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Abstract. We revisit the problem of whether the witness hiding property of classic
3-round public-coin proof systems for languages/distributions with unique witnesses
are still witness hiding. Though strong black-box impossibility results are known for
them [Pas11, HRS09], we provide some less unexpected positive results on the witness
hiding security of classic protocols:

– We develop an embedding technique and prove that the witness hiding property
of the standalone Schnorr protocol based on a weaker version of one-more like
discrete logarithm (DL) assumption asserting that, for an arbitrary constant `,
it is infeasible for a PPT algorithm to solve l DL instances with being restricted
to query the DL oracle only once. Similar result holds for the Guillou-Quisquater
protocol.

This improves over the positive result of [BP02] in that when applying their
technique to the standalone setting, the underlying assumption is stronger and
required to hold only for ` = 2.

– Following the framework of [HN10], we introduce the notion of tailored instance
compression to capture the essence of the known one-more like assumptions,
which provides new insight into the hardness of one-more DL/RSA problems
and allows us to reveal some strong consequences of breaking our weaker version
of one-more like assumption, including zero knowledge protocols for the AND-DL
and AND-RSA languages with extremely efficient communication and non-trivial
hash combiner for hash functions based on DL problem.

These consequences can be viewed as positive evidences for the security of Schnorr
and Guillou-Quisquater protocols.

– We observe that the previously known impossibility results on the witness hiding
of public-coin protocols for unique witness relation make certain restriction on the
reduction. By introducing an input-distribution-switching technique, we bypass
these known impossibility results and prove that, for any hard language L, if
a distribution (X,W) over unique witness relation RL has an indistinguishable
counterpart distribution over some multiple witnesses relation, then any witness
indistinguishable protocols (including ZAPs and all known 3-round public-coin
protocols, such as Blum protocol and GMW protocol) are indeed witness hiding
for the distribution (X,W). We also show a wide range of cryptographic problems
with unique witnesses satisfy the “if condition” of this result, and thus admit
constant-round public-coin witness hiding proof system.

This is the first positive result on the witness-hiding property of the classic
protocols for non-trivial unique witness relations.

? Supported by the National Natural Science Foundation of China (Grant No. 61379141), and the
Open Project Program of the State Key Laboratory of Cryptology.



1 Introduction

Witness hiding proof system, introduced by Feige and Shamir [FS90], is a relaxed yet natural
notion of zero knowledge proof [GMR89]. Instead of requiring an efficient simulation for the
view of the verifier as in zero knowledge proof, witness hiding property only requires that,
roughly speaking, the interaction with honest prover does not help the verifier compute any
new witness for the statement being proven that he did not know before. One immediate
application of such a security notion is identification: Witness hiding proof allows a prover
to prove his identity without leaking the associated secret key, and this security notion is
sufficient for preventing impersonation attack from malicious verifiers.

The witness hiding property of some practical protocols, which are usually not zero
knowledge, is often being proved via another beautiful and widely applicable notion of wit-
ness indistinguishability introduced in the same paper of [FS90]. A witness indistinguishable
proof guarantees that if the statement has two independent witnesses, then the malicious
verifier cannot tell which witness is being used by the prover in an execution of the proto-
col. The idea underlying the security proof of witness hiding via witness indistinguishability
is as follows. Suppose that for a hard language, each instance has two witnesses and it is
infeasible for an efficient algorithm, given one witness as input, to compute the other one,
then the witness indistinguishable protocol is actually witness hiding with respect to such
instances. This is because we can take one witness as input to play the role of honest prover
and then use the verifier’s ability of breaking witness hiding to either break witness indis-
tinguishability of this protocol or obtain a new witness. Therefore, the parallelized version
of 3-round public-coin classic protocols of [Blu86, GMW91] are witness hiding with respect
to such languages.

