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Abstract: Lattice-based cryptography is one of the most promising areas within post-quantum cryptography, and offers
versatile, efficient, and high performance security services. The aim of this paper is to verify the correctness of
the discrete Gaussian sampling component, one of the most important modules within lattice-based cryptog-
raphy. In this paper, the GLITCH software test suite is proposed, which performs statistical tests on discrete
Gaussian sampler outputs. An incorrectly operating sampler, for example due to hardware or software errors,
has the potential to leak secret-key information and could thus be a potential attack vector for an adversary.
Moreover, statistical test suites are already common for use in pseudo-random number generators (PRNGs),
and as lattice-based cryptography becomes more prevalent, it is important to develop a method to test the
correctness and randomness for discrete Gaussian sampler designs. Additionally, due to the theoretical re-
quirements for the discrete Gaussian distribution within lattice-based cryptography, certain statistical tests for
distribution correctness become unsuitable, therefore a number of tests are surveyed. The final GLITCH test
suite provides 11 adaptable statistical analysis tests that assess the exactness of a discrete Gaussian sampler,
and which can be used to verify any software or hardware sampler design.

1 Introduction

Post-quantum cryptography as a research field
has grown substantially recently, essentially due to
the growing concerns posed by quantum comput-
ers. The proviso being to provide long-term and
highly secure cryptography, practical in comparison
to RSA/ECC, but more importantly being adequately
safe from quantum computers. This requirement is
also hastened by the need for “future proofing” cur-
rently secure data, ensuring current IT infrastructures
are quantum-safe before large-scale quantum comput-
ers are realised (Campagna et al., 2015).

As such, government agencies, companies, and
standards agencies are planning transitions towards
quantum-safe algorithms. The Committee on Na-
tional Security Systems (CNSS) (CNSS, 2015) and
the National Technical Authority for Information As-
surance (CESG/NCSC) (CESG, 2016) are now plan-
ning drop-in quantum-safe replacements for current
cryptosystems. The ETSI Quantum-Safe Cryptogra-
phy (QSC) Industry Specification Group (ISG) (Cam-
pagna et al., 2015) is also highly active in research-
ing industrial requirements for quantum-safe real-

world deployments. NIST (Moody, 2016) have also
called for quantum-resistant cryptographic algorithms
for new public-key cryptography standards, similar to
previous AES and SHA-3 competitions.

Lattice-based cryptography (Ajtai, 1996; Regev,
2005) is a very promising candidate for quantum-safe
cryptography. Lattice-based cryptography bases its
hardness on finding the shortest (or closest) vector in a
lattice, which is currently resilient to all known quan-
tum reductions and hence attacks by a quantum com-
puter. Furthermore, lattice-based cryptography also
offers extended functionality whilst being more effi-
cient than ECC and RSA based primitives of public-
key encryption (Pöppelmann and Güneysu, 2014) and
digital signature schemes (Howe et al., 2015).

Lattice-based cryptoschemes are usually founded
on either the learning with errors problem (LWE)
(Regev, 2005) or the short integer solution problem
(SIS) (Ajtai, 1996) or variants of these over ideal
lattices. The general idea within lattice-based cryp-
tosystems is to hide computations on secret-data with
noise, usually discrete Gaussian noise, which would
otherwise be retrievable via Gaussian elimination.
The rationale for using discrete Gaussian noise (as



opposed to another probability distribution) is that
it allows for more efficient lattice-based algorithms,
with smaller output sizes such as ciphertexts or sig-
natures. Background on discrete Gaussian sampling
techniques is provided by Dwarakanath and Galbraith
(Dwarakanath and Galbraith, 2014) and Howe et al.
(Howe et al., 2016).

The specifications for the discrete Gaussian noise
within lattice-based cryptography are very precise.
The statistical distance between the theoretical dis-
crete Gaussian distribution and the one observed
in practice should be overwhelmingly small (Peik-
ert, 2010), usually at least as small as 2−λ for λ ∈
{64, . . . ,128}. Providing guidelines to test implemen-
tations of discrete Gaussian samplers is therefore nec-
essary for real-world applications in order to prevent
attacks exploiting biased samplers. Moreover, an er-
roneously operating sampler could affect the target se-
curity level of the overall lattice-based cryptoscheme.

