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Abstract

We present a new approach towards constructing round-optimal secure multiparty computation
(MPC) protocols against malicious adversaries without trusted setup assumptions. Our approach
builds on ideas previously developed in the context of covert multiparty computation [Chandran et
al., FOCS’07] even though we do not seek covert security. Using our new approach, we obtain the
following results:

• A five round MPC protocol based on the Decisional Diffie-Hellman (DDH) assumption.

• A four round MPC protocol based on one-way permutations and sub-exponentially secure DDH.
This result is optimal in the number of rounds.

Previously, no four-round MPC protocol for general functions was known and five-round protocols
were only known based on indistinguishability obfuscation (and some additional assumptions) [Garg
et al., EUROCRYPT’16].

1 Introduction

The notion of secure multiparty computation (MPC) [Yao86, GMW87] is fundamental in cryptography.
Informally speaking, an MPC protocol allows mutually distrusting parties to jointly evaluate a function
on their private inputs in such a manner that the protocol execution does not leak anything beyond the
output of the function.

A fundamental measure of efficiency in MPC is round complexity, i.e., the number of rounds of
communication between the parties. The round complexity of MPC has been extensively studied over
the last three decades. Protocols with smaller round complexity are more desirable so as to minimize the
effect of network latency, which in turn decreases the time complexity of the protocol.

In this work, we study round-optimal MPC against malicious adversaries who may corrupt an arbitrary
subset of parties, in the plain model without any trusted setup assumptions. We consider the traditional
simultaneous message model for MPC, where in each round of the protocol, each party simultaneously
broadcasts a message to the other parties.

A lower bound for this setting was established last year by Garg et al. [GMPP16] who proved that
three rounds are insufficient for coin-tossing w.r.t. black-box simulation. (Their work builds on [KO04]
who proved the necessity of five rounds for coin-tossing in the unidirectional message model.) In the
positive direction, several constant-round MPC protocols were constructed in a long sequence of works,
based on a variety of assumptions and techniques (see, e.g., [KOS03, Pas04, PW10, Wee10, Goy11]). Garg
et al. [GMPP16] established an upper bound on the exact round complexity of MPC by constructing
a five round protocol based on indistinguishability obfuscation [BGI+01, GGH+13] and some additional
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assumptions.1 Their work constitutes the state of the art on this subject.

Our Goals. Presently, no constructions of indistinguishability obfuscation are known from standard
assumptions. This motivates the following important question:

Does there exist a five round maliciously-secure MPC protocol for general functions based on standard
polynomial-time assumptions?

Furthermore, given the gap between the lower bound (three rounds) and the upper bound (five rounds)
established by [GMPP16], we ask whether their upper bound is tight:

Does there exist a four round maliciously-secure MPC protocol for general functions?

In this work, we resolve both of these questions in the affirmative.

The Main Barrier. We highlight the main conceptual barrier towards achieving our goals. Garg et
al. [GMPP16] follow a natural two-step approach to obtain their positive results: in the first step, they
construct a four round multiparty coin-tossing protocol. In the next step, they use their coin-tossing
protocol to replace the common random string (CRS) in a two-round MPC protocol in the CRS model
[GGHR14, MW16].

We note, however, that this approach, in general, cannot do better than five rounds. Indeed, since
at least one of the rounds of the two-round MPC must depend upon the CRS, we can only hope to
parallelize its first round with the coin-tossing protocol. Since coin-tossing requires four rounds, this only
yields a five round protocol at best.

A New Approach. In this work, we present a new approach towards constructing round-optimal MPC
protocols in the plain model. At a high level, our approach implements the classical GMW methodology
[GMW87] for constructing maliciously-secure MPC protocols, with a crucial twist, to minimize the number
of rounds. This approach is inspired by the beautiful work of Chandran et al. [CGOS07] for constructing
covert multiparty computation protocols [vHL05, CGOS07, GJ10].

Recall that the GMW compiler transforms a semi-honest MPC protocol into a maliciously secure one
by requiring the parties to prove (using zero-knowledge proofs [GMR85]) that each message in the semi-
honest protocol was computed “honestly.” Towards our goal of minimizing round complexity, we cannot
afford to prove honest behavior with every round of semi-honest MPC. Therefore, in our approach, the
parties prove honest behavior only once.

At first, such an approach may sound completely absurd. If each party is only required to give a
single proof of honest behavior, then a malicious adversary may choose to cheat in the first few rounds
of the semi-honest MPC protocol. By the time the proof is completed and the honest parties are able to
detect cheating, it may already be “too late.” Indeed, the opportunity to cheat in even a single round
may be sufficient for a malicious adversary to completely break the security of a semi-honest protocol.
Therefore, it is not at all clear why such an approach can be implemented in a secure manner.

In order to tackle this problem, we design a “special-purpose” semi-honest MPC protocol that remains
partially immune to malicious behavior before the last round of the protocol. Specifically, in such a
protocol, an adversary can influence the protocol outcome but not learn any private information by
behaving maliciously before the last round. We then “shield” the last round from being revealed to the
adversary until it has proven honest behavior for all of the preceding rounds. A single proof suffices to
accomplish this task. By parallelizing this proof with the semi-honest MPC, we are able to minimize the
round complexity.

We note that the above idea of delaying the proof of honest behavior to the end of the computation
was first developed in [CGOS07]. While they developed this technique to achieve covert security (namely,
hiding protocol participation from other players), we use it in our setting to minimize round complexity.

1Garg et al. also construct a four-round protocol for the coin-tossing functionality. In this work, we are interested in
MPC for general functions.
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1.1 Our Results

We present a new approach for constructing round-efficient MPC protocols that are secure against mali-
cious adversaries in the plain model. Using this approach, we are able to achieve both of our aforemen-
tioned goals.

I. Robust Semi-honest MPC. As a first step towards obtaining our results for maliciously-secure
MPC, we construct a four round robust semi-honest MPC protocol that remains partially immune to
malicious behavior. In this protocol, at the end of the first three rounds of computation, each party
receives a secret share of the function output. In the last round, the parties simply exchange their shares
to reconstruct the output. The key security property of this protocol is that if the adversary cheats in the
first three rounds, then it can only influence the function output, but not learn any private information.

We construct such an MPC scheme for general functions assuming the existence of low-depth pseu-
dorandom generators (PRGs) and a two-round “covert” oblivious transfer (OT) protocol [vHL05].2 Both
of these primitives can be instantiated from the Decisional Diffie-Hellman (DDH) assumption.

Theorem 1. Assuming DDH, there exists a four round robust semi-honest MPC protocol for general
functions.

The above result may be of independent interest.

II. Maliciously-secure MPC. Using theorem 1, we next construct maliciously-secure MPC protocols in
the plain model. Our first result is a five round MPC protocol based on any four-round robust semi-honest
MPC, injective one-way functions and collision-resistant hash functions (CRHFs).

Theorem 2 (Five Rounds). Assuming DDH, there exists a five round maliciously-secure MPC protocol
for computing general functions.

We next modify our five round protocol to obtain a four round protocol, albeit using sub-exponential
hardness. The security of our construction uses complexity leveraging between multiple primitives.

Theorem 3 (Four Rounds). Assuming one-way permutations and sub-exponentially secure DDH, there
exists a four round maliciously-secure MPC protocol for computing general functions.

1.2 Our Techniques

As discussed earlier, the approach of Garg et al. [GMPP16] for constructing maliciously-secure MPC
protocols is unsuitable for achieving our goals. Therefore, we develop a new approach for constructing
round-efficient MPC against malicious adversaries.

At a high-level, our approach implements the GMW paradigm for constructing maliciously-secure
MPC protocols, with a crucial twist. Recall that the GMW paradigm transforms a semi-honest MPC
protocol into a maliciously secure one using the following three steps: (1) first, the parties commit to their
inputs and random tapes. (2) Next, the parties perform coin-tossing to establish an unbiased random
tape for each party. (3) Finally, the parties run the semi-honest MPC protocol where along with every
message, each party also gives zero-knowledge proof of “honest” behavior consistent with the committed
input and random tape.

Both steps (2) and (3) above introduce additional rounds of interaction, and constitute the main
bottleneck towards constructing round-optimal MPC.

Main Ideas. Towards this, we develop two key modifications to the GMW compiler:

1. “One-shot” proof: Instead of requiring the parties to give a proof of honest behavior in each
round of the underlying semi-honest protocol, we use a “delayed verification” technique where the

2We use low-depth PRGs to obtain degree-three randomizing polynomials for general functions [AIK06].
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parties prove honest behavior only once, towards the end of the protocol. As we explain below,
this allows us to limit the overhead of additional rounds introduced by zero-knowledge proofs in
the GMW compiler.

The idea of delayed verification was previously developed in the work of Chandran et. al. [CGOS07].
Interestingly, while they used this technique to achieve security in the setting of covert computation
[vHL05, CGOS07], we use this technique to minimize the round complexity of our protocol.

2. No coin tossing: Second, we eliminate the coin-tossing step (i.e., step 2). Note that by removing
coin-tossing, we implicitly allow the adversarial parties to potentially use “bad” randomness in
the protocol. To ensure security in this scenario, we will use a special semi-honest MPC protocol
that is secure against bad randomness. This idea has previously been used in many works (see,
e.g.,[AJL+12, MW16]).

We now elaborate on the first step, which constitutes the conceptual core of our work. We consider
semi-honest MPC protocols with a specific structure consisting of two phases: (a) Computation phase:
in the first phase of the protocol, the parties compute the function such that each party obtains a secret-
share of the output. (b) Output phase: In the second phase, the parties exchange their output shares
with each other to compute the final output. This phase consists of only one round and is deterministic.
Note that standard MPC protocols such as [GMW87] follow this structure.

At a high-level, we implement our delayed verification strategy as follows: the parties first run the
computation phase of the semi-honest protocol “as is” without giving any proofs. At the end of this
phase, each party gives a single proof that it behaved honestly throughout the computation phase (using
the committed input and random tape). If all the proofs verify, then the parties execute the output
phase.

Right away, one may notice a glaring problem in the above approach. If the computation phase
is executed without any proof of honest behavior, the adversary may behave maliciously in this phase
and potentially learn the honest party inputs even before the output phase begins! Indeed, standard
semi-honest MPC protocols do not guarantee security in such a setting.

To combat this problem, we develop a special purpose semi-honest MPC protocol that remains “par-
tially immune” to malicious behavior. Specifically, such a protocol maintains privacy against malicious
adversaries until the end of the computation phase. However, output correctness is not guaranteed if the
adversary behaved maliciously in the computation phase. We refer to such an MPC protocol as robust
semi-honest MPC. Later, we describe a four-round construction of robust semi-honest MPC where the
first three rounds correspond to the computation phase and the last round constitutes the output phase.

Note that the robustness property as described above perfectly suits our requirements because in our
compiled protocol, the output phase is executed only after each party has proven that it behaved honestly
during the computation phase. This ensures full security of our compiled protocol.

A New Template for Malicious MPC. Putting the above ideas together, we obtain the following
new template for maliciously-secure MPC:

• First, each party commits to its input and randomness using both a three-round extractable com-
mitment scheme3, and a non-interactive commitment scheme. In parallel, the parties also execute
the computation phase of a four-round robust semi-honest MPC.

• Next, each party proves to every other party that it behaved honestly during the first three rounds.

• Finally, the parties execute the output phase of the robust semi-honest MPC and once again prove
that their message is honestly computed.

3We use a variant of the extractable commitment scheme in [Ros04] for this purpose. This variant has been used in many
prior works such as [GJO10, GGJS12, Goy12] because it is “rewinding secure” – a property that is used in the security
proofs.
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In order to obtain a five round protocol from this template, we need to parallelize the proofs with the
other protocol messages. For this purpose, we use delayed-input proofs [LS90] where the instance is only
required in the last round.4 In particular, we use four-round delayed input zero-knowledge (ZK) proofs
whose first three messages are executed in parallel with the first three rounds of the robust semi-honest
MPC. This yields us a five round protocol.

We remark that during simulation, our simulator is able to extract the adversary’s input only at
the end of the third round. This means that we need to simulate the first three rounds of the robust
semi-honest MPC without knowledge of the adversary’s input (or the function output). Our robust semi-
honest MPC satisfies this property; namely, the simulator for our robust semi-honest MPC needs the
adversary’s input and randomness (and the function output) only to simulate the output phase.

Four Rounds: Main Ideas. We next turn to the problem of constructing four-round MPC. At first,
it is not clear how to obtain a four round protocol using the above template. Indeed, as argued earlier,
we cannot afford to execute the output phase without verifying that the parties behaved honestly during
the computation phase. In the above template, the output phase is executed after this verification is
completed. Since three-round zero-knowledge proofs with polynomial-time simulation are not known
presently, the verification process in the above protocol requires four rounds. Therefore, it may seem that
that we are limited to a five round protocol.

Towards that, we note that our robust semi-honest MPC (described later) satisfies the following
property: in order to simulate the view of the adversary (w.r.t. the correct output), the simulator
only needs to “cheat” in the output phase (i.e., the last round). In particular, the simulation of the
computation phase can be done “honestly” using random inputs for the honest parties. In this case, we
do not need full-fledged ZK proofs to establish honest behavior in the computation phase; instead, we
only need strong witness indistinguishable (WI) proofs. Recall that in a strong WI proof system, for
any two indistinguishable instance distributions D1 and D2, a proof for x1 ← D1 using a witness w1 is
indistinguishable from a proof for x2 ← D2 using a witness w2. This suffices for us because using strong
WI, we can switch from an honest execution of the computation phase using the real inputs of the honest
parties to another honest execution of the computation phase using random inputs for the honest parties.

Recently, Jain et al. [JKKR17] constructed three-round delayed-input strong WI proofs of knowledge
from the DDH assumption. However, their proof system only guarantees strong WI property if the
entire statement is chosen by the prover in the last round. In our case, this is unfortunately not true,
and hence we cannot use their construction. Therefore, we take a different route, albeit at the cost of
sub-exponential hardness assumptions. Specifically, we observe that by relying upon sub-exponential
hardness, we can easily construct a three-round (delayed-input) strong WI argument by combining any
three-round (delayed-input) WI proof of knowledge with a one or two-message “trapdoor phase” in our
simultaneous message setting. For example, let f be a one-way permutation. The trapdoor phase can
be implemented by having the verifier send y = f(x) for a random x in parallel with the first prover
message. The statement of the WI proof of knowledge is changed to: either the original statement is true
or the prover knows x.

Now, by running in exponential time in the hybrids, we can break the one-way permutation to recover
x and then prove knowledge of x. This allows us to switch from honest execution of the computation
phase using the real inputs of the honest parties to another honest execution using random inputs. After
this switch, we can go back to proving the honest statement which can be done in polynomial time. This
ensures that our final simulator is also polynomial time.

Handling Non-malleability Issues. So far, we ignored non-malleability related issues in our discussion.
However, as noted in many prior works, zero-knowledge proofs with standard soundness guarantee do
not suffice in the setting of constant-round MPC. Indeed, since proofs are being executed in parallel, we

4Note that the witness for these proofs corresponds to the adversary’s input and random tape which is already fixed in
the first round.
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need to ensure that an adversary’s proofs remain sound even when the honest party’s proofs are being
simulated [Sah99].

We handle such malleability issues by using the techniques developed in a large body of prior works.
In our five round MPC protocol, we make non-black-box use of (a slight variant) of the four-round non-
malleable zero-knowledge (NMZK) argument of [COSV17] to ensure that adversary’s proofs remain sound
even during simulation. More specifically, following prior works such as [BPS06, GJO10, GGJS12, Goy12],
we establish a “soundness lemma” to ensure that the adversary is behaving honestly across the hybrids.
We use the extractability property of the non-malleable commitment used inside the non-malleable zero-
knowledge argument to prove this property.

In our four round protocol, we use the above NMZK to prove honest behavior in the output phase. In
order to prove honest behavior in the computation phase, we use a slightly modified version of the strong
WI argument system described above which additionally uses the two-round extractable non-malleable
commitment scheme of [KS17] to achieve the desired non-malleability properties.5 Unlike the five round
construction, here, we rely upon complexity leveraging in several of the hybrids to argue the “soundness
lemma” as well as to tackle some delicate rewinding-related issues that are commonplace in such proofs.
We refer the reader to the technical sections for details.

Robust Semi-honest MPC. We now briefly describe the high-level ideas in our four-round construction
of robust semi-honest MPC for general functionalities. Towards this, we note that it suffices to achieve a
simpler goal of constructing robust semi-honest MPC for a restricted class of functionalities, namely, for
computing randomized encodings.6 That is, in order to construct a robust MPC for a n-party functionality
F , it suffices to construct a robust MPC for a n-functionality Frnd that takes as input (x1, r1; · · · ;xn, rn)
and outputs a randomized encoding of F (x1, . . . , xn) using randomness r1 ⊕ · · · ⊕ rn. This is because
all the parties can jointly execute the protocol for Frnd to obtain the randomized encoding. Each party
can then individually execute the decoding algorithm of the randomized encoding to recover the output
F (x1, . . . , xn). Note that this transformation preserves round complexity.

To construct a robust semi-honest n-party protocol for Frnd, we consider a specific type of random-
ized encoding defined in [AIK06]. In particular, they construct a degree 3 randomizing polynomials 7

for arbitrary functionalities based on low-depth pseudorandom generators. In their construction, every
output bit of the encoding can be computed by a degree 3 polynomial on the input and the randomness.
Hence, we further break down the goal of constructing a protocol for Frnd into the following steps:

• Step 1: Construct a robust semi-honest MPC 3-party protocol for computing degree 3 terms. In
particular, at the end of the protocol, every party who participated in the protocol get a secret
share x1x2x3, where xq is the qth party’s input for q ∈ {1, 2, 3}. The randomness for the secret
sharing comes from the parties in the protocol.

• Step 2: Using Step 1, construct a robust semi-honest MPC protocol to compute degree 3 polyno-
mials.

• Step 3: Using Step 2, construct a robust semi-honest MPC protocol for Frnd.

Steps 2 and 3 can be achieved using standard transformations and these transformations are round
preserving. Thus, it suffices to achieve Step 1 in four rounds. Suppose P1, P2 and P3 participate in the
protocol. Roughly, the protocol proceeds as follows: P1 and P2 perform a two message covert OT protocol
to receive a share of x1x2. Then, P1 and P3 perform a two message OT protocol to receive a share of
x1x2x3. We need to do more work to ensure that at the end, all of them have shares of x1x2x3. Further,

5Our security proof can be adapted to instead work with a three-round delayed-input public-coin non-malleable commit-
ment scheme [GPR16, COSV16]. See Appendix A.4 for further discussion.

6A randomized encoding of function f and input x is such that, the output f(x) can be recovered from this encoding and
at the same time, this encoding should not leak any information about either f or x.

7The terms randomized encodings and randomizing polynomials are interchangeably used.
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the robustness guarantee is argued using the covert security of the OT protocol. We refer the reader to
the technical sections for more details.

1.3 Concurrent Work

In a concurrent and independent work, Brakerski, Halevi and Polychroniadou [BHP17] construct a
maliciously-secure 4-round MPC protocol based on the sub-exponential hardness of the Learning with
Errors (LWE) problem and on the adaptive commitments of [PPV08]. Their approach is very different
from ours, most notably in the initial step, in that they construct and use a 3-round protocol against
semi-malicious adversaries from LWE, while we construct and use a robust semi-honest MPC protocol
from DDH.