What happens if the hard language consists of instances that have exactly one witness?
This problem has turned out to be quite subtle. The Guillou-Quisquater [GQ88] and the
Schnorr [Sch89] identification protocols are perhaps the best-known efficient protocols for
unique witness relations, but their security has long remained open. On the positive side,
Shoup [Sho97] presented positive result that the Schnorr identification protocol is secure
in the generic group model, and Bellare and Palacio [BP02] showed that the security of
the Guillou-Quisquater and Schnorr identification protocols can be based on the so-called
one-more RSA and one-more discrete logarithm assumptions, respectively [BP02, BNPS03].
These security proofs of course imply that the Schnorr and the Guillou-Quisquater identi-
fication protocols are witness hiding in the standalone setting where there is only a single
execution of the protocol. However, the underlying assumptions/models are quite strong
and non-standard.

Indeed, there is an obstacle in the way of basing constant-round public-coin protocols for
unique witness relations on standard assumption. As mentioned before, the basic approach
to prove witness hiding of a protocol is to find an efficient way to exploit the power of
the malicious verifier to break some hardness assumptions. For the instance that has exact
one witness, however, to exploit the power of the malicious verifier requires the reduction
itself to know the unique witness to the statement being proven in the first place (by the
soundness property of the protocol), which usually does not lead to a desired contradiction
even if the malicious verifier does have the ability to break witness hiding of the protocol.

Haitner, Rosen and Shaltiel [HRS09] gave the first proof that constant-round public-
coin witness hiding protocols for unique witness relations cannot be based on standard
assumptions via some restricted types of black-box reductions. Pass [Pas11] showed that if we
further require witness hiding to hold under sequential repetition, then we can significantly
strengthen the impossibility result of [HRS09]. Some similar impossibility results on the
problem whether we can base the aforementioned one-more discrete logarithm assumption
on standard hardness assumption were also given in [Pas11] and [ZZC+14]. We would like
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to point out that these impossibility results may have some impact on other important
problems. For example, in [Pas06] Pass showed a deep connection between the problem of
whether the classic constant-round public-coin proofs are witness hiding for all NP languages
and the longstanding problem whether we can base one-way functions on NP-complete
problem.

1.1 Our Contribution

Our main contribution is an optimistic point of view on the witness hiding security of the
classic public-coin proof systems.

We develop an embedding technique and prove that the witness hiding property of the
standalone Schnorr (Guillou-Quisquater) protocol based on a version of one-more like DL
(RSA, respectively) assumption that significantly weaker than the assumed in the proofs
of [BP02]. To see the plausibility of our still-non-standard assumption, we follow the frame-
work of [HN10] and introduce the notion of tailored instance compression, which captures
the essence of the known one-more like assumptions, and more importantly, provides new
insight into the hardness of one-more DL/RSA problems and allows us to reveal some sur-
prising consequences of breaking our weaker version of one-more like assumptions, including
zero knowledge proofs with extremely low communication complexity for the AND-DL and
AND-RSA languages and non-trivial hash combiner for hash functions based on DL problem.

We observe that all previously known impossibility results [Pas11, HRS09] on the witness
hiding of public-coin protocols make an implicit restriction (which has not been mentioned
explicitly in the statements of their main results) on the black-box reduction: For a distri-
bution (X,W) on an unique witness relation, for the proof of lower bound to go through, the
(black-box) reduction R is restricted to invoke the adversary verifier V ∗ only on instances
in X1.

This leaves a problem of whether one can get around these impossibility results by
removing the above restriction on the black-box reduction. We provide a positive answer to
this problem. Specifically, we develop an input-distribution-switching technique and prove
that, for any hard language L, if a distribution (X,W) on a unique witness relation RL has
an indistinguishable counterpart distribution over some multiple witnesses relation, then
any witness indistinguishable protocols (including ZAPs and all known 3-round public-coin
protocols, such as Blum protocol and GMW protocol) are indeed witness hiding for the
unique witness distribution (X,W). We also show a wide range of cryptographic problems
with unique witnesses satisfy the “if condition” of this result, and thus admit constant-round
public-coin witness hiding proof system. This is the first positive result on the witness-hiding
property of the classic protocols for unique witness relations.

