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Abstract: The design of a practical code-based signature scheme is an open problem in post-quantum1

cryptography. This paper is the full version of a work appeared at SIN’18 as a short paper, which2

introduced a simple and efficient one-time secure signature scheme based on quasi-cyclic codes.3

As such, this paper features, in a fully self-contained way, an accurate description of the scheme4

setting and related previous work, a detailed security analysis, and an extensive comparison and5

performance discussion.6
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1. Introduction8

Digital signatures are a very important cryptographic primitive in the modern world. Among the9

most popular there are, for instance, schemes based on the RSA assumptions, discrete logarithm (DSA)10

and its elliptic curves version (ECDSA), all included in the FIPS standard 186-3 [1]. Many schemes11

based on coding theory have been proposed over the years, that either follow a “direct" hash-and-sign12

approach like CFS [2] and KKS [3], or rely on the Fiat-Shamir transform [4] to convert an identification13

scheme into a signature scheme. The latter schemes are usually built via a 3-pass protocol [5] or, more14

recently, a 5-pass protocol [6], in turn relying on the work of Stern [7,8]. Unfortunately, many of the15

various proposals have been broken, and all those that are still considered secure suffer from one or16

more flaws, be that a huge public key, a large signature or a slow signing algorithm, which make17

them highly inefficient in practical situations. This is particularly evident in the identification schemes,18

where it is usually necessary to repeat the protocol many times in order to guarantee correctness or19

security.20

In [9], we introduced a code-based signature scheme following a different approach, inspired21

by the work of Lyubashevsky [10,11]. Such a proposal had been attempted before (see [12]) without22

success, the main issue being the choice of the setting (random binary codes) which proved to be too23

restrictive. Choosing quasi-cyclic codes allows to take advantage of the innate ring metric and makes24

the scheme viable in practice.25

1.1. Our Contribution26

This full version features a detailed security analysis, including a proof of security that guarantees27

one-time existential unforgeability against chosen-message attacks, i.e. 1-EUF-CMA. While one-time28

signatures are not used directly in most applications, they are still relevant since they can be embedded29

in a Merkle tree structure to obtain a full-fledged signature scheme, which allows to sign up to a30

predetermined number of times. Our scheme compares very well to other one-time code-based31

proposals, obtaining what are, to date, the smallest sizes for both signature and public data in the32

code-based setting.33
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The paper is organized as follows: in the next section we give some preliminary notions about34

codes and code-based cryptography, as well as identification schemes. In Section 3 we describe35

the framework on which our scheme will be based, including the previous code-based proposal by36

Persichetti. Our scheme is presented in Section 4, together with a detailed security analysis (Section 5),37

and its performance and comparison with other code-base schemes are discussed in Section 6. We38

conclude in Section 7.39

2. Preliminaries40

2.1. Coding Theory41

Let Fq be the finite field with q elements. An [n, k] linear code C is a subspace of dimension k of the42

vector space Fn
q . Codewords are usually measured in the Hamming metric: the Hamming weight of a43

word x ∈ Fn
q is the number of its non-zero positions, and the Hamming distance between two words44

x, y ∈ Fn
q is the number of positions in which they differ, that is, the weight of their difference.We45

denote those respectively by wt(x) and d(x, y).46

Linear codes can be efficiently described by matrices. The first way of doing this is essentially
choosing a basis for the vector subspace. A generator matrix a matrix G that generates the code as a
linear map: for each message x ∈ Fk

q we obtain the corresponding codeword xG. Of course, since the
choice of basis is not unique, so is the choice of generator matrix. It is possible to do this in a particular
way, so that G = (Ik|M). This is called systematic form of the generator matrix. Alternatively a code can
be described by its parity-check matrix: this is nothing but a generator for the dual code of C, i.e. the code
comprised of all the codewords that are “orthogonal" to those of C. The parity-check matrix describes
the code as follows:

∀x ∈ Fn
q , x ∈ C ⇐⇒ HxT = 0.