1.4 Related Work

The study of constant-round protocols for MPC was initiated by Beaver et al. [BMR90]. They constructed
constant-round MPC protocols in the presence of honest majority. Subsequently, a long sequence of works
constructed constant-round MPC protocols against dishonest majority based on a variety of assumptions
and techniques (see, e.g., [KOS03, Pas04, PW10, Wee10, Goy11]). Very recently, Garg et al. [GMPP16]
constructed five round MPC using indistinguishability obfuscation and three-round robust non-malleable
commitments. They also construct a six-round MPC protocol using learning with errors (LWE) assump-
tion and three-round robust non-malleable commitments. All of these results are in the plain model
where no trusted setup assumptions are available.

Asharov et. al. [AJL+12] constructed three round MPC protocols in the CRS model. Subsequently,
two-round MPC protocols in the CRS model were constructed by Garg et al. [GGHR14] using indistin-
guishability obfuscation, and by Mukherjee and Wichs [MW16] using LWE assumption.

2 Preliminaries

For the definitions of all the underlying primitives used in our constructions, we refer the reader to Ap-
pendix A. Below, we provide the definition of robust semi-honest MPC.

Robust Semi-Honest MPC. We consider semi-honest secure multi-party computation protocols that
satisfy an additional robustness property. Intuitively the property says that, except the final round, the
messages of honest parties reveal no information about their inputs even if the adversarial parties behave
maliciously.

Definition 1. Let F be an n-party functionality. Let A = (A1,A2) represent a PPT algorithm controlling

a set of parties S ⊆ [n]. For a t-round protocol computing F , we let RealExecA
1

(t−1)(~x, z) denote the view

of A1 during the first t − 1 rounds in the real execution of the protocol on input ~x = (x1, · · · , xn) and
auxiliary input z. We require that at the end of the first t − 1 rounds in the real protocol, A1 outputs
state and (inp, rand) on a special tape where either (inp, rand) = (⊥,⊥) (if A1 behaved maliciously) or
(inp, rand) = ({x̂i}i∈S , {r̂i}i∈S) which is consistent with the honest behavior for RealExec(t−1) (first t − 1
rounds).

A protocol is said to be a “robust” secure multiparty computation protocol for F if for every PPT
adversary A = (A1,A2) controlling a set of parties S in the real world, where A2 is semi-honest, there
exists a PPT simulator Sim = (Sim1,Sim2) such that for every initial input vector ~x, every auxiliary input
z
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– If (inp, rand) 6= (⊥,⊥), then:(
RealExecA

1

(t−1)(~x, z), RealExecA
2

t (~x, state)
)
≈c
(
RealExecA

1

(t−1)(~x, z), Sim2({x̂i}i∈S , {r̂i}i∈S , y, state)
)

≈c
(
Sim1(z), Sim2 ({x̂i}i∈S , {r̂i}i∈S , y, state)

)
.

Here y = F (x̂1, . . . , x̂n), where x̂i = xi for i /∈ S. And RealExecA
2

t (~x, state) is the view of adversary
A2 in the tth round of the real protocol.

– Else,
RealExecA

1

(t−1)(~x, z) ≈c Sim
1(z).

Note that, in general, a semi-honest MPC protocol may not satisfy this property. In section 3, we
construct a four-round semi-honest MPC protocol with robustness property.

Remark 1. Our definition of robust semi-honest MPC implies semi-malicious security. Informally, a
semi-malicious adversary is one follows protocol instructions but may choose its randomness arbitrarily.
See [AJL+12] for a formal definition.

3 Four Round Robust Semi-Honest MPC

We first describe the tools required for our construction. We require,

• Two message 1-out-of-2 covert oblivious transfer protocol (Theorem 11). Denote this by OT.

• Degree 3 randomizing polynomials for arbitrary polynomial sized circuits (Theorem 12). Denote
this by RP = (CktE,D).

Both the tools mentioned above can be instantiated from DDH.

Construction. Our goal is to construct an n-party MPC protocol ΠF
sh secure against semi-honest adver-

saries for an n-party functionality F . Moreover, we show that ΠF
sh satisfies Robust property (Definition 1).

We employ the following steps:

• Step I: We first construct an 3-party semi-honest MPC protocol Π3MULT
sh for the functionality

3MULT defined below. This protocol is a three round protocol. However, we view this as a four
round protocol (with the last round being empty) – the reason behind doing this is because this
protocol will be used as a sub-protocol in the next steps and in the proof, the programming of the
simulator occurs only in the fourth round.

3MULT((x1, r1); (x2, r2); (x3)) outputs (r1; r2; x1x2x3 + r1 + r2)

• Step II: We use Π3MULT
sh to construct an n-party semi-honest MPC protocol Π

3POLY{p}
sh for the

functionality 3POLY{p} defined below, where p is a degree 3 polynomial in F2[y1, . . . ,yN ]. This
protocol is a four round protocol and it satisfies robust property.

3POLY{p}(X1; · · · ;Xn) outputs p(y1, . . . ,yN ),

where X1, . . . , Xn are partitions of y1, . . . ,yN .

• Step III: We use Π3POLY
sh to construct an n-party semi-honest MPC protocol ΠF

sh. This protocol is
a four round protocol and it satisfies robust property.
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We now describe the steps in detail.

Step I: Constructing Π3MULT
sh . Denote the parties by P1, P2 and P3. Denote the input of P1 to be

(x1, r1), the input of P2 to be (x2, r2) and the input of P3 to be (x3). The protocol works as follows:

• Round 1: P1 participates in a 1-out-of-2 oblivious transfer protocol OT12 with P2. P1 plays the
role of receiver. It generates the first message of OT12 as a function of x1.

Simultaneously, P2 and P3 participate in a 1-out-of-2 protocol OT23. P3 takes the role of the
receiver. It generates the first message of OT23 as a function of x3.

• Round 2: P2 sends the second message in OT12 as a function of (x2 · 0 + r′2; x2 · 1 + r′2), where r′2
is sampled at random. P2 sends the second message in OT23 as a function of (0 · r′2 + r2; 1 · r′2 + r2).

Simultaneously, P1 and P3 participate in a OT protocol OT13. P3 takes the role of the receiver. It
sends the first message of OT13 as a function of x3.

• Round 3: Let u be the value recovered by P1 from OT12. P1 sends the second message to P3 in
OT13 as a function of (u · 0 + r1, u · 1 + r1). Let α′3 recovered from OT13 by P3 and let α′′3 be the
output recovered from OT23.

P1 outputs α1 = r1, P2 outputs α2 = r2 and P3 outputs α3 = α′3 + α′′3 (operations performed over F2).

Theorem 4. Assuming the correctness of OT, Π3MULT
sh satisfies correctness property.

The proof can be found in B.1.

Theorem 5. Assuming the security of OT, Π3MULT
sh is a robust semi-honest three-party secure computation

protocol satisfying Definition 1.

The proof can be found in B.2.

Step II: Constructing Π
3POLY{p}
sh . We first introduce some notation. Consider a polynomial q ∈

F2[y1, . . . ,yN ] with coefficients over F2. We define the set MonS{q} as follows: a term t ∈ MonS{q}
if and only if t appears in the expansion of the polynomial q. We define MonS{q}i as follows: a term
t ∈ MonS{q}i if and only if t ∈ MonS{q} and t contains the variable yi.

We now describe Π
3POLY{p}
sh .

Protocol Π
3POLY{p}
sh : Let P1, . . . , Pn be the set of parties in the protocol. Let Xi be the input set of Pi

for every i ∈ [n]. We have,
∑n

i=1 |Xi| = N and Xi ∩ Xj = ∅ for i 6= j. Every x ∈ Xi corresponds to a
unique variable yj for some j.

• For every i ∈ [n], party Pi generates n additive shares si,1, . . . , si,n of 0. It sends share si,j to Pj in
the first round.

• In parallel, for every term t in the expansion of p, do the following:

- If t is of the form x3
i , then Pi computes x3

i .

- If t is of the form x2
ixj then pick k ∈ [n] and k 6= i, k 6= j. Let rti and rtj be the randomness,

associated with t, sampled by Pi and Pj respectively. The parties Pi(xi, r
t
i), Pj(xj , r

t
j) and Pk(1)

execute Π3MULT
sh to obtain the corresponding shares αti, α

t
j and αtk. Note that this finishes in

the third round.

- If t is of the form xixjxk, then parties Pi, Pj and Pk sample randomness rti , r
j
t and rtk re-

spectively. Then, they execute Π3MULT
sh on inputs (xi, r

t
i), (xj , r

t
j) and (xk) to obtain the

corresponding shares αti, α
t
j and αtk. Note that this finishes in the third round.

9



• After the third round, Pi adds all the shares he has so far (including his own shares) and he
broadcasts his final share si to all the parties. This consumes one round.

• Finally, Pi outputs
∑n

i=1 si.

Theorem 6. Assuming Π3MULT
sh satisfies correctness, Π

3POLY{p}
sh satisfies correctness property.

The proof can be found in B.3.

Theorem 7. Assuming the security of Π3MULT
sh , Π

3POLY{p}
sh is a robust semi-honest MPC protcol satisfying

Definition 1 as long as Π3MULT
sh satisfies Definition 1.

The proof can be found in B.4.
Step III: Constructing ΠF

sh. We describe ΠF
sh below.

Protocol ΠF
sh: Let C be a circuit representing F . That is, F (x1; . . . , xn) = C(x1|| · · · ||xn). Let

RP.CktE(C) = (p1, . . . , pm). Note that pi, for every i, is a degree 3 polynomial in F2[y1, . . . ,yn, r1, . . . , rN ].
Construct polynomial p̂i ∈ F2[y1, . . . ,yn, , r1,1, . . . , rn,N ] by replacing rj , for every j ∈ [N ], in pi by the
polynomial

∑n
k=1 rk,j . Note that p̂i is still a degree 3 polynomial.

Pi samples randomness ri,j , for every j ∈ [N ]. For every j ∈ [m], all the parties execute the protocol

Π
3POLY{p̂j}
sh . The input of Pi is (xi, ri,1, . . . , ri,N ) in this protocol. In the end, every party receives

αj = p̂j(x1, . . . , xn), for every j ∈ [m]. Every party then executes D(α1, . . . , αn) to obtain α∗. It outputs
α∗.

Theorem 8. Assuming the security of Π
3POLY{p}
sh and security of RP, ΠF

sh is a robust semi-honest secure

MPC protocol satisfying Definition 1 as long as Π
3POLY{p}
sh satisfies Definition 1.

The proof can be found in B.5.

4 Five Round Malicious MPC

Overview. We start by giving an overview of our construction. We want to use the robust semi honest
MPC as the basis for our construction, but its security is only defined in the semi-honest setting. We
enforce the semi-honest setting by having the players prove, in parallel, that they computed the robust
semi honest MPC honestly. Players prove that (1) they computed the first three rounds of the robust
semi honest MPC honestly; and (2) they committed their input and randomness used in the robust semi
honest MPC to every other party using an extractable commitment scheme. To do so, we use a four
round input delayed proof system, where the statement for the proof can be delayed till the final round.
This lets players send the final round of their proof in the fourth round. Before proceeding, we verify
each of the proofs received to ensure everyone is behaving in an honest manner. Next, to prove that the
last round of the robust semi honest MPC is computed correctly, we use an instance of a three round
input delayed witness indistinguishable proof of knowledge. The three round proof starts in the third
round and completes with the last round of the robust MPC. This gives the total of five rounds.

4.1 Our Construction

Building blocks. For construction of the protocol, we require the following tools:

1. A 3-round “rewinding-secure” extractable commitment scheme Πecom = 〈Cecom, Recom〉 as described
in appendix A.6. In the honest execution of our MPC protocol, we require the commitments to be
well formed, where this property is defined in section A.6. Since there will be commitments in both
directions for every pair of players, we introduce notation for individual messages of the protocol.
πj
ecomi→k refers to the j-th round of the Pi’s commitment to Pk.

10



We will denote by τecomi→k
:=
(
π1
ecomi→k

, π2
ecomi→k

, π3
ecomi→k

)
. Additionally, we shall denote by

dececomi→k
the decommitment (namely, the randomness used by the committer) of the corresponding

commitment.

2. A 4-round robust semi honest MPC protocol ΠrMPC from section 3. Let nextMsgΠrMPC denote its
next-message function, that for player Pi, on input (xi, ri, ~m

1, · · · , ~mj) returns mj+1
i , the message

Pi broadcasts to all other players in the (j + 1)-th round as a part of the protocol. Here ~mj =
(mj

1, · · · ,m
j
n) consists of all the messages sent during round j of the protocol. The robust semi

honest MPC also consists of a function OutΠrMPC that computes the final output y.

3. A 4-round input delayed parallel non-malleable zero-knowledge protocol (refer to definition 6). We
make non-black box use of the NMZK protocol of [COSV17] as described in Appendix A.5.1. We
denote it as Πnmzk = 〈Pnmzk, Vnmzk〉.
In our MPC construction, we use Πnmzk for language L that consists of instances where, for every
i ∈ [n], Pi correctly computes the first 3 rounds of the robust semi honest MPC with inputs (xi, ri),
and honestly commits to this input to every other player.

L =
{

({τecomi→k
}k∈[n]\{i}, idi, ~mi = (~m1, ~m2,m3

i )) :

∃(xi, ri, {dececomi→k
}k∈[n]) s.t.

(
(∀ k : τecomi→k

is a well formed

commitment of ((xi, ri)) ) AND (m1
i = nextMsgΠrMPC(xi, ri)

AND m2
i = nextMsgΠrMPC(xi, ri, ~m

1) AND m3
i = nextMsgΠrMPC(xi, ri, ~m

1, ~m2) )
)}

Further, we define the language Li to be the subset of L that only consists of instances where player
Pi, for a fixed i, correctly computes the first 3 rounds of the robust semi honest MPC with inputs
(xi, ri), and honestly commits to this input to every other player.

In an execution of Πnmzk between parties i and k where i (resp., k) plays the role of the prover
(resp., verifier), we denote the message sent in the j-th round by πj

nmzki→k
.

Ingredients inside [COSV17] NMZK. We recall some of the key sub-protocols used in the
NMZK protocol Πnmzk: (1) A “trapdoor generation” protocol that uses a standard signature scheme.
We use Ver to denote the verification algorithm of the signature scheme and vk to denote a ver-
ification key. (2) A four round public-coin, extractable non-malleable commitment scheme. The
transcript of an execution of the non-malleable commitment scheme is denoted as τnmcom, and the
associated decommitment is denoted as decnmcom. Going further, we will refer to these sub-protocols
in a non-black-box manner through the remainder of our MPC construction. Whenever necessary,
we will augment the above notations with subscript i→ k to refer to an execution between party i
and k.

For a complete formal description of Πnmzk, refer to appendix A.5.1.

4. A 3 round input delayed witness indistinguishable proof of knowledge (WIPoK) protocol ΠWIPoK =
(PWIPoK, VWIPoK). We require the protocols to be public coin and instantiate them using the Lapidot-
Shamir protocol [LS90].

We use ΠWIPoK for a language LWIPoK that consists of instances where, for every i, k ∈ [n], player
Pi proves to player Pk that either:

– it behaved honestly, i.e. it has a witness w such that (x
L̂i
, w) ∈ Rel

L̂i
(the languages L̂ and L̂i

are defined below); or

11



– it committed (via a mask) to a “trapdoor witness” (m1,m2, σ1, σ2) in the non-malleable com-
mitment τnmcomi→k

where σi is a valid signature on mi with respect to the verification key
vki→k in the trapdoor generation protocol within the NMZK.

Formally,

LWIPoK =
{(

x
L̂i
, idk, τnmcomi→k

, s1
nmcomi→k

, vki→k

)
: ∃(w, decnmcomi→k

,msg1,msg2, σ1, σ2) s.t.(
(x
L̂i
, w) ∈ Rel

L̂

)
OR
(

(
(
(msg1,msg2, σ1, σ2)⊕ s1

nmcomi→k
, decnmcomi→k

, idi

)
is a valid decommitment of τnmcomi→k

) AND Ver(vki→k,msg1, σ1) = 1

AND Ver(vki→k,msg2, σ2) = 1 AND msg1 6= msg2)
)}

We define xWIPoKi→k
:=
(
x
L̂i
, idk, τnmcomi→k

, s1
nmcomi→k

, vki→k

)
.

We now describe the language L̂. For every i, it consists of instances where player Pi correctly
computes the fourth round of the robust semi honest MPC with inputs (xi, ri), and honestly commits
to (xi, ri) to every other player Pk in the extractable commitment.

Formally,

L̂ =
{

({τecomi→k
}k∈[n]\{i}, idi, ~mi = (~m1, ~m2, ~m3,m4

i )) :

∃(xi, ri, {dececomi→k
}k∈n) s.t.

(
( ∀ k : τecomi→k

is a well formed

commitment of ((xi, ri))) AND ( m4
i = nextMsgΠrMPC(xi, ri, ~m

1, ~m2, ~m3) )
)}
.

Further, we define the language L̂i to be the subset of L̂ that only consists of instances where player
Pi, for a fixed i, correctly computes the fourth round of the robust semi honest MPC with inputs
(xi, ri), and honestly commits to (xi, ri) to every other player Pk in the extractable commitment.

Protocol description. Let P = {P1, · · · , Pn} be the set of parties and {id1, · · · , idn} denote their
corresponding unique identifiers (one can think of idi = i). The input and randomness (xi, ri) for player
Pi is fixed in the beginning of the protocol. The protocol instructs each player Pi to compute a message
M j

i for round j and broadcasts it over the simultaneous broadcast channel. Thus in round j, messages

(M j
1, · · · ,M

j
n) are simultaneously broadcast.

The protocol is detailed below. For ease of notation, we shall assume the that security parameter n
is an implicit argument to each of the functions.

Round 1. Each player Pi computes the message M1
i to be sent in the first round as follows:

1. Compute independently, with fresh randomness, to the input and randomness in the first (commit-
ter) message of the extractable commitment to every other player i.e., ∀k ∈ [n] \ {i}

(π1
ecomi→k

, dececomi→k
)← Cecom((xi, ri))

Set
π1
ecomi

:= (π1
ecomi→1

, · · · , π1
ecomi→i−1

,⊥, π1
ecomi→i+1

, · · · , π1
ecomi→n

).

2. Compute independently, with fresh randomness, the first (verifier) message of the non-malleable
zero-knowledge protocol for every other player i.e., ∀k ∈ [n] \ {i}

π1
nmzkk→i

← Vnmzk(idk, `)

12



where ` is the lengths of the input delayed statements for Li.

Set

π1
nmzki

:= (π1
nmzk1→i

, · · · , π1
nmzki−1→i

,⊥, π1
nmzki+1→i

, · · · , π1
nmzkn→i

)

3. Compute the first message of the robust semi honest MPC,

m1
i ← nextMsgΠrMPC(xi, ri).

M1
i is now defined as,

M1
i := (π1

ecomi
, π1

nmzki
,m1

i ).

