
An Efficient 2-Party Private Function Evaluation Protocol Based
on Half Gates

Muhammed Ali Bingöl1,2, Osman Biçer3, Mehmet Sabır Kiraz4, Albert Levi1

1 Sabancı University, Faculty of Engineering and Natural Sciences, İstanbul, Turkey
2 TUBITAK, BILGEM, Kocaeli

3 Koç University, İstanbul, Turkey
4 Cyber Technology Institute, De Montfort University, UK

mabingol@sabanciuniv.edu, obicer17@ku.edu.tr, mehmet.kiraz@dmu.ac.uk, levi@sabanciuniv.edu

Abstract. Private function evaluation (PFE) is a special case of secure multi-party computation
(MPC), where the function to be computed is known by only one party. PFE is useful in several
real-life applications where an algorithm or a function itself needs to remain secret for reasons such
as protecting intellectual property or security classification level. In this paper, we focus on improving
2-party PFE based on symmetric cryptographic primitives. In this respect, we look back at the seminal
PFE framework presented by Mohassel and Sadeghian at Eurocrypt’13. We show how to adapt and
utilize the well-known half gates garbling technique (Zahur et al., Eurocrypt’15) to their constant round
2-party PFE scheme. Compared to their scheme, our resulting optimization significantly improves the
efficiency of both the underlying Oblivious Evaluation of Extended Permutation (OEP) and secure 2-
party computation (2PC) protocols, and yields a more than 40% reduction in overall communication
cost (the computation time is also slightly decreased, and the number of rounds remains unchanged).

Keywords: Private function evaluation, Secure 2-party computation, Communication complexity,
Cryptographic protocol.

1 Introduction

Imagine that one invents a novel and practical algorithm capable of being directly used to detect and
identify criminals in crowds with a high degree of precision based on information about their behaviors
obtained from street video recordings. It is obvious that this algorithm would be commercially valuable and
that many governmental organizations would like to use it. The inventor has the right to keep the algorithm
confidential, and to offer only its use for a certain fee since it is his/her own intellectual property. On the
other hand, governmental organizations will generally be unwilling to reveal their records and databases to
the parties to whom they do not sufficiently trust. This is an example of the problem that two parties would
like to execute a common function with their private inputs and the function is also a private input of one
of the parties. Solution for this and such real-life problems are addressed by Private Function Evaluation
(PFE).

PFE is a special case of secure multi-party computation (MPC) in which n participants jointly com-
pute a function f on their private inputs x1, . . . , xn, and one (or some) of the parties obtain the result
f(x1, . . . , xn) while revealing nothing more to the parties. The difference of PFE from the standard MPC
setting is that here the function f is also a private input of one of the participants5. A PFE solution would
be more useful than conventional MPC in various real-life applications, e.g., the ones where the function
itself contains private information, or reveals security weaknesses; or the ones where service providers prefer
hiding their function, or its specific implementation as their intellectual property. Efficient and practical
PFE schemes are becoming increasingly important as many applications require protection of their valu-
able assets such as private database management systems [PKV+14], privacy-preserving intrusion detection
system [NSMS14], privacy-preserving checking for credit worthiness [FAZ05] and privacy preserving medical

5 Note that PFE also covers the case where the party who owns the function does not have any other private input.

applications [BFK+09]. Therefore, the task of designing efficient custom PFE protocols for special or generic
purposes is addressed in several papers in literature [KS08b,SS09,BFK+09,PSS09,KM11,MS13].

Generic PFE solutions are mainly classified into two categories. The first one is the universal cir-
cuit [Val76] based approach that works with any MPC protocol. The ideal functionality of MPC FUg for a
universal circuit Ug takes as input a certain sized (g) boolean circuit representation Cf of the private function
f , and inputs of parties x1, . . . , xn (i.e., FUg (Cf , x1, . . . , xn)), and outputs f(x1, . . . , xn). The works based
on this approach mainly aim to reduce the size of universal circuits, and to optimize their implementations
using some MPC techniques [KS08b,SS09,KS16,LMS16,GKS17]. The early universal circuit based schemes
result in massive circuit sizes [Val76,KS08b,SS09,Sch08], which was the root cause of their inefficiency. By
the recent works [KS16] and [GKS17] the universal circuits becomes more practical but the computation
cost is still worse then the custom PFE protocols of [MS13,Sad15].

The second approach is falls into designing custom PFE protocols which avoids the use of universal
circuits. Following this line of work, several PFE schemes have been proposed [PSS09,KM11,MS13,MSS14,
Sad15, BBKL18]. An early attempt on this category is Paus, Sadeghi, and Schneider’s work [PSS09]. They
introduce -what they called- a semi-private function evaluation in which the type of the gates is a secret of
one party, but the circuit topology (i.e., the set of all connections of predecessors and successors of each gate)
is public to both parties. Due to the weaker assumption of semi-privacy, their approach does not provide
a complete PFE solution. Another significant improvement in this category comes from Katz and Malka’s
2-party PFE (2-PFE) scheme [KM11] with a mechanism for hiding the circuit topology based on asym-
metric cryptography primitives (i.e., partially (singly) homomorphic encryption (HE) e.g., ElGamal [ElG85]
or Paillier [Pai99]). Following the line of [KM11], recently [BBKL18] proposed 2-PFE protocols based on
asymmetric cryptography primitives. In this work, they propose a secure 2-PFE scheme based on Deci-
sional Diffie-Hellman (DDH) assumption. Their approach introduces a reusability feature that significantly
improves the state-of-the-art.

In [MS13], Mohassel and Sadeghian come up with a framework for PFE that includes several schemes
for different settings. They proposed protocols for both arithmetic and boolean circuits. Their protocol for
arithmetic circuits (based on partially HE) has a number of rounds equal to the number of gates (see [MS13,
p. 570]), whereas the other PFE protocols for boolean circuits have constant number of rounds. Regarding
their arithmetic based protocol, for large circuits, the number of rounds is a bottleneck. For boolean circuits,
they propose two types of protocols: one is based on partially HE and the other one is based on oblivious
evaluation of switching networks (OSN). The OSN based protocol of [MS13] is (mostly)6 based on symmetric
cryptographic primitives.

The existing schemes based on asymmetric cryptographic primitives such as [KM11, BBKL18] and par-
tially HE based protocol of [MS13] are promising in terms of linear communication complexity. However, for
some applications, protocols primarily based on symmetric cryptography could be favorable.

Considering OSN based 2-PFE scheme of [MS13], they split the PFE task into two sub-functionalities:
(1) Circuit topology hiding (CTH), (2) Private gate evaluation (PGE). Briefly speaking, in CTH, a series
of procedures is performed: First, the function owner (say P1) detaches the interconnections of the gates
to obtain single gates, and keeps the topological mapping of the circuit private. Second, P1 and the other
party (say P2) engage in an oblivious evaluation of switching network (OSN)7 protocol which consists of
O(g log(g)) oblivious transfer (OT) operations (throughout this paper, g denotes the number of gates, and
log() denotes the logarithm base 2). Next, in PGE, both parties engage in a Yao’s 2-party computation
(2PC) protocol [Yao82, LP09] where P1 and P2 play the evaluator and the garbler roles, respectively. Each
single gate is garbled into four ciphertexts. By setting all gates as a single gate type (e.g., NAND or NOR),
it is possible to avoid the necessity of hiding the gate functionality [MS13].

6 The only asymmetric cryptographic structure is due to the OT operations of underlying 2PC, therefore can be
considered as symmetric based [Sad15,GKS17].

7 The OSN mechanism is introduced in [MS13] to achieve a solution for the oblivious evaluation of extended per-
mutation (OEP) problem. OEP allows the oblivious transition of each masked gate output to the input(s) of the
next connected gate(s).

2

Recently, in [WmM17], Wang and Malluhi attempt to improve the 2-PFE scheme of Mohassel and
Sadeghian by removing only one ciphertext from each garbled gate in the 2PC phase. However, the commu-
nication cost of the 2PC phase is quite lower than that of the OSN phase, which means that their scheme
reduces the overall cost by less than 1%.

In [Sad15, p. 98] and [LMS16, p. 2] the authors mention that “the various optimizations that are recently
proposed for MPC [KS08a, KMR14, ZRE15] are making general 2PC more practical and it is not obvious
if their techniques can also be combined with custom PFE solutions (which remains as an interesting open
question)”. One of the aims of this work is providing an answer to this open question and come-up with an
efficient 2-PFE protocol.

Our contributions. In this paper, we mainly focus on improving 2-party private function evaluation (2-PFE)
based on symmetric cryptographic primitives. In this respect, we first revisit the state-of-the-art Mohassel
and Sadeghian’s PFE framework [MS13], then propose a more efficient protocol (secure in the presence of
semi-honest adversaries) by adapting8 the half gates garbling optimization [ZRE15] to their 2-PFE scheme.
Our protocol achieves the following significant improvements in both OSN and 2PC phases:

1. Regarding the OSN phase: (1) We reduce the number of required OTs by N = 2g. Concretely, the
technique in [MS13] requires 2N log(N)+1 OTs, while our protocol requires 2N log(N)−N+1 OTs. (2)
Our protocol reduces the data sizes entering to the OSN protocol by a factor of two. This improvement
results in about 40% saving.

2. Regarding the 2PC phase, our scheme garbles each non-output gate (that does not have any direct
connection with output wires of the circuit) with only three ciphertexts, and each output gate with only
two ciphertexts.

Among the above improvements, the foremost gain comes from the reduction in the input sizes of the
OSN protocol. The overall communication cost of our scheme is (6N log(N) + 0.5N + 3)λ bits9, which is a
significant improvement compared to [MS13], whose communication cost is (10N log(N) + 4N + 5)λ bits.
This means more than 40% saving in bandwidth size (see Table 5 and Table 6). Also the overall computation
cost is also slightly decreased while the number of rounds remains unchanged.

Organization In Section 2, we give preliminary information about oblivious transfer, Yao’s garbled circuits,
and half gates optimization. In Section 3, we present the 2-PFE framework and scheme of [MS13] in detail.
In Section 4, we introduce our 2-PFE scheme. Section 5 provides a simulation based security proof of our
2-PFE scheme in the semi-honest model. In Section 6, we analyze our protocol in terms of communication
and computation complexities and compare it with 2-PFE scheme in [MS13]. Finally, Section 7 concludes
the paper and point out some future works.