The product HxT is known as syndrome of the vector x. Note that, if G = (Ik|M) is a generator47

matrix in systematic form for C, then H = (−MT|In−k) is a systematic parity-check matrix for C.48

Code-based cryptography usually relies more or less directly on the following problem, connected49

to the parity-check matrix of a code.50

Problem 1 (Syndrome Decoding Problem (SDP)).51

Given: H ∈ F(n−k)×n
q , s ∈ F(n−k)

q and w ∈ N.52

Goal: find e ∈ Fn
q with wt(e) ≤ w such that HeT = s.53

This problem is well-known and was proved to be NP-complete by Berlekamp, McEliece and54

van Tilborg in [13]. Moreover, it is proved that there exists a unique solution to SDP if the weight w is55

below the so-called GV Bound.56

Definition 1. Let C be an [n, k] linear code over Fq. The Gilbert-Varshamov (GV) Distance is the largest
integer d such that

d−1

∑
i=0

(
n
i

)
(q− 1)i ≤ qn−k.

If this is not the case, multiple solutions exist (see for example Overbeck and Sendrier, [14]). It57

follows that SDP is of particular interest when the weight w is “small".58

2.1.1. Quasi-Cyclic Codes59

A special subfamily of linear codes is that of cyclic codes.60
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Definition 2. Let C be an [n, k] linear code over Fq. We call C cyclic if

∀a = (a0, a1 . . . , an−1), a ∈ C =⇒ a′ = (an−1, a0 . . . , an−2) ∈ C.

Clearly, if the code is cyclic, then all the right shifts of any codeword have to belong to C as well. An61

algebraic characterization can be given in terms of polynomial rings. In fact, it is natural to build62

a bijection between cyclic codes and ideals of the polynomial ring Fq[X]/(Xn − 1). We identify63

the vector (a0, a1 . . . , an−1) with the polynomial a0 + a1X + · · ·+ an−1Xn−1, and then the right shift64

operation corresponds to the multiplication by X in the ring.65

66

Because of this correspondence, it is possible to see that both the generator matrix and the parity-check67

matrix of a cyclic code have a special form, namely circulant form, where the i-th row corresponds to68

the cyclic right shift by i positions of the first row.69

Cyclic codes have been shown to be insecure in the context of cryptography, as they introduce too70

much recognizable structure. A subfamily, known as quasi-cyclic codes, has been then proposed with71

some success, mostly in the context of encryption.72

Definition 3. Let C be an [n, k] linear code over Fq. We call C Quasi-Cyclic if there exists n0 such that, for73

any codeword a all the right shifts of a by n0 positions are also codewords.74

When n = n0 p, it is again possible to have both matrices in a special form, composed of n075

circulant p× p blocks. The algebra of quasi-cyclic codes can be connected to that of the polynomial76

ring Fq[X]/(Xp − 1), where each codeword is a length-n0 vector of elements of the ring.77

For the remainder of the paper, we consider only binary codes, thus we setR = F2[X]/(Xp − 1),78

and we restrict our attention to the case n0 = 2. We have the following ring-based formulation of SDP.79

Problem 2 (Quasi-Cyclic Syndrome Decoding Problem (QC-SDP)).80

Given: h, s ∈ R and w ∈ N.81

Goal: find e0, e1 ∈ R with wt(e0) + wt(e1) ≤ w such that e0 + e1h = s.82

This was shown to be NP-complete in [15]. When n0 = 2, it has been proved in [16] that random83

quasi-cyclic codes lie on the GV bound with overwhelming probability. Moreover, the impact of84

cyclicity on SDP has been studied, for example in [17], revealing no substantial gain.85

2.2. Identification Schemes and Signatures86

An identification scheme is a protocol that allows a party P , the Prover, to prove to another party87

V , the Verifier, that he possesses some secret information x, usually called witness, without revealing88

to the verifier what that secret information is. The paradigm works as follows: V is equipped with89

a public key pk and some public data D. To start, P chooses some random data y and commits to90

it by sending Y = f (y) to V , where f is usually a trapdoor one-way function or a hash function. V91

then chooses a random challenge c and sends it to P . After receiving c, P computes a response z as a92

function of c, x and y and transmits z. Finally, V checks that z is correctly formed using pk and D.93

A signature scheme is defined by a triple (KeyGen, Sign, Ver), respectively the key generation94

algorithm, the signing algorithm and the verification algorithm. The key generation algorithm KeyGen95

takes as input a security parameter λ and outputs a signing key sgk and a verification key vk. The96

private signing algorithm Sign receives as input a signing key sgk and a message m and returns a97

signature σ. Finally, the public verification algorithm Ver uses a verification key vk to verify a signature98

σ that is transmitted together with the message m: it outputs 1, if the signature is recognized as valid,99

or 0 otherwise.100
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The standard notion of security for digital signatures schemes is Existential Unforgeability under101