Broadcast M1
i and receive M1

1 , · · · ,M1
i−1,M

1
i+1, · · · ,M1

n .

Round 2. Each player Pi computes the message M2
i to be sent in the second round as follows:

1. Compute the second message of the extractable commitment in response to the messages from the
other parties i.e., ∀k ∈ [n] \ {i}

π2
ecomk→i

← Recom(π1
ecomk→i

)

where π1
ecomk→i

can be obtained from π1
ecomk

in M1
k .

Set

π2
ecomi

:= (π2
ecom1→i

, · · · , π2
ecomi−1→i

,⊥, π2
ecomi+1→i

, · · · , π2
ecomn→i

).

2. Compute the second message of the non-malleable zero-knowledge protocol in response to the
messages from the other parties i.e., ∀k ∈ [n] \ {i}

π2
nmzki→k

← Pnmzk(idi, `, π
1
nmzki→k

)

where π1
nmzkk→i

can be obtained from π1
nmzkk

in M1
k . Set

π2
nmzki

:= (π2
nmzki→1

, · · · , π2
nmzki→i−1

,⊥, π2
nmzki→i+1

, · · · , π2
nmzki→n

)

3. Compute the second message of the robust semi honest MPC,

m2
i ← nextMsgΠrMPC(xi, ri, ~m

1)

where ~m1 := (m1
1, · · · ,m1

n).

M2
i is now defined as,

M2
i := (π2

ecomi
, π2

nmzki
,m2

i ).

Broadcast M2
i and receive M2

1 , · · · ,M2
i−1,M

2
i+1, · · · ,M2

n .
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Round 3. Each player Pi computes the message M3
i to be sent in the third round as follows:

1. Compute the final message of the extractable commitment i.e., ∀k ∈ [n] \ {i}

π3
ecomi→k

← Cecom(π1
ecomi→k

, π2
ecomi→k

)

where π1
ecomi→k

is as computed earlier and π2
ecomi→k

is obtained from π2
ecomk

in M2
k . Set

π3
ecomi

:= (π3
ecomi→1

, · · · , π3
ecomi→i−1

,⊥, π3
ecomi→i+1

, · · · , π3
ecomi→n

).

2. Compute the third message of the non-malleable zero-knowledge protocols i.e., ∀k ∈ [n] \ {i}

π3
nmzkk→i

← Vnmzk(idk, π
1
nmzkk→i

, π2
nmzkk→i

)

where π1
nmzkk→i

is as computed earlier and π2
nmzkk→i

is obtained from π2
nmzkk

in M2
k .

Set

π3
nmzki

:= (π3
nmzk1→i

, · · · , π3
nmzki−1→i

,⊥, π3
nmzki+1→i

, · · · , π3
nmzkn→i

)

3. Compute the third message of the robust semi honest MPC,

m3
i ← nextMsgΠrMPC(xi, ri, ~m

1, ~m2)

where ~m1 := (m1
1, · · · ,m1

n) and ~m2 := (m2
1, · · · ,m2

n).

4. Compute the first message for the input delayed witness indistinguishable proof of knowledge
(WIPoK) for L̂WIPoK to every other player i.e. ∀k ∈ [n] \ {i}

π1
WIPoKi→k

← PWIPoK(̂̀)
where ̂̀ is the size of the statement.

Set
π1
WIPoKi

:= (π1
WIPoKi→1

, · · · , π1
WIPoKi→i−1

,⊥, π1
WIPoKi→i+1

, · · · , π1
WIPoKi→n

).

M3
i is now defined as,

M3
i := (π3

ecomi
, π3

nmzki
,m3

i , π
1
WIPoKi

).

Broadcast M3
i and receive M3

1 , · · · ,M3
i−1,M

3
i+1, · · · ,M3

n .

Round 4. Each player Pi computes the message M4
i to be sent in the fourth round as follows:

1. Compute the second message of the input delayed WIPoK for LWIPoK in response to messages from
every other player i.e. ∀k ∈ [n] \ {i}

π2
WIPoKk→i

← VWIPoK(`, π1
WIPoKk→i

)

where π1
WIPoKk→i

can be obtained from π1
WIPoKk

in M3
k .

Set
π1
WIPoKi

:= (π1
WIPoK1→i

, · · · , π1
WIPoKi−1→i

,⊥, π1
WIPoKi+1→i

, · · · , π1
WIPoKn→i

).
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2. Compute the final message of the non-malleable zero-knowledge protocol for language Li i.e., ∀k ∈
[n] \ {i}

wLi
:=
(
xi, ri, {dececomi→k

}k∈[n]

)
~mi :=

(
~m1, ~m2,m3

i

)
xLi

:=
(
{τecomi→k

}k∈[n] , idi, ~mi

)
π4
nmzki→k

← Pnmzk(idi, `, xLi , wLi , π
1
nmzki→k

, π2
nmzki→k

, π3
nmzki→k

)

where |xLi | = `, and π1
nmzki→k

is obtained from π1
nmzkk

in M1
k . Similarly, π3

nmzki→k
is obtained from

π3
nmzkk

in M3
k . π2

nmzki→k
is as computed earlier.

Set
π4
nmzki

:= (π4
nmzki→1

, · · · , π4
nmzki→i−1

,⊥, π4
nmzki→i+1

, · · · , π4
nmzki→n

).

M4
i is now defined as,

M4
i := (π4

nmzki
, π2

WIPoKi
).

Broadcast M4
i and receive M4

1 , · · · ,M4
i−1,M

4
i+1, · · · ,M4

n .

Round 5. Each player Pi computes the message M5
i to be sent in the fifth round as follows:

1. Check if all the proofs for the NMZK in the protocol are accepting. The proof from Pk to Pj is
accepting if Pk has computed the first 3 rounds of the robust semi honest MPC correctly and has
committed to the same inputs, used in the robust semi honest MPC, to every other player.

First, compute the statement xnmzkk for each player Pk i.e., ∀k ∈ [n] \ {i}

~mk :=
(
~m1, ~m2,m3

k

)
xLk

:=
(
{τecomk→t

}t∈[n] , idk, ~mk

)
Next, check if every proof is valid.

if ∃k, j s.t accept 6= Vnmzk(idk, xLk
, π1

nmzkk→j
, π2

nmzkk→j
, π3

nmzkk→j
, π4

nmzkk→j
)

then output ⊥ and abort

else continue

This can be done because the proofs are public coin. Moreover this is done to avoid the case that
some honest parties continue on to the next round, but the others abort.

2. Compute the final message of the robust semi honest MPC,

m4
i ← nextMsgΠrMPC(xi, ri, ~m

1, ~m2, ~m3)

where ~m1 := (m1
1, · · · ,m1

n) , ~m2 := (m2
1, · · · ,m2

n) and ~m3 := (m3
1, · · · ,m3

n).

3. Compute the final message of WIPoK for language LWIPoK i.e., ∀k ∈ [n] \ {i}

ŵ
L̂i

:=
(
xi, ri, {dececomi→k

}k∈[n]

)
~mi :=

(
~m1, ~m2, ~m3,m4

i

)
x̂
L̂i

:=
(
{τecomi→k

}k∈[n] , idi, ~mi

)
xWIPoKi→k

:=
(
x
L̂i
, idk, τnmcomi→k

, s1
nmcomi→k

, vki→k

)
wWIPoKi→k

:= (ŵ
L̂i
, decnmcomi→k

, ρ)

π3
WIPoKi→k

← PWIPoK(idi, ̂̀, xWIPoKi→k
, ŵWIPoKi→k

, π1
WIPoKi→k

, π2
WIPoKi→k

)
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where |xWIPoKi→k
| = ̂̀, and π1

WIPoKi→k
is as computed earlier and π2

WIPoKi→k
is obtained from π2

WIPoKk

in M4
k .

Set
π3
WIPoKi

:= (π3
WIPoKi→1

, · · · , π3
WIPoKi→i−1

,⊥, π3
WIPoKi→i+1

, · · · , π̂3
WIPoKi→n

)

M5
i is now defined as,

M5
i := (m4

i , π̂
3
WIPoKi

).

Broadcast M5
i and receive M5

1 , · · · ,M5
i−1,M

5
i+1, · · · ,M5

n .

Output computation. To compute the output, Pi performs the following steps:

1. Check if all the proofs in the protocol for the WIPoK are accepting. The proof from Pk to Pj is
accepting if Pk has computed the 4-th round of the robust semi honest MPC correctly and has
committed to the same inputs, used in the robust semi honest MPC, to every other party.

Check if every proof is valid.

if ∃k, j s.t accept 6= VWIPoK(idk, xWIPoKk→j, π
1
WIPoKk→j

, π2
WIPoKk→j

, π3
WIPoKk→j

)

then output ⊥ and abort

else continue

2. Compute the output of the protocol as

y ← OutΠrMPC(xi, ri, ~m
1, ~m2, ~m3, ~m4)

Theorem 9. Assuming security of the building blocks, the above described five round protocol is secure
against malicious adversaries.

Extractable commitments, WIPoK and NMZK can be instantiated from DL, while the robust semi-
honest MPC can be instantiated from DDH. Thus, all the required primitives can be instantiated from
DDH. The proof of theorem 9 can be found in appendix C.

5 Four Round Malicious MPC

Overview. We give an overview of our four round construction. At a high-level, the four round protocol
is very similar to the five round protocol (from the previous section) but to compress the number of rounds,
we construct (using sub-exponential assumptions) and use a 3 round input delayed strong WI argument
of knowledge (with appropriate non-malleability properties), ending in the third round, to enable parties
to prove their honest behavior of the first three rounds. This lets the players send the fourth message in
the clear if the proof at the end of the third round verifies. For the output round, we use a four-round
NMZK as before to prove honest behavior.

We now describe our three-round input delayed proof system. We build it in the simultaneous-message
model, where the prover and the verifier send messages simultaneously in the first two rounds. (However,
security holds even against rushing adversaries). To prove an instance x in a language L, the protocol
proceeds as follows:

– The verifier sends an image y = f(r) of a one way permutation f on a random string r.

– The prover committs to 0 using a 2-round non-malleable commitment [KS17].
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– The prover additionally gives a three-round input delayed witness indistinguishable proof of knowl-
edge (WIPoK) proving knowledge of either:

1. w such that (x,w) ∈ RelL; or

2. the decommitment of the non-malleable commitment to r′ such that r′ is the pre-image of y
w.r.t. f .

The protocol, in the simultaneous-message model, is described in figure 1. We do not argue its
security separately, but within the security proof of our MPC protocol. We remark that while the above
construction uses a 2-round extractable non-malleable commitment scheme, we can also use a 3-round
public-coin, extractable non-malleable commitments that are input delayed [COSV16, GPR16]. (See
Appendix A.4 for further discussion.)

Informally speaking, one can think of the above construction as a strong input delayed WI argument
of knowledge with non-malleability properties.

P (Pi) V (Pk)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Round 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

π1
WIPoKi→k

f(r), π1
nmcomi→k

(0) Pick r randomly

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Round 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

π2
nmcomi→k

(0) π2
WIPoKi→k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Round 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Set x for WIPoK π3
WIPoKi→k

Figure 1: Three-round input delayed proof system

5.1 Our Construction

Building Blocks. We describe the main tools used in our MPC construction. The exact security levels
for each of these primitives are discussed at the end of the section.

1. A 3-round “rewinding secure” extractable commitment scheme Πecom = 〈Cecom, Recom〉 as described
in appendix A.6. In the honest execution of the protocol we require the commitments to be well
formed, where this property is defined in section A.6. We use the notation πj

ecomi→k to denote the
j-th round of an execution of Πecom where party Pi is the committer and party Pk is the receiver.
The entire transcript of the execution is denoted as τecomi→k

:=
(
π1
ecomi→k

, π2
ecomi→k

, π3
ecomi→k

)
. The

associated decommitment is denoted as dececomi→k
.

The above commitment scheme was also used in the construction of our five round MPC pro-
tocol described in Section 4. Here, we actually require an input delayed extractable commit-
ment scheme. Such a commitment scheme can be obtained by a simple augmentation to pro-
tocol Πecom = 〈Cecom, Recom〉. To commit to a message m, we first commit to a random string
r0
ecom in Πecom = 〈Cecom, Recom〉. In the third round, in addition to the protocol message of
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Πecom = 〈Cecom, Recom〉, we send r1
ecom := r0

ecom ⊕ m. In the sequel, we refer to the string r1
ecom

as the mask.

2. A one-way permutation f .

3. An instance of a 2-round extractable non-malleable commitment scheme Πnmcom = 〈Cnmcom, Rnmcom〉.
Importantly, we require that the scheme is extractable by rewinding, and both hiding and non-
malleability of the non-malleable commitment hold against adversaries running in time T , where T
is the running time of the rewinding extractor. This requirement is described formally at the end
of the protocol. The commitment scheme of [KS17] based on sub-exponential DDH satisfies these
properties.

We use the notation πjnmcomi→k to denote the j-th round of an execution of Πnmcom where party Pi

is the committer and party Pk is the receiver. The entire transcript of the execution is denoted as
τnmcomi→k

:=
(
π1
nmcomi→k

, π2
nmcomi→k

)
. The associated decommitment is denoted as decnmcomi→k

.

4. A 4-round robust semi honest MPC protocol ΠrMPC from section 3. Let nextMsgΠrMPC denote its
next-message function, that for player Pi, on input (xi, ri, ~m

1, · · · , ~mj) returns mj+1
i , the message

Pi broadcasts to all other players in the (j + 1)-th round as a part of the protocol. Here ~mj =
(mj

1, · · · ,m
j
n) consists of all the messages sent during round j of the protocol. The robust semi

honest MPC also consists of a function OutΠrMPC that computes the final output y.

5. A 3 round input delayed witness indistinguishable proof of knowledge (WIPoK) protocol ΠWIPoK =
(PWIPoK, VWIPoK). We require the protocol to be public coin and instantiate it using the Lapidot-
Shamir protocol [LS90].

We use ΠWIPoK for a language LWIPoK that consists of instances where, for every i, k ∈ [n], player
Pi proves to player Pk that either

– it behaved honestly, i.e. it has a witness w such that (xLi , w) ∈ RelLi (where the languages L
and Li are defined below); or

– it commits to a value ρ in the non-malleable commitment such that ρ is the pre-image of a
random image y of the one-way permutation f that was sent by the verifier.

Formally,

LWIPoK =
{

(xLi , idk, τnmcomi→k
, yk→i) : ∃(w, decnmcomi→k

, ρ) s.t.(
(xLi , w) ∈ RelL

)
OR
(
f(ρ) = yk→i AND ( (ρ, decnmcomi→k

, idi)

is a valid decommitment of τnmcomi→k
)
)}

We define xWIPoKi→k
:= (xLi , idk, τnmcomi→k

, yk→i).

We now define the languages L and Li. Informally, L is the language which consists of instances
where, for every i ∈ [n], player Pi correctly computes the first three rounds of the robust semi
honest MPC with inputs (xi, ri), and honestly commits to (xi, ri) ⊕ r1

ecomi→k
to every other player

Pk in the extractable commitment.

L =
{

({τecomi→k
, r1

ecomi→k
}k∈[n]\{i}, idi, ~mi = (~m1, ~m2,m3

i )) :

∃(xi, ri, {dececomi→k
}k∈[n]) s.t.

(
(∀ k : τecomi→k

is a well formed commitment of
(
(xi, ri)⊕ r1

ecomi→k

)
)

AND (m1
i = nextMsgΠrMPC(xi, ri) AND

m2
i = nextMsgΠrMPC(xi, ri, ~m

1) AND m3
i = nextMsgΠrMPC(xi, ri, ~m

1, ~m2) )
)}
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Further, we define the language Li to be the subset of L that only consists of instances where player
Pi, for a fixed i, correctly computes the first three rounds of the robust semi honest MPC with
inputs (xi, ri), and honestly commits to (xi, ri)⊕r1

ecomi→k
to every other player Pk in the extractable

commitment.

6. A 4-round input delayed parallel non-malleable zero-knowledge protocols (refer to definition 6). We
will use the protocol of [COSV17] in a non black-box manner as described in appendix A.5.1. We
denote it as Πnmzk = 〈Pnmzk, Vnmzk〉.
In our MPC construction, we use Πnmzk for the language L̂. Informally, L̂ is the language which
consists of instances where, for every i ∈ [n], player Pi (a) correctly computed the final round of the
robust MPC with inputs (xi, ri); and (b) commits to (xi, ri)⊕ r1

ecomi→k
to every other player Pk in

the extractable commitment such that they are well formed.

Formally,

L̂ =
{

({τecomi→k
, r1

ecomi→k
}k∈[n]\{i}, idi, ~mi = (~m1, ~m2, ~m3,m4

i )) :

∃(xi, ri, {dececomi→k
}k∈n) s.t.

(
( ∀ k : τecomi→k

is a well formed

commitment of
(
(xi, ri)⊕ r1

ecomi→k

)
AND ( m4

i = nextMsgΠrMPC(xi, ri, ~m
1, ~m2, ~m3) )

)}
.

Further, we define the language L̂i to be the subset of L̂ that only consists of instances where player
Pi, for a fixed i, (a) correctly computed the final round of the robust MPC with inputs (xi, ri); and
(b) commits to (xi, ri)⊕ r1

ecomi→k
to every other player Pk in the extractable commitment such that

they are well formed.

In an execution of Πnmzk between parties i and k where i (resp., k) plays the role of the prover
(resp., verifier), we denote the message sent in the j-th round by πj

nmzki→k
.

Protocol description.

Round 1. Each player Pi computes the message M1
i to be sent in the first round as follows:

1. Compute independently, with fresh randomness, the first (committer) message of the extractable
commitment for every other player i.e., ∀k ∈ [n] \ {i}

r0
ecomi→k

$←− {0, 1}|(xi,ri)|

(π1
ecomi→k

, deci→k)← Cecom(r0
ecomi→k

)

Set
π1
ecomi

:= (π1
ecomi→1

, · · · , π1
ecomi→i−1

,⊥, π1
ecomi→i+1

, · · · , π1
ecomi→n

).

2. Compute the first message of the robust semi honest MPC,

m1
i ← nextMsgΠrMPC(xi, ri)

3. Compute the different components that will make up the proof system for L.

(a) Select random strings independently and compute its image with respect to the function f .
that will serve as the basis for the trapdoor, and apply the function f to send to every other
player i.e., ∀k ∈ [n] \ {i}

ρi→k
$←− {0, 1}poly(n)

yi→k := f(ρi→k)
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Set
yi := (yi→1, · · · , yi→i−1,⊥, yi→i+1, · · · , yi→n).

Looking ahead, the ρi→k will be used as the basis for the “trapdoor” witness.

(b) Send the first (receiver) message of the non-malleable commitment to every other player i.e.,
∀k ∈ [n] \ {i}

π1
nmcomk→i

← Rnmcom (1n)

Set
π1
nmcomi

:= (π1
nmcom1→i

, · · · , π1
nmcomi−1→i

,⊥, π1
nmcomi+1→i

, · · · , π1
nmcomn→i

).

(c) Compute the first message for the input delayed witness indistinguishable proof of knowledge
(WIPoK) for LWIPoK to every other player i.e. ∀k ∈ [n] \ {i}

π1
WIPoKi→k

← PWIPoK(`)

where ` is the size of the statement.