2 Preliminaries

This section provides some background information on oblivious transfer, Yao’s garbled circuits, and the
state-of-the-art half gates optimization.

2.1 Oblivious transfer (OT)

A k-out-of-m oblivious transfer protocol is a two-party protocol where one of the parties is the sender (S)
who has set of values {x1, . . . , xm}, and the other one is the receiver (R) who has k selection indices. At the

8 Note that in [WmM17], Wang and Malluhi mention that free-XOR [KS08a] and half gates [ZRE15] techniques
cannot be used to improve the efficiency of non-universal circuit based custom PFE protocols such as Katz and
Malka’s [KM11] and Mohassel and Sadeghian’s [MS13] works. In contrast to their claim, we adapt and utilize half
gates approach to Mohassel and Sadeghian’s and reduce the communication cost in a secure way.

9 λ is the security parameter throughout this paper.

3

end of the protocol, R only learns k of the S’s inputs according to his selection indices; whereas S learns
nothing. In the OT-hybrid model, the two parties are given access to the ideal OT functionality (FOT) which
implies a universally composable OT protocol. Oblivious transfer is a critical underlying protocol used in
many MPC constructions [Rab81,EGL85].

OT extension is a way of obtaining many OTs from a few number of OT runs and cheap symmetric
cryptographic operations. Ishai et al. constructed the first OT extension method [IKNP03], which reduces a
given large number of required OTs to a fixed size security parameter. Later, several OT extension schemes
based on [IKNP03] are proposed for improving the efficiency [KK13,ALSZ13].

Table 1. Garbling an odd gate using half gates technique [ZRE15].

Garbler half gate (pb known to the gar-
bler)

Evaluator half gate (pb ⊕ vb known to the
evaluator)

Defines the half gate:
fG(va, pb) := (α1 ⊕ va)(α2 ⊕ pb)⊕ α3

Defines the half gate:
fE(va, vb ⊕ pb) := (α1 ⊕ va)(pb ⊕ vb)

Computes:

TGc ← H(w0
a)⊕H(w1

a)⊕ (pb ⊕ α2)R
w0
Gc ← H(wpaa)⊕ fG(pa, pb)R

Computes:

TEc ← H(w0
b)⊕H(w1

b)⊕ wα1
a

w0
Ec ← H(w

pb
b)

The garbler sends TGc. The garbler sends TEc.

2.2 Yao’s protocol

Yao’s protocol is essentially a 2PC protocol secure in the semi-honest adversary model. It allows two parties,
the garbler and the evaluator, to evaluate an arbitrary polynomial-sized function f(x) = f(x1, x2), where x1

is the garbler’s private input and x2 is the evaluator’s private input, without leaking any information about
their private inputs to each other beyond what is implied by the pure knowledge of the function output. The
main idea is that the garbler prepares an encrypted version of Cf (a boolean circuit representation of f). This

encrypted version is called the garbled circuit F̂ and sent to the evaluator. The evaluator then computes
the output from the garbled version of the circuit without obtaining the garbler’s input bits or intermediate
values.

Recently, several major optimizations proposed for Yao’s protocol, mainly aiming at bandwidth efficiency
and or reduction of the garbling and evaluating costs (e.g., point and permute [BMR90], garbled row reduction
3 ciphertexts (GRR3) [NPS99], free-XOR [KS08a], garbled row reduction 2 ciphertexts (GRR2) [PSSW09],
pipelining [HEKM11], fleXOR [KMR14], half gates [ZRE15], and garbling gadgets [BMR16]). With the recent
optimizations, Yao’s protocol has now impressive results from the complexity point of view.

2.3 Half gates technique

In [ZRE15], Zahur, Rosulek, and Evans propose an elegant and efficient garbling scheme called half gates
technique. Their garbling technique is currently known the most efficient optimization in terms of communi-
cation complexity compared to any prior scheme. This technique remains compatible with free-XOR [KS08a]
while also reducing the ciphertext requirement for each odd gate10 to two. Here, we briefly describe the
garbling procedure of odd gates using the half gates technique, and refer the reader to [ZRE15] for further
details and its security proof.

10 Odd and Even gates are fan-in-two logic gates. The former has an odd number of TRUE outputs in its truth table;
while the latter has an even number of those.

4

Any odd gate type can be written in the form of Equation (2.1) where α1, α2 and α3 define the gate
type, e.g., setting α1 = 0, α2 = 0, α3 = 1 results in a NAND gate [ZRE15]. Let vi denote the one bit truth
value on the ith wire in a circuit.

fGodd
(va, vb)→ (α1 ⊕ va) ∧ (α2 ⊕ vb)⊕ α3 (2.1)

The garbler garbles an odd gate by following the steps for both half gates in Table 1. The tokens for
FALSE and TRUE on the ith wire are denoted as w0

i and wi, respectively. The global free-XOR offset is
denoted as R.

The garbler sets R � {0, 1}λ−11 globally, and w0
i � {0, 1}λ and w1

i ← w0
i ⊕ R for each wire. We have

lsb(R) = 1 so that lsb(w0
i) 6= lsb(w1

i). w
b
Gc and wb

Ec denote the tokens for the garbler and the evaluator half
gate outputs for truth value b, respectively. TGc and TEc denote the λ-bit strings needing to be sent for the
garbler and evaluator half gates, respectively. Let wi be a token on ith wire obtained by the evaluator who
does not know its corresponding truth value vi. For the ith wire, let pi := lsb(w0

i), a value only known to the
garbler. If two symbols are appended, an AND operation is implied, i.e., ab = a∧b. H : {0, 1}λ×Z→ {0, 1}λ
denotes a hash function with circular correlation robustness for naturally derived keys11, having the security
parameter λ.

The token on the output wire of the odd gate for FALSE is w0
Gc ⊕ w0

Ec since the output of the odd gate
is an XOR of half gate outputs. The two ciphertexts computed TGc and TEc are needed to be sent to the
evaluator for each gate.

3 2-Party PFE Framework

In [MS13], Mohassel and Sadeghian introduce a generic PFE framework for boolean and arithmetic circuits.
In this work, our focus is mainly on private function evaluation based on boolean circuits in 2-party setting
i.e., 2-PFE. In order to achieve 2-PFE, Mohassel and Sadeghian show that hiding (i) the parties’ private
inputs, (ii) the topology of the circuit representation Cf , and (iii) the functionality of its gates is required.
The framework is not concerned with hiding the numbers of gates, input/output wires and the type of the
gates of the circuit. The complete task of PFE is classified into two functionalities: (1) Circuit Topology
Hiding (CTH), (2) Private Gate Evaluation (PGE).

Throughout this paper the party who knows the private function is denoted by P1, plays the evaluator
role in 2PC; whereas the other party is denoted by P2 plays the garbler role in 2PC. In a nutshell, in CTH,
P1 extracts the topological mapping πf (kept private) from the circuit representation Cf , and converts the
whole circuit into a collection of single gates. Then P1 and P2 engage in an oblivious evaluation of switching
network (OSN) protocol where P2 obliviously obtains tokens on gate inputs. In PGE, a 2PC protocol is
performed to obtain the final output. In the rest of this section, we describe the notions related to CTH,
and the 2-PFE scheme proposed in [MS13].

3.1 Context of CTH

Let n and m denote the number of inputs and outputs of Cf , respectively. Let g be the number of gates (size
of circuit). OW : {ow1, . . . , own+g−m} denotes the set of outgoing wires which is the union of the input wires
of the circuit and the output wires of its non-output gates (having M = n+ g −m elements in total whose
indices are chosen randomly). Similarly, IW : {iw1, . . . , iw2g} denotes the set of incoming wires which is the
input wires of each gate in the circuit (having N = 2g elements in total whose indices are chosen randomly).

The full description of the topology of a boolean circuit Cf can be accomplished by a mapping πf : OW→
IW. The mapping πf maps i to j (i.e., πf (i)→ j), if and only if owi ∈ OW and iwj ∈ IW correspond to the
same wire in the circuit Cf . Note that the mapping πf is not a function if an outgoing wire corresponds to
more than one incoming wire, while its inverse π−1

f is always a function. Figure 1 shows an example circuit
Cf and its mapping πf .

11 Circular correlation robustness for naturally derived keys is the security requirement for a suitable hash function
used in half gates garbling. We refer the reader to [ZRE15] for its details.

5

1G

2G

3G

4G

5ow

6ow

1iw

2iw

3iw

4iw

5iw

6iw

7iw

1y

2y

1 1ow x

2 2ow x

3 3ow x

4 4ow x

8iw

 fCircuit C

(a)

1iw

2iw

3iw

4iw

5iw

6iw

7iw

1ow
2ow

3ow

4ow

8iw

5ow

6ow

(b)

4n

2g o

CTH

2 8g

1G

2G

3G

4G

5ow

6ow

1iw

2iw

3iw

4iw

5iw

6iw

7iw

1y

2y

1 1ow x

2 2ow x

3 3ow x

4 4ow x

8iw

 fCircuit C

(a)

1iw

2iw

3iw

4iw

5iw

6iw

7iw

1ow
2ow

3ow

4ow

8iw

5ow

6ow

(b)

4n

2g o

2 8g

 fMapping

1ow

2ow

3ow

4ow
Dummy

Placement5ow

6ow

1D

1ow

2ow

3ow

4ow

5ow

6ow
2D

1D
1ow

2ow

3ow

4ow

5ow

6ow

1ow

5ow

Permutation
1ow

2ow

3ow
4ow

5ow

6ow

1ow

5ow2D

1G

2G

3G

4G

5ow

6ow

1iw

2iw

3iw

4iw

1y

2y

1 1xow

 fCircuit C

(a)

1iw

4iw

5iw

6iw

7iw

1ow

(b)

4n

2g o

2 8g

 fMapping

Dummy
Placement

1D 2D

1D

Permutation

2D

2 2xow

3 3xow

4 4xow

5iw

6iw

8iw

7iw

2ow

3ow

4ow

5ow

6ow

2iw

3iw

8iw

1ow

2ow

3ow

4ow

5ow

6ow

1ow

2ow

3ow

4ow

5ow

6ow

1ow

5ow

2ow

4ow

3ow

1ow

5ow

5ow

1ow

6ow

1ow

2ow

3ow

4ow

5ow

6ow

Fig. 1. (a) A circuit representation Cf of a function f . (b) The mapping πf of f .