Additionally, the test suite is applicable for lattice-
based cryptoschemes whose outputs are also dis-
tributed via the discrete Gaussian distribution, such as
lattice-based encryption schemes (Lindner and Peik-
ert, 2011; Lyubashevsky et al., 2013) and digital sig-
natures (Gentry et al., 2008; Ducas et al., 2013).

Indeed, a biased sampler or cryptoscheme could
be a potential attack vector for an adversary. Opera-
tional errors or bugs within sampler software or hard-
ware designs, could significantly effect the theoretical
security of the lattice-based cryptoscheme. To combat
these issues for PRNGs, the DIEHARD (Marsaglia,
1985; Marsaglia, 1993; Marsaglia, 1996) and NIST
SP 800-22 Rev. 1a (Bassham III et al., 2010) test
suites were created. This is therefore clearly needed
for discrete Gaussian random number generators.

This research investigates and proposes a discrete
Gaussian testing suite for lattice-based cryptography,
named GLITCH, which tests the correctness of a
generic discrete Gaussian sampler (or lattice-based
cryptoscheme) design. GLITCH takes as input his-
togram data, thus being able to test any discrete Gaus-
sian sampling design, either in hardware or software.
This paper surveys statistical tests that could be used
for this purpose, proposing 11 tests appropriate for
use within lattice-based cryptography. These test the
main parameters and the shape of the distribution, and
include normality and graphical tests.

The next section provides prerequisites on the dis-
crete Gaussian distribution. Section 3 details a survey
of the tests considered for the discrete Gaussian test
suite, and is furthered by the 11 tests considered in
GLITCH. The results are then analysed in Section 5.

2 The Discrete Gaussian
Distribution

The discrete Gaussian distribution or discrete nor-
mal distribution (DZ,σ) over Z with mean µ = 0 and
parameter σ is defined to have a weight proportional
to ρσ(x) = exp(−(x− µ)2/(2σ2)) for all integers x.
The variable Sσ = ρσ(Z) = ∑

∞
k=−∞

ρσ(k) ≈
√

2πσ is
then defined so that the probability of sampling x ∈ Z
from the distribution DZ,σ is ρσ(x)/Sσ. For appli-
cations within lattice-based cryptography, it is as-
sumed that these parameters are fixed and known in
advanced.

Theoretically, the discrete Gaussian distribution
has infinitely long tails and infinitely high precision,
therefore in practice compromises have to be made
which do not hinder the integrity of the scheme. The
discrete Gaussian parameters needed are (µ,σ,λ,τ);
representing the sampler’s centre, standard deviation,
precision, and tail-cut, respectively.

The mean (µ) is the centre of a normalised distri-
bution. Within lattice-based cryptography, the mean
is usually set to µ = 0.

The standard deviation (σ) controls the distribu-
tion’s shape by quantifying the dispersion of data
from the mean. The standard deviation depends on
the modulus used within LWE or SIS. For instance in
LWE, should σ be too small the hardness assumption
may become easier than expected, and if σ is too large
the problem may not be as well-defined as required.

The precision parameter (λ) governs the level of
precision required for an implementation, exacting
the statistical distance between the “perfect” theoret-
ical discrete Gaussian distribution and the “practical”
to be no greater than 2−λ, corresponding directly to
the scheme’s security level.

The tail-cut parameter (τ) administers the exclu-
sion point on the x-axis, for a particular security level.
That is, given a target security level of b-bits, the tar-
get distance from “perfect” need be no less than 2−b.
Thus, instead of considering |x| ∈ {0,∞}, it is instead
considered as |x| ∈ {0,στ}. Applying the reduction in
precision also affects the tail-cut parameter, which is
calculated as τ =

√
λ×2× ln(2).

These parameters are chosen via the scheme’s
security proofs. For example, the Lindner-Peikert
lattice-based encryption scheme (Lindner and Peik-
ert, 2011) requires parameters (µ = 0,σ = 3.33,λ =
128,τ = 13.3) and the BLISS lattice-based signature
scheme (Ducas et al., 2013) requires much larger pa-
rameters (µ = 0,σ = 215,λ = 128,τ = 13.3). The
next section presents a variety of statistical tests to
check these parameters from observed data outputs
from a generic discrete Gaussian sampler.