Set
π1
WIPoKi

:= (π1
WIPoKi→1

, · · · , π1
WIPoKi→i−1

,⊥, π1
WIPoKi→i+1

, · · · , π1
WIPoKi→n

).

4. Compute independently, with fresh randomness, the first (verifier) message of the non-malleable
zero-knowledge protocol for every other player i.e., ∀k ∈ [n] \ {i}

π1
nmzkk→i

← Vnmzk(idk, ̂̀)
where ̂̀ is the length of the input delayed statement for L̂.

Set
π1
nmzki

:= (π1
nmzk1→i

, · · · , π1
nmzki−1→i

,⊥, π1
nmzki+1→i

, · · · , π1
nmzkn→i

)

M1
i is now defined as,

M1
i := (π1

ecomi
, yi, π

1
WIPoKi

, π1
nmcomi

, π1
nmzki

,m1
i )

Broadcast M1
i and receive M1

1 , · · · ,M1
i−1,M

1
i+1, · · · ,M1

n .

Round 2. Each player Pi computes the message M2
i to be sent in the second round as follows:

1. Compute the second message of the extractable commitment in response to the messages from the
other parties i.e., ∀k ∈ [n] \ {i}

π2
ecomk→i

← Recom(π1
ecomk→i

)

where π1
ecomk→i

can be obtained from π1
ecomk

in M1
k .

Set
π2
ecomi

:= (π2
ecom1→i

, · · · , π2
ecomi−1→i

,⊥, π2
ecomi+1→i

, · · · , π2
ecomn→i

).

2. Compute the second message of the robust semi honest MPC,

m2
i ← nextMsgΠrMPC(xi, ri, ~m

1)

where ~m1 := (m1
1, · · · ,m1

n).

3. Compute the second message for the different components in the proof system for L.
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(a) Compute the second (final) message of the non-malleable commitment scheme in response to
the messages from the other parties by committing to the ‘0’ string i.e. ∀k ∈ [n] \ {i}(

π2
nmcomi→k

, decnmcomi→k

)
← Cnmcom(0, π1

nmcomi→k
)

where π1
nmcomi→k

can be obtained from π1
nmcomk

in M1
k .

Set
π2
nmcomi

:= (π2
nmcomi→1

, · · · , π2
nmcomi→i−1

,⊥, π2
nmcomi→i+1

, · · · , π2
nmcomi→n

).

(b) Compute the second message of the input delayed WIPoK for LWIPoK in response to messages
from every other player i.e. ∀k ∈ [n] \ {i}

π2
WIPoKk→i

← VWIPoK(`, π1
WIPoKk→i

)

where π1
WIPoKk→i

can be obtained from π1
WIPoKk

in M1
k .

Set
π1
WIPoKi

:= (π1
WIPoK1→i

, · · · , π1
WIPoKi−1→i

,⊥, π1
WIPoKi+1→i

, · · · , π1
WIPoKn→i

).

4. Compute the second message of the non-malleable zero-knowledge protocols in response to the
messages from the other parties i.e., ∀k ∈ [n] \ {i}

π2
nmzki→k

← Pnmzk(idi, ̂̀, π1
nmzki→k

)

where π1
nmzkk→i

can be obtained from π1
nmzkk

in M1
k . Set

π2
nmzki

:= (π2
nmzki→1

, · · · , π2
nmzki→i−1

,⊥, π2
nmzki→i+1

, · · · , π2
nmzki→n

)

M2
i is now defined as,

M2
i := (π2

ecomi
, π2

nmcomi
, π2

WIPoKi
, π2

nmzki
,m2

i ).

Broadcast M2
i and receive M2

1 , · · · ,M2
i−1,M

2
i+1, · · · ,M2

n .

Round 3. Each player Pi computes the message M1
i to be sent in the third round as follows:

1. Compute the final message of the extractable commitment i.e., ∀k ∈ [n] \ {i}

π3
ecomi→k

← Cecom(π1
ecomi→k

, π2
ecomi→k

)

where π1
ecomi→k

is as computed earlier and π2
ecomi→k

is obtained from π2
ecomk

in M2
k .

Set π3
ecomi

:= (π3
ecomi→1

, · · · , π3
ecomi→i−1

,⊥, π3
ecomi→i+1

, · · · , π3
ecomi→n

).

2. Compute (xi, ri) masked with the random string sent in the extractable commitment, i.e. ∀k ∈
[n] \ {i}

r1
ecomi→k

:= r0
ecomi→k

⊕ (xi, ri)

Set Set r1
ecomi

:= (r1
ecomi→1

, · · · , r1
ecomi→i−1

,⊥, r1
ecomi→i+1

, · · · , r1
ecomi→n

).

3. Compute the third message of the robust semi honest MPC,

m3
i ← nextMsgΠrMPC(xi, ri, ~m

1, ~m2)

where ~m1 := (m1
1, · · · ,m1

n) and ~m2 := (m2
1, · · · ,m2

n).

4. Compute the third message for the different components in the proof system for L.
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(a) Set the statement and witness for the input delayed WIPoK language LWIPoK.

~m :=
(
~m1, ~m2,m3

i

)
xLi

:=
({
τecomi→k

, r1
ecomi→k

}
k∈[n]

, idi, ~m
)

wLi
:=
(
xi, ri, {dececomi→k

}k∈[n]

)
∀k : xWIPoKi→k

:=
(
xLi , idk, τnmcomi→k

, yk→i, s
1
nmcomi→k

)
∀k : wWIPoKi→k

:= (wLi ,⊥,⊥)

where ∀k : |xWIPoKi→k
| = `.

Compute the final message of the WIPoK for language LWIPoK, i.e. ∀k ∈ [n] \ {i}

π3
WIPoKi→k ← PWIPoK(xWIPoKi→k

, wWIPoKi→k
, π1

WIPoKi→k, π
2
WIPoKi→k)

Set π3
WIPoKi

:= (π3
WIPoKi→1

, · · · , π3
WIPoKi→i−1

,⊥, π3
WIPoKi→i+1

, · · · , π3
WIPoKi→n

).

5. Compute the third message of the non-malleable zero-knowledge protocol i.e., ∀k ∈ [n] \ {i}

π3
nmzkk→i

← Vnmzk(idk, π
1
nmzkk→i

, π2
nmzkk→i

)

where π1
nmzkk→i

is as computed earlier and π2
nmzkk→i

is obtained from π2
nmzkk

in M2
k .

Set

π3
nmzki

:= (π3
nmzk1→i

, · · · , π3
nmzki−1→i

,⊥, π3
nmzki+1→i

, · · · , π3
nmzkn→i

)

M3
i is now defined as,

M3
i := (π3

ecomi
, r1

ecomi
, π3

WIPoKi
, π3

nmzki
,m3

i ).

Broadcast M3
i and receive M3

1 , · · · ,M3
i−1,M

3
i+1, · · · ,M3

n .

Round 4. Each player Pi computes the message M1
i to be sent in the fourth round as follows:

1. Check if all the proofs in the protocol LWIPoK are accepting. Compute, as earlier, the statement
xWIPoKk→j

for every player Pk and Pj.

Next, check if every proof is valid.

if ∃k, j s.t accept 6= VWIPoK(xWIPoKk→j
, π1

WIPoKk→j
, π2

WIPoKk→j
, π3

WIPoKk→j
)

then output ⊥ and abort

else continue

2. Compute the final message of the robust semi honest MPC,

m4
i ← nextMsgΠrMPC(xi, ri, ~m

1, ~m2, ~m3)

where ~m1 := (m1
1, · · · ,m1

n) , ~m2 := (m2
1, · · · ,m2

n) and ~m3 := (m3
1, · · · ,m3

n).

3. Compute the final message of the non-malleable zero-knowledge protocol for language L̂i i.e., ∀k ∈
[n] \ {i}

w
L̂i

:=
(
xi, ri, {dececomi→k

}k∈[n]

)
~mi :=

(
~m1, ~m2, ~m3,m4

i

)
x
L̂i

:=
({
τecomi→k

, r1
ecomi→k

}
k∈[n]

, idi, ~mi,
)
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π4
nmzki→k

← Pnmzk(idi, ̂̀, xL̂i
, w

L̂i
, π1

nmzki→k
, π2

nmzki→k
, π3

nmzki→k
)

where π1
nmzki→k

is obtained from π1
nmzkk

in M1
k . Similarly, π3

nmzki→k
is be obtained from π3

nmzkk
in

M3
k . π2

nmzki→k
is as computed earlier.

Set
π4
nmzki

:= (π4
nmzki→1

, · · · , π4
nmzki→i−1

,⊥, π4
nmzki→i+1

, · · · , π4
nmzki→n

)

M4
i is now defined as, M4

i := (m4
i , π

4
nmzki

). Broadcast M4
i and receive M4

1 , · · · ,M4
i−1,M

4
i+1, · · · ,M4

n .

Output Computation. To compute the output, Pi performs the following steps:

1. Check if all the proofs in the protocol for L̂ are accepting. As before, compute the statement x
L̂k

for each player Pk.

Next, check if every proof is valid.

if ∃k, j s.t accept 6= V̂nmzk(xL̂k
, π̂1

nmzkk→j
, π̂2

nmzkk→j
, π̂3

nmzkk→j
)

then output ⊥ and abort

else continue

2. Compute the output of the protocol as

y ← OutΠrMPC(xi, ri, ~m
1, ~m2, ~m3, ~m4)

This completes the description of the protocol.

Leveled security. We assume the following, and set the security parameters for the primitives accord-
ingly.

– Tf >> T̃ ext
nmcom;

– T h
nmcom, T

nm
nmcom >> Tf ;

– TWIPoK >> Tf , TSign, Tecom;

– TrMPC(1−3)
>> Tf , TSign, Tecom;

– Tecom >> Tf .

where Tprim means that the primitive prim is secure against adversaries running in time Tprim, and
T ′ >> T means that T ′ > T ·poly(n). Specifically TrMPC(1−3)

means that we require the first three rounds
of our robust MPC to be indistinguishable (for adversaries running in time TrMPC(1−3)

) for any two sets

of inputs and randomnesses. In fact, in our construction, the simulator Sim1 works by setting a random
input to generate the first three rounds. Hence, for our construction, we require TrMPC(1−3)

-security for

the following two distributions: RealExecA
1

(t−1)(~x, z) and Sim1(z). Further, for the two round non-malleable

commitment, we have three parameters T h
nmcom, T nm

nmcom and T̃ ext
nmcom. T h

nmcom and T nm
nmcom indicate that

the hiding and non-malleability respectively of the non-malleable commitment hold against adversaries
running in time T h

nmcom and T nm
nmcom. T̃ ext

nmcom refers to the running time of the rewinding extractor for the
non-malleable commitment.

Theorem 10. The described four round protocol is secure against malicious adversaries assuming the
aforementioned leveled security of the primitives.

All the primitives above with the desired security levels can be instantiated from sub-exponential
DDH. The proof of theorem 10 can be found in appendix D.
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A Definitions

We denote n to be the security parameter. Consider two distributions D0 and D1. We denote D0 ≈c D1

if D0 and D1 are computationally indistinguishable.

A.1 Oblivious Transfer

We recall the notion of oblivious transfer [Rab05, EGL82] below. We require that the oblivious transfer
protocol satisfies covert security [vHL05, CGOS07, GJ10]. Intuitively, we require that the receiver’s mes-
sages are computationally indistinguishable from a uniform distribution to a malicious sender. Similarly,
we require that the sender’s messages are computationally indistinguishable from a uniform distribution
to a malicious receiver.

Definition 2 (Covert Oblivious Transfer). A 1-out-of-2 oblivious transfer (OT) protocol OT is a two
party protocol between a sender and a receiver. A sender has two input bits (b0, b1) and the receiver has
a choice bit c. At the end of the protocol, the receiver receives an output bit b′. We denote this process
by b′ ← 〈Sen(b0, b1),Rec(c)〉.

We require that an OT protocol satisfies the following properties:

• Correctness: For every b0, b1, c ∈ {0, 1}, we have:

Pr[bc ← 〈Sen(b0, b1),Rec(c)〉] = 1

• Covert security against adversarial senders: For all PPT senders Sen∗, we require that the
honest receiver’s messages are computationally indistinguishable from uniform distribution.

• Covert security against adversarial receivers: Suppose the input of the sender (b0, b1) is
sampled from a distribution on {0, 1}2. For all PPT receivers Rec∗, we require that the honest
sender’s messages (computed as a function of (b0, b1)) are computationally indistinguishable.

An oblivious transfer protocol satisfying the above definition was constructed in [vHL05] using [NP01].

Theorem 11 ([vHL05]). Assuming decisional Diffie Helman assumption, there exists a two message
1-out-of-2 covert oblivious transfer protocol.
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A.2 Randomizing Polynomials

We first recall the definition of randomizing polynomials [IK00, AIK06]. Instead of considering the stan-
dard form of randomizing polynomials consisting of encode and decode algorithms, we instead consider
a decomposable version where the circuit is first encoded as polynomials and decode algorithm gets as
input evaluations of polynomials on input and randomness.

Definition 3 (Randomizing Polynomials). A randomizing polynomials scheme RP = (CktE,D) for a
family of circuits C has the following syntax:

• Encoding, CktE(C): On input circuit C ∈ C, input x, it outputs polynomials p1, . . . , pm.

• Decoding, D(p1(x; r), . . . , pm(x; r)): On input evaluations of polynomials p1(x; r), . . . , pm(x; r), it
outputs the decoded value α.

RP is required to satisfy the following properties:

• Correctness: For every security parameter n ∈ N, circuit C and input x, C(x) = D(p1(x; r), . . . , pm(x; r)),
where (i) (p1, . . . , pm)← CktE(C), (ii) r is randomness sampled from uniform distribution.

• Efficiency: The typical efficiency we require is that the degree of the polynomials {pi} should be
significantly smaller than the degree of the circuit C, where (p1, . . . , pm)← CktE(C).

• Security: For every PPT adversary A, for large enough security parameter n ∈ N, circuit C and
input x, there exists a simulator Sim such that:

{(p1(x; r), . . . , pm(x; r))} ≈c
{
Sim(1n, 1|C|, C(x))

}
,

where (i) (p1, . . . , pm)← CktE(C), (ii) r is randomness sampled from uniform distribution.

We define the degree of randomizing polynomials to be maxC∈C{deg(pi) : (p1, . . . , pm)← CktE(C ∈ C)}.

We have the following theorem from [AIK06].

Theorem 12 ([AIK06]). Assuming the existence of pseudorandom generators in ⊕L/Poly, there exists
a degree 3 randomizing polynomials for C.

A.3 Secure Multi-Party Computation

A secure multi-party computation protocol is a protocol executed by n number of parties P1, · · · , Pn for
a n-party functionality F . We allow for parties to exchange messages simultaneously. In every round,
every party is allowed to broadcast messages to all parties. A protocol is said to have k rounds if the
number of rounds in the protocol is k. We require that at the end of the protocol, all the parties receive
the output8 F (x1, . . . , xn), where xi is the ith party’s input. We formalize the security notion below.

Ideal World. We start by describing the ideal world experiment where n parties P1, · · · , Pn interact
with an ideal functionality for computing a function F . An adversary may corrupt any subset PA ⊂ P
of the parties. We denote the honest parties by H.

Inputs: Each party Pi obtains an initial input xi. The adversary Sim is given auxiliary input z. Sim
selects a subset of the parties PA ⊂ P to corrupt, and is given the inputs xk of each party Pk ∈ PA.

8We can also consider asymmetric functionalities where every party receives a different output. We don’t discuss this in
our work.
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Sending inputs to trusted party: Each honest party Pi sends its input xi to the trusted party. For
each corrupted party Pi ∈ PA, the adversary may select any value x∗i and send it to the ideal
functionality.

Trusted party computes output: Let x∗1, ..., x
∗
n be the inputs that were sent to the trusted party. The

trusted party sends F (x∗1, ..., x
∗
n) to the adversary who replies with either continue or abort. If

the adversary’s message is abort, then the trusted party sends ⊥ to all honest parties. Otherwise,
it sends the function evaluation F (x∗1, ..., x

∗
n) to all honest parties.

Outputs: Honest parties output all the messages they obtained from the ideal functionality. Malicious
parties may output an arbitrary PPT function of the adversary’s view.

The overall output of the ideal-world experiment consists of the outputs of all parties. For any ideal-
world adversary Sim with auxiliary input z ∈ {0, 1}∗, input vector ~x, and security parameter n, we denote
the output of the corresponding ideal-world experiment by

IDEALSim,F

(
1n, ~x, z

)
.

Real World. The real world execution begins by an adversaryA selecting any arbitrary subset of parties
PA ⊂ P to corrupt. The parties then engage in an execution of a real n-party protocol Π. Throughout
the execution of Π, the adversary A sends all messages on behalf of the corrupted parties, and may follow
an arbitrary polynomial-time strategy. In contrast, the honest parties follow the instructions of Π.

At the conclusion of all the update phases, each honest party Pi outputs all the outputs it obtained
in the computations. Malicious parties may output an arbitrary PPT function of the view of A.

For any adversary A with auxiliary input z ∈ {0, 1}∗, input vector ~x, and security parameter n, we
denote the output of the MPC protocol Π by

REALA,Π

(
1n, ~x, z

)
.

Security Definition. We say that a protocol Π is a secure protocol if any adversary, who corrupts a
subset of parties and runs the protocol with honest parties, gains no information about the inputs of the
honest parties beyond the protocol output.

Definition 4. A protocol Π is a secure n-party protocol computing F if for every PPT adversary A in
the real world, there exists a PPT adversary Sim corrupting the same parties in the ideal world such that
for every initial input vector ~x, every auxiliary input z, it holds that

IDEALSim,F

(
1n, ~x, z

)
≈c REALA,Π

(
1n, ~x, z

)
.

A.4 Non-malleable Commitments

Let Π = 〈C,R〉 be a statistically binding commitment scheme. Consider man-in-the-middle (MiM)
adversaries that are participating in one left and one right sessions in which k commitments take place.
We compare between a MiM and a simulated execution. In the MiM execution, the adversary A, with
auxiliary information z, is participating in one left and one right sessions. In the left sessions the MiM
adversary interacts with C receiving commitments to value m using identities id of its choice. In the
right session A interacts with R, attempting to commit to a related value m̃ again using identities ĩd

of its choice. If any the right commitment is invalid, or undefined, its value is set to ⊥. If ĩd = id, set
m̃ =⊥ (i.e., any commitment where the adversary uses the same identity as that of honest senders is
considered invalid). Let

mimA,mΠ (z)
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denote the random variable that describes the values m̃ and the view of A, in the above experiment.
In the simulated execution, an efficient simulator Sim directly interacts with R. Let

simSim
Π (1n, z)

denote the random variable describing the value m̃ committed by Sim, and the output view of Sim;
whenever the view contains the same identity as that identity of the left session, m̃ is set to ⊥.