Chosen-Message Attacks (EUF-CMA), as described, for example, in [18]. In this scenario, the goal of102

an attacker is to produce a valid message/signature pair, and the attack model allows the attacker to103

obtain a certain, predetermined, number of signatures on arbitrarily chosen messages (signing queries).104

In particular, if the attacker is only allowed to obtain a single signature, we talk about 1-EUF-CMA105

security. Since this is the security target of this work, we give a precise definition below.106

Definition 4. An adversary A is a polynomial-time algorithm that acts as follows:107

1. Query a key generation oracle to obtain a verification key vk.108

2. Choose a message m and submit it to a signing oracle. The oracle will reply with σ = Signsgk(m).109

3. Output a pair (m∗, σ∗).110

The adversary succeeds if Vervk(m∗, σ∗) = 1 and (m∗, σ∗) 6= (m, σ). We say that a signature scheme is
1-EUF-CMA secure if the probability of success of any adversary A is negligible in the security parameter, i.e.

Pr[vk $←− KeyGen : Vervk(A(vk, Signsgk(m))) = 1] ∈ negl(λ). (1)

Fiat and Shamir in [4] showed how to obtain a full-fledged signature scheme from an identification111

scheme. With this paradigm, the signer simply runs the identification protocol, where, for the purpose112

of generating the challenge, the verifier is replaced by a random oracleH (usually a cryptographic hash113

function). The signature is then accepted according to the validity of the response in the identification114

scheme.115

Table 1. The Fiat-Shamir Signature Scheme.

Setup Select an identification scheme I .

Sign On input the private key of I and a message m, commit Y, set c = H(Y, m), compute a response z and
return the signature σ = (Y, z).

Ver On input the public key of I , a message m and a signature σ, set c = H(Y, m) then output 1 if z is
accepted in I , else return 0.

Note that several signature schemes, including [11] and this work, use a slightly modified version116

of the above paradigm, where the signature is (c, z) instead of (Y, z). The verifier can then calculate Y117

from z and the public key, and check the equality between c and the hash digest obtained using this118

newly-generated Y and m.119

3. A Framework for Signatures120

3.1. Number Theory and Lattices121

There is a relatively recent approach that provides an easy way to construct efficient signature122

schemes based on any hard problem. The approach consists of successive reductions building on123

the original hard problem, first deriving a collision-resistant hash function f , then converting it into124

a one-time signature where the private key is a pair of integers (x, y), the public key is the pair125

( f (x), f (y)), and the signature of a message m is simply mx + y. The one-time signature can then126

be turned into an identification scheme by replacing m with a challenge c chosen by the verifier and127

letting y be the commitment (a distinct y is used in every run of the protocol). Finally, the identification128

scheme is transformed into a full-fledged signature scheme using the Fiat-Shamir transform. Proposals129

based on classical number theory problems such as RSA or discrete logarithm (see Okamoto [19]) are130

easy and intuitive to design.131
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Lyubashevsky showed for the first time how to translate the framework to the lattice case, presenting132

in [10] an identification scheme which was then refined and updated in [11]. The translation is rather133

direct, except for an issue which is inherent to the nature of the lattice schemes: unlike factoring or134

discrete logarithm, in fact, the hardness of lattice problems comes from finding elements that live in a135

specific subset of a ring, namely elements with small Euclidean norm. Transmitting several elements136

of this nature can leak some parts of the private key. To overcome this limitation, the author makes137

use of a technique, already introduced in [20], called aborting. In short, this consists of rejecting the138

challenge if in doing so the security of the scheme would be compromised. In practice, this is realized139

by limiting the set of possible answers to a smaller “safe" subset, consisting of elements whose norm140

satisfies a certain bound.141

3.2. A Coding Theory Scenario142

A first, direct translation of the framework to the case of code-based cryptography was proposed143

by Persichetti in [12]. The idea is for the scheme to rely on SDP, hence featuring a public matrix H, a144

secret x having weight below the GV bound and the public key sx = HxT . Similarly to the lattice case,145

the final verification should include not only an algebraic formula consisting of H, the commitment Y146

and sx, but also a check on the weight of the response z.147

Formally, one can see the syndrome computation as a hash function f (x) = HxT , which is is148

preimage-resistant provided that the weight of x is small. From now on, we will denote this function149

as syndH(x). It follows that the scheme is subject to the additional constraint that the random element150

y and the challenge c should be chosen such that wt(z) ≤ w, where w is the value of the GV distance.151