From the inclusion-exclusion principle, we obtain Equation (3.2) that gives the number of possible map-
pings for the given M and N values.

ρ =

M∑
i=0

(−1)i
(
M

i

)
(M − i)N (3.2)

In the context of CTH, ρ indicates the number of possible circuit topologies. Thus, the security of CTH
is proportional to ρ. In what follows, we describe the main elements of CTH functionality whose essential
target is the oblivious application of the mapping πf .

Oblivious evaluation of mapping A mapping of the form π : {1, . . . , N} → {1, . . . , N} is a permutation if it
is a bijection. We next define the extended permutation (EP) as follows:

Definition 3.1 (Extended permutation (EP)). Given the positive integers M and N , a mapping π :
{1, . . . ,M} → {1, . . . , N} is called an EP if for all y ∈ {1, . . . , N}, there exists a unique x ∈ {1, . . . ,M} such
that π(x) = y, and its inverse π−1 : {1, . . . , N} → {1, . . . ,M} is an onto function.

The ideal 2-party oblivious evaluation of extended permutation (2-OEP) functionality is defined as follows:

Definition 3.2 (2-OEP functionality). The first party P1’s inputs are an EP π : {1, . . . ,M} → {1, . . . , N},
and a blinding vector for incoming wires T := [tj � {0, 1}λ] for j = 1, . . . , N . The other party P2’s
inputs are a vector for outgoing wires W := [wi � {0, 1}λ] for i = 1, . . . ,M . At the end, P2 learns
S := [σj = wπ−1

f (j) ⊕ tj] for j = 1, . . . , N while P1 learns nothing.

We call any 2-party protocol construction realizing the 2-OEP functionality as a 2-OEP protocol. Mohassel
and Sadeghian have constructed a constant round 2-OEP protocol by introducing the OSN structure. Since
we also utilize their 2-OEP protocol in our scheme, here we give some of its details. Mainly, they first construct
an extended permutation using switching networks, then provide a method using OTs for oblivious evaluation
of the resulting switching network. We refer our reader to [MS13] for the security proof and application of
this construction on various MPC protocols.

EP construction from switching networks. Each 2-switch takes two λ-bit strings and two selection bits as
input, outputting two λ-bit strings [MS13]. Each of the outputs may get the value of any of the input
strings depending on the selection bits. This means for input values (x0, x1), there are four different switch
output possibilities. The two selection bits s0 and s1 are used for determining the switch output (y0, y1). In
particular, the switch outputs y0 = xs0 , and y1 = xs1 .

6

Unlike 2-switches, 1-switches have only one selection bit s. For an input (x0, x1), a 1-switch outputs one
of the two possible outputs: (x0, x1) if s = 0, and (x1, x0) otherwise.

Definition 3.3 (Switching Network (SN)). A switching network SN is a collection of interconnected
switches whose inputs are N λ-bit strings and a set of selection bits of all switches, and whose outputs are
N λ-bit strings.

The mapping π : {1, . . . , N} → {1, . . . , N} related to an SN (π(i) = j) implies that when the SN is
executed, the string on the output wire j gets the value of that on the input wire i.

1G

2G

3G

4G

5ow

6ow

1iw

2iw

3iw

4iw

5iw

6iw

7iw

1y

2y

1 1ow x

2 2ow x

3 3ow x

4 4ow x

8iw

 fCircuit C

(a)

1iw

2iw

3iw

4iw

5iw

6iw

7iw

1ow
2ow

3ow

4ow

8iw

5ow

6ow

(b)

4n

2g o

CTH

2 8g

1G

2G

3G

4G

5ow

6ow

1iw

2iw

3iw

4iw

5iw

6iw

7iw

1y

2y

1 1ow x

2 2ow x

3 3ow x

4 4ow x

8iw

 fCircuit C

(a)

1iw

2iw

3iw

4iw

5iw

6iw

7iw

1ow
2ow

3ow

4ow

8iw

5ow

6ow

(b)

4n

2g o

2 8g

 fMapping

1ow

2ow

3ow

4ow
Dummy

Placement5ow

6ow

1D

1ow

2ow

3ow

4ow

5ow

6ow
2D

1D
1ow

2ow

3ow

4ow

5ow

6ow

1ow

5ow

Permutation
1ow

2ow

3ow
4ow

5ow

6ow

1ow

5ow2D

1G

2G

3G

4G

5ow

6ow

1iw

2iw

3iw

4iw

1y

2y

1 1xow

 fCircuit C

(a)

1iw

4iw

5iw

6iw

7iw

1ow

(b)

4n

2g o

2 8g

 fMapping

Dummy
Placement

1D 2D

1D

Permutation

2D

2 2xow

3 3xow

4 4xow

5iw

6iw

8iw

7iw

2ow

3ow

4ow

5ow

6ow

2iw

3iw

8iw

1ow

2ow

3ow

4ow

5ow

6ow

1ow

2ow

3ow

4ow

5ow

6ow

1ow

5ow

2ow

4ow

3ow

1ow

5ow

5ow

1ow

6ow

1ow

2ow

3ow

4ow

5ow

6ow

Fig. 2. The related switching network for the mapping πf in Figure 1.

A permutation network PN is a special type of SN whose mapping is a permutation of its inputs. In
contrast to SNs, PNs composed of 1-switches. Waksman proposes an efficient PN construction in [Wak68].
Mainly, this work suggests that a PN with N = 2κ inputs can be constructed with N log(N)−N+1 switches.
In [MS13], the authors propose the construction of an extended permutation by combining SNs and PNs.
However, extended permutations differ from SNs in that the number of their inputs M and that of their
outputs N need not be equal (M ≤ N). N −M additional dummy inputs are added to the real inputs of an
EP π : {1, . . . ,M} → {1, . . . , N} in order to simulate it as an SN. The SN design for extended permutation
is divided into the following three components (see also Figure 2).

1. Dummy placement component. Dummy placement component takes N input strings composing of
real and dummy ones. For each real input that π maps to k different outputs, the dummy-value placement
component’s output is the real string followed by k − 1 dummy strings.

2. Replication component. Replication component takes the output of the dummy-value placement
component as input. If a value is real, it goes unchanged. If it is a dummy value, it is replaced by the
real value which precedes it. This can be computed by a series of N − 1 2-switches whose selection bits
(s0, s1) are either (0,0) or (0,1). If the selection bits are (0,0), that means x1 is dummy, and x0 goes both
of the outputs. If they are (0,1), that means both inputs are real, and both are kept on the outputs in
the same order. At the end of this step, all the dummy inputs are replaced by the necessary copies of
the real inputs.

3. Permutation component. Permutation component takes the output wires of the replication component
as input. It outputs a permutation of them so that each string is placed on its final location according
to the prescription of mapping π.

An efficient implementation of both dummy placement and permutation blocks is via the use of a Waks-
man permutation network. Combining these three components, one gets a larger switching network, where
the number of switches needed is 2(N log(N)−N +1)+N −1 = 2N log(N)−N +1 [MS13]. The topology of
the whole switching network is the same for all N input EPs, and the selection bits specify the input values
appearing on the outputs.

7

Oblivious evaluation of SN construction (OSN) We continue with describing Mohassel and Sadeghian’s
method for oblivious evaluation of switching networks using OTs.

Adapting the switching network construction to the 2-OEP functionality, P1 produces the selection bits
of the switching network using π, and has a blinding vector T . P2 has an input vector for outgoing wires W .
At the end, P2 learns the switching network’s blinded output vector for incoming wires S, and P1 learns ⊥.
We describe the oblivious evaluation of one of its building block, i.e., a single 2-switch u.

Let the input wires of the 2-switch be a and b, and its output wires be c and d. Each of the four wires of
the switch has a uniformly random string assigned by P2 as her share of that wire in the preparation stage,
namely, ra, rb, rc, rd � {0, 1}λ for a, b, c, d, respectively. P1 has the strings w1 ⊕ ra and w2 ⊕ rb as his shares
for the two input wires. The purpose is enabling P1 to obtain his output shares according to his selection
bits. There are four possibilities for P1’s output shares depending on his selection bits s0u and s1u (see Table
2).

Table 2. P1 learns one of these rows according to his selection bits.

(s0u,s1u) y0 y1

(0,0) w1 ⊕ rc w1 ⊕ rd
(0,1) w1 ⊕ rc w2 ⊕ rd
(1,0) w2 ⊕ rc w1 ⊕ rd
(1,1) w2 ⊕ rc w2 ⊕ rd

P2 prepares a table with four rows using ra, rb, rc, rd (see Table 3). P1 and P2 engage in a 1-out-of-4 OT
in which P2 inputs the four rows that she has prepared, and P1 inputs his selection bits for the switch u.
At the end, P1 learns one of the rows as the output in the table. Assume that P1’s selection bits are (1,0).
This means P1 retrieves the third row, i.e., (rb ⊕ rc, ra ⊕ rd). According to the his selection bits, P1 XORs
his input share w2 ⊕ rb with rb ⊕ rc, as well as his other input share w1 ⊕ ra with ra ⊕ rd, and obtains his
output shares w2 ⊕ rc and w1 ⊕ rd.

The oblivious evaluation of the entire SN for EP goes as follows. In an offline stage, P2 sets a uniformly
random λ-bit string to each wire in the switching network. P2 blinds each element of her input vector W and
the dummy strings which she assigned for N −M inputs of the switching network with her corresponding
shares for input wires (an XOR operation is involved in each blinding). P2 prepares tables for each switch in
the switching network similar to Table 2 and Table 3. However, both tables for each switch in this scenario
have two rows since each switch, in fact, has two possible outputs12. This means each switch in the entire
switching network can be evaluated running 1-out-of-2 OT. Moreover, the construction permits parallel OT
runs and or use of OT extension, resulting in a constant round scheme. P2 needs to send her blinded inputs
to P1, which can be done during her turn in OT extension in order not to increase the round complexity
unnecessarily. Once P1 gets P2’s blinded inputs which are also his input shares and the outputs of all OTs,
he evaluates the entire switching network in topological order, obtaining his output shares. P1 blinds his
output shares with corresponding elements of T (again, an XOR operation is involved in each blinding), and
sends the resulting vector to P2. P2 unblinds each element using her shares for output wires, and obtains
the OEP output S. The extended permutation in this construction includes 2N log(N)−N + 1 switches in
total, requiring 2N log(N)−N + 1 OTs for their oblivious evaluation.