Definition 5 (non-malleable commitment scheme). A commitment scheme is non-malleable with respect
to commitment if, for every PPT parallel MiM adversary A, there exists a PPT simulator Sim such that
for all m the following ensembles are computationally indistinguishable:

{mimA,mΠ (z)}n∈N,z∈{0,1}∗ ≈ {simSim
Π (1n, z)}n∈N,z∈{0,1}∗

Non-malleable Commitment Schemes. In our MPC constructions, we make use of two different
non-malleable commitment schemes:

• Four-round public-coin extractable NMCOM. The first commitment scheme we use is a four-round
NMCOM scheme that is public-coin w.r.t. the receiver, and also supports extraction of the com-
mitted value in polynomial time. Such a commitment scheme was constructed from CRHFs in
[GRRV14].

• Two-round (private-coin) extractable NMCOM. We also use a two-round (private-coin) NMCOM
scheme that supports rewinding-based extraction of the committed value, possibly in sub-exponential
time. We further require that the commitment scheme achieves hiding (and non-malleability) even
against adversaries that run in time T ′ >> T , where T is the running time of the extractor. Such
a commitment scheme was constructed from DDH by [KS17].9

This commitment scheme is used in the construction of our four-round MPC protocol in Section 5.
Our construction and proof can be modified to instead use a three-round input delayed public-coin
non-malleable commitment scheme that supports extraction of the committed value in polynomial
time. (We in fact only require successful extraction with polynomial probability.) Such commitment
schemes were constructed in [GPR16, COSV16].

A.5 Input Delayed Non-malleable Zero Knowledge

Let Πnmzk = 〈P, V 〉 be a input delayed interactive argument system for an NP-language L with witness
relation RelL. Consider a PPT MiM adversary A that is simultaneously participating in one left session
and one right session. Before the execution starts, both P , V and A receive as a common input the
security parameter n, and A receives as auxiliary input z ∈ {0, 1}∗.

In the left session A interacts with P using identity id of his choice. In the right session, A interacts
with V , using identity ĩd of his choice. In the left session, before the last round of the protocol, P gets
the statement x. Also, in the right session A, during the last round of the protocol selects the statement
x̃ to be proved and sends it to V . Let ViewA(1n, z) denote a random variable that describes the view of
A in the above experiment.

Definition 6 (Input Delayed NMZK). A input delayed argument system
Πnmzk = 〈P, V 〉 for NP-language L with witness relation RelL is Non-Malleable Zero Knowledge (NMZK)
if for any MiM adversary A that participates in one left session and one right session, there exists a PPT
machine Sim(1n, z) such that

9A different two-round non-malleable commitment scheme (without the latter property) was recently constructed by
[LPS17] based on time-lock puzzles.
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1. The probability ensembles {Sim1(1n, z)}n∈N,z∈{0,1}∗ and

{ViewA(1n, z)}λ∈N,z∈{0,1}∗ are computationally indistinguishable over n, where Sim1(1n, z) denotes
the first output of Sim(1n, z).

2. Let z ∈ {0, 1}∗ and let (View, w̃) denote the output of Sim(1n, z). Let x̃ be the right-session statement
appearing in View and let id and ĩd be the identities of the left and right sessions appearing in View.
If the right session is accepting and id 6= ĩd, then RelL(x̃, w̃) = 1.

A.5.1 COSV NMZK

Here, we describe the four round input delayed NMZK protocol ΠCOSV [COSV17]. We start by recalling
the main cryptographic primitives used in their protocol:

1. a 4-round public-coin extractable one-one NM commitment scheme Πnmex = 〈Cnmex, Rnmex〉; [COSV17]
instantiates this using the non-malleable commitment scheme constructed in the same paper.

2. a signature scheme Σ = (Gen, Sign,Ver);

3. an input delayed adaptive-input statistical WIAoK protocol sLS = (PsLS, VsLS) for the language

Λ =
{

(τk = (π1
nmex, π

2
nmex, π

3
nmex, π

4
nmex), id, vk, x, s1) : ∃(s0, dec,msg1,msg2, σ1, σ2)

s.t.
(

(Rnmex on input (τ, w, dec, id) accepts s0 as decommitment of τ

AND (x, s0 ⊕ s1) ∈ RelL) OR (Ver(vk,msg1, σ1) = 1 AND Ver(vk,msg2, σ2) = 1

AND msg1 6= msg2)
)}

that is adaptive-input statistical WI and adaptive-input AoK for the corresponding relation RelΛ.

The Protocol. We now describe the COSV NMZK protocol.

Common input: security parameter n, the instance length ` of sLS and Pnmzk’s identity id ∈ {0, 1}n, and
the instance x is available only at the last round.

Private input of Pnmzk: w s.t. (x,w) ∈ RelL available only in the last round.

1. Vnmzk → Pnmzk

(a) (sk, vk)← Gen(1n).

(b) π1
sLS ← VsLS(1n, `).

(c) π1
nmex ← Rnmex(1

n, id).

(d) Send (vk, π1
sLS, π

2
nmex) to Pnmzk

2. Pnmzk → Vnmzk

(a) π2
sLS ← PsLS(1n, `, π1

sLS).

(b) s0
$← {0, 1}|w|.

(c) π2
nmex ← Cnmex(1

n, id, π2
nmex, s0).

(d) msg
$← {0, 1}n.

(e) Send (π2
sLS, π

2
nmex,msg) to Vnmzk.

3. Vnmzk → Pnmzk
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(a) π3
sLS ← VsLS(π2

sLS).

(b) π3
nmex ← Rnmex(π

2
nmex).

(c) σ ← Sign(sk,msg).

(d) Send (π3
sLS, π

3
nmex, σ) to Pnmzk.

4. Pnmzk → Vnmzk

(a) If Ver(vk,msg, σ) 6= 1 then abort, else continue.

(b) Set s1 := w ⊕ s0.

(c) (dec, π4
nmex)← Cnmex(π

2
nmex).

(d) Set xsLS := (π1
nmex, π

2
nmex, π

3
nmex, π

4
nmex, id, vk, x, s1) and wsLS := (s0, dec,⊥,⊥,⊥,⊥).

(e) π4
sLS ← PsLS(π3

sLS, xsLS, wsLS).

(f) Send (π4
sLS, π

4
nmex, s1) to Vnmzk.

5. Vnmzk: Set xsLS := (π1
nmex, π

2
nmex, π

3
nmex, π

4
nmex, id, vk, x, s1) and accept iff

VsLS(xsLS, π
1
sLS, π

2
sLS, π

3
sLS, π

4
sLS) = 1.

Modified COSV NMZK. We use a slight modification of the above protocol in our MPC construc-
tions. Specifically, we change the value committed in the non-malleable commitment, as well as the
language Λ:

• The mask s1 is set to the same value as s0 such that s0 ⊕ s1 = 0. (That is, the honest prover
commits to 0.)

• The language for the WIAoK is changed to

Λ =
{
x̃ =

(
x, (τk = (π1

nmex, π
2
nmex, π

3
nmex, π

4
nmex), id, vk, s1)

)
: ∃(w, s0, dec,msg1,msg2, σ1, σ2)

s.t.
(

((x,w) ∈ RelL) OR (Rnmex on input (τ, s0, dec, id) accepts s0 as decommitment of

τ AND s0 ⊕ s1 = (msg1,msg2, σ1, σ2) AND Ver(vk,msg1, σ1) = 1 AND Ver(vk,msg2, σ2) = 1

AND msg1 6= msg2)
)}

i.e. either the statement x is in the language L, or a “trapdoor witness” (msg1,msg2, σ1, σ2) was
committed to inside the non-malleable commitment.

Notation: For any instance x̃ in Λ, we refer to the first part of the statement, i.e., x as the honest
statement. We refer to the second part of x̃, i.e., (τk = (π1

nmex, π
2
nmex, π

3
nmex, π

4
nmex), id, vk, s1), as the

trapdoor statement.

Theorem 13 ([COSV17]). Assuming CRHFs, the above protocol is a secure NMZK.

In terms of concrete instantiations, CRHFs can be instantiated from DL, and hence from DDH.

A.6 Extractable Commitment Scheme

We will use a variant of a simple challenge-response based extractable statistically-binding string com-
mitment scheme 〈C,R〉 that has been used in several prior works, most notably [PRS02, Ros04]. We note
that in contrast to [PRS02] where a multi-slot protocol was used, here (similar to [Ros04]), we only need
a one-slot protocol.
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Protocol 〈C,R〉. Let com(·) denote the commitment function of a non-interactive perfectly binding
string commitment scheme which requires the assumption of injective one-way functions for its construc-
tion. Let n denote the security parameter. The commitment scheme 〈C,R〉 is described as follows.

Commit Phase:

1. To commit to a string str, C chooses k = ω(log(n)) independent random pairs {α0
i , α

1
i }ki=1 of strings

such that ∀i ∈ [k], α0
i ⊕α1

i = str; and commits to all of them to R using com. Let B ← com(str),
and A0

i ← com(α0
i ), A

1
i ← com(α1

i ) for every i ∈ [k].

2. R sends k uniformly random bits v1, . . . , vn.

3. For every i ∈ [k], if vi = 0, C opens A0
i , otherwise it opens A1

i to R by sending the appropriate
decommitment information.

Open Phase: C opens all the commitments by sending the decommitment information for each one of
them.

For our construction, we require a modified extractor for the extractable commitment scheme. The
standard extractor returns the value str that was committed to in the scheme. Instead, we require that
the extractor return i, and the openings of A0

i and A1
i . This extractor can be constructed easily, akin to

the standard extractor for the extractable commitment scheme.
This completes the description of 〈C,R〉.

“Rewinding secure” Commitment Scheme. Due to technical reasons, we will use a minor variant,
denoted 〈C ′, R′〉, of the above commitment scheme which will is “rewinding secure.” Protocol 〈C ′, R′〉
is the same as 〈C,R〉, except that for a given receiver challenge string, the committer does not “open”
the commitments, but instead simply reveals the appropriate committed values (without revealing the
randomness used to create the corresponding commitments). More specifically, in protocol 〈C ′, R′〉, on
receiving a challenge string v1, . . . , vn from the receiver, the committer uses the following strategy: for
every i ∈ [k], if vi = 0, C ′ sends α0

i , otherwise it sends α1
i to R′. Note that C ′ does not reveal the

decommitment values associated with the revealed shares.
The scheme is rewinding secure because we can respond to queries from the adversary (for the com-

mitment scheme) when we need to rewind it, and the commitment scheme is exposed to an external
challenger. This follows from the fact that we can send random messages in the third round when the
adversary makes a different second round query.

When we use 〈C ′, R′〉 in our main construction, we will require the committer C ′ to prove the “cor-
rectness” of the values (i.e., the secret shares) it reveals in the last step of the commitment protocol.
In fact, due to technical reasons, we will also require the the committer to prove that the commitments
that it sent in the first step are “well-formed”. Below we formalize both these properties in the form of
a validity condition for the commit phase.

Proving Validity of the Commit Phase. We say that commit phase between C ′ and R′ is well
formed with respect to a value ˆstr if there exist values {α̂0

i , α̂
1
i }ki=1 such that:

1. For all i ∈ [k], α̂0
i ⊕ α̂1

i = ˆstr, and

2. Commitments B, {A0
i , A

1
i }ki=1 can be decommitted to ˆstr, {α̂0

i , α̂
1
i }ki=1 respectively.

3. Let ᾱv11 , . . . , ᾱ
vk
k denote the secret shares revealed by C in the commit phase. Then, for all i ∈ [k],

ᾱvii = α̂vii .

The lemma below states that ∃ an extractor E that extracts the correct committed value with over-
whelming probability if the commitment is well formed. This lemma is implicit in [Ros04, PRS02].
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Lemma 1. If the validity condition for the commitment protocol holds, then E fails to extract the com-
mitted value with only negligible probability.

B Proofs From Section 3

B.1 Proof of Theorem 4

We only need to argue about the output of P3. From the correctness of OT12, it follows that P1 recovers
x1x2 + r′2 in Round 2. From the correctness of OT23, it follows that P3 recovers α′′ = x3r

′
2 + r2.

Finally, from the correctness of OT13, it follows that P3 recovers α′ = (x1x2 + r′2)x3 + r1. Note that
α′ + α′′ = x1x2x3 + r1 + r2, as desired.

B.2 Proof of Theorem 5

We consider all maximal sets of corruptions and argue security. In each case, we construct a simulator
that sends pseudorandom messages in the first two rounds.

P1 and P2 are corrupted: In this case, simulator (Sim1)essentially runs honest P3 algorithm but with
input x3 = 0. In the final (fourth) round, the simulator (Sim2) upon receiving as input ((3MULT((x1, r1);
(x2, r2);x3) = (α1, α2, α3)), (x1, r1), (x2, r2)), it outputs α3.

The the security requirement of the robust semi honest MPC follows from that of oblivious transfer
protocol and the covert security property of OT. The covertness gives us the desired joint distribution

P1 and P3 are corrupted: The simulator runs the honest P2 with input x2 = 0. Note that the output
of P1 and P3 are r1 and r1 + r2 respectively. In the final round, the simulator upon receiving as input
(3MULT( (x1, r1); (x2, r2);x3) = (α1, α2, α3)), (x1, r1), x3), outputs α3 +r1 (which is of the form x1x2x3 +
r2).

The the security requirement of the robust semi honest MPC follows from that of oblivious transfer
protocol and the covert security property of OT. The covertness gives us the desired joint distribution

P2 and P3 are corrupted: This is symmetrical to the previous case. Following a similar argument we
result in the simulator outputting x1x2x3 + r1, P2 outputs r2 and P3 outputs r1 + r2.

B.3 Proof of Theorem 6

Let the additive shares of 0 distributed by Pi be {si,j0 }j∈[n]. Consider a term t in the expansion of p.
Without loss of generality, let yi,yj and yk be the variables in the expansion of t. From the correctness
of Π3MULT

sh , it follows that at the end of third round, Pi, Pj and Pk have shares of xixjxk. Denote these
additive shares by αti, α

t
j and αtk. At the end of the protocol, the share computed by Pi is total sum of∑

i,j s
i,j
0 and the sum of shares corresponding to every term t in p. Observe that

∑
i,j s

i,j
0 is 0 and the

sum of shares corresponding to every term t in p is p(x1, . . . , xn).

B.4 Proof of Theorem 7

Suppose S is the set of corrupted parties controlled by adversary A. We describe a simulator Sim that
simulates the corrupted parties in S.

Description of Simulator. Recall that for every polynomial p, an instantiation of Π3MULT
sh is executed.

Consider a term t in the expansion of p. We look at two cases:
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• Case 1: t contains one variable associated with party not in S and contains another variable with
party associated with a party in S: In this case, Sim executes the simulator, denoted by Sim3MULT,
of Π3MULT

sh . Recall that in the fourth round, Sim3MULT takes as input the output of the functionality
as well as the inputs and randomness of all the adversaries. In particular, Sim internally computes
the functionality by setting the inputs of all the honest parties to 0 and this is input to Sim3MULT.

• Case 2: t contains only variables associated with parties in S: The protocol associated with t is
executed solely by adversarial parties.

The only remaining case was when t does not contain any variable associated with a party in S. In this
case, the simulator Sim upon receiving the input (p(x1, . . . , xn), {xi, ri}i∈S), generates the final round
messages as follows: it computes α = p(x1, . . . , xn)− β, where β is the summation of all the terms in the
expansion of p such that these terms contain only variables associated with parties in S. The simulator
then computes the final round messages of all the honest parties to be shares of the value α.

The above described simulator satisfies Definition 1 from the fact that Π3MULT
sh is a robust semi-honest

MPC, and the fact that the last messages generated by the simulator is distributed identically to the last
messages generated by the honest parties in the real world.

B.5 Proof of Theorem 8

We describe the simulator below.

Description of Simulator Sim. Let C be the circuit implementing the functionality F . Execute CktE(C)
to get (p1, . . . , pm). Execute the simulator Sim3POLY{pi} for every i ∈ [m] for the first three rounds.

In the final round, Sim receives as input (F (x1, . . . , xn), {xi, ri}i∈S). It first executes the simulator of
RP on input F (x1, . . . , xn) to obtain (β1, . . . , β). It then executes the final round of Sim3POLY{pi} on input
((β1, . . . , βn), {xi, ri}i∈S) for every i ∈ [m]. Denote the outputs of the simulators to be −→α = (α1, . . . , αm).
Output −→α .

We now prove that the simulator satisfies definition 1 by hybrid argument.

Hybrid Hyb0: This corresponds to the real world.

Hybrid Hyb1: In this hybrid, execute the simulator Sim3POLY{pi} for every i ∈ [m] for the first three
rounds. In the final round, execute Sim3POLY{pi} on input (βi, {xi, ri}i∈S), where βi is computed by
evaluating pi honestly on the inputs of all the parties. The output of Sim is just a concatenation of
outputs of Sim3POLYpi for every i.

The indistinguishability of Hyb0 and Hyb1 follows from the security of Π
3POLY{p}
sh .

Hybrid Hyb2: This hybrid corresponds to the ideal world.
Observe that in Hyb1, the {βi} input to Sim3POLY{pi} is identically distributed to the encoding of the

circuit according to RP. We can now invoke the security of RP to argue the indistinguishability of Hyb2

and Hyb3

Thus, from the indistinguishability of the hybrids and the fact that Sim3POLY{p} satisfies Definition 1,

ΠF
sh is a robust semi honest MPC.

B.6 Special Rewinding property

We highlight a special property of our constructed four round robust semi-honest MPC, which we shall
refer to as the “special rewinding” property. This will be useful for the proof of our five round construction.
Roughly, the property states that the last round of the robust semi honest MPC can be simulated without
knowledge of the input and randomness used in the first two rounds. For our construction, a random
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string will be indistinguishable from an honestly generated message in the third round, when the view is
restricted to the first three rounds.

Claim 1. Let hi (resp. ai) denote all the messages sent by the honest (resp. adversarial) parties
in the i-th round. Then the following joint distributions are indistinguishable: (h1, a1, h2, a2, h3) and
(h1, a1, h2, a

′
2, h
′
3) where h′3 generated without knowledge of random coins and inputs used to compute h1

and h2.

Proof sketch. Our construction of the robust semi honest MPC relies on the computation of m ran-
domized polynomials. We argue that the property holds for any monomial, and this can be extended to
the case of the polynomials. While there are common inputs across various monomials and polynomials,
each monomial samples independent randomness for its computation and this suffices to let us argue
them separately. The main property of our underlying construction we will use is of the security of the
OT.

From the construction of Π
3POLY{p}
sh , which internally invokes Π3MULT

sh , each player has a specific role
for a given monomial: (i) it is not involved; (ii) involved and has a predefined role of either P1, P2 or
P3. Where P1, P2 and P2 have roles as described in Π3MULT

sh . The first case is trivial since we don’t need
to send anything. Let us consider the 3 other cases. If the player has the role of P2 or P3, then by
construction it is not required to send anything in the last round. If the player has the role of P1, then
it has to respond to an OT message in round 3. The message sent is a function of the prior messages,
but is masked by r1 which has not been used prior to round 3 and is chosen independently for the given
monomial. Thus from the OT sender security, we can pick u and r1 randomly to construct the third
round message. The security holds even if P2 and P3 collude and know the value of u since the mask is
chosen randomly and used for the first time.

In our proof, we shall need this property to respond to (potentially different) queries sent by the
adversary in the second round while rewinding when we argue security via the robust semi-honest MPC.