This means that c can only be an element of Fq and that x and y must satisfy wt(x) = γ1w, wt(y) = γ2w,152

for certain constants γ1, γ2 ≤ 1 such that γ1 + γ2 = 1. In the sample instantiation that we are about to153

present we have chosen γ1 = γ2 = 1/2 for simplicity. We will also use the notation Da to indicate the154

distribution that samples uniformly at random a vector of Fn
q of weight less or equal to a. The scheme155

uses a cryptographic hash functionH as per the Fiat-Shamir paradigm.156

KeyGen157

Input: parameters q, n, k, w ∈ N and an (n− k)× n parity-check matrix H over Fq.158

1. Sample x $←− Dw/2.159

2. The signing key is x.160

3. The verification key is sx = syndH(x).161

Sign162

Input: a message m and the signing key x.163

1. Sample y $←− Dw/2.164

2. Compute sy = syndH(y).165

3. Compute c = H(m, sy).166

4. Compute z = cx + y.167

5. The signature is σ = (c, z)168

Ver169

Input: a message m, a signature σ and the verification key sx.170

1. Compute sz = syndH(z).171

2. Use the verification key to compute v = csx + sz.172

3. Compute c′ = H(m, v).173

4. Accept if c′ = c and wt(z) ≤ w.174

5. Else, reject.175
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3.2.1. Vulnerability from Multiple Signatures176

Unfortunately, if used to sign multiple messages, this simple proposal is vulnerable to an attacker177

who tries to learn the secret. In fact, if an attacker can obtain a polynomial number of signatures,178

it could store the corresponding values of z and c and then compute z′ = c−1y + x: this is always179

possible, since c is a field element and is non-zero. Now, the vector y′ = c−1y is randomly generated180

and has low weight, so each of its coordinates is biased towards 0. Therefore, a simple statistical181

analysis will eventually reveal all the positions of x. The problem seems to come from the scheme182

metric itself. In fact, c is constrained to be a field element (to fit the verification equation) but doesn’t183

alter the weight of x, and so the low-weight vector y that is added is not enough to properly hide the184

secret support.185

4. The New Scheme186

The core of our idea is to use quasi-cyclic codes in the framework that we have described above.187

The use of quasi-cyclic codes in cryptography is not a novelty: these have been proposed before188

in the context of encryption (e.g. [15]). Their originally suggested use (i.e. with GRS codes) was189

cryptanalyzed in [21] and it is thus not recommended, but other variants based on LDPC and MDPC190

codes are still considered safe. In both cases, the issue is that introducing the extra algebraic structure191

can compromise the secrecy of the private matrix used for decoding.192

A big advantage of our proposal is that this issue does not apply. In fact, since there is no decoding193

involved, an entirely random code can be used, and the code itself is public, so there is no private194

matrix to hide. In this sense, our scheme is closer, to an extent, to the work of [22], which is centered195

on random quasi-cyclic codes.196

As far as signature schemes go, Gaborit and Girault in [23] propose a variant of Stern’s ID scheme197

that uses quasi-cyclic codes (called “double-circulant" by the authors). While this proves to be more198

efficient than the classical Stern scheme, the protocol still features the same flaw, i.e. a non-trivial199

cheating probability. This leads to the necessity of repeating the protocol several times, with an obvious200

impact on the efficiency of the scheme.201

In our setting, we use 2-quasi-cyclic codes where words are vectors in R × R. For a word202

x = (x0, x1), the syndrome function associated to h ∈ R is defined as syndh(x) = x0 + x1h, following203

the notation that takes a parity-check matrix in systematic form (and hence defined by h) as in204

Problem 2. For a more general formulation, we also adapt the notation from the previous section,205

indicating with D1 and D2 the distributions that sample uniformly at random vectors ofR×R having206

weight respectively less or equal to w1 = γ1w and w2 = γ2w. Our signature scheme is presented207

below. The scheme uses a hash functionH that outputs bit strings of fixed weight δ, which is one of208