3.2 Mohassel and Sadeghian’s 2-PFE scheme

Here we provide an outline of Mohassel and Sadeghian’s 2-PFE construction, and refer the reader to their
work for detailed information and its security proof [MS13]. Their protocol is as follows. P2 first randomly

12 For the 1-switches in dummy placement and permutation components, the first and second rows of Table 2 and
Table 3, and for 2-switches in replacement components, the second and third rows of Table 2 and Table 3 are
sufficient.

8

Table 3. P1 gets one of these rows by engaging in 1-out-of-4 OT with P2.

(s0u,s1u) Ω0 Ω1

(0,0) ra ⊕ rc ra ⊕ rd
(0,1) ra ⊕ rc rb ⊕ rd
(1,0) rb ⊕ rc ra ⊕ rd
(1,1) rb ⊕ rc rb ⊕ rd

generates tokens w0
i , w

1
i � {0, 1}λ for each owi ∈ OW corresponding to FALSE and TRUE, respectively. P1

also generates random blinding strings t0j , t
1
j � {0, 1}λ for each iwj ∈ IW. And then P1 and P2 engage in

OSN slightly modified from their 2-OEP protocol, where at the end, P2 learns [σ0
j = w0

π−1
f (j)

⊕ t
bj
j] and

[σ1
j = w1

π−1
f (j)

⊕ tb̄jj]. P2 garbles each gate by encrypting the tokens w0
c , w

1
c on its outgoing wire with the

blinded strings σ0
a, σ1

a, σ0
b , σ1

b on its incoming wires according to its truth table. P2 sends the garbled gates
and her garbled input tokens to P1. P1 gets his garbled input tokens using OT which can be done in an earlier
stage together with other OTs not to increase round complexity. Using the circuit mapping, his blinding
strings, the garbled gates and the garbled inputs P1 evaluates the whole garbled circuit, and obtains the
tokens of output bits of f(x). In [MS13], a gate hiding mechanism is not provided for 2-PFE scheme but
instead all gates in the circuit are let to be only a NAND gate.

Mohassel and Sadeghian’s scheme involves oblivious evaluation of a switching network made of 2N log(N)+
1 switches. This is composed of an additional N switches to the ones in their EP construction. The oblivious
evaluation of this switching network requires 2N log(N) + 1 OTs [MS13]. All of the OTs in the protocol can
be combined for just one invocation of OT extension. The overall computation cost13 of [MS13] is about
6N log(N) + 2N + 12 symmetric-key cryptographic operations.

4 Our Efficient 2-Party PFE Scheme

In what follows, we describe our scheme in detail (see also Figure 4). In the preparation stage, P1 compiles
the function into a boolean circuit Cf consisting of only NAND gates14, and extract the circuit mapping πf
by randomly assigning incoming and outgoing wire indices. Both parties need to have the pre-knowledge of
template of private circuit C̃f defined as follows:

Definition 4.1 (Template of Private Circuit (C̃f)). A template of private circuit C̃f is some information
about a circuit Cf which consists of: (1) the number of each party’s input bits, (2) the number of output bits,
(3) the total numbers of incoming (N) and outgoing wires (M), (4) the incoming and outgoing wire indices
which belong to the same gates, (5) the outgoing wire indices corresponding to each parties inputs, and (6)
the incoming wire indices belonging to output gates.

We continue with describing the main parts of our scheme, namely 2-OEP and 2PC garbling protocols.
Our complete 2-party PFE protocol is provided in Figure 3.

4.1 Use of 2-OEP protocol

Let w0
i and w1

i be the tokens for FALSE and TRUE on the ith outgoing wire owi ∈ OW, respectively, and
R be the global free-XOR offset [KS08a] throughout the circuit. P2 sets w0

i � {0, 1}λ for each owi. The
blinding string on the jth incoming wire iwj ∈ IW is denoted as tj . P1 sets tj � {0, 1}λ for each iwj . P1 and

13 In [KS16], the computation cost of [MS13] is also computed. We note that there is a minor typo in [KS16, p. 723]
i.e., the computation complexity of [MS13] should be 12g log(2g) + 4g + 12 instead of 12 log(2g) + 4g + 12 where
N = 2g and g is the number of gates.

14 Any functional-complete gate can be used to rule out the need for a gate hiding mechanism as in [MS13].

9

Our 2-PFE Scheme.pdf

P1’s Input: A bit string x1 and a function f .
P2’s Input: A bit string x2.
Output: f(x1, x2).

Preparation:

1. P1 compiles the private function f into a boolean circuit Cf whose the number of input bits, output bits, and
gates are n, o, and g, respectively, extracts the mapping πf by randomly assigning incoming and outgoing
wire indices, and prepare the template of private circuit C̃f .

2. P1 sends C̃f to P2.
3. P2 randomly generates an λ-bit token w0

i � {0, 1}λ for FALSE on each owi ∈ OW. This yields a total of
M = n+ g − o pairs. Moreover, P2 sets a vector W 0 := [w0

i] for i = 1, . . . ,M .
4. P1 generates an λ-bit blinding string tj � {0, 1}λ for each iwj ∈ IW. He sets those values to a blinding

vector T := [tj] for j = 1, . . . , 2g.

2-OEP Protocol:

5. P2 and P1 engage in a 2-OEP protocol where P1’s inputs are the mapping πf and T , while P2’s input is the
vector W 0. At the end, P2 learns the blinded string vector S0 := [σ0

j = w
π−1
f

(j)
⊕ tj] for j = 1, . . . , N , while

P1 learns ⊥.

2PC Protocol (P2 plays the garbler, and P1 plays the evaluator):

6. Garbling: P2 generates a secret λ-bit offset R � {0, 1}λ−11. P2 sets the token for TRUE on each owi as
w1
i ← w0

i ⊕R, and the blinded for TRUE on each iwj as σ1
j ← σ0

j ⊕R. Moreover, P2 sets the sets W 1 := [w1
i]

for i = 1, . . . ,M and S1 := [σ1
j] for j = 1, . . . , N . With the knowledge of W 0, S0, S1 and C̃f , P2 garbles

each odd gate using the Gb procedure in Figure 5, resulting in three ciphertexts per non-output gate and
two ciphertexts per output gate. P2 sends the garbled circuit F̂ and the tokens X̂2 for her own inputs x2 to
P1. P1 gets tokens X̂1 for his own input bits x1 from P2 using 1-out-of-2 OTs. (If OSN construction is used,
these OTs can be jointly executed with the ones for 2-OEP protocol in parallel and with just one invocation
of extended OT. For this setting, P2 needs to pick R and compute the tokens for TRUE on P1’s input wires
before 2-OEP protocol.)

7. Evaluating: With the knowledge of πf , T , F̂ and the garbled input X̂ = (X̂1, X̂2), P1 evaluates the whole
garbled circuit in topological order. When an outgoing wire i is mapped to an incoming wire j, the token
wi is XORed with tj to reach the blinded string σj . P1 evaluates each garbled gate using the Ev procedure
in Figure 5. At the end, P1 obtains the tokens for f(x1, x2).

Fig. 3. Our 2-Party Private Function Evaluation Protocol

P2 engage in a 2-OEP protocol where P1’s inputs are πf and a blinding vector for incoming wires T := [tj]
for j = 1, . . . , N , and P2’s inputs is a token vector for FALSE on outgoing wires W 0 := [w0

i] for i = 1, . . . ,M .
At the end, P2 learns the vector of blinded strings for FALSE S0 := [σ0

j = wπ−1
f (j) ⊕ tj] for j = 1, . . . , N ,

while P1 learns ⊥.

Since our protocol allows all wires in the circuit to have the same offset R, unlike [MS13], P1 needs only
a single blinding string tj for each wire, and P2 does not need to input both tokens w0

i and w1
i to the 2-OEP

protocol. This leads to a considerable decrease in communication cost compared to [MS13], in which two
blinding strings t0j and t1j for each wire are used, and both w0

i and w1
i are inputs to the OSN protocol (slightly

modified 2-OEP protocol).

10

generate the set:generate the set:

2-OEP Protocol

join 2-OEP protocol as
Sender

join 2-OEP protocol as
Receiver

receive:receive:

2PC Protocol

join 2PC protocol as
Garbler

join 2PC protocol as
Evaluator

f synt Cf
CTH

(πf

~Cf

~Cf
,)

keep π privatef

T :=[t {0,1}]j
λ

where j = 1,…, N where i = 1,…, M

W :=[w {0,1}]i
λ 0 0

P P1 2

S := [σ w t]jj
0 0 0

π (j)f
-1

Fig. 4. Components and high level procedures of our PFE protocol. The private function f is only known to P1. P1

compiles f into a boolean circuit Cf , and extracts the mapping πf and the template of private circuit C̃f . P1 sends C̃f
to P2. P1 randomly generates the vector T . P2 randomly generates the vector W 0. They engage in a 2-OEP protocol
where P2 learns S0 as the output. With the knowledge of W 0, S0 and C̃f , P2 garbles each gate and sends the garbled
circuit to P1. With the knowledge of πf , C̃f , T , the garbled circuit and the garbled inputs, P1 evaluates the whole
garbled circuit.

4.2 Our 2PC garbling scheme for 2-PFE

This section presents our garbling scheme based on half gates technique [ZRE15]. Similar to half gates
technique, P2 sets R� {0, 1}λ−11, w1

i ← w0
i ⊕R for TRUE on each owi, and σ1

j ← σ0
j ⊕R for TRUE on each

iwj . We have lsb(R) = 1 so that lsb(w0
i) 6= lsb(w1

i), and lsb(σ0
j) 6= lsb(σ1

j). P2 follows the steps in Table 4 in
order to garble each odd gate.