3 A Discrete Gaussian Testing Suite

This section describes the GLITCH discrete Gaus-
sian testing suite for use within lattice-based cryptog-
raphy. To the best of the authors’ knowledge, this is
the first proposal for testing the outputs of discrete
Gaussian samplers for use within lattice-based cryp-
tography. That is, if the samplers are actually pro-
ducing the distribution required for specific values for
µ,σ,τ, and λ. GLITCH can also be applied to outputs
of cryptoschemes which follow the discrete Gaussian
distribution, such as the BLISS signature scheme.

3.1 Statistical Testing Within
Cryptography

Statistical testing is used to estimate the likelihood
of a hypothesis given a set of data. For example,
in cryptanalysis, statistical testing is commonly used
to detect non-randomness in data, that is to distin-
guish the output of a PRNG from a truly random bit-
stream or to find the correctly decrypted message.
The need for random and pseudorandom numbers
arises in many cryptographic applications. For exam-
ple, common cryptosystems employ keys that must be
generated in a random fashion. Many cryptographic
protocols also require random or pseudorandom in-
puts at various points, for example, for auxiliary quan-
tities used in generating digital signatures, or for gen-
erating challenges in authentication protocols.

Moreover, the inclusion of statistical tests is
paramount when implementing cryptography in prac-
tice. For example, to test a PRNG for cryp-
tographically adequate randomness, the test suites
DIEHARD (Marsaglia, 1985; Marsaglia, 1993;
Marsaglia, 1996) and NIST SP 800-22 Rev. 1a
(Bassham III et al., 2010) were proposed to check
for insecure randomness, that is, to test a PRNG for
weaknesses that an adversary could exploit.

3.2 Statistical Testing For Lattice-Based
Cryptography

To exploit or attack a PRNG, an algorithm could de-
termine the deviation of its output from that of a truly
uniformly random deviation. This is especially im-
portant for the discrete Gaussian distribution within
lattice-based cryptography, since these values hide se-
cret information. Normality tests can be used to deter-
mine if, and how well, a data set follows the required
normally structured distribution. More specifically,
statistical hypothesis testing is used, which under the
null hypothesis (H0), states that the data is normally
distributed. The alternative hypothesis (Ha), states

that the data is not normally distributed. All of the
methods proposed for testing the correctness of a dis-
crete Gaussian sampler design only require an input
of histogram values output from the sampler.

For the test suite, two normality tests are adopted,
each using the same statistics of the discrete Gaussian
samples, by producing two important (and somewhat
distinct) results. Both also follow the same hypothe-
ses; the null hypothesis that the sample data is nor-
mally distributed, and the alternative hypothesis that
they are not normally distributed.

The first test considered is the Jarque-Bera (Jar-
que and Bera, 1987) goodness-of-fit test, which takes
the skewness and kurtosis from the sample data, and
matches it with the discrete Gaussian distribution. It
tests the shape of the sampled distribution, rather than
dealing with expected values, which makes the test
significantly simpler than, say, a χ2 test. Interest-
ingly, if the sample data is normally distributed, the
test statistic from the Jarque-Bera test asymptotically
follows a χ2 distribution with two degrees of freedom,
which is then used in the hypothesis test.

The second test is the D’Agostino-Pearson K2 om-
nibus test (D’Agostino et al., 1990), and is another
goodness-of-fit test using the sample skewness and
kurtosis. This test however is an omnibus test, which
tests whether the explained deviation in the sample
data is significantly greater than the overall unex-
plained deviation. The test also has the same asymp-
totic property as the Jarque-Bera test.

D’Agostino et al. (D’Agostino et al., 1990) anal-
yse the asymptotic performances of more commonly
used normality tests; those being the χ2 test, Kol-
mogorov test (Kolmogorov, 1956), and the Shapiro-
Wilk W-test (Shapiro and Wilk, 1965). These are
important results, since the sample sizes required are
far beyond those used in typical applications, in say,
medicine or econometrics. Additionally it is recom-
mended not to use the χ2 test and Kolmogorov test,
due to their poor power properties. That is, for a large
sample size, the probability of making a Type II error
(that is, incorrectly retaining a false null hypothesis)
significantly increases. Furthermore, for sample sizes
N > 50, D’Agostino et al. state the Shapiro-Wilk W-
test is no longer available, and even with the test ex-
tended (N ≤ 2000) (Royston, 1982), it still falls be-
low the required sample size. The final major test for
normality is the Anderson-Darling test (Anderson and
Darling, 1952; Anderson and Darling, 1954). How-
ever, the D’Agostino-Pearson K2 omnibus test is pre-
ferred since the Anderson-Darling test is biased to-
wards the tails of the distribution (Razali et al., 2011).