the system parameters.209

KeyGen210

Input: parameters p, δ, w1, w2 ∈ N and a vector h ∈ R.211

1. Sample x $←− D1.212

2. The signing key is x.213

3. The verification key is sx = syndh(x).214

Sign215

Input: a message m and the signing key x.216

1. Sample y $←− D2.217

2. Compute sy = syndh(y).218

3. Compute c = H(m, sy).219

4. Compute z = cx + y.220

5. The signature is σ = (c, z).221
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Ver222

Input: a message m, a signature σ and the verification key sx.223

1. Compute sz = syndh(z).224

2. Use the verification key to compute v = csx + sz.225

3. Compute c′ = H(m, v).226

4. Accept if c′ = c and wt(z) ≤ w.227

5. Else, reject.228

Like before, we have a constraint on the weight of the response vector z: in this case w ≤ δw1 + w2229

since c is no longer a constant. Then w is required to be below the GV bound to ensure that the response230

z is the unique solution to the corresponding QC-SDP instance. This is a consequence of the security231

requirements, as we will see next.232

To conclude, note that it is easy to check that an honest verifier always gets accepted. In fact, in an233

honest run of the protocol, then v = csx + sz = c · syndh(x) + syndh(z). Due to the transitivity of the234

syndrome computation, this is the same as syndh(cx + z) = syndh(y) = sy. Therefore c′ = H(m, v) =235

H(m, sy) = c and the verification is passed.236

5. Security237

The change of metric in our proposal means that our scheme is substantially different from the238

“naïve" SDP-based proposal of Section 3.2, and in fact resembles the lattice setting much more. In239

fact, as in the lattice case, our objects are “vectors of vectors", namely in this case a length-2 vector240

of length-p binary vectors. Due to the inherent arithmetic associated to the ringR, this allows us to241

choose c in the same realm, and perform an operation (ring multiplication) that is still compatible with242

the verification operation, but does affect the weight of the response vector. Polynomial multiplication243

simultaneously increases and scrambles the error positions, and in so doing prevents the simple attack244

based on statistical analysis that affected the previous proposal. Unfortunately, this is still not enough245

to hide the private information. The following procedure [24] shows that it is still possible to recover246

the private key with a polynomial number of signatures.247

Procedure 1. Start by obtaining a polynomial number ` of signatures, i.e. pairs (c(i), z(i)) for i,= 1, . . . , `.248

For each pair, c(i) is chosen uniformly at random among the vectors of weight δ, and z(i) = c(i)x + y(i) where249

y(i) is also chosen uniformly at random (sampled from D2). For each i, write c(i) = Xi1 + · · ·+ Xiδ , that is, as250

a polynomial of weight δ inR. Then calculate251

z(i,j) = X−ij z(i) (mod Xp − 1)

= X−ij(c(i)x + y(i)) (mod Xp − 1)

= (1 + ∑
k 6=j,k∈{1,...,δ}

Xik−ij)x + X−ij y(i) (mod Xp − 1)

= x + ∑
k 6=j,k∈{1,...,δ}

x(i,j) + y(i,j) (mod Xp − 1)

252

where x(i,j) = Xik−ij x (mod Xp − 1) and y(i,j) = X−ij y(i) (mod Xp − 1).253

Since x(i,j) is just a shift of x and y(i,j) is just a shift of y(i), and their support will likely have little to no254

intersection with the support of x (due to the weight of the vectors), it is possible to reveal the support of x simply255

by looking at the bits that belong to the support of a large enough number of z(i,j).256

Note that the above procedure is in fact a refinement of the simple statistical analysis attack257

encountered before: in both cases, the problem is that the weight of the vectors is simply too low258
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to properly mask the private vector. It is then clear that it is impossible to sign multiple times and259

preserve security. It follows that our scheme only achieves one-time security. To prove the one-time260

security of our scheme, we follow the paradigm for a generic one-time signature scheme of Pointcheval261

and Stern, which was already employed in the code-based setting in [25]. In this paradigm, signature262

schemes are treated in a unified way, as a protocol that outputs triples of the form (σ1, h, σ2), where σ1263

represents the commitment1, σ2 the response2, and h is the hash value, as in the Fiat-Shamir scheme.264

To obtain security it is necessary that σ1 is sampled uniformly at random from a large set and that σ2265

only depends on σ1, the message m and the hash value h.266

In our scheme, the first element σ1 = sy is sampled uniformly at random from D2, which has size267