We now give some necessary notation as follows. Let w0
c and w1

c denote both tokens on an outgoing
wire, while σ0

a, σ1
a, σ0

b , σ1
b denote the blinded strings on incoming wires. Let also vj denote the one bit truth

value on the jth incoming wire in a circuit. Further, wb
Gc and wb

Ec denote the tokens for the garbler and the
evaluator half gate outputs for truth value b, respectively. TGc and TEc denote the λ-bit strings needed to
be sent for the garbler and evaluator half gates, respectively. ψc denotes the additional λ-bit string needed
to be sent for carrying to the specific output token. wi and σj are the token on ith outgoing wire and the
blinded string on jth incoming wire obtained by P1 while evaluating the garbled circuit, respectively. For the
jth incoming wire, let pj := lsb(σ0

j) be a value only known to P2. If two symbols are appended, we imply an

AND operation, i.e., ab = a ∧ b. H : {0, 1}λ × Z→ {0, 1}λ denotes a hash function with circular correlation
robustness for naturally derived keys, having the security parameter λ. We use a ‘hat ’ to represent a sequence
or a tuple, for instance, F̂ = (F1, F2, . . .) or ê = (e1, e2, . . .).

11

Table 4. Adapting half gates technique to our 2-PFE for garbling an odd gate. Here, α1, α2 and α3 define the gate
type (e.g., α1 = 0, α2 = 0 and α3 = 1 for a NAND gate, see Equation (2.1)). The token w0

c on the output wire equals
w0
Gc ⊕ w0

Ec ⊕ ψc. The three ciphertexts TGc, TEc, and ψc are sent to P1 for each gate.

Garbler half gate (pb known to the gar-
bler)

Evaluator half gate (pb ⊕ vb known to the
evaluator)

Defines the half gate:
fG(va, pb) := (α1 ⊕ va)(α2 ⊕ pb)⊕ α3

Defines the half gate:
fE(va, vb ⊕ pb) := (α1 ⊕ va)(pb ⊕ vb)

Computes:

TGc ← H(σ0
a)⊕H(σ1

a)⊕ (pb ⊕ α2)R
w0
Gc ← H(σpaa)⊕ fG(pa, pb)R

Computes:

TEc ← H(σ0
b)⊕H(σ1

b)⊕ σα1
a

w0
Ec ← H(σ

pb
b)

Defines the third ciphertext:

ψc := w0
Gc ⊕ w0

Ec ⊕ w0
c

P2 sends TGc, TEc, and ψc.

In accordance with the framework15 of [BHR12], Figure 5 depicts our complete garbling scheme, composed

of the following procedures. The garble procedure Gb takes 1λ, C̃f , S0 and W 0 as input, and outputs (F̂ , ê, d̂)

where F̂ is the garbled version of C̃f , ê is the encoding information, and d̂ is decoding information. Gb calls
two private gate garbling procedures: (1) Gb∗NAND garbles non-output NAND gates, and returns (TG, TE , ψ),
(2) GbNAND garbles output NAND gates, and returns (TG, TE , Y

0). En is the encode algorithm that takes the
plaintext input x̂ of the circuit and e as input, and outputs a garbled input X̂. Ev is the evaluate procedure
that takes the inputs F̂ , X̂, πf and T , and outputs garbled output Ŷ . De is the decode algorithm that takes

Ŷ and d as input, and outputs the plaintext output ŷ of the circuit.
We highlight that an essential difference of our garbling scheme from the half gates technique is that the

former requires an additional ciphertext ψc per gate. This is required because of the nature of 2-PFE, in
which the tokens on an outgoing wire are predetermined and specified values, while in the in half gates they
are indeed a function of the input strings. Since in our scheme the output tokens of output gates are not
predetermined, these gates can be garbled with half gates technique. Each output gate is then garbled with
two ciphertexts. Note also that P1 gets his own garbled inputs by means of OT. This can also be done in
an earlier stage together with other OTs in 2-OEP protocol (if OSN construction is used) in order not to
increase round complexity. For this setting, P2 needs to pick R and compute the tokens for TRUE on P1’s
input wires before 2-OEP protocol. This setting is compatible with our protocol as well.

5 Security of the proposed protocol

In this section, we start by revisiting the code based games of Bellare, Hoang and Rogaway [BHR12] and se-
curity notions of Choi et al. [CKKZ12] and Zahur et al. [ZRE15] as preliminaries. We then provide simulation
based security proof of our proposed protocol.

5.1 Code based games and security notions

Our work uses the prv.simS (privacy), obv.simS (obliviousness) and authS (authenticity) security definitions
of [BHR12] depicted in Figure 7. Considering the prv.sim and obv.sim games, the Initialize procedure ran-
domly chooses β ← {0, 1}, then the adversary makes a single call to the Garble procedure, and then the

Finalize procedure returns β
?
= β′, where β′ denotes the guess of the adversary. Regarding all three games,

15 Bellare, Hoang, and Rogaway introduce the notion of a garbling scheme as a cryptographic primitive. They also
describe procedures and security requirements of garbling schemes. We refer the reader to [BHR12, Hoa13] for
details concerning definitions and introduction to the formal concepts of garbling schemes.

12

proc Gb(1λ, C̃f , S0,W 0) : proc En(ê, x̂):

R� {0, 1}λ−1 1 for ei ∈ ê do

for iwj ∈ C̃f do Xi ← ei ⊕ xiR
σ1
j ← σ0

j ⊕R return X̂

for owi ∈ Inputs(C̃f) do
ei ← w0

i

for each gate G̃i∈C̃f do proc Ev(F̂ , X̂, πf ,T):

{a, b} ← GateInputs(G̃i) put F̂ in topological order using πf
if G̃i is a non-output gate then for owi ∈ Inputs(F̂) and j = πf (i) do

(TGi , TEi , ψi)← Gb∗NAND(σ0
a, σ

0
b , w

0
i) σj ← Xi ⊕ tj

Fnon−outi ← (TGi , TEi , ψi) for each gate G̃i {in topo. order} do

else {a, b} ← GateInputs(G̃i)
(TGi , TEi , Y

0
i)← GbNAND(σ0

a, σ
0
b) sa ← lsb(σa); sb ← lsb(σb)

F outi ← (TGi , TEi) k ← NextIndex(); k′ ← NextIndex()
Y 1
i ← Y 0

i ⊕R (TGi , TEi , ψi)← Fnon−outi

di ← lsb(Y 0
i) wGi ← H(σa, k)⊕ saTGi

end if if G̃i is a non-output gate then

return (F̂ , ê, d̂) wEi ← H(σb, k
′)⊕ sb(TEi ⊕ σa)

wi ← wGi ⊕ wEi ⊕ ψi
private proc Gb∗NAND(σ0

a, σ
0
b , w

0): for j = πf (i) do
pa ← lsb(σ0

a); pb ← lsb(σ0
b) σj ← wi ⊕ tj

k ← NextIndex(); k′ ← NextIndex() else
TG ← H(σ0

a, k)⊕H(σ1
a, k)⊕ pbR (TGi , TEi)← F outi

w0
G ← H(σ0

a, k)⊕ paTG ⊕R wGi ← H(σa, k)⊕ saTGi
TE ← H(σ0

b , k
′)⊕H(σ1

b , k
′)⊕ σ0

a wEi ← H(σb, k
′)⊕ sb(TEi ⊕ σa)

w0
E ← H(σ0

b , k
′)⊕ pb(TE ⊕ σ0

a) wi ← wGi ⊕ wEi
ψ ← w0

G ⊕ w0
E ⊕ w0 Yi ← wi

return (TG, TE , ψ) end if

return Ŷ
private proc GbNAND(σ0

a, σ
0
b):

pa ← lsb(σ0
a); pb ← lsb(σ0

b)

k ← NextIndex(); k′ ← NextIndex() proc De(d̂, Ŷ):

TG ← H(σ0
a, k)⊕H(σ1

a, k)⊕ pbR for di ∈ d̂ do
w0
G ← H(σ0

a, k)⊕ paTG ⊕R yi ← di ⊕ lsb(Yi)
TE ← H(σ0

b , k
′)⊕H(σ1

b , k
′)⊕ σ0

a return ŷ
w0
E ← H(σ0

b , k
′)⊕ pb(TE ⊕ σ0

a)
Y 0 ← w0

G ⊕ w0
E

return (TG, TE , Y
0)

Fig. 5. Our complete half gate based garbling scheme for 2-PFE. GbNAND and Gb∗NAND are the original half gate
and our modified NAND garbling procedures, respectively. A ‘hat ’ represents a sequence or a tuple, for instance,
F̂ = (F1, F2, . . .) or ê = (e1, e2, . . .).

proc De(d̂, Ŷ):

for di ∈ d̂ do
{modify the antepenultimate line of Gb} k ← NextIndex(); parse (h0, h1)← di
k ← NextIndex(); di ← (H(Y 0

i , k), H(Y 1
i , k)) if H(Yi, k) = h0 then yi ← 0

else if H(Yi, k) = h1 then yi ← 1
else return ⊥
return ŷ

Fig. 6. Modification of our garbling scheme in Figure 5 for achieving authenticity (auth) property.

13

the adversary is allowed to make a single call to the Garble procedure. For further information about the
simulation based games and related security properties, we refer reader to [BHR12]. The advantages of the
corresponding adversary classes are as follows:

prv.simG,Φ,S : obv.simG,Φ,S : authG:
Garble(f, x): Garble(f, x): Garble(f, x):

if β = 0 if β = 0 (F, e, d)←Gb(1λ, f)

(F, e, d)←Gb(1λ, f) (F, e, d)←Gb(1λ, f) X ←En(e, x)
X ←En(e, x) X ←En(e, x) return (F,X)

else (F,X, d)← S (1λ, f(x),Φ(f)) else (F,X)← S (1λ,Φ(f)) Finalize(Y):

return (F,X, d) return (F,X) return De(d, Y) 6∈ {⊥, f(x)}

Fig. 7. Simulation based games for privacy, obliviousness and authenticity [BHR12]. The function S is a simulator,
and G denotes a garbling scheme.

Adv
prv.sim
G,Φ,S (A , λ) :=

∣∣∣∣Pr[prv.simA
G,Φ,S (1λ) = 1]− 1

2

∣∣∣∣ (5.3)

Advobv.sim
G,Φ,S (A , λ) :=

∣∣∣∣Pr[obv.simA
G,Φ,S (1λ) = 1]− 1

2

∣∣∣∣
Advauth

G (A , λ) := Pr[authA
G(1λ) = 1]

In order to provide the security of a scheme, in each game, the adversary must have a negligible advantage.
We also utilize the following two oracle definitions of [ZRE15].