C Proof of Theorem 9

We present the proof for our five round construction below. Before we proceed to the simulator, we
discuss a few properties of the underlying primitives that we will need:

– Recall that simulator for the robust semi honest MPC consists of two parts. The first part, Sim1
rMPC,

simulates the first three rounds of the robust semi honest MPC without requiring inputs or outputs
of the adversary. The second part, Sim2

rMPC, when given the inputs, random tape and outputs a
simulated transcript of the last round that is consistent with the input and randomness. Addition-
ally, note that this simulation succeeds as long as the adversary behaved honestly in the first three
rounds of the robust semi honest MPC.

– The extractor for the 3 round “rewinding secure” extractable commitment works by rewinding
the second and third round polynomial number of times. From Lemma 1, we know that if the
commitments are well formed, extraction fails with only negligible probability.

– The simulator of the NMZKs works by extracting a trapdoor. Specifically, it rewinds the second and
third round polynomial number of times to get signatures for two distinct messages. Further, this
extraction fails only with negligible probability if the adversary does not abort with non-negligible
probability.

– Combining the above two properties, we see that the rewindings of NMZK and the extractable
commitment are “composable” because they rewind in the same rounds in our MPC protocol.

– To extract the value in the four round non-malleable commitment within the NMZK, we rewind in
the third and fourth round. This will be useful will arguing the proofs in the hybrids.
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C.1 Description of the Simulator

We describe the ideal world simulator Sim below. We shall denote the set of honest players by H and the
set of corrupted players by PA.

1. The first three rounds of protocol are simulated as follows:

– For the robust semi honest MPC, since Sim1
rMPC doesn’t require any input or output to simulate

the first three rounds, we use it directly to obtain
{
m1

i ,m
2
i ,m

3
i

}
Pi∈H

.

– For simulating proofs for the NMZKs, we deal with three different cases:

(a) For proofs from the adversary, the honest player acts as a verifier. In this case, fix a
random tape for the verifier and respond honestly to adversary queries.

(b) For proofs within honest players, we fix the random tape for the verifiers and thus can triv-
ially compute the trapdoor in the NMZKs for both languages using the verifier’s random
tape.

(c) For proofs from honest players to the adversary, we run the simulator Simnmzk a to simulate
the first three rounds. This internally rewinds polynomial many times to obtain the
trapdoors. If the extractor fails, output ⊥nmzk and abort.

This gives us
{
πj
nmzki

}
j∈{1,2,3},Pi∈H

and the extracted trapdoors.

– For the extractable commitment, we deal with two cases:

(a) For commitments from the honest players to the adversary, we just commit to the ‘0’
string. We do this for commitments within the honest players as well.

(b) For commitments where the honest players are recipients, run the extractor to send re-
sponses and extract the values inside the commitments. If extractor fails, output ⊥ecom

and abort.

This gives us
{
πj
ecomi

}
j∈{1,2,3},Pi∈H

and the extracted commitments.

– Only the first round of the WIPoK overlaps with the first three rounds of the protocol. We
behave honestly for both the first and second rounds of the WIPoK by fixing a random tape
for the honest players. Even though the second round overlaps with the fourth round of the
protocol, we group it here for simplicity.

As noted earlier, the rewinding performed within the NMZK simulator and the extractor for ex-
tractable commitments work in the same rounds and can be done for each without affecting the
other.

2. Simulate the last round of the NMZK for L in two steps.

– For proofs from the honest parties to the adversary, use Simnmzk with inputs
{
πj
nmzki→k

}
j∈{1,2,3}, Pk∈PA,Pi∈H

and the trapdoors obtained earlier to compute{
π4
nmzki→k

}
Pk ∈PA, Pi ∈H

.

– For proofs within honest parties, the trapdoor is trivially known to the adversary and thus use{
πj
nmzki→k

}
j∈{1,2,3}, Pk,Pi∈H

to construct

{
π4
nmzki→k

}
Pk, Pi ∈H

.
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This gives us the required
{
π4
nmzki

}
Pi ∈H

.

On receiving the proofs from the adversary check if all the received proofs are valid i.e. verify if
{πj

nmzkk→i
}j∈{1,2,3,4}, Pk ∈PA, Pi ∈H are valid proofs in L (This is equivalent to checking if all proofs

in the protocol verify). If the check fails, send abort to the ideal functionality.

3. We perform an additional check before we obtain the final round of the robust semi honest MPC.
Given ~m1, ~m2, ~m3, {(xk, rk)}Pk∈PA , we check if the adversary has followed the computation in the

first three rounds correctly. If the check fails we output ⊥1
rMPC and abort. It is implicit that the

proofs for L have verified prior to this step.

4. Send the extracted inputs {xk}Pk∈PA to the ideal functionality to obtain the output y.

Compute the final round (of all players) of the robust semi honest MPC as{
m4

i

}
Pi∈P

← Sim2
rMPC

(
~m1, ~m2, ~m3, {xk}Pk∈PA , {rk}Pk∈PA , y

)
.

Additionally, simulate the last round of the WIPoK for LWIPoK. This is done in two steps

– For proofs from the honest parties to the adversary we use the trapdoors obtained earlier to
compute the proof with the trapdoor witness{

π4
WIPoKi→k

}
Pk ∈PA, Pi ∈H

.

– For proofs within honest parties, the trapdoor is trivially known and thus use
{
πj
WIPoKi→k

}
j∈{1,2,3}, Pk,Pi∈H

to construct {
π4
WIPoKi→k

}
Pk, Pi ∈H

.

This gives us the required
{
π4
WIPoKi

}
Pi ∈H

.

5. On receiving the proofs from the adversary check if all the received proofs are valid, i.e. verify if
{πj

WIPoKk→i
}j∈{1,2,3,4}, Pk ∈PA, Pi ∈H are valid proofs in LWIPoK. If the check fails, send abort to the

ideal functionality.

Otherwise, on receiving
{
m∗4k

}
Pk∈PA

from the adversary, we check if it matches the transcript

simulated by Sim2
rMPC earlier. If not, but the proofs above have verified output ⊥2

rMPC and abort.
Else send continue to the ideal functionality.

C.2 Description of the hybrids

We prove security via a sequence of hybrids H0 to H6 described below, where H0 is the real execution
and H6 is the ideal execution.

Random variables. We introduce the following random variables and their indistinguishability will
be argued throughout hybrids:

– Let vj be the random variable that represents the output of the jth experiment (including the view
of the adversary and the output of the honest players). To prove security of the MPC, we need to
show that the the random variables v0 and v6 are computationally indistinguishable.

– Let {Wk→i}Pk∈PA,Pi∈H be the random variables representing the XOR of the values committed in
the non-malleable commitment within the NMZK and the mask sent in the fourth round of the
NMZK ( i.e. Wk→i := ŝ0

k→i ⊕ ŝ1
k→i ).
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Public-coin property of non-malleable commitment. During our proofs, we reduce our indistin-
guishability argument to a specific cryptographic property that holds in the stand-alone setting. We
might require the non-malleable commitment to interact with an external party R. Note that the sim-
ulator will often rewind the adversary. But since R is a stand-alone receiver, its responses can be used
only in a single thread.

To deal with this, we do the following. On the main thread, any message from the adversary is
forwarded externally to R, and responses from R are forwarded internally to the adversary. But in the
look ahead threads, we use the public coin property of the non-malleable commitment to create responses
on our own and forward them internally to the adversary.

H0: Execution of the protocol Π in the real world with adversary A.

Soundness lemma. We claim an important lemma that is relevant to the real execution. The
lemma says that the adversary A does not commits to a trapdoor witnesses in the extractable
non-malleable commitment inside the non-malleable zero knowledge proofs, where it acts as the
prover, if the proof verify. Specifically, as described in Appendix A.5.1, we refer to the XOR of the
value inside the non-malleable commitment and the mask sent in the fourth round of the NMZK
protocol.

Lemma 2. Let {πnmzkk→i
}Pk∈PA,Pi∈H be the NMZK proofs for L that A sends to all the honest

players. Let pk→i correspond to the probability that W 0
k→i are trapdoor witnesses for the statements

being proved in the NMZK above. For the real execution, if all the proofs are accepting, then

pk→i < ν(n) ∀Pk ∈ PA, ∀Pi ∈ H

for some negligible function ν.

Proof. On a high level, the proof follows from the unforgability of the signature scheme and the
extractability of the non-malleable commitment.

Without loss of generality assume that the above condition is false. Then ∃Pk ∈ PA, Pi ∈ P such
that pk→i is non-negligible.

We will arrive at a contradiction by extracting the masked trapdoor witness from the non-malleable
commitment πnmcomk→i

to break the underlying signature scheme in the NMZK.

For the proof πnmzkk→i
, all messages other than the ones for the signature scheme are generated

honestly. Messages for the signature scheme are obtained from the external challenger. Note that the
last message from the external challenger is in the third round when the challenger signs the message
sent to the challenger in the second round. The extraction from the non-malleable commitment is
performed by rewinding the third and fourth rounds. Thus, while rewinding we repeatedly send
to the adversary the same signature received from the challenger. Since the trapdoor condition
consists of two distinct messages with their corresponding signature, from the extracted values and
the mask for the non-malleable commitment we have these trapdoor values with non-negligible
probability. Since we’ve queried the external challenger only once, we have broken the underlying
signature scheme with a forged signature.

Consequence of the soundness lemma. If this above property, which will be referred to as the
soundness condition, holds, then the “trapdoor condition” is false for both the NMZK and WIPoK
proofs. We shall maintain this soundness invariant throughout our proof across hybrids by arguing
that the distribution of W doesn’t change. This means, from the soundness of sWIAoK (used inside
NMZK) and WIPoK, the “honest statements” are true if the proofs are accepting.

39



H1: Identical to H0 except that we rewind polynomial number of times in the second and third round
to extract the trapdoors for the non-malleable zero knowledge proofs, and the committed values
(input and randomness) from the extractable commitment scheme.

We abort with output ⊥nmzk for the hybrid if the extractor for NMZK fails, and abort with output
⊥ecom if the extractor for the commitment fails to return a value.

Since the only difference from the previous hybrid H0 (real execution) is the rewinding to perform
the required extractions, the main thread in the experiment remains unchanged. Thus, we claim
the following

∀Pk ∈ PA, ∀Pi ∈ P W 0
k→i ≈s W 1

k→i (1)

Let us assume the claim isn’t true. Then ∃Pk ∈ PA, Pi ∈ P such that W 0
k→i and W 1

k→i are
distinguishable by an unbounded adversary D. We use D to create another unbounded adversary D′

that distinguishes between the main threads of H0 and H1. It works by extracting the commitment
in the extractable non-malleable commitment within the NMZK proof πnmzkk→i

, and uses D to
distinguish between the commitments. Since the main thread is unchanged, this is a contradiction.

We now claim,
v0 ≈s v1. (2)

If the proofs are accepting in the main thread, then the extracted values (from the extractable
commitment) are correct by the soundness lemma and equation 1.

For the view, since the main thread remains the same, all that is left to argue is that the experiment
aborts with negligible probability.

From the NMZK we know that the probability⊥nmzk is output is negligible in n. Similarly, we output
⊥ecom with probability negligible in n. This implies that the experiment aborts with negligible
probability, proving the claim.

H2: Identical to H1 except that we set the XOR of the value inside the non-malleable commitment
τnmcomi→k

and the mask ŝ1
i→k to be the extracted trapdoor. This is done in each instance of NMZK

proofs sent by the honest players and for proofs between honest players too. This is achieved by
setting the mask accordingly in the fourth round.

We now claim the following,

v1 ≈c v2 (3)

∀Pk ∈ PA, ∀Pi ∈ P W 1
k→i ≈c W 2

k→i (4)

Equation 4 follows from the non-malleability of the non-malleable commitment π̂nmcom. Specifically,
we go from a hybrid where all the masked commitments (XOR of the value inside the non-malleable
commitment π̂nmcomi→k

with the mask ŝ1
i→k sent in the 4th round) are 0 to a hybrid where all

the masked commitments are to the respective trapdoors. To rely on the hiding property of the
commitment scheme, we construct intermediate hybrids where in each hybrid we change the value
only in one commitment scheme. If equation 4 does not hold, then ∃Pk ∈ PA, Pi ∈ P such that
W 1

k→i and W 2
k→i are distinguishable by a PPT adversary D. To reduce to the non-malleability,

we need to expose the non-malleable commitment in the protocol to an external challenger and
receiver.

For equation 3, we needed to expose it only to the external challenger, and this is done identically
here as well.

To do this, we expose a part of the protocol to an external committer C for the non-malleable
commitment (challenger). All messages of the protocol other than the ones that differ in the pair of
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adjacent hybrids is computed as in the previous hybrid. The messages for the specific non-malleable
commitment are taken from the external challenger. Responses intended for the challenger from
the adversary are forwarded to this challenger. As challenge messages, we send prior to the second
round r and r ⊕ td where r is picked randomly, and td is the trapdoor. But the trapdoor is only
available after the third round, so we start look ahead threads after the first round to obtain td.
This is possible since the verification key vk is fixed in the first round and messages for the identified
non-malleable commitment are generated locally in the look up thread. On obtaining the requisite
value from the look ahead thread, we continue the main thread from the first round by taking in
the non-malleable commitment messages externally. For the mask we send r. Thus if the external
challenger committed to r, we are in the first hybrid else we are in the second hybrid.

Lastly, we note that rewinding the second and third rounds are not an issue since the second message
of the non-malleable commitment comes from the external challenger and hence just repeated while
rewinding. And since the look ahead threads are cut off after the third round, we don’t need to
worry about the fourth round from the external challenger.

The messages for the non-malleable commitment τnmcomk→i
are forwarded to the external receiver

and responses back to A. Depending on the value committed by the external challenger, we are in
either of the two adjacent hybrids. If the adversary is able to commit to different values in these
cases, then it has broken the non-malleability of the non-malleable commitment scheme. Thus
equation 4 holds. We use the public-coin property of the non-malleable commitment discussed
earlier to respond to messages locally in the look-ahead threads.

Equation 3 follows from the fact the hiding property of the non-malleable commitment.

If equation 3 does not hold, then there are adjacent intermediate hybrids such that they are distin-
guishable. i.e. when we change the value of the mask ŝ1

i→k such that the XOR with the value inside
the non-malleable commitment becomes the trapdoor witness, there is PPT distinguisher D that
can differentiate the two cases. We shall use this PPT distinguisher to break the hiding property
of the non-malleable commitment. To do this, we expose a part of the protocol to an external
committer as described for equation 4.

Now we use the adversary A that distinguishes the two views to directly distinguish between the
values committed to by the external challenger C.

H3: Identical to H2 except that we simulate the proofs for both the WIPoK and the NMZK.

We now claim the following,

v2 ≈c v3 (5)

∀Pk ∈ PA, ∀Pi ∈ P W 2
k→i ≈c W 3

k→i (6)

We argue by splitting into two sub-hybrids:

– First we simulate all the proofs in the WIPoK. This is done by changing the last round of the
WIPoK, and hence the last round of the protocol.

v2 ≈c ṽ2 (7)

∀Pk ∈ PA, ∀Pi ∈ P W 2
k→i ≈c W̃ 2

k→i (8)

Equation 8 follows trivially from the fact that the change is made in the fifth round of the
protocol after completion of the non-malleable commitment protocol.

For equation 7, this follows directly from the witness indistinguishable property of the WIPoK.
Specifically, if adversary A is able to distinguish between the views, then we can construct an
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adversary that breaks the witness indistinguishability of the WIPoK. The change in the proofs
are made through a sequence of hybrids where in each hybrid only one proof is changed. If
the views are distinguishable, there exists an adjacent pair of hybrids such that the change
is distinguishable. Let this proof be πWIPoKi→k

. To reduce the security to the witness indis-
tinguishability, we take this proof from an external challenger. The rewinding for extracting
the trapdoors and inputs are only in the second and third round, and hence do not affect the
interaction with the external challenger. The external challenger gives a proof using one of the
two witnesses, and depending on the witness used we are in either of the two adjacent hybrids.
Thus, we use adversary A that distinguishes the two views to distinguish which witness was
used.

– In the hybrid, we simulate all the statistical WIAoK. This the is done by changing the last
round of the sWIAoK, and hence the fourth round of the overall protocol.

ṽ2 ≈s v3 (9)

∀Pk ∈ PA, ∀Pi ∈ P W̃ 2
k→i ≈s W 3

k→i (10)

Equation 10 follows trivially from the fact that the change made is statistical. Specifically,
assume equation 10 does not hold. Then ∃Pk ∈ PA, Pi ∈ P such that W̃ 2

k→i and W 3
k→i

are distinguishable by an unbounded adversary D. We use D to create another unbounded
adversary D′ that breaks the statistical witness indistinguishability. The change in the proofs
are made through a sequence of hybrids where in each hybrid only one proof is changed. If
the views are distinguishable, there exists an adjacent pair of hybrids such that the change
is distinguishable. To reduce the security to the witness indistinguishability, we take this
proof from an external challenger. The rewinding for extracting the trapdoors and inputs are
only in the second and third round, and hence do not affect the interaction with the external
challenger. The external challenger gives a proof using one of the two witnesses, and depending
on the witness used we are in either of the two adjacent hybrids.

Next we extract ŝ0
k→i⊕ ŝ1

k→i and use D to distinguish between the two cases, i.e. two witnesses.

For equation 9, we set up the experiment to the external challenger exactly as described above.
Instead of extracting the non-malleable commitment, we use the adversaryA that distinguishes
the two views to directly distinguish between the witnesses used.

H4: Identical to H3 except for the following. With ~m1, ~m2, ~m3, {(xk, rk)}Pk∈PA , we check if the adversary
has followed the computation in the first three rounds correctly. If not, and the proofs for L verify,
we output ⊥1

rMPC and abort. If the proofs for L do not verify, send abort to the ideal functionality.

Otherwise send the inputs extracted to the ideal functionality to obtain the output. Given the
extracted inputs, randomnesses and output we run Sim2

rMPC to obtain m4
i for every honest player

Pi. Since it is a semi-honest simulator, it simulates the transcript, and we thus also have
{
m4
k

}
Pk∈PA

.

On receiving
{
m∗4k

}
Pk∈PA

from the adversary, checks if the simulated transcript matches the on

received. If it does not match, but the WIPoK proofs for LWIPoK verify, output ⊥2
rMPC and abort.

If the proofs for LWIPoK do not verify, send abort to the ideal functionality.

Conditioned on the fact that we don’t abort, we claim the following

∀Pk ∈ PA, ∀Pi ∈ P W 3
k→i ≈s W 4

k→i. (11)

Equation 11 is trivially true since the last message that was simulated for the robust semi honest
MPC was sent in the fifth round, after the completion of the NMZK for L, and hence after completion
of the non-malleable commitment τnmcomk→i

. Thus the execution thread till the fifth round is
statistically indistinguishable.
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Lastly, we claim

v3 ≈c v4. (12)

Before we can reduce this to the security of the underlying simulator for the robust semi honest
MPC, we must ensure that the security holds. This is the case when the adversary behaved semi-
honestly in the first three rounds, i.e. if the proofs for L verify and the hybrid does not output
⊥1

rMPC. From equation 11 and the soundness condition of the previous hybrid, if the proofs for
L verify, the adversary does not behave honestly in the first three rounds with only negligible
probability. Thus ⊥1

rMPC is output with only negligible probability.