( n
w2
). Note that, even though this value is not explicitly output as part of the signature, it is immediate268

to recover it from the signature, as shown in Step 2. of the verification algorithm. The vector c is269

exactly the hash value obtained from the message m and σ1, i.e. the element h in the Pointcheval-Stern270

notation3. Finally, we show that σ2 = z indeed only depends on the message m, σ1 and c. The271

dependence is obvious, given that z is computed using only the private key, c itself and y, which is in a272

one-to-one correspondence with sy (due to w2 being below the GV bound). Furthermore, z is uniquely273

determined by those values. In fact, suppose there existed a distinct valid triple (sy, c, z′) with z′ 6= z.274

Since the triple is valid, it needs to satisfy the verification equation, thus syndh(z′) = csx + sy = sz.275

This is clearly not possible because both z and z′ have weight below the GV bound, which implies276

there exists only one vector having syndrome sz, i.e. z′ = z.277

The next step is to show that in our signature scheme, it is possible to simulate the target triples278

without knowing the private key, unbeknownst to the adversary.279

Lemma 1. It is possible to obtain artificially-generated triples of the form (sy, c, z) which are indistinguishable280

from honestly-generated triples, unless the adversary is able to solve an instance of QC-SDP.281

Proof. To begin, notice that any valid triple is required to satisfy two constraints. First, the weight282

of z has to be below the GV bound; in fact, wt(z) is expected to be statistically close to the bound283

w ≤ w2 + δw1. Second, the triple needs to pass the verification equation, and so sy = csx + sz. Then,284

to simulate a valid triple it is enough to sample two elements at random and set the third to match.285

More precisely, one would sample c $←− Dc and z $←− R2, the second one chosen such that wt(z) ≈ w.286

Then, one would proceed by setting sy to be exactly csx + sz, which is possible since the public key sx287

is known.288

Now, it is easy to see that all honestly-generated triples correspond to syndromes sy = syndh(y) where289

y has weight w2 below the GV bound, while for simulated triples the syndrome sy is obtained from290

a vector y = cx + z which has expected weight above the GV bound with overwhelming probability.291

This is because both c and z are generated independently and at random, and so the expected weight292

is simply δw1 + wt(z), which is bigger than the bound with overwhelming probability.293

In conclusion, distinguishing a simulated triple from an honest one corresponds to solving a QC-SDP294

instance as claimed.295

The last piece necessary for our proof is the well-known forking lemma. We report it below, as296

formulated in [26].297

1 Or a sequence of commitments, if the protocol needs to be repeated multiple times.
2 Or a sequence of responses.
3 We clearly use c from now on, to avoid confusion as h is used to denote the vector defining the parity-check matrix in a QC

code.
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Theorem 1 (General Forking Lemma). Let Σ = (KeyGen, Sign, Ver) be a signature scheme with security298

parameter λ. Let A be an adversary, running in time T and performing at most q random oracle queries299

and ` signing queries. Suppose A is able to produce a valid signature (m, σ1, h, σ2)with probability ε ≥300

10(`+ 1)(`+ q)/2λ. If the triples (σ1, h, σ2) can be simulated without knowing the private key with only a301

negligible advantage for A, then there exist a polynomial-time algorithm B that can simulate the interaction302

with A and is able to produce two valid signatures (m, σ1, h, σ2) and (m, σ1, h′, σ′2), for h′ 6= h, in time303

T′ ≤ 120686qT/ε.304

We are now ready for our security result.305

Theorem 2. Let A be a polynomial-time 1-EUF-CMA adversary for the signature scheme with parameters306

p, δ, w1, w2, running in time T and performing at most q random oracle queries. Let the probability of success of307

A be ε ≥ 20(q + 1)/2λ. Then the QC-SDP problem with parameters n = 2p, w = δw1 + w2 can be solved in308

time T′ ≤ 120686`qT/ε.309

Proof. We have seen in Procedure 1 that it is possible to recover the private key using a polynomial310

number ` of signatures. The forking lemma can be iterated so that it is guaranteed to produce ` distinct,311

valid signatures in time less or equal to T′ ≤ 120686`qT/ε. The thesis naturally follows from the312

combination of these two facts.313

6. Performance and Comparison314

To properly evaluate the performance, we start by recalling the main components of our scheme.315

First of all, the public data consists of the vector h (of length p) and the syndrome sx (also of length316

p), for a total of 2p bits. The signature, on the other hand, is given by the challenge string c and317

the response z. In our scheme, this corresponds respectively to a vector of length p and a vector of318

length 2p. It is possible to greatly reduce this size thanks to a storing technique [27] which allows to319

represent low-weight vectors in a compact manner. Namely, a binary vector of length n and weight w320

is represented as an index, plus an indication of the actual vector weight, for a total of log (n
w) + log(w).321