– CircR(x, j, b) = H(x⊕R, j)⊕ bR where R ∈ {0, 1}λ−11
– Rand(x, j, b): A random function that gives λ-bit output.

Note that the adversary is only allowed to access the oracle CircR with legal queries 16 in order to prevent
the adversary from trivially obtaining R [CKKZ12]. Furthermore, we give the following definition for natural
queries.

Definition 5.1. [ZRE15] If a series of queries of the form (x, j, b) to an oracle O satisfies the following
conditions

– we have i = q for the qth query,
– b ∈ {0, 1},
– x is naturally derived, i.e., it is obtained by one of these operations:

(a) x� {0, 1}k,
(b) x← x1 ⊕ x2, where x1 and x2 are naturally derived,
(c) x← H(x1, i) where x1 is naturally derived and i ∈ Z,
(d) x← O(x1, i, b) where x1 is naturally derived,

then these queries are natural.

If for all PPT adversaries A making legal and natural queries∣∣∣∣ Pr
Rand

[ARand(1λ) = 1]− Pr
R

[ACircR(1λ) = 1]

∣∣∣∣ < ε

then H satisfies circular correlation robustness property for naturally derived keys, where ε is negligible.

16 A series of queries of the form (x, j, b) is legal if the verbatim value of (x, j) is never queried with alternating values
of b [CKKZ12].

14

proc S(1λ, C̃f , πf , T , ŷ) : private proc Sim∗NAND(σ0
a, σ

0
b , w

0): //

�� ��SimNAND(σ0
a, σ

0
b):

for owi ∈ OW ˜(Cf) do pa ← lsb(σ0
a); pb ← lsb(σ0

b)

w0
i � {0, 1}λ k ← NextIndex(); k′ ← NextIndex()

for iwj ∈ IW ˜(Cf) do TG ← H(σ0
a, k)⊕ Rand(σ0

a, k, pb)
σ0
j ← w

π
−1
f

(j)
⊕ tj w0

G ← H(σ0
a, k)⊕ paTG

for owi ∈ Inputs ˜(Cf) do TE ← H(σ0
b , k
′)⊕ Rand(σ0

b , k
′, 0)⊕ σ0

a

Xi ← w0
i w0

E ← H(σ0
b , k
′)⊕ pa(TE ⊕ σ0

a)

for each gate G̃i∈C̃f do ψ ← w0
G ⊕ w

0
E ⊕ w

0 //

�� ��Y 0 ← w0
G ⊕ w

0
E

{a, b} ← GateInputs(G̃i) return (TG, TE , ψ) //

�� ��(TG, TE , Y
0)

if G̃i is a non-output gate then
(TGi , TEi , ψi)← Sim∗NAND(σ0

a, σ
0
b , w

0
i)

Fnon−outi ← (TGi , TEi , ψi)
else

(TGi , TEi , Y
0
i)← SimNAND(σ0

a, σ
0
b)

F outi ← (TGi , TEi)

di ← lsb(Y 0
i)⊕ yi

end if

return (F̂ , X̂, d̂)

proc GO
1 (1λ, C̃f , πf , T , x̂): // GCircR

2 private proc Sim∗O
NAND1

(σvaa , σ
vb
b , w

vi
i , va, vb):

v̂ ← evalWires(C̃f , πf , x̂) //

�� ��SimO
NAND1

(σvaa , σ
vb
b , va, vb):

for owi ∈ OW ˜(Cf) do sa ← lsb(σvaa); sb ← lsb(σ
vb
b)

w
vi
i � {0, 1}λ// w

v̄i
i ← w

vi
i ⊕ R k ← NextIndex(); k′ ← NextIndex()

for iwj ∈ IW ˜(Cf) do TG ← H(σvaa , k)⊕ O (σvaa , k, vb ⊕ sb)
B := v

π
−1
f

(j)
, σB

j ← wB
π
−1
f

(j)
⊕ tj w

va(vb⊕sb)
G ← H(σvaa , k)⊕ saTG

for owi ∈ Inputs ˜(Cf) do TE ← H(σ
vb
b , k′)⊕ O (σ

vb
b , k′, va)⊕ σvaa

Xi ← w
vi
i w

vasb
E ← H(σ

vb
b , k′)⊕ sb(TE ⊕ σvaa)

for each gate G̃i∈C̃f do ψ ← w
va(vb⊕sb)
G ⊕ wvasbE ⊕ wvii

{a, b} ← GateInputs(G̃i) //

�� ��Y ← w
va(vb⊕sb)
G ⊕ wvasbE

if G̃i is a non-output gate then return (TG, TE , ψ) //
�� ��(TG, TE , Y)

(TGi , TEi , ψi)← Sim∗O
NAND1

(σvaa , σ
vb
b , w

vi
i , va, vb)

Fnon−outi ← (TGi , TEi , ψi)
else private proc evalWires(C̃f , πf , x̂):

(TGi , TEi , Y
vi
i)← SimO

NAND1
(σvaa , σ

vb
b , va, vb) for iwj ∈ C̃f do vi ← xi

F outi ← (TGi , TEi) for each gate G̃i∈C̃f do

Y
v̄i
i ← Y

vi
i ⊕ R {a, b} ← GateInputs(G̃i)

di ← lsb(Y
vi
i)⊕ vi vi ← NAND(va, vb)

end if return v̂

return (F̂ , X̂, d̂)

proc G3(1
λ, C̃f , πf , T , x̂): private proc Sim∗NAND3

(σ0
a, σ

0
b , w

0):

R � {0, 1}λ−1 1 //

�� ��SimNAND3
(σ0
a, σ

0
b):

for owi ∈ OW ˜(Cf) do pa ← lsb(σ0
a); pb ← lsb(σ0

b)

w0
i � {0, 1}λ, w1

i ← w0
i ⊕ R k ← NextIndex(); k′ ← NextIndex()

for iwj ∈ IW ˜(Cf) do TG ← H(σ0
a, k)⊕H(σ1

a, k)⊕ pbR
σ0
j ← w

π
−1
f

(j)
⊕ tj , σ1

j ← σ0
j ⊕ R w0

G ← H(σ0
a, k)⊕ paTG ⊕ R

for owi ∈ Inputs ˜(Cf) do TE ← H(σ0
b , k
′)⊕H(σ1

b , k
′)⊕ σ0

a

Xi ← w
xi
i w0

E ← H(σ0
b , k
′)⊕ pb(TE ⊕ σ0

a)

for each gate G̃i∈C̃f do ψ ← w0
G ⊕ w

0
E ⊕ w

0

{a, b} ← GateInputs(G̃i) //

�� ��Y 0 ← w0
G ⊕ w

0
E

if G̃i is a non-output gate then return (TG, TE , ψ) //

�� ��(TG, TE , Y
0)

(TGi , TEi , ψi)← Sim∗NAND3
(σ0
a, σ

0
b , w

0
i)

Fnon−outi ← (TGi , TEi , ψi)
else

(TGi , TEi , Y
0
i)← SimNAND3

(σ0
a, σ

0
b)

F outi ← (TGi , TEi)

Y 1
i ← Y 0

i ⊕ R , di ← lsb(Y 0
i)

end if

return (F̂ , X̂, d̂)

Fig. 8. The simulator for prv.simS security, and the hybrids used in the proof. We obtain G2 by adding the statements
within sharp corner boxes to G1. The use of the statements within rounded-corner boxes alters the procedures
from garbling of non-output gate to garbling of output gate. A ‘hat ’ represents a sequence or a tuple, for instance,
F̂ = (F1, F2, . . .) or ê = (e1, e2, . . .).

15

5.2 Security Proof

Our security proof is based on the security proofs provided in [KM11] and [ZRE15].

Theorem 5.1. If the following three conditions hold

– the 2-OEP protocol securely realizes ideal 2-OEP functionality in presence of semi-honest adversaries,
– the hash function H has circular correlation robustness for naturally derived keys,
– the OT scheme for acquisition of P1’s garbled input by P2 securely realizes FOT functionality in the

OT-hybrid model against semi-honest adversaries,

then our scheme is secure against semi-honest adversaries.

Proof. We prove the security of our scheme against corruption of either parties, separately. First, consider
the case that P1 is corrupted. Since the ideal 2-OEP functionality outputs ⊥ for P1, and the transcripts
received by P1 during OT reveals nothing other than P1’s garbled input due to the ideal execution FOT
in the OT-hybrid model, we only need to prove that the 2PC phase does not give any private information
about P2’s input to P1. For any probabilistic polynomial time adversary A1, controlling P1 in the real world,
we construct a simulation game based on prv.sim game from [BHR12] as follows. The simulation involves
Initialize, Garble, and Finalize procedures. The Initialize procedure picks a value β ← {0, 1} randomly. Then, A1

makes a single call to the Garble procedure (see prv.sim game of Figure 7). Note that S denotes the simulation
function, and Gb denotes the actual garbling (Figure 8 shows the procedure for S). We highlight that in our
simulation, the side-information φ(f) is replaced by (C̃f , πf ,T), since they are already known to P1. Finally,
in the Finalize(β′) procedure, A1 tries to make a guess β′ for the value of β, and the procedure outputs

β
?
= β′. We now prove that the simulation function output (F̂ , X̂, d̂) is computationally indistinguishable

from (F,X, d) by using the chain of hybrids as follows (see also Figure 8).

1. S =c GRand
1 : Since both generated (F̂ , X̂, d̂) outputs include uniformly random values for components,

their distributions are identical. More concretely, since the truth values of wires vi’s are used only as a
superscript for the tokens W vi by G1, these W vi

i ’s could have been named W 0
i for all i values.

2. GRand
1 =c GCircR

1 : Only the oracle O changed from Rand to CircR. Due to our assumption about the hash
function, these two hybrids are computationally indistinguishable.

3. GCircR
1 =c GCircR

2 : G2 is obtained by the addition of the statements within sharp corner boxes to G1 in
Figure 8. Here, the variable R in G2 refers to the R of the oracle CircR. The only difference between the
two hybrids is that some extra values that are not used computed by G2 (those extra values will be used
in G3).