The final tests are graphical. The first simply
plots the observed histogram data versus the expected



Table 1: Details of the GLITCH software test suite.

Test Number Test Description Test Formula

Test 1

Sample Mean (x̄) x̄ = (∑N
i=1 xihi)/N

Standard Error of x̄ SEx̄ = s/
√

N
Confidence Interval of x̄ x̄± tα/2SEx̄
Accept Null Hypothesis? Accept if |µ| ∈ {0, . . . , x̄+ tα/2SEx̄}

Test 2

Sample Standard Deviation (s) s =
√

(∑N
i=1(xi− µ̄1)2hi)/N

Standard Error of s SEs = s/
√

2(N−1)
Confidence Interval of s s± tα/2SEs
Accept Null Hypothesis? Accept if |σ| ∈ {0, . . . ,s+ tα/2SEs}

Test 3 Sample Tail-Cut (τ̄) τ̄ = max(xi)/s

Test 4 Sample Skewness (ω) ω = m3
√

N(N−1)/(N−2)
Standard Error of ω SEω =

√
(6N(N−1))/((N−2)(N +1)(N +3))

Test 5 Sample Excess Kurtosis (κ) κ = (m4/s4)−3
Standard Error of κ SEκ = 2SEω

√
(N2−1)/((N−3)(N +5))

Test 6 Sample Hyperskewness ω∗ = m5/s5

Test 7 Sample Excess Hyperkurtosis κ∗ = m6/s6

Test 8 Jarque-Bera Test For Normality JB = (N/6)(ω2 +((κ−3)2)/4)
Accept Null Hypothesis? Accept if JB < χ2

α

Test 9 D’Agostino-Pearson Omnibus Test K2 = Z1(ω)
2 +Z2(κ)

2

Accept Null Hypothesis? Accept if K2 < χ2
α

Test 11 Coefficient of Determination R2 = 1− (∑i=1 e2
i /∑i=1(yi− ŷ)2)

data. The second graphic is a quantile-quantile (QQ)
plot. This test illustrates how strongly the histogram
data follows a discrete Gaussian distribution, pro-
viding a QQ-plot and coefficient of determination
(R2). The QQ-plot is supplementary to the numeri-
cal assessment of normality and is a graphical method
for comparing two probability distributions. In this
case, these two probability distributions are the ob-
served and expected quantiles of the discrete Gaus-
sian distribution. This test is essentially the same
as a probability-probability (PP) plot, wherein a data
set is plotted against its target theoretical distribu-
tion. However, QQ-plots have the ability to arbitrarily
choose the precision (to equal that of λ, say 128-bits)
as well as being easier to interpret in the case of large
sample sizes, hence its inclusion over PP-plots.

The R2 value complements this plot, analysing
how well the linear reference line approximates the
expected data points. The output R2 ∈ [0,1] is a mea-
sure of the proportion of total variance of the out-
comes, which is explained by the model. Therefore,
the higher the R2 value, the better the model fits the
data.

3.3 The GLITCH Test Suite

The GLITCH test suite is provided in Python and
is publicly available online1. Additionally, discrete

1GLITCH software test suite available at https://
github.com/jameshoweee/glitch

Gaussian data sets are provided. Concise details for
GLITCH are given in Table 1. GLITCH is designed to
take, as input, a histogram of discrete Gaussian sam-
ples. This is seen as advantageous over an input of
listed samples, as calculations are significantly sim-
plified, are significantly faster, and decrease storage.
The suite of tests are specifically chosen so that each
parameter in the discrete Gaussian sampling stage is
tested. The main parameters under test are the mean
and standard deviation of the discrete Gaussian (µ,σ),
with additional tests included to check the shape of
the distribution, and finally normality tests. Preci-
sion is also adaptable and set to 128-bits as per most
lattice-based cryptoschemes.