Note that in our case this applies to both c and z.322

We now provide some parameters for the codes in our scheme. These are normally evaluated323

with respect to general decoding algorithms such as Information-Set Decoding [28–32]: the amount of324

security bits is indicated in the column “Security".325

Table 2. Parameters (all sizes in bits).

p w1 w2 δ Security (λ) Public Data Signature Size

4801 90 100 10 80 9602 4736

9857 150 200 12 128 19714 9475

3072 85 85 7 80 6144 3160

6272 125 125 10 128 12544 6368

The first two rows report well-known parameters suggested in the literature for QC-MDPC codes;326

however, since our codes do not need to be decodable, we are able to slightly increase the number327

of errors introduced. The last two rows, instead, are parameters chosen ad hoc, in order to optimize328

performance.329
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6.1. Existing Code-Based Solutions330

We are now going to briefly discuss the three main approaches to obtain code-based signatures,331

and related variants. This will give an insight into why designing an efficient code-based signature332

scheme is still an open problem.333

6.1.1. CFS334

The CFS scheme [2] follows the “hash and sign" paradigm, which is a very natural approach335

for code-based cryptography, and thus it retains most of its traits, both good and bad. For instance,336

the verification consists of a single matrix-vector multiplication and so it is usually very fast. On the337

other hand, the scheme features a very large public key (the whole parity-check matrix). Structured338

instances as proposed for example in [33] reduce this size drastically and are therefore able to deal339

with this issue, although with a potential few security concerns. However, the main downfall of CFS is340

the extremely slow signing time. This is a consequence of the well-known fact that a random word is341

in general not decodable, thus finding a decodable syndrome requires an incredibly high number of342

attempts (at least 215 in the simplest instances). To lower this number, the common solution is to use343

codes with very high rate, which in itself could lead to potential insecurities (e.g. the distinguisher of ).344

Thus it seems unrealistic to obtain an efficient signature scheme in this way.345

6.1.2. KKS346

The KKS approach [3] still creates signatures in a “direct" way, but without decoding. Instead,347

the scheme relies on certain aspects of the codes such as a carefully chosen distance between the348

codewords, and uses a secret support. Unfortunately, the main drawback of KKS-like schemes is the349

security. In fact, it has been shown in [34] that most of the original proposals can be broken after350

recovering just a few signatures. Furthermore, not even a one-time version of the scheme (e.g. [25])351

is secure, as shown by Otmani and Tillich [35], who are able to break all proposals in the literature352

without needing to know any message/signature pair. It is therefore unlikely that the KKS approach353

could be suitable for a credible code-based signature scheme.354

6.1.3. Identification Schemes355

All of the code-based identification schemes proposed so far are 3-pass (or 5-pass) schemes with356

multiple challenges. Thus, the prover sends 2 or 3 entirely different responses depending on the value357

of the challenge (usually a bit or {0,1,2}). In this sense, our proposal represents a big novelty. In fact,358

multiple challenges allow for a malicious user to be able to cheat in some instances. For example, in359

the original proposal by Stern [7], it is possible to choose any 2 out of 3 possible responses and pass360

verification for those even without knowing the private key, thus leading to a cheating probability361

of 2/3. This cheating probability is subsequently lowered in most recently proposals, approaching362

1/2. Nevertheless, this causes a huge issue, since the protocol needs to be repeated several times in363

order for an honest prover to be accepted. The 35 repetitions of the original scheme can be lowered to364

approximately 16 repetitions in recent variants, but even so, communication costs prove to be very365

high, leading to a very large signature size. Below, we report a comparison of parameters for different366

variants of the scheme, where the column Véron refers to [5], CVE to [6] and AGS to [36]. Note that all367

of these parameters refer to a cheating probability of 2−16, a weak authentication level.368

In the latest proposal (column AGS), the size of the public matrix is considerably smaller thanks369

to the use of double-circulant codes. However, the signature size is still very large (about 93Kb).370

Moreover, for a signature to be considered secure, one would expect computational costs to produce a371

forgery to be no less than 280; this would require, as claimed by the authors in [36], to multiply all the372

above data by 5, producing even larger sizes.373
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Table 3. Comparison of the most popular identification schemes. All the sizes are expressed in bits.