We summarize our results in the table 1. Detailed explanations follow.

Embedding technique and the instance compression problem. Before proceeding to
our embedding reduction, we recall the Schnorr protocol and Bellare and Palacio’s security
proof for it [BP02]. Let G be a group of prime order q generated by g, the prover P wants
to convince the verifier V of knowledge of the discrete logarithm (unique witness) w ∈ Zq

of an element y = gw ∈ G. To do so, P first sends a random element a = gr ∈ G to V ,
and upon receiving the V ’s challenge c ∈ Zq, it answers with a value z ∈ Zq. V accepts

1 This restriction can be seen from the last paragraph “on the role of unique witness”, page 7
of the full version (see http://www.cs.cornell.edu/ rafael/papers/schnorr.pdf) of [Pas11]:“...(in
the reduction) If the statement x has a unique witness w, we can ensure that the extracted
witness will be identical to the witness that the oracle A (which is V ∗ in our setting) would have
returned..”
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Security of

Schnorr/GQ

Instance Incompressibility

/One-more Assumptions

WH of PC Protocols

for unique witness R

BB Negative

Results/Evidences
[Pas11]

[Pas11]

[ZZC+14]

[HRS09]

[Pas11]

Positive Results

/Evidences

[BP02]

This work

(weaker assum.)

This work This work

Table 1: Our results for languages with unique witnesses compared to previous work. Here
we refer to the impossibility results of further basing instance incompressibility/one-more
assumptions on standard hard problems as “BB negative results/evidences”, and refer to
the surprising consequences of breaking these assumptions as “positive results/evidences”
in favor of these assumptions. As we observe, the impossibility results of [HRS09, Pas11]
make an implicit restriction on the black-box reduction.

the proof if and only if gz = a · yc. Note that, if V finally outputs the witness w ∈ Zq

at the end of interaction, then we can build an algorithm R solving two random discrete
logarithm instances y and a at the same time if R is allowed to make one query to the
discrete logarithm solver oracle Odlog: R have y serve as the common input and a as the
first prover message, after receiving V ’s challenge c, R queries Odlog on a · yc and forwards
the response z from the oracle to the verifier; when V outputs w, R can solve the linear
equation z = r + cw mod q and obtain r. This useful observation was also exploited by
Bellare and Palacio [BP02] to prove the security of the Schnorr protocol as an identification
scheme under the one-more discrete logarithm problem.

We now show how to conduct embedding reduction R that leads to better security proof
based on a weaker assumption.

Suppose that we are given a set of discrete logarithm instances (y1, y2, . . . , y`) to solve.
For simplicity, we assume ` = 2l for some integer l. The first part of R is a compressing
process. R partitions them into `/2 pairs, for each pair of instances, one serving as the the
common input and the other serving as the first prover message in a session, and invokes `/2
incarnations of the verifier in parallel. After collecting `/2 challenges from the `/2 invocations
of the verifier, R has to solve `/2 new instances in order to answer each verifier. At this
point, rather than querying Odlog on these new instances, R pauses all these interactions
and partitions the new `/2 instances into `/4 pairs, and then repeats the above step and
invokes `/4 incarnations of the verifier in parallel, and will get `/8 new instances to solve.
Continuing to repeat this, by viewing each partial interaction with a verifier as a node we
get a tree in which each node takes in two instances and outputs one instance. Finally, R
reaches the root and has only one instance to solve.

The second part of R is an unfolding process. R queries Odlog on the root instance,
then by using the verifier’s power of breaking witness hiding as above, R is able to solve
the two instances flowing into this node. Note that, the two instances R just solved will
help it solve the four instances that flows into the two nodes at the level above the root
(without making queries to oracle anymore), and repeating this process R will solve all these
` instances (y1, y2, . . . , y`). Observe that in the entire embedding reduction, R makes only
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a single query (at the root of the tree) to Odlog and solves all ` DL instances. This process
is exemplified in Figure 2.