Then, if the above claim does not hold, we break the security of Sim2
rMPC (implied by the definition

of the robust semi honest MPC). Additionally, if the proofs for LWIPoK verify, from the soundness
condition ⊥2

rMPC is output with negligible probability. This ensures the that the output distribution
of the honest parties is indistinguishable from the previous hybrid. This proves our claim.

H5: Identical to H4 except we commit to the ‘0’ string in the extractable commitment. This applies to
commitments within every pair of honest players as well.

We do this through two sub-hybrids.

H5,0: In this sub-hybrid, we “cheat” in the third round everywhere by sending random strings as
response to the challenges in the look ahead threads. The changes here are only statistical.
Thus we have,

∀Pk ∈ PA, ∀Pi ∈ P ‘W 4
k→i ≈s W

5,0
k→i (13)

v4 ≈s v5,0. (14)

H5: We commit to the ‘0’ string in the extractable commitments. We’re able to do this because
the decommitment information is not used anywhere else.

We claim the following,

∀Pk ∈ PA, ∀Pi ∈ P W 5,0
k→i ≈c W

5
k→i. (15)

Let us assume the claim isn’t true. Then ∃Pk ∈ PA, Pi ∈ P such that W 5,0
k→i and W 5

k→i

are distinguishable by a PPT adversary D. We use D to create another PPT adversary D′

that breaks the hiding property of the extractable commitment. Specifically, we do this by
a sequence of intermediate hybrids where we change the value of only one commitment at
a time. If the claim isn’t true, then there exists adjacent intermediate hybrids such that
they are distinguishable. Let the intermediate hybrids be such that only the commitment
r1
τi→k

was changed. For a reduction to the hiding property of the extractable commitment we
need to expose this commitment to an external challenger. i.e. all messages apart from the
commitment τecomi→k

are computed as in the previous hybrid. The messages τecomi→k
are taken

from the external challenger C and the subsequent response by the adversary is forwarded to
the challenger and so on. Recall that the adversary is being rewound in the second and third
round in order to extract the inputs and trapdoors, but from the previous sub-hybrid, we’re
answering them randomly on the look ahead threads (this change is only statistical). As
challenge messages, prior to the first round we send 0 and (xi, ri). Thus, depending on the
value committed to by the challenger, we are in one of the two adjacent hybrids.

Now we rewind the adversary in the third and fourth round to extract the non-malleable
commitment to obtain ŝ0

k→i⊕ ŝ1
k→i. Only the last message of the extractable commitment from

the external challenger C overlaps with the third and fourth round and hence resent unchanged
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during the extraction. We now present the extracted value to the PPTD to distinguish between
the two hybrids and thus breaking the hiding of the extractable commitment scheme.

We claim the following

v5,0 ≈c v5. (16)

Equation 16 follows from the hiding property and rewinding security of the extractable com-
mitment scheme. We set up the experiment to the external challenger exactly as described
above. Instead of extracting the non-malleable commitment, we use the adversary A that
distinguishes the two views to directly distinguish between the values committed to by the
external challenger.

H6: Identical to H5 except that we use Sim1
rMPC to simulate the first three round of the honest players

in ΠrMPC.

We claim the following,

∀Pk ∈ PA, ∀Pi ∈ P W 5
k→i ≈c W 6

k→i. (17)

Equation 17 follows from the computational indistinguishability of the the view output by Sim1
rMPC

from the real view implicit from the definition of the robust semi honest MPC. This is where
the “special rewinding” property (see B.6) is used. Let us assume the claim isn’t true. Then
∃Pk ∈ PA, Pi ∈ P such that W 5

k→i and W 6
k→i are distinguishable by a PPT adversary D. We

use D to create another PPT adversary D′ that breaks the security of Sim1
rMPC. We take the

transcript of the first three rounds of the robust MPC externally and force it on the adversary (by
setting random coins accordingly). Recollect that we’re still extracting the input and trapdoor by
rewinding in the second and third round. Here the “special rewinding” property is used. In the look
ahead threads, if we send a different message in the second round while rewinding, the adversary
might send a different second message of the robust semi-honest MPC. To be able to extract from
the non-malleable commitment, we need to complete the fourth round of the protocol, and hence
need the “special rewinding” property to simulate messages for potentially different second round
messages in the look ahead threads.

Now we rewind the adversary in the third and fourth round to extract the non-malleable commit-
ment to obtain ŝ0

k→i⊕ ŝ1
k→i. Only one round of the robust MPC overlaps with the rewinding rounds

for the extraction, and we send the same message (received from the challenger) in each look ahead
thread. We now present the extracted value to the PPT D to distinguish between the two hybrids
and thus breaking the hiding of the extractable commitment scheme.

The extraction probability does not change because of indistinguishability of the view in each of
the adversary’s (look ahead) threads (from the special rewinding property). One can alternatively
considering an intermediate hybrid where the changes are initially made only in the look-ahead
threads and then the changes on the main thread.

Lastly, we claim the following

v5 ≈c v6. (18)

Equation 18 follows from the computational indistinguishability of the the view output by Sim1
rMPC

from the real view implicit from the definition of the robust semi honest MPC. We set up the
experiment to the external challenger exactly as described above for proving equation 17. Instead
of extracting the non-malleable commitment, we use the adversary A that distinguishes the two
views to directly distinguish between the transcripts sent by the challenger.
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Hybrid H6 is identical to our simulator. From the above discussion, we have

v0 ≈c v6

thus proving security of the constructed MPC.

D Proof of Theorem 10

We present the proof for our four round construction below. As before, we discuss a few properties of
the underlying primitives that we will need:

– The simulator for the robust semi honest MPC, as previously discussed, consists of two parts.
The first part, Sim1

rMPC, simulates the first three rounds of the robust semi honest MPC without
requiring inputs or outputs of the adversary. The second part, Sim2

rMPC, when given the inputs and
outputs of the adversary simulates the last message of robust semi honest MPC. Additionally, note
that this simulation works only in the semi-honest setting.

– The extractor for the 3 round “rewinding secure” extractable commitment works by rewinding the
second and third round polynomial number of times. From the Lemma 1, we know that if the
commitments are well formed, extraction of the correct inputs fail with only negligible probability.

– The simulator of the NMZKs works by extracting a trapdoor. Specifically, it rewinds the second and
third round polynomial number of times to get signatures for two distinct messages. Further, this
extraction fails only with negligible probability if the adversary does not abort with non-negligible
probability.

– Combining the above two properties, we see that the rewindings of NMZK and the extractable
commitment are “composable” because they rewind in the same rounds in our MPC protocol.

– To extract the value in the four round non-malleable commitment within the NMZK, we rewind in
the third and fourth round. This will be useful will arguing the proofs in the hybrids.

D.1 Description of the Simulator

We describe the ideal world simulator Sim below.

1. The first three rounds of protocol are simulated by picking random inputs for the honest parties
and behaving “honestly” with these inputs as follows:

– For the robust semi honest MPC, pick random {x′i, r′i}Pi∈H as inputs to the first three rounds.
We shall use the last round of the robust semi honest MPC to correct the output. We obtain
{m1

i ,m
2
i ,m

3
i }Pi∈H.

– For the extractable commitment, we deal with two cases:

(a) For commitments from the honest players to the adversary, we commit honestly to random
strings {r0

ecomi→k
}Pi∈H . We do this for commitments within the honest players as well. In

the third round, we send {r1
ecomi→k

:= (x′i, r
′
i) ⊕ r0

ecomi→k
}Pi∈H where x′i, r

′
i are the inputs

and randomness generated in the previous step.

(b) For commitments where the honest players are recipients, run the extractor to send both
the responses, and extract the values inside the commitments. If the extraction fails to
return a value, output ⊥ecom and abort.

This gives us
{
πj
ecomi

}
j∈{1,2,3},Pi∈H

, {r1
ecomi→k

}Pi∈H and the extracted commitments.
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– We generate {yi}Pi∈H honestly as defined by the protocol.

– For the input delayed WIPoK, we behave honestly with our randomly generated inputs and

randomness. This gives us
{
πj
WIPoKi

}
j∈{1,2,3},Pi∈H

. If any of the proofs received at the end of

the third round fails, output ⊥ and abort.

– For simulating proofs for the NMZKs, we deal with three different cases:

(a) For proofs from the adversary, the honest player acts as a verifier. In this case, fix a
random tape for the verifier and respond honestly to adversary queries.

(b) For proofs within honest players, we fix the random tape for the verifiers and thus can triv-
ially compute the trapdoor in the NMZKs for both languages using the verifier’s random
tape.

(c) For proofs from honest players to the adversary, we run the simulator Simnmzk. This
internally rewinds polynomial many times to obtain the trapdoors. If the extractor fails,
output ⊥nmzk and abort.

This gives us
{
πj
nmzki

}
j∈{1,2,3},Pi∈H

and the extracted trapdoors.

As noted earlier, the rewinding performed within the NMZK simulator and the extractor for
extractable commitments work in the same rounds and can be done for each without affecting
the other.

– For the non-malleable commitment, as above, we deal with two cases:

(a) For commitments from the honest players to the adversary, we commit to 0. For the
for non-malleable commitments within the NMZK as well we commit to the trapdoors
(extracted earlier) of the NMZK. By the construction of the NMZK protocol in [COSV17],
the change for this is made only in the fourth round where we send a different mask s1.
For the two round non-malleable commitment, the committed value is set in the second
round.

(b) For commitments where the honest players are recipients, we behave honestly.

2. The last round is simulated as below:

– Send the extracted inputs {xk}Pk∈PA to the ideal functionality to obtain the output y. Obtain
the final round of the robust semi honest MPC as{

m4
i

}
Pi∈P

← Sim2
rMPC

(
~m1, ~m2, ~m3, {xk}Pk∈PA , {rk}Pk∈PA , y

)
.

– Simulate the last round of the NMZK for L in two steps.

– For proofs from the honest parties to the adversary, use Simnmzk with inputs:{
πj
nmzki→k

}
j∈{1,2,3}, Pk∈PA,Pi∈H

and the trapdoors obtained earlier to compute{
π4
nmzki→k

}
Pk ∈PA, Pi ∈H

.

– For proofs within honest parties, the trapdoor is trivially known to the adversary and thus

use
{
πj
nmzki→k

}
j∈{1,2,3}, Pk,Pi∈H

to construct

{
π4
nmzki→k

}
Pk, Pi ∈H

.
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This gives us the required
{
π4
nmzki

}
Pi ∈H

.

On receiving the proofs from the adversary check if all the received proofs are valid i.e. verify
if {πj

nmzkk→i
}j∈{1,2,3,4}, Pk ∈PA, Pi ∈H are valid proofs in L. If the check fails, send abort to the

ideal functionality. if the proofs verify, but
{
m∗4k

}
Pk∈PA

differs from the simulated transcript,

output ⊥2
rMPC.

The simulator behaves honestly with respect to the WIPoK and doesn’t use the trapdoor. But in the
hybrids, we shall use a hybrid simulator that will prove the trapdoor statement in the WIPoK.

D.2 Description of the hybrids

Random variables. As in the five round setting, we introduce the following random variables and
their indistinguishability will be argued throughout hybrids:

– Let vj be the random variable that represents the output of the jth experiment (including the view
of the adversary and the output of the honest players).

– Let {Wk→i}Pk∈PA,Pi∈H be the random variables representing the values that are committed in the

non-malleable commitments of Πnmcom. On the other hand,
{
Ŵk→i

}
Pk∈PA,Pi∈H

are the random

variables representing the XOR of the values committed in the non-malleable commitment within
the NMZK and the mask sent in the fourth round of the NMZK ( i.e. Ŵk→i := s0

k→i ⊕ s1
k→i ). We

need these to ensure that adversary behaves in a semi-honest way for the computation of the robust
semi honest MPC.

H0: Execution of the protocol Π in the real world with adversary A.

Soundness lemma.

Lemma 3. Let {πWIPoKk→i
}Pk∈PA,Pi∈H and {πnmzkk→i

}Pk∈PA,Pi∈H be the input delayed WIPoK proofs

for LWIPoK and NMZK proofs for L̂ respectively that A sends to the honest players. Let pk→i corre-
spond to the probability that W 0

k→i is the trapdoor witness for the statement in L being proved in the

input delayed WIPoK above. Similarly, p̂k→i corresponds to the probability that Ŵ 0
k→i is the trapdoor

witness for L̂. For the real execution, if the proofs are accepting, then

pk→i, p̂k→i < ν(n) ∀Pk ∈ PA, ∀Pi ∈ H

for some negligible function ν.

Proof. The high level idea of the proof is the following: Suppose by contradiction the lemma is not
true, then there ∃Pk ∈ PA, Pk ∈ H such that either pk→i or p̂k→i is non-negligible.

Consider the case that pk→i is non-negligible. Then we shall construct an adversary ASign that
breaks the signature scheme used in the underlying NMZK. We shall do this by extracting from
the non-malleable commitment within the NMZK. Recall that this non-malleable commitment is a
4 round protocol whose values can be extracted by rewinding the third and fourth round messages.
For Pi receiving a proof, all messages, other than the ones relevant to the signature scheme, are sent
honestly. Specifically, in the first round, the verification key vk sent by the challenger for Sign is
forwarded to the adversary. When the adversary sends the message to be signed, it is forwarded to
the challenger, and the response (signature) forwarded to the adversary. Now we extract from the 4
round non-malleable commitment. This is done by rewinding the third and fourth round messages
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of the protocol. Only the signature from the challenger overlaps with the round that are rewound.
Thus, we can resend the same message to the adversary while rewinding without having to make
another query to the challenger. Thus, with non-negligible probability we extract the trapdoor
witness for the statement (signature of two distinct messages) and break the signature scheme.

Now, consider the case that p̂k→i is non-negligible. Here we shall construct an adversary Af that
breaks the one-wayness of f . For Pi receiving a proof, all messages, other than yk→i, are sent
honestly. We forward the challenge received from the challenger for f . We now extract from the
2 round non-malleable commitment. Since the only message sent by the challenger is in the first
round, the rewinding is done completely independent of the challenger interaction. Thus, with
non-negligible probability we extract the trapdoor witness for the statement (the pre-image) and
break the one-wayness of f . Here we require Tf >> T̃ ext

nmcom.

Thus from the security of the one-way permutation and the signature scheme, the lemma holds.

Consequence of the soundness lemma. If this above property, which will be referred to as the
soundness condition, holds, then the “trapdoor condition” is false for both the NMZK and WIPoK
proofs. We shall maintain this soundness invariant throughout our proof across hybrids by arguing
that the distribution of W doesn’t change. This means, from the soundness of sWIAoK (used inside
NMZK) and WIPoK, the “honest statements” are true if the proofs are accepting.

H1: Identical to H0 except that we rewind polynomial number of times in the second and third round
to extract the trapdoors for the NMZK proofs, and the committed values (input and randomness)
from the extractable commitment scheme.

We abort with output ⊥nmzk for the hybrid if the extractor for NMZK fails, and abort with output
⊥ecom if the extractor for the extractable commitment fails to return any output. At this point we
do not know if the extracted values are indeed the adversary’s input and randomness.

Since the only difference from the previous hybrid H0 (real execution) is the rewinding to perform
the required extractions, the main thread in the experiment remains unchanged. Thus, we claim
the following

∀Pk ∈ PA, ∀Pi ∈ P W 0
k→i ≈s W 1

k→i (19)

∀Pk ∈ PA, ∀Pi ∈ P Ŵ 0
k→i ≈s Ŵ 1

k→i (20)

The proofs follows exactly the same way as in the five round case.

We now claim,
v0 ≈s v1. (21)

Since the main thread remains the same, all that is left to argue is that the experiment aborts with
negligible probability.

From the property of the NMZK and extractable commitments, we know that the probability ⊥nmzk

or ⊥ecom is output is negligible in the security parameter. This implies that the experiment aborts
with negligible probability, proving the claim.

H2: Identical to H1 except that we commit to the trapdoor values in the non-malleable commitments
inside the NMZKs sent by the honest players. This is done by changing the mask sent in the fourth
message (within the NMZK).

We claim the following,

v1 ≈c v2 (22)

∀Pk ∈ PA, ∀Pi ∈ P W 1
k→i ≈s W 2

k→i (23)

∀Pk ∈ PA, ∀Pi ∈ P Ŵ 1
k→i ≈c Ŵ 2

k→i. (24)
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Equation 23 trivially follows from the fact that the change is made after the completion of the two
round non-malleable commitment.

The proofs for equations 22 and 23 follow identically from the proof of in hybrid H2 in the five
round case.

H3: Identical to H2 except that we use the trapdoors obtained earlier to simulate the last message of
the sWIAoK, from the honest players to the adversarial players, within the NMZK for language L̂.
For proofs between any two honest players, since the simulator controls both players, it fixes the
random tapes used for the NMZK and thus knowns the trapdoors. Thus, proofs between honest
parties are trivially simulated. For proofs from the adversary, we respond honestly.

We now claim the following,

v2 ≈s v3 (25)

∀Pk ∈ PA, ∀Pi ∈ P W 2
k→i ≈s W 3

k→i (26)

∀Pk ∈ PA, ∀Pi ∈ P Ŵ 2
k→i ≈s Ŵ 3

k→i (27)

Equation 26 trivially holds because changes made are in the fourth round after the completion of
the two round non-malleable commitment.

Equation 27 follows trivially from the fact that the change made is statistical. Specifically, assume
equation 27 does not hold. Then ∃Pk ∈ PA, Pi ∈ P such that Ŵ 2

k→i and Ŵ 3
k→i are distinguishable

by an unbounded adversary D. We use D to create another unbounded adversary D′ that breaks
the statistical witness indistinguishability. The change in the proofs are made through a sequence
of hybrids where in each hybrid only one proof is changed. If the views are distinguishable, there
exists an adjacent pair of hybrids such that the change is distinguishable. To reduce the security
to the witness indistinguishability, we take this proof from an external challenger. The rewinding
for extracting the trapdoors and inputs are only in the second and third round, and hence do not
affect the interaction with the external challenger. The external challenger gives a proof using one
of the two witnesses, and depending on the witness used we are in either of two adjacent hybrids.

Next we extract ŝ0
k→i ⊕ ŝ1

k→i and use D to distinguish between the two cases, i.e. two witnesses.

For equation 25, we set up the experiment to the external challenger exactly as described above.
Instead of extracting the non-malleable commitment, we use the adversary A that distinguishes the
two views to directly distinguish between the witnesses used.

H4: Identical to H3 except for the following changes. Send the inputs extracted to the ideal functionality
to obtain the output.

Given the extracted inputs, randomnesses and output, we run Sim2
rMPC to simulate m4

i for every
honest player Pi.

Since it is a semi-honest simulator, it simulates the transcript, and we thus also have
{
m4
k

}
Pk∈PA

.

On receiving
{
m∗4k

}
Pk∈PA

from the adversary, checks if the simulated transcript matches the on

received. If it does not match, but the NMZK proofs for L̂ verify, output ⊥2
rMPC and abort. If the

proofs for L̂ do not verify, send abort to the ideal functionality.