4. GCircR
2 =c G3: G3 does not need to compute vi for non-input wires and to randomly sample W vi

i , instead
it randomly samples W 0

i . Next, it sets W 1
i ←W 0

i ⊕R instead of setting W v̄i
i ←W vi

i ⊕R. The algebraic
relationships among variables remain unchanged. The oracle calls are also expanded in SimAnd3 to
correspond to O = CircR.

Note that G3 computes (F̂ , X̂, d̂) as (F̂ , ê, d̂)← Gb(1λ, f); X̂ ← En(ê, x̂), which is exactly how these values
are computed in the real interaction in the prv.simS game. Therefore, the advantage of A1 in the prv.sim
game

Adv
prv.sim
G ,S (A , λ) :=

∣∣∣∣Pr[prv.simA
G ,S (λ) = 1]− 1

2

∣∣∣∣
is negligible. Hence, our scheme satisfies the security notion of prv.simS and obv.simS

17. This proves that our
scheme is secure against the corrupted P1.

Second, consider the case that P2 is corrupted. For any probabilistic polynomial-time adversary A2,
controlling P2 during our protocol in the real world, we construct a simulator S ′ that simulates A2’s view in
the ideal world. S ′ runs A2 on P2’s input, and C̃f as follows.

17 The proof for obv.simS differs from that of prv.simS only in that in obv.simS , the simulator neither computes d̂, nor
receives ŷ. So providing a proof for prv.simS also implies a proof for obc.simS .

16

1. S ′ asks A2 to generate Ŵ 0 := [ŵ0
i � {0, 1}λ] for each owi ∈ OW and receives Ŵ 0.

2. S ′ then picks t̂j � {0, 1}λ for j = 1, . . . , N , and computes Ŝ0 = [σ̂j ← ŵ0
π−1
f (j)

⊕ t̂j] and gives Ŝ0 to A2.

In the real execution of our protocol, P2 receives only the message S0 in Round 2 (apart from the
exchanged messages during the OT protocol for P1’s garbled input). However, the transcripts received by
P2 during OT do not leak any information to P2 because of FOT in the OT-hybrid model. Due to one-time
pad security, in P2’s view, the distributions of Ŝ0 and S0 are identical (i.e., UŜ0 ≈c US0). This concludes the
security proof of our scheme.

{replace the last three lines of S
with the following ones:}

k ← NextIndex(); r � {0, 1}λ
if yi = 0

then di ← (H(Y 0
i , k), r)

else di ← (r,H(Y 0
i , k))

end if

return (F̂ , X̂, d̂)

Fig. 9. The required modifications on Figure 8 in order to show auth property.

In order to achieve the authenticity property (i.e., auth), it is required to show that the probability of an

adversary finding a set Ŷ ′ 6= Ev(F̂ , X̂) such that De(d̂, Ŷ ′) 6= ⊥ is negligible. In accordance with [ZRE15],
our garbling scheme in Figure 5 can be modified as in Figure 6 to achieve authenticity property (i.e., the
antepenultimate line of Gb in Figure 5 can be modified as k ← NextIndex(); di ← (H(Y 0

i , k), H(Y 1
i , k)), and

De(d̂, Ŷ) procedure in Figure 5 can be modified as De(d̂, Ŷ) procedure in Figure 6).

Theorem 5.2. Our modified scheme (see Figure 5 and Figure 6) satisfies the security notion of auth with
any H that has correlation robustness for naturally derived keys.

Proof (Proof Sketch). We execute the simulator S (in Figure 8 with the modifications in Figure 9), and

obtain (F̂ , X̂, d̂). Then, we hand (F̂ , X̂) to the adversary, and receive Ŷ ′ from the adversary. After that we

run the decoding procedure (see procedure De in Figure 6) on d̂ and the output of adversary Ŷ ′. If the

result is De(d̂, Ŷ ′) = ⊥, then the adversary fails, otherwise it succeeds. The adversary can win the game by
guessing a correct value r with probability at most 1/2λ where λ is the security parameter. The rest of the
proof utilizes the same sequence of hybrids in the proof of Theorem 5.1.

6 Performance Comparison

In this section, we evaluate the performance of our protocol, and compare it with Mohassel and Sadeghian’s
2-party PFE scheme [MS13]. Without loss of generality, in order for a fair comparison, we assume that
the 2-OEP protocol of our scheme is also realized by the OSN construction in [MS13], and that the OSN
phases in both protocols are optimized with the General OT extension scheme of Asharov, Lindell, Schnei-
der, and Zohner [ALSZ13]. Similar results can be obtained by using other Ishai et al. based OT extension
schemes [IKNP03,KK13] as well.

Regarding the OSN phase, the total number of OTs in our 2-PFE protocol is 2N log(N)−N + 1, while
it is 2N log(N) + 1 in [MS13] (see Section 3.1). Moreover, our protocol requires only one of the tokens on a
wire entering the OSN phase, so the size of the rows in Table 3 which enter each OT is reduced by a factor
of two [MS13], further resulting in a significant decrease in communication cost. Regarding the 2PC phase,

17

Table 5. Analysis of communication costs for 2-PFE schemes (see Section 3.1 for details of transfers in the OSN
phases).

MS’13 [MS13] Our Protocol
Num. of Strings Str. Length (bits) Num. of Strings Str. Length (bits)

OSN

Before OT Ext. P2 → P1 N 2λ N λ

During OT Ext.
P1 → P2 λ 2N log(N) + 1 λ 2N log(N)−N + 1
P2 → P1 4N log(N)−N + 2 2λ 4N log(N)− 2N + 2 λ

After OT Ext. P1 → P2 N 2λ N λ

2PC Garbled Circ. P2 → P1 2N λ 1.5N λ

TOTAL (bits) (10N log(N) + 4N + 5)λ (6N log(N) + 0.5N + 3)λ

Table 6. Communication cost comparison of 2-PFE schemes in terms of λ-bits.

Num. of MS’13 [MS13] Our Protocol Overall
Gates OSN Phase 2PC Phase Total OSN Phase 2PC Phase Total Reduction

28 47,109 1,024 48,133 27,139 768 27,907 42.0%
210 229,381 4,096 233,477 133,123 3,072 136,195 41.7%
212 1,081,349 16,384 1,097,733 630,787 12,288 643,075 41.4%
214 4,980,741 65,536 5,046,277 2,916,355 49,152 2,965,507 41.2%
216 22,544,389 262,144 22,806,533 13,238,275 196,608 13,434,883 41.1%
218 100,663,301 1,048,576 101,711,877 59,244,547 786,432 60,030,979 41.0%
220 444,596,229 4,194,304 448,790,533 262,144,003 3,145,728 265,289,731 40.9%

our scheme garbles each non-output gate with three ciphertexts, and each output gate with two ciphertexts.
This yields more than 25% reduction compared to the same phase in the scheme in [MS13].

Table 5 shows the number of strings and their corresponding lengths sent in each turn in both schemes
(see also Section 3.1 for details of transfers in the OSN phases). We omit the OTs for P1’s garbled input,
the transfers for decoding the garbled output, and the base OTs in the OT extension scheme [ALSZ13]. The
strings sent by P2 during the OT extension in [MS13], in fact, consists of 4N log(N)− 2N + 2 of λ-bit stings
and 2N λ-bit strings. The data sent by P2 before OT extension can also be sent during P2’s turn in OT
extension for a saving in the number of rounds. Table 6 reflects the communication cost reduction achieved
by our 2-PFE protocol for the circuits with different number of gates.

Recently, in [WmM17], Wang and Malluhi have attempted to improve the 2-PFE scheme in [MS13] by
removing only one ciphertext from each garbled gate (in 2PC phase) while remaining the cost of OSN phase
unchanged. However, the influence of 2PC phase in [MS13] on overall communication cost is quite low (see
Table 6). Reducing the bandwidth use in the 2PC phase by 25% only results in less than 1% reduction in
the total cost. For instance, given a circuit with 1024 gates, their optimization reduces the communication
cost of the 2PC phase from 4,096 λ-bit strings to 3,072 of them, while the OSN phase cost remains 229,38
λ-bits. Therefore, the overall gain from their optimization for this setting is ∼0.4%.

Considering the computational complexity, although both schemes asymptotically require O(N log(N))
operations, our scheme achieves a linear time improvement over [MS13]. More precisely, in OSN phase,
our scheme eliminates N oblivious transfer (OT) operations. This results in a decrease of 2N symmetric
encryptions performed by P2 (P1’s computation cost remains the same in this phase). Regarding the 2PC
phase, our scheme requires one additional operation per gate (during the Ev procedure). This yields additional
0.5N symmetric operations to be performed by P1 (P2’s computation cost remains the same in this phase).
Therefore, our scheme reduces the overall computation cost by 1.5N symmetric operations.

The round complexity of our scheme does not differ from the 2-PFE scheme in [MS13]. Namely, both
protocols consist of a constant-round OT extension scheme in OSN phase, and our 2PC phase consists of
the same number of rounds as in the garbling scheme used in [MS13].

18

7 Conclusion

In this paper, we proposed an efficient and secure protocol for 2-PFE. The motivation behind our work
is that the bandwidth of various channels is the main constriction for many secure computation applica-
tions, including the ones for PFE. Our optimization significantly improves Mohassel and Sadeghian’s 2-PFE
scheme [MS13] in both OSN and 2PC phases in terms of communication complexity. In particular, in OSN
phase, our protocol reduces the number of required OTs and data sizes entering the protocol. In 2PC phase,
our half gate based scheme garbles each non-output gate with three ciphertexts, and each output gate with
two ciphertexts. All in all, our protocol improves the state-of-the-art by saving more than 40% of the overall
communication cost. We conclude with the following two open questions:

1. Although the 2-OEP protocol in [MS13], which we utilize in our protocol, is quite efficient for many
circuit sizes, fails to be so in large-sized circuits due to its O(g log(g)) complexity. This fact arises the
following question: Can we have a 2-OEP protocol that has linear asymptotic complexity while also being
efficient in small circuit sizes?