Stern 3 Stern 5 Véron CVE AGS

Rounds 28 16 28 16 18

Public Data 122500 122500 122500 32768 350

Private Key 700 4900 1050 1024 700

Public Key 350 2450 700 512 700

Total Communication Cost 42019 62272 35486 31888 20080

6.2. Comparison374

A comparison of our scheme with the full-fledged schemes described above would not be entirely375

accurate. We can however compare our scheme to other code-based proposals that are one-time secure,376

such as [25] and [37]. Both of these schemes follow the KKS approach, and therefore come with some377

potential security concerns, as mentioned in the previous section. For simplicity, we will refer to [25] as378

BMS and to [37] as GS. Note that the latter comes in two variants, which use respectively quasi-cyclic379

codes, and a newly-introduced class of codes called “quadratic double-circulant" by the authors. All380

the parameters and sizes (in bits) are reported in the following table, and correspond to a security level381

of 280.382

Table 4. Comparison of code-based one-time signature schemes.

BMS GS 1 GS 2 Our Scheme

Public Data 930080 75000 17000 6144

Signature Size 3739 18900 7000 3160

It is immediate to notice that our scheme presents the smallest amount of public data (which383

groups together public key and any additional public information) and the smallest signature size.384

To be fair, the BMS scheme employs the same indexing trick used in this work, while this is not the385

case for the other scheme. Since the signature of the GS scheme (in both variants) also includes a386

low-weight vector, we expect that it would be possible to apply the same technique to the GS scheme387

as well, with the obvious reduction in size. We did not compute this explicitly but it is plausible to388

assume it would be very close to that of our scheme. Nevertheless, the size of the public data remains389

much larger even in the most aggressive of the two variants (GS 2).390

6.3. Implementation391

To confirm the practicality of our scheme, we have developed a simple implementation in C. The392

implementation is a straightforward translation to C with the addition of the steps for generating393

public and private keys. The hash function used was SHA-256. We ran the protocol on a small394

microprocessor, namely a 580 MHz single-core MIPS 24KEc. The choice of this microprocessor was395

made based on the usage of it, since this type of microprocessor is commonly used in the Internet of396

Things (IoT) applications. The measurements are reported below.397

Note that key generation is dominated by the syndrome computation necessary to obtain the398

verification key, while sampling the signing key has a negligible cost. The signing operation is the399

most expensive, which makes sense, while the verification is of the same order of magnitude as the400

key generation. Both signing and verification algorithm are relatively fast but could be sped up even401

further, since the hash function used was, at the time the measurements were taken, not optimized to402

run in such a small device.403
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Table 5. Implementation Results.

p w1 w2 δ Key Generation (sgk/vk) Signing Verification

4801 90 100 10 0.061 ms / 22.754 ms 89.665 ms 22.569 ms

9857 150 200 12 0.169 ms / 104.655 ms 374.206 ms 99.492 ms

3072 85 85 7 0.052 ms / 14.017 ms 35.150 ms 14.271 ms

6272 125 125 10 0.116 ms / 67.972 ms 150.063 ms 42.957 ms

7. Conclusions404

In this paper, we have presented a new construction for a one-time signature scheme based405

on coding theory assumptions. In particular, our scheme uses quasi-cyclic codes and relies on the406

hardness of the quasi-cyclic version of the syndrome decoding problem (QC-SDP), while making use407

of the inherent ring structure for its arithmetic properties. Quasi-cyclic codes allow for a compact408

description, and a drastic reduction in the public key size, resulting in a very lightweight scheme. In409

addition, the ring arithmetic, similar to Lyubashevsky’s lattice-based proposal, is very efficient, and410

we expect to obtain extremely fast and practical implementations. Thanks to all these features, as well411

as the simplicity of its design, our protocol is very competitive: it features a compact public key, fast412

signing and verification algorithms, and the signature size is much shorter than other one-time secure413

code-based protocols. In particular, the protocol is naturally very appealing in lightweight applications,414

where resources are limited and aspects such as execution time and memory requirements are of crucial415

importance. Examples could be embedded devices such as microprocessors, or the Internet-of-Things416

(IoT). Moreover, our scheme could be a very efficient solution for protocols that require only one-time417

signatures as building blocks, such as the work of [38] based on the k-repetition paradigm.418

In summary, we believe that our proposal represents a very interesting solution per se, as well as an419

important step forward in the long quest for an efficient code-based signature scheme.420
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