We claim the following

∀Pk ∈ PA, ∀Pi ∈ P W 3
k→i ≈s W 4

k→i. (28)

∀Pk ∈ PA, ∀Pi ∈ P Ŵ 3
k→i ≈s Ŵ 4

k→i. (29)

Equations 28 trivially holds because changes made in the hybrid are after the completion of the
two round non-malleable commitment.
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Equation 29 holds, else we can extract by rewinding to build a distinguisher for Sim2
rMPC. The proof

is identical to the one in the 5 round setting.

Equation 29 holds from the security of the the robust semi honest MPC. Assume equations 29
does not hold. Then ∃Pk ∈ PA, Pi ∈ H such that Ŵ 3

k→i and Ŵ 4
k→i are distinguishable by a PPT

distinguisher D. We will use this distinguisher to break the security of the robust semi-honest MPC.
To reduce to the security of the robust semi honest MPC, we expose the last round of the robust
semi honest MPC to an external challenger. We then rewind to extract the corresponding value
from the non-malleable commitment in the NMZK. We then use D to break the security of the
robust semi honest MPC. While rewinding the third and fourth round, only the last round is taken
externally. In the look ahead threads, for the third round we send the honestly computed third
round of the robust semi-honest MPC. From the soundness condition of the WIPoK and equation
28, the proof verifies only if the adversary sent the correct message in the third round for the robust
semi honest MPC. Thus in the look ahead threads we can resend the same message obtained from
the external challenger in each look ahead thread.

Lastly, we claim

v3 ≈c v4. (30)

If the proofs for L̂ verify, from the soundness condition ⊥2
rMPC is output with negligible probability.

The claim follow from the security of Sim2
rMPC implicit from the definition of the robust semi-honest

MPC. We set up the experiment exactly like above, but instead of rewinding to extract from the
non-malleable commitment, we use A that distinguishes the views to break the the security of the
robust semi honest MPC 10.

Leveled security. We assume the following, and set the security parameters for the primitives
accordingly.

– Tf >> T̃ ext
nmcom;

– T h
nmcom, T

nm
nmcom >> Tf ;

– TWIPoK >> Tf , TSign, Tecom;

– TrMPC(1−3)
>> Tf , TSign, Tecom;

– Tecom >> Tf .

where Tprim means that the primitive prim is secure against adversaries running in time Tprim, and
T ′ >> T means that T ′ > T · poly(n). Specifically TrMPC(1−3)

means that we require the first three
rounds of our robust MPC to be indistinguishable (for adversaries running in time TrMPC(1−3)

) for

any two sets of inputs and randomnesses. In fact, in our construction, the simulator Sim1 works by
setting a random input to generate the first three rounds. Hence, for our construction, we require
TrMPC(1−3)

-security for the following two distributions: RealExecA
1

(t−1)(~x, z) and Sim1(z). Further, for

the two round non-malleable commitment, we have three parameters T h
nmcom, T nm

nmcom and T̃ ext
nmcom.

T h
nmcom and T nm

nmcom indicate that the hiding and non-malleability respectively of the non-malleable
commitment hold against adversaries running in time T h

nmcom and T nm
nmcom. T̃ ext

nmcom refers to the
running time of the rewinding extractor for the non-malleable commitment.

10For our construction, the views are statistically close. This is because changes in the last message are due to reverse
computation of output shares.
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H5: Identical to H4 except that we break the one-way permutation f , to obtain the pre-image ρ which
is committed to in the two round non-malleable commitment.

We claim the following

v4 ≈c v5. (31)

∀Pk ∈ PA, ∀Pi ∈ P W 4
k→i ≈c W 5

k→i. (32)

∀Pk ∈ PA, ∀Pi ∈ P Ŵ 4
k→i ≈c Ŵ 5

k→i. (33)

Assume equations 33 does not hold. Then ∃Pk ∈ PA, Pi ∈ H such that Ŵ 4
k→i and Ŵ 5

k→i are distin-
guishable by a PPT distinguisher D. We will use this distinguisher to break the hiding property of
the input delayed non-malleable commitment. Specifically, we rewind to extract the corresponding
non-malleable commitment Ŵk→i. We move from the previous hybrid to the current one by a se-
quence of intermediate hybrids where in each hybrid we change the value only in one commitment.
If equation 33 does not hold, then two adjacent hybrids are distinguishable. Let equation 33 not
hold when we change the commitment in πnmcomi∗→k∗ . To reduce to the hiding property of the
non-malleable commitment, we expose πnmcomi∗→k∗ to an external challenger. All messages other
than those of πnmcomi∗→k∗ are computed as in the previous hybrid. Since the commitment is input
delayed, we send the challenge messages only in the third round. The challenges sent are 0 and ρ.
Depending on the value committed we are in one of the two adjacent hybrids. We then rewind the
third and fourth rounds of the non-malleable commitments inside the NMZK to extract the masked
value. Since only the third round of the non-malleable commitment (from committer) overlaps with
the rewinding, we send the same message in each look-ahead thread. We then use D to break the
hiding property of the non-malleable commitment. We require T h

nmcom >> Tf .

Equation 32 holds from the non-malleability of the non-malleable commitment. Assume equations
32 does not hold. Then ∃Pk ∈ PA, Pi ∈ H such that W 4

k→i and W 5
k→i are distinguishable by a PPT

distinguisher D. We will use this distinguisher to break the non-malleability of the input delayed
non-malleable commitment. As before, we move from the previous hybrid to the current one by a
sequence of intermediate hybrids where in each hybrid we change the value only in one commitment.
If equation 32 does not hold, then two adjacent hybrids are distinguishable. Let equation 32 not hold
when we change the commitment in πnmcomi∗→k∗ . To reduce to the non-malleability, as explained
for 33, we expose the non-malleable commitment to an external committer and additionally to an
external receiver. The challenge messages to the external committer are the same as earlier, we
forward the commitment messages for πnmcomk→i

to the external receiver. If depending on the value
committed by the external committer, the committed value to the external receiver changes, we’ve
broken the non malleability of non-malleable commitment scheme. We require T nm

nmcom >> Tf .

Equation 31 follows from the hiding property of the non-malleable commitment, and the fact that
T h
nmcom >> Tf , and the hybrid thus takes time O(max{Tf}) which is in turn less than T h

nmcom.
The experiment is set up exactly as for equation 33, but instead of rewinding to extract from the
non-malleable commitment, we use A that distinguishes the views to break the hiding property of
the non-malleable commitment.

H6: Identical to H5 except that we stop rewinding to extract the input and trapdoor, and instead break
the signature scheme and the extractable commitment to obtain the trapdoors and the adversary’s
inputs. Specifically, we break the hiding of the extractable commitment scheme and additionally
use the mask to get the input, and break the signature scheme to compute two signatures.

We claim the following
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v5 ≈c v6. (34)

∀Pk ∈ PA, ∀Pi ∈ P W 5
k→i ≈c W 6

k→i. (35)

∀Pk ∈ PA, ∀Pi ∈ P Ŵ 5
k→i ≈c Ŵ 6

k→i. (36)

Equation 34 follows from the fact that this was only a statistical change. This is because the main
thread remains unchanged when we stop rewinding to extract by breaking the underlying schemes.
For the same reason, equations 35 and 36 and hold. Note that we’re still verifying the proofs to
validate the extracted values.

H7: Identical to H6 except that we use the trapdoor witnesses in the WIPoK sent by the honest parties.
This change is made only in the third round of the WIPoK and thus also the third round of the
overall protocol.

We claim the following

v6 ≈c v7. (37)

∀Pk ∈ PA, ∀Pi ∈ P W 6
k→i ≈s W 7

k→i. (38)

∀Pk ∈ PA, ∀Pi ∈ P Ŵ 6
k→i ≈c Ŵ 7

k→i. (39)

Assume equations 39 does not hold. Then ∃Pk ∈ PA, Pi ∈ H such that Ŵ 5
k→i and Ŵ 6

k→i are
distinguishable by a PPT distinguisher D. We will use this distinguisher to break the witness
indistinguishability of the input delayed WIPoK. Specifically, we rewind to extract the corresponding
non-malleable commitment Ŵk→i. We move from the previous hybrid to the current one by a
sequence of intermediate hybrids where in each hybrid we change the witness in a single proof. If
equation 39 does not hold, then two adjacent hybrids are distinguishable. Let equation 39 not hold
when we change the witness in proof πWIPoKi∗→k∗ . To reduce to the witness indistinguishability
of the WIPoK, we expose πWIPoKi∗→k∗ to an external challenger. All messages other than those of
πWIPoKi∗→k∗ are computed as in the previous hybrid. Depending on the witness used by the external
challenger we are in one of the two adjacent hybrids. We then rewind the third and fourth rounds
of the non-malleable commitments inside the NMZK to extract the masked value. Since only the
third round of the WIPoK (from prover) overlaps with the rewinding, we send the same message
in each look-ahead thread. We then use D to break the witness indistinguishability of the WIPoK.

Equation 38 trivially holds from the fact that the changes made in this hybrid are after completion
of the two round non-malleable commitment.

Equation 37 follows from the witness indistinguishability property of the input delayed WIPoK,
and the fact that TWIPoK >> Tf , TWIPoK >> Tecom and TWIPoK >> TSign. We need the lat-
ter two because we’re still breaking the primitives to extract, and the hybrid thus takes time
O(max{Tf , Tecom, TSign}) which is in turn less than TWIPoK. The experiment is set up exactly as
for equation 39, but instead of rewinding to extract from the non-malleable commitment, we use A
that distinguishes the views to break the witness indistinguishability.

H8: Identical to H7 except that we use randomly generated inputs {x′i, r′i}Pi∈H as inputs to the first
three rounds of the robust semi honest MPC.

We claim the following

v7 ≈c v8. (40)

∀Pk ∈ PA, ∀Pi ∈ P W 7
k→i ≈c W 8

k→i. (41)

∀Pk ∈ PA, ∀Pi ∈ P Ŵ 7
k→i ≈c Ŵ 8

k→i. (42)
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Assume equations 42 does not hold. Then ∃Pk ∈ PA, Pi ∈ H such that Ŵ 7
k→i and Ŵ 8

k→i are
distinguishable by a PPT distinguisher D. We will use this distinguisher to distinguish the first
three rounds of the robust semi-honest MPC. Specifically, we rewind to extract the corresponding
non-malleable commitment Ŵk→i. To reduce to security of the first three rounds of the robust semi-
honest MPC, we expose it to to an external challenger. All messages other than those of the first
three rounds of the robust semi-honest MPC are computed as in the previous hybrid. Depending on
the transcript sent by the challenger we are in one of two adjacent hybrids. We force this transcript
on the adversary by appropriately setting its random coins. We then rewind the third and fourth
rounds of the non-malleable commitments inside the NMZK to extract the masked value. Since
only the third round of the robust semi-honest MPC overlaps with the rewinding, we send the same
message in each look-ahead thread. We then use D to break the security of the first three rounds
of the robust semi-honest MPC. Since we’re still breaking the signature scheme and extractable
commitment, we require TrMPC(1−3)

>> Tf , TrMPC >> Tecom and TrMPC >> TSign.

Equation 41 holds from the the security of the first three rounds of the robust semi-honest MPC.
Assume equations 38 does not hold. Then ∃Pk ∈ PA, Pi ∈ H such that W 7

k→i and W 8
k→i are

distinguishable by a PPT distinguisher D. We will use this distinguisher to break the security of
the first three rounds of the robust semi-honest MPC. To reduce to the security of the first three
rounds, as explained for 42, we expose the robust MPC an external challenger. We then break the
hiding property of the corresponding two round non-malleable commitment to extract the required
value. We then use D to break the security of the first three rounds of the robust semi-honest MPC.
We additionally require TrMPC(1−3)

>> T h
nmcom.

Equation 40 follows from the security of the first three rounds of the robust semi honest MPC and
the fact that TrMPC(1−3)

>> Tf , TrMPC >> Tecom and TrMPC >> TSign. The latter conditions are
required as we’re still breaking f , the signature scheme and the extractable commitment. As before,
the hybrid takes time O(max{Tf , Tecom, TSign}) which is in turn less than TWIPoK. The experiment
is set up exactly as for equation 42, but instead of rewinding to extract from the non-malleable
commitment, we use A that distinguishes the views to break the security of the robust semi-honest
MPC.

H9: Identical to H8 except that we stop breaking the signature scheme and the extractable commitment,
and start rewinding again to obtain the trapdoor and the adversary’s inputs. We follow the same
strategy on the look ahead threads as the main thread.

We claim the following

v7 ≈c v8. (43)

∀Pk ∈ PA, ∀Pi ∈ P W 7
k→i ≈c W 8

k→i. (44)

∀Pk ∈ PA, ∀Pi ∈ P Ŵ 7
k→i ≈c Ŵ 8

k→i. (45)

Equation 43 follows from the fact that this was only a statistical change and the main thread
remains unchanged. For the same reason, equations 44 and 45 and hold.

H10: Identical to H9 except that in the third round for every honest party Pi we send {r1
ecomi→k

:= (x′i, r
′
i)

⊕ r0
ecomi→k

}Pi∈H. Where r0
ecomi→k

was the corresponding message sent inside the the extractable
commitment in the first round, and {x′i, r′i}Pi∈H are the input and randomness generated and used
in the first three rounds of the MPC. Thus, alternatively we view the corresponding extractable
commitment scheme to contain r1

ecomi→k
⊕ (x′i, r

′
i) by making changes only in the third round (only

on the main thread). This is done in two steps, which we separate as two sub-hybrids.
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H10,1=0 First, we start “cheating” in the look ahead threads with respect to the extractable commit-
ment. This is done by sending random messages (of the appropriate length) as the mask. Note
that the main thread remains unchanged, and we still respond honestly to queries on the main
thread.

We need the extracted values from the look ahead threads to proceed in the main thread.
Thus the adversary’s view on the main threads should remain unchanged. This is ensured by
the rewinding security and hiding of the extractable commitment.

v9 ≈c v10,0. (46)

∀Pk ∈ PA, ∀Pi ∈ P W 9
k→i ≈c W

9,1
k→i. (47)

∀Pk ∈ PA, ∀Pi ∈ P Ŵ 9
k→i ≈c Ŵ

10,0
k→i . (48)

Equation 46 follows from the fact that this was only a statistical change as the main thread
remains unchanged, and we are able to proceed on the main thread because we are still able
to extract on the look ahead thread. For the same reasons, equations 47 and 48 and hold.

H10 Next, we change the masks in the main thread from the honest party Pi to be {r1
ecomi→k

:=
(x′i, r

′
i)⊕ r0

ecomi→k
}Pi∈H.

We claim the following

v10,0 ≈c v10. (49)

∀Pk ∈ PA, ∀Pi ∈ P W 10,0
k→i ≈c W

10
k→i. (50)

∀Pk ∈ PA, ∀Pi ∈ P Ŵ 10,0
k→i ≈c Ŵ

10
k→i. (51)

Assume equations 51 does not hold. Then ∃Pk ∈ PA, Pi ∈ H such that Ŵ 10,10
k→i and Ŵ 10

k→i are
distinguishable by a PPT distinguisher D. We will use this distinguisher to break the hiding
property of the extractable commitment. Specifically, we rewind to extract the corresponding
non-malleable commitment Ŵk→i. We move from the previous hybrid to the current one
by a sequence of intermediate hybrids where in each hybrid we change the value for only a
single commitment (by its mask). If equation 51 does not hold, then two adjacent hybrids
are distinguishable. Let equation 51 not hold when we change the masked value in πecomi∗→k∗ .
To reduce to the hiding property of the extractable commitment, we expose πecomi∗→k∗ to
an external challenger. All messages other than those of πecomi∗→k∗ are computed as in the
previous hybrid. As challenge we send (xi, ri) ⊕ r and (x′i, r

′
i) ⊕ r where r is a random value.

And the mask sent in the third round is r. Depending on the value committed by the external
challenger we are in one of the two adjacent hybrids. We then rewind the third and fourth
rounds of the non-malleable commitments inside the NMZK to extract the masked value.
Since only the third round of the commitment scheme overlaps with the rewinding, we send
the same message in each look-ahead thread. We then use D to break the hiding property of
the extractable commitment. We require Tecom >> Tf as we’re breaking the OWP. Following
from the previous sub-hybrid, we are still “cheating” on the look ahead threads when we rewind
to extract.

Equation 50 holds trivially from the fact that changes are made in the third round after
completion of the two round non-malleable commitment.

Equation 49 follows from the hiding property of the extractable commitment, and the fact that
Tecom >> Tf . The latter is required as we’re still breaking f to simulate the input delayed
WIPoK. The experiment is set up exactly as for equation 51, but instead of rewinding to
extract from the non-malleable commitment, we use A that distinguishes the views to break
the witness indistinguishability.
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H11: Identical to H10 except that we stop rewinding to extract the input, and instead break the signature
scheme and the extractable commitment to obtain the trapdoor and the adversary’s inputs.

We claim the following

v10 ≈c v11. (52)

∀Pk ∈ PA, ∀Pi ∈ P W 10
k→i ≈c W 11

k→i. (53)

∀Pk ∈ PA, ∀Pi ∈ P Ŵ 10
k→i ≈c Ŵ 11

k→i. (54)

Equation 52 follows from the fact that this was only a statistical change as the main thread remains
unchanged. For the same reason, equations 53 and 54 and hold.

H12: Identical to H11 except that we use the valid witness to complete the input delayed WIPoK proofs.

We claim the following

v11 ≈c v12. (55)

∀Pk ∈ PA, ∀Pi ∈ P W 11
k→i ≈c W 12

k→i. (56)

∀Pk ∈ PA, ∀Pi ∈ P Ŵ 11
k→i ≈c Ŵ 12

k→i. (57)

The claims follow identically from hybrid H7.

H13: Identical to H12 except that we stop breaking the one-way permutation to obtain the trapdoor and
commit to 0 in the two round non-malleable commitment.

We claim the following

v12 ≈c v13. (58)

∀Pk ∈ PA, ∀Pi ∈ P W 12
k→i ≈c W 13

k→i. (59)

∀Pk ∈ PA, ∀Pi ∈ P Ŵ 12
k→i ≈c Ŵ 13

k→i. (60)

The claims follow identically from hybrid H5.

H14: Identical to H13 except that we stop breaking the signature scheme and the extractable commit-
ment, and start rewinding again to obtain the trapdoor and the adversary’s inputs. In the look
ahead threads, we follow the same strategy as the main thread (i.e. we no longer “cheat” on the
look ahead threads). Note that in this hybrid we’re running in polynomial time again.

We claim the following

v13 ≈c v14. (61)

∀Pk ∈ PA, ∀Pi ∈ P W 13
k→i ≈c W 14

k→i. (62)

∀Pk ∈ PA, ∀Pi ∈ P Ŵ 13
k→i ≈c Ŵ 14

k→i. (63)

Equation 61 follows from the fact that this was only a statistical change and the main thread
remains unchanged. For the same reason, equations 62 and 63 and hold.

Hybrid H14 is identical to our simulator. From the above discussion, we have

v0 ≈c v14

thus proving security of the constructed MPC.
This completes the security proof.
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