3.3.1 Tests (1-3): Testing Parameters

The first set of tests are to approximate the main
statistical parameters µ and σ, producing values for
sample mean (x̄) and sample standard deviation (s).
This is done by using adapted formulas for the
first (m1) and second (m2) moments, taking as in-
put a histogram of values (xi,hi), where m1 = x̄ =
(∑N

i=1 xihi)/N corresponding to the sample mean, and
m2 = s2 = (∑N

i=1(xi− x̄)2hi)/N corresponding to the
sample variance, for a sample size N. The subsequent
moments are then mk = (∑N

i=1(xi− x̄)khi/N)/σk, us-
ing sample standard deviation s =

√
m2.

Next, the standard error (SE) is calculated for the
sampling distribution. This statistic measures the re-
liability of a given sample’s descriptive statistics with



respect to the population’s target values, that is, the
mean and standard deviation. Additionally, the stan-
dard error is used in measuring the confidence in the
sample mean and sample standard deviation. For this,
a two-tail t-test is constructed, given the null hypoth-
esis µ = 0 (similarly for σ), with the alternate hypoth-
esis that they are not equal. So, if the null hypothesis
is accepted, it is concluded that a 100(1−α)% confi-
dence interval (C.I.) is x̄± εx̄ and s± εs, where εx̄ =
tα/2SEx̄ and εs = tα/2SEs. Since the aim of these tests
if for the highest confidence (99.9%), tα/2 = 3.29.

3.3.2 Tests (4-7): Testing the Distribution’s
Shape

The next set of tests deal with statistical descriptors of
the shape of the probability distribution. The first de-
scriptor is the skewness; which is a measure of sym-
metry of the probability distribution and is adapted
from the third moment. The skewness for a normally
shaped distribution, or any symmetric distribution,
is zero. Moreover, a negative skewness implies the
left-tail is long, relative to the right-tail, and a posi-
tive skewness implies a long right-tail, relative to the
left-tail. The population skewness is simply m3/s3,
however the sample skewness must be adapted to
ω = m3

√
N(N−1)/N−2 to account for bias (Joanes

and Gill, 1998). Also SEω is calculated, to show the
relationship between the expected skewness and ω.

The forth moment is kurtosis; and describes the
peakedness of a distribution. For a normally shaped
distribution, the target sampled kurtosis is three, and
is calculated as m4/s4. More commonly, the sam-
pled excess kurtosis is used and is defined as κ =
(m4/s4)− 3. A positive kurtosis indicates a peaked
distribution, similarly a negative kurtosis indicates a
flat distribution. It can also be seen, given an increase
in kurtosis, that probability mass has moved from the
shoulders of the distribution, to its centre and tails
(Balanda and MacGillivray, 1988). Similarly, SEκ is
calculated to show the relationship between the ex-
pected excess kurtosis and κ.

An appropriate test for these statistical descriptors
would be a z-test, where confidence intervals could
also be calculated for some confidence level α. How-
ever, under a null hypothesis of normality, z-tests tend
to be easily rejected for larger samples (N > 300)
taken from a not substantially different normal dis-
tribution (Kim, 2013).

Higher-order moments, specifically the fifth and
sixth, are used in the last two tests on the distribu-
tion’s shape. The first of these tests hyper-skewness
ω∗ = m5/s5, which still measures symmetry but is
more sensitive to extreme values (Hinton, 2014, p.97).
Likewise, the second of these tests is for excess hyper-

kurtosis κ∗ = m6/s6, which tests for peakedness
with greater sensitivity towards more-than-expected
weight in the tails (Hinton, 2014, p.100).

3.3.3 Tests (8-9): Normality Testing

These tests calculate the test statistic and p-value
for the two normality tests described in Section 3,
these are the Jarque-Bera (Jarque and Bera, 1987) and
D’Agostino-Pearson (D’Agostino et al., 1990) om-
nibus tests. The Jarque-Bera test statistic is calculated
as JB = (N/6)(ω2 +((κ−3)2/4)), where its p-value
is taken from a χ2 distribution with two degrees of
freedom. The null hypothesis (of normality) is re-
jected if the test statistic is greater than the χ2 p-value.

The D’Agostino-Pearson omnibus test is based on
transformations of the sample skewness (Z1(ω)) and
sample kurtosis (Z2(κ)), which are combined to pro-
duce an omnibus test. This statistic detects deviations
from normality due to either skewness or kurtosis and
is defined as K2 = Z1(ω)

2 +Z2(κ)
2.

