAFL-LR-CCA-2
S (κ) + εprf)

)
.

This proves the statement of Theorem 2. ut

7 Conclusion

In this paper, we proposed two generic compilers for after-the-fact leakage. One is a
generic transformation from a leakage-resilient CPA-secure PKE to a leakage-resilient
CCA-2-secure PKE in split-state bounded memory leakage model. The salient feature of
our transformation is that the leakage tolerance of the transformed CCA-2 secure PKE
is exactly same as the leakage tolerance of the underlying CPA-secure PKE and is also
efficient. Our second compiler transforms any after-the-fact leakage-resilient CCA-2 secure
PKE to a leakage-resilient AKE protocol in the BAFL-eCK model. An interesting open
problem would be to design a generic compiler for transforming a CPA-secure PKE to a
CCA-2 secure PKE in the presence of after-the-fact leakage, but in non-split state model.
We also leave open the problem of constructing a generic compiler for leakage-resilient
CPA-secure PKE to a leakage resilient CCA-2 secure PKE in the presence of continuous
after-the-fact leakage.

References

[ABS14] Janaka Alawatugoda, Colin Boyd, and Douglas Stebila. Continuous after-the-fact
leakage-resilient key exchange. In ACISP, pages 258–273. Springer, 2014.

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryp-
tography in the bounded-retrieval model. In Advances in Cryptology-CRYPTO
2009, pages 36–54. Springer, 2009.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hard-
core bits and cryptography against memory attacks. In Theory of Cryptography
Conference, pages 474–495. Springer, 2009.

[Ala15a] Janaka Alawatugoda. Generic construction of an\ mathrm {eCK}-secure key ex-
change protocol in the standard model. International Journal of Information Se-
curity, pages 1–17, 2015.

25

[Ala15b] Janaka Alawatugoda. Generic transformation of a cca2-secure public-key encryp-
tion scheme to an eck-secure key exchange protocol in the standard model. Cryp-
tology ePrint Archive, Report 2015/1248, 2015. http://eprint.iacr.org/2015/1248.

[ASB14] Janaka Alawatugoda, Douglas Stebila, and Colin Boyd. Modelling after-the-fact
leakage for key exchange. In Proceedings of the 9th ACM symposium on Informa-
tion, computer and communications security, pages 207–216. ACM, 2014.

[ASB15] Janaka Alawatugoda, Douglas Stebila, and Colin Boyd. Continuous after-the-fact
leakage-resilient eck-secure key exchange. In IMA International Conference on
Cryptography and Coding, pages 277–294. Springer, 2015.

[BKKV] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan.
Cryptography resilient to continual memory leakage, 2010.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
Advances in Cryptology – CRYPTO93, pages 232–249. Springer, 1994.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their
use for building secure channels. In Advances in Cryptology - EUROCRYPT 2001,
volume 2045 of Lecture Notes in Computer Science, pages 453–474. Springer, 2001.

[CMY+16] Rongmao Chen, Yi Mu, Guomin Yang, Willy Susilo, and Fuchun Guo. Strongly
leakage-resilient authenticated key exchange. In Cryptographers Track at the RSA
Conference, pages 19–36. Springer, 2016.

[Cre11] Cas Cremers. Examining indistinguishability-based security models for key ex-
change protocols: the case of ck, ck-hmqv, and eck. In Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Security, pages
80–91. ACM, 2011.

[DF11] Stefan Dziembowski and Sebastian Faust. Leakage-resilient cryptography from the
inner-product extractor. In International Conference on the Theory and Applica-
tion of Cryptology and Information Security, pages 702–721. Springer, 2011.

[DHLAW10a] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs.
Cryptography against continuous memory attacks. In Foundations of Computer
Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 511–520. IEEE,
2010.

[DHLAW10b] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs.
Efficient public-key cryptography in the presence of key leakage. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 613–631. Springer, 2010.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extrac-
tors: How to generate strong keys from biometrics and other noisy data. SIAM
journal on computing, 38(1):97–139, 2008.

[FKN+15] Eiichiro Fujisaki, Akinori Kawachi, Ryo Nishimaki, Keisuke Tanaka, and Kenji
Yasunaga. Post-challenge leakage resilient public-key cryptosystem in split state
model. IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, 98(3):853–862, 2015.

[Gro06] Jens Groth. Simulation-sound nizk proofs for a practical language and constant
size group signatures. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 444–459. Springer, 2006.

[HL11] Shai Halevi and Huijia Lin. After-the-fact leakage in public-key encryption. In
Theory of Cryptography Conference, pages 107–124. Springer, 2011.

[HSH+09] J Alex Halderman, Seth D Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A Calandrino, Ariel J Feldman, Jacob Appelbaum, and Edward W
Felten. Lest we remember: cold-boot attacks on encryption keys. Communications
of the ACM, 52(5):91–98, 2009.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in CryptologyCRYPTO99, pages 388–397. Springer, 1999.

[Koc96] Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In Advances in CryptologyCRYPTO96, pages 104–113. Springer,
1996.

[Kra05] Hugo Krawczyk. Hmqv: A high-performance secure diffie-hellman protocol. In
Advances in Cryptology – CRYPTO 2005, pages 546–566. Springer, 2005.

26

[LLM07] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of au-
thenticated key exchange. In Provable Security, pages 1–16. Springer, 2007.

[MO11] Daisuke Moriyama and Tatsuaki Okamoto. Leakage resilient eck-secure key ex-
change protocol without random oracles. In Proceedings of the 6th ACM Sym-
posium on Information, Computer and Communications Security, pages 441–447.
ACM, 2011.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography. In Theory
of Cryptography Conference, pages 278–296. Springer, 2004.

[MU08] Alfred Menezes and Berkant Ustaoglu. Comparing the pre-and post-specified peer
models for key agreement. In Information Security and Privacy, pages 53–68.
Springer, 2008.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In
Advances in Cryptology-CRYPTO 2009, pages 18–35. Springer, 2009.

[QL13] Baodong Qin and Shengli Liu. Leakage-resilient chosen-ciphertext secure public-
key encryption from hash proof system and one-time lossy filter. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 381–400. Springer, 2013.

[QL14] Baodong Qin and Shengli Liu. Leakage-flexible cca-secure public-key encryption:
simple construction and free of pairing. In International Workshop on Public Key
Cryptography, pages 19–36. Springer, 2014.

[SEVB10] Augustin P Sarr, Philippe Elbaz-Vincent, and Jean-Claude Bajard. A new se-
curity model for authenticated key agreement. In Security and Cryptography for
Networks, pages 219–234. Springer, 2010.

[Sho99] Victor Shoup. On formal models for secure key exchange. Citeseer, 1999.
[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.

IACR Cryptology ePrint Archive, 2004:332, 2004.
[Too15] Mohsen Toorani. On continuous after-the-fact leakage-resilient key exchange. In

Proceedings of the Second Workshop on Cryptography and Security in Computing
Systems, page 31. ACM, 2015.

[YL16] Zheng Yang and Shuangqing Li. On security analysis of an after-the-fact leak-
age resilient key exchange protocol. Information Processing Letters, 116(1):33–40,
2016.

[ZCC15] Zongyang Zhang, Sherman SM Chow, and Zhenfu Cao. Post-challenge leakage in
public-key encryption. Theoretical Computer Science, 572:25–49, 2015.

27