2. Our 2-PFE protocol permits only one gate functionality (e.g., NAND or NOR) in a boolean circuit. This
yields another important future challenge: Can we have a gate hiding mechanism in 2-PFE schemes
permitting the use of various gates in logic circuit representations?

References

ALSZ13. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious transfer
and extensions for faster secure computation. In Proceedings of the ACM Computer and Communications
Security Conference (CCS ’13), pages 535–548, Berlin, Germany, 4-8 November 2013. ACM, NY, USA.

BBKL18. Osman Bicer, Muhammed Ali Bingol, Mehmet Sabir Kiraz, and Albert Levi. Highly efficient and reusable
private function evaluation with linear complexity. Cryptology ePrint Archive, Report 2018/515, 2018.
https://eprint.iacr.org/2018/515.

BFK+09. Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and
Thomas Schneider. Secure evaluation of private linear branching programs with medical applications.
In Proceedings of the 14th European Conference on Research in Computer Security (ESORICS’09), pages
424–439, Saint-Malo, France, 21-23 September 2009. Springer-Verlag, Berlin, Heidelberg.

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Proceedings
of the ACM Conference on Computer and Communications Security (CCS’12), pages 784–796, Raleigh,
North Carolina, USA, 16-18 October 2012. ACM, NY, USA.

BMR90. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In Proceedings of the
ACM Symposium on Theory of Computing (STOC’90), pages 503–513, Baltimore, Maryland, USA, 13-16
May 1990. ACM, NY, USA.

BMR16. Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for boolean and arithmetic circuits. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS’16), pages
565–577, Vienna, Austria, 24-28 October 2016. ACM, NY, USA.

CKKZ12. Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. On the security of the
“Free-XOR” technique. In Proceedings of the Theory of Cryptography Conference (TCC’12), pages 39–53,
Taormina, Sicily, Italy, 12-19 March 2012. Springer-Verlag Berlin, Heidelberg.

EGL85. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts.
Commun. ACM, 28(6):637–647, jun 1985.

ElG85. Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Trans. Inf. Theor., 31(4):469–472, September 1985.

FAZ05. Keith Frikken, Mikhail Atallah, and Chen Zhang. Privacy-preserving credit checking. In Proceedings of the
6th ACM Conference on Electronic Commerce, (EC’05), pages 147–154, Vancouver, BC, Canada, 05-08
June 2005. ACM, New York.

GKS17. Daniel Günther, Ágnes Kiss, and Thomas Schneider. More efficient universal circuit constructions. In
Proceedings of the Advances in Cryptology – ASIACRYPT 2017, pages 443–470, Hong Kong, China, 3-7
December 2017. Springer-Verlag Berlin, Heidelberg.

19

https://eprint.iacr.org/2018/515

HEKM11. Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party computation using
garbled circuits. In Proceedings of the 20th USENIX Conference on Security (SEC’11), pages 35–50, San
Francisco, CA, 8-12 August 2011. USENIX Association Berkeley, CA, USA.

Hoa13. Viet Tung Hoang. Foundations of Garbled Circuits. PhD thesis, University of California Davis, 2013.
IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In

Proceedings of the Advances in Cryptology – CRYPTO 2003, pages 145–161. Springer, Berlin, Heidelberg,
Santa Barbara, CA, USA, 17-21 August 2003.

KK13. Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring short secrets. In
Proceedings of the Advances in Cryptology - CRYPTO 2013, pages 54–70, Santa Barbara, CA, USA, 18-12
August 2013. Springer, Berlin, Heidelberg.

KM11. Jonathan Katz and Lior Malka. Constant-round private function evaluation with linear complexity. In
Proceedings of the Advances in Cryptology – ASIACRYPT 2011, pages 556–571, Seoul, South Korea, 4-8
December 2011. Springer, Berlin, Heidelberg.

KMR14. Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. FleXOR: Flexible garbling for XOR gates
that beats free-XOR. In Proceedings of the Advances in Cryptology – CRYPTO 2014, pages 440–457,
Santa Barbara, CA, USA, 17-21 August 2014. Springer, Berlin Heidelberg.

KS08a. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and applications.
In International Colloquium on Automata, Languages, and Programming (ICALP’08), pages 486–498,
Reykjavik, Iceland, 06-13 July 2008. Springer Berlin, Heidelberg.

KS08b. Vladimir Kolesnikov and Thomas Schneider. A practical universal circuit construction and secure evalua-
tion of private functions. In Proceedings of the Financial Cryptography and Data Security (FC’08), pages
83–97, Cozumel, Mexico, 28-31 January 2008. Springer-Verlag Berlin Heidelberg.

KS16. Ágnes Kiss and Thomas Schneider. Valiant’s universal circuit is practical. In Proceedings of the Advances
in Cryptology – EUROCRYPT 2016, pages 699–728, Vienna, Austria, 8-12 May 2016. Springer-Verlag
Berlin, Heidelberg.

LMS16. Helger Lipmaa, Payman Mohassel, and Saeed Sadeghian. Valiant’s universal circuit: Improvements, imple-
mentation, and applications. Cryptology ePrint Archive, Report 2016/017, 2016. http://eprint.iacr.

org/2016/017.
LP09. Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party computation.

Journal of Cryptology, 22(2):161–188, 2009.
MS13. Payman Mohassel and Saeed Sadeghian. How to hide circuits in mpc an efficient framework for private

function evaluation. In Proceedings of the Advances in Cryptology – EUROCRYPT 2013, pages 557–574,
Athens, Greece, 26-30 May 2013. Springer, Berlin, Heidelberg.

MSS14. Payman Mohassel, Saeed Sadeghian, and Nigel P. Smart. Actively secure private function evaluation. In
Proceedings of the Advances in Cryptology – ASIACRYPT 2014, pages 486–505, Kaoshiung, Taiwan, 7-11
December 2014. Springer Berlin, Heidelberg.

NPS99. Moni Naor, Benny Pinkas, and Reuben Sumner. Privacy preserving auctions and mechanism design. In
Proceedings of the ACM Conference on Electronic Commerce (EC’99), pages 129–139, Denver, Colorado,
USA, 3-5 November 1999. ACM Press, NY, USA.

NSMS14. Salman Niksefat, Babak Sadeghiyan, Payman Mohassel, and Seyed Saeed Sadeghian. ZIDS: A privacy-
preserving intrusion detection system using secure two-party computation protocols. Comp. J., 57(4):494–
509, 2014.

Pai99. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings
of the Advances in Cryptology – EUROCRYPT 1999, pages 223–238, Prague, Czech Republic, 2-6 May
1999. Springer Berlin, Heidelberg.

PKV+14. Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Seung Geol Choi, Wesley
George, Angelos Keromytis, and Steve Bellovin. Blind Seer: A scalable private DBMS. In Proceedings of
IEEE Symposium on Security and Privacy (SP’14), pages 359–374, San Jose, CA, 18-21 May 2014. IEEE
Computer Society, Washington, DC.

PSS09. Annika Paus, Ahmad-Reza Sadeghi, and Thomas Schneider. Practical secure evaluation of semi-private
functions. In Proceedings of the Applied Cryptography and Network Security (ACNS’09), pages 89–106,
Paris-Rocquencourt, France, 2-5 June 2009. Springer-Verlag Berlin, Heidelberg.

PSSW09. Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-party computation
is practical. In Proceedings of the Advances in Cryptology – ASIACRYPT 2009, pages 250–267, Tokyo,
Japan, 6-10 December 2009. Springer-Verlag Berlin, Heidelberg.

Rab81. Michael O. Rabin. How to exchange secrets with oblivious transfer. Harvard University Technical Report.
Available at Cryptology ePrint Archive, Report 2005/187, 1981. http://eprint.iacr.org/2005/187.

20

http://eprint.iacr.org/2016/017
http://eprint.iacr.org/2016/017
http://eprint.iacr.org/2005/187

Sad15. SeyedSaeed Sadeghian. New Techniques for Private Function Evaluation. PhD thesis, University of
Calgary, 2015. https://prism.ucalgary.ca/handle/11023/2657.

Sch08. Thomas Schneider. Practical secure function evaluation. Master’s thesis, Friedrich-Alexander University
Erlangen-Nürnberg, Germany, February 27, 2008. http://thomaschneider.de/papers/S08Thesis.pdf.

SS09. Ahmad-Reza Sadeghi and Thomas Schneider. Generalized universal circuits for secure evaluation of private
functions with application to data classification. In Proceedings of the Information Security and Cryptology
(ICISC’08), pages 336–353, Seoul, Korea, 3-5 December 2009. Springer-Verlag, Berlin, Heidelberg.

Val76. Leslie G. Valiant. Universal Circuits (Preliminary Report). In Proceedings of the ACM Symposium on
Theory of Computing (STOC’76), pages 196–203, Hershey, Pennsylvania, USA, 3-5 May 1976. ACM New
York, NY, USA.

Wak68. Abraham Waksman. A permutation network. Journal of the ACM, 15(1):159–163, January 1968.
WmM17. Yongge Wang and Qutaibah m. Malluhi. Reducing garbled circuit size while preserving circuit gate privacy.

Cryptology ePrint Archive, Report 2017/041, 2017. http://eprint.iacr.org/2017/041.
Yao82. Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium on

Foundations of Computer Science (SFCS’82), pages 160–164, Chicago, IL, 3-5 November 1982. IEEE
Computer Society, Washington, DC, USA.

ZRE15. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole: Reducing data transfer in
garbled circuits using half gates. In Proceedings of the Advances in Cryptology - EUROCRYPT 2015,
pages 220–250, Sofia, Bulgaria, 26 - 30 April 2015. Springer, Berlin Heidelberg.

21

https://prism.ucalgary.ca/handle/11023/2657
http://thomaschneider.de/papers/S08Thesis.pdf
http://eprint.iacr.org/2017/041

	An Efficient 2-Party Private Function Evaluation Protocol Based on Half Gates
	Introduction
	Preliminaries
	Oblivious transfer (OT)
	Yao's protocol
	Half gates technique

	2-Party PFE Framework
	Context of CTH
	Mohassel and Sadeghian's 2-PFE scheme

	Our Efficient 2-Party PFE Scheme
	Use of 2-OEP protocol
	Our 2PC garbling scheme for 2-PFE

	Security of the proposed protocol
	Code based games and security notions
	Security Proof

	Performance Comparison
	Conclusion