3.3.4 Tests (10-11): Illustrating Normality

D’Agostino et al. (D’Agostino et al., 1990) recom-
mend, as well as test statistics for normality, graph-
ical representations of normality are also provided.
Hence, the final two tests are illustrative tests on the
discrete Gaussian samples. The first graphic, shown
in Figures 1 and 3, plots the histogram of discrete
Gaussian observed values (in blue) alongside the ex-
pected values (in red).

The second graphic is a quantile-quantile (QQ)
plot, shown in Figures 2 and 4. For this test, the
calculated z-scores are plotted against the expected z-
scores, where if the data is normally distributed, the
result will be a straight diagonal line (Field, 2009,
p.145-148). A 45-degree reference line is plotted,
which will overlap with the QQ-plot if the distribu-
tion follows the required distribution.

The coefficient of determination (R2) value is
calculated as R2 = 1− (SSres/SStot), where SSres =
∑i(yi− fi)

2 is the residual sum of squares and SStot =
∑i(yi− x̄)2 is the total sum of squares, yi is the ob-
served data set and fi is the expected values.

4 Results

Example results are provided in Listings 1 and 2.
The results used are from a Bernoulli sampler. The
first data set passes all tests, as shown in Listing 1. A
second data set, used in Listing 2, is generated with
an incorrect standard deviation and fails test 2, show-
ing that GLITCH detects errors in discrete Gaussian



Listing 1: GLITCH test suite output for a working discrete Gaussian sampler of sample size 236. Results meet all requirements
for expected values and passes all hypothesis tests.

1 // GLITCH: Discrete Gaussian Sampling Test Results :
2 // Target Sigma: 215.72773727315683 −−Sampler: bernoulli −−Sample Size: 68719476736
3

4 (1) Sample Mean: 0.001371196849504485726356506348
5 Standard Error of the Mean: 0.0008229334036229891103988139999
6 C.I . of the Sample Mean = 0.001371196849504485726356506348 +/− 0.002707450897919634202448565658

with 99.9% confidence
7 ∗Accept∗ Null Hypothesis for Sample Mean with 99.9% Confidence
8

9 (2) Sample Standard Deviation : 215.7270541593448573563866972
10 Standard Error of the Standard Deviation : 0.0005819017901709756494057053363
11 C.I . of the Sample Standard Deviation = 215.7270541593448573563866972 +/−

0.001914456889662509907218075053 with 99.9% confidence
12 ∗Accept∗ Null Hypothesis for Sample Standard Deviation with 99.9% Confidence
13

14 (3) Sample Tail−Cut Parameter (Tau): 13.00254161876290147867936900
15 Distance from Target Tail−Cut: 0.3183321597602615326209430641
16

17 (4) Sample Skewness: −0.00001763835979933123583199835026
18 Standard Error of the Sample Skewness: 0.000009344061823767513075122646283
19

20 (5) Sample Excess Kurtosis : −0.000024501635887997449631126
21 Standard Error of the Sample Kurtosis : 0.00001868812364726307815918276254
22

23 (6) Sample Hyperskewness: −0.00009572213233407114802715387328
24

25 (7) Sample Excess Hyperkurtosis : −0.00025338061051584529784336
26

27 (8) Jarque−Bera Normality Test ( test stat , p−value): 4.312166487216671274936539166E−7, 0.999999784392
28 ∗Accept∗ Null Hypothesis of Normality (p−value) with 99.9% Confidence
29 ∗Accept∗ Null Hypothesis of Normality ( test stat ) with 99.9% Confidence
30

31 (9) D’Agostino−Pearson K2 Omnibus Test (test stat , p−value): 0.002934034729343886905514431457,
0.998534058179

32 ∗Accept∗ Null Hypothesis of Normality (p−value) with 99.9% Confidence
33 ∗Accept∗ Null Hypothesis of Normality ( test stat ) with 99.9% Confidence
34

35 (10) Histogram and Quantile−Quantile (QQ) plots :

Figure 1: Histogram of observed (blue) discrete Gaussian
samples versus expected (red). The observed data matches
the expected values.

Figure 2: QQ-plot of the observed discrete Gaussian sam-
ples with the coefficient of determination (R2) value. Both
red and blue lines overlap meaning the observed data
matches the expected values.



Listing 2: GLITCH test suite output for a working discrete Gaussian sampler of sample size 236, but with incorrect target
standard deviation. Null hypothesis is rejected for test 2.

1 // GLITCH: Discrete Gaussian Sampling Test Results :
2 // Target Sigma: 250 −−Sampler: bernoulli −−Sample Size: 68719476736
3

4 (1) Sample Mean: 0.0004157805087743327021598815918
5 Standard Error of the Mean: 0.0008010847977938296437426335266
6 C.I . of the Sample Mean = 0.0004157805087743327021598815918 +/− 0.002635568984741699556373513493

with 99.9% confidence
7 ∗Accept∗ Null Hypothesis for Sample Mean with 99.9% Confidence
8

9 (2) Sample Standard Deviation : 209.9995732328656781292689232
10 Standard Error of the Standard Deviation : 0.0005664524928295926512411119437
11 C.I . of the Sample Standard Deviation = 209.9995732328656781292689232 +/−

0.001863628701409359842707693491 with 99.9% confidence
12 ∗Reject∗ Null Hypothesis for Sample Standard Deviation with 99.9% Confidence
13

14 (3) Sample Tail−Cut Parameter (Tau): 13.00002641897152825281117878
15 Distance from Target Tail−Cut: 0.3208473595516347584891332841
16

17 (4) Sample Skewness: −0.000008109373516717886834916069369
18 Standard Error of the Sample Skewness: 0.000009344061823767513075122646283
19

20 (5) Sample Excess Kurtosis : −0.000028095808185055005256698
21 Standard Error of the Sample Kurtosis : 0.00001868812364726307815918276254
22

23 (6) Sample Hyperskewness: −0.0001036514680471919992233509974
24

25 (7) Sample Excess Hyperkurtosis : −0.00051909982946815267581923
26

27 (8) Jarque−Bera Normality Test ( test stat , p−value): 2.394260488861117097644603536E−7, 0.999999880287
28 ∗Accept∗ Null Hypothesis of Normality (p−value) with 99.9% Confidence
29 ∗Accept∗ Null Hypothesis of Normality ( test stat ) with 99.9% Confidence
30

31 (9) D’Agostino−Pearson K2 Omnibus Test (test stat , p−value): 0.003004329115990208729071137285,
0.998498963126

32 ∗Accept∗ Null Hypothesis of Normality (p−value) with 99.9% Confidence
33 ∗Accept∗ Null Hypothesis of Normality ( test stat ) with 99.9% Confidence
34

35 (10) Histogram and Quantile−Quantile (QQ) plots :

Figure 3: Histogram of observed (blue) discrete Gaussian
samples versus expected (red). The observed data does not
match the expected values.

Figure 4: QQ-plot of the observed discrete Gaussian sam-
ples with the coefficient of determination (R2) value. Red
and blue lines do not overlap meaning the observed data
does not match the expected values.



samplers. Additionally, this failure is illustrated in
Figures 3 and 4, with expected and observed values
not matching. Data sets provided are of size 236. In
general, the sample size for GLITCH should be large
enough so that extreme values in the discrete Gaus-
sian tails are likely to be filled.

5 Conclusion

The research on statistical testing for discrete
Gaussian samples reapplies well established statisti-
cal testing techniques to lattice-based cryptography,
taking into consideration the stringent requirements
within the area. This was completed by conducting
a full survey on a number of different testing tech-
niques, collating the relevant tests to form the adapt-
able GLITCH software statistical test suite.

The first number of tests are for analysing the
main discrete Gaussian parameters from the observed
data, giving standard error, confidence intervals, and
(where possible) hypothesis tests with the highest
level of confidence (99.9%). The next set of tests ver-
ifies the shape of the distribution, analysing whether
there is any bias towards the positive or negative
side of the distribution, and whether the distribution
has a bias towards the peak of the distribution. For
these tests and for the following tests on normality,
the tests which allow for samples sizes large enough
for lattice-based cryptography constraints are chosen.
The last tests illustrate the difference between the ob-
served data’s distribution and the expected distribu-
tion’s shape.

The tests chosen are powerful and operate well on
large sample sizes, with each analysing differing as-
pects within the discrete Gaussian distribution. Fail-
ure in any of these tests indicates a deviation from
the target distribution, which is therefore evidence of
an incorrectly performing discrete Gaussian sampler.
The software for GLITCH is made available online
(available at https://github.com/jameshoweee/
glitch), which provides sample data for discrete
Gaussian samplers; which are able to be tested upon.
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