The actual embedding reduction needs to make each invocation of the verifier indepen-
dent by using the random self-reducibility of the discrete logarithm problem. As we will see,
the quantity ` can be an arbitrarily large constant, or any polynomial when the verifier’s
success probability is close to 1. Thus, assuming that it is infeasible for a PPT oracle algo-
rithm to solve ` discrete logarithm instances at the same time when restricted to making
a single query to the discrete logarithm solver oracle, the standalone Schnorr protocol is
witness hiding. Similar results can also be obtained for the Guillou-Quisquater’s protocol
and some other Σ-protocols for group homomorphisms.

This improves the positive result of [BP02] in that when applying the technique of [BP02]
to the standalone setting, the above result requires the corresponding assumption to hold
only with respect to the case of ` = 2.

Our reduction R leads to the following tailored instance compression problem for DL:
Construct a triplet of efficient algorithms (Z,C,U) such that: On input ` instances (y1, ..., y`)
of DL, the compression algorithm Z outputs a single DL instance y; on input (y1, ..., y`)
together with their corresponding witnesses (w1, ..., w`), the witness compression algorithm
C2 outputs a witness w to the instance y ← Z(y1, ..., y`); given the witness w to y, the
unfolding algorithm U outputs all witnesses (w1, ..., w`) to these ` instances. In terms of the
tailored instance compression, our result on Schnorr protocol can be rephrased as follows:
If the tailored instance compression scheme for DL does not exist, then Schnorr protocol is
secure.

What if instance compression schemes exist for DL and RSA? We observe that the
existence of instance compression scheme for DL/RSA with strong parameters has somewhat
surprising consequences.

The first consequence is that, assuming the existence of good instance compression
scheme for DL, then for any polynomial `, the AND-DL statement {(y1, y2, ...y`, g,G) :
∃w1, w2, ..., w`, s.t. ∧`i=1 g

wi = yi} admits a zero knowledge proof with extremely efficient
communication of size O(1) group elements. The existence of tailored instance compression
scheme for RSA yields a similar consequence.

The second consequence is a construction of non-trivial hash combiner for hash functions
based on DL problem. Recall that given a group G, its generator g and a random element
y ∈ G, we have a hash function H(g,y) : (m0,m1) → gm0ym1 that is collision-resistant.
The hash combiner for DL-based hash functions is of interest in the scenario where a set of
mutually untrusting parties, given a group G and g, want to set up a single collision-resistant
hash function trusted by every one.

Several previous papers [Pie07, CRS+07, Pie08] defined universal hash combiners (that
works for arbitrary hash functions), and showed non-trivial fully black-box combiners do
not exist. Note that the above hash combiner needs to take the common parameters of the
group and its generator, and works only for DL-based hash functions. However, it is still
inconceivable that the above hash combiner with large ` exists in the real world.

We view these strong consequences as positive evidences for the security of Schnorr and
Guillou-Quisquater protocols.

Input-distribution-switching technique: jumping out of the box. As mentioned be-
fore, the known previously known impossibility results hold only with respect to restricted
reduction. We introduce an input-distribution-switching technique to get around these im-
possibility results.

2 It is easy to see that we can construct the witness compression algorithm C by making simple
adaptation to the compressing part of our embedding reduction.
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Suppose that, for a hard language L1 with unique witness relation RL1
, and a distribution

ensemble (X1,W1) over RL1
, there exists a distribution ensemble (X2,W2) over relation RL2

of a language L2 with two or more witnesses that is indistinguishable from (X1,W1). What
can we say about the security of the classic public-coin protocols for (X1,W1)? At least we
know that such protocols are witness indistinguishable for (X2,W2).

A very vague intuition behind this positive result is that, for the same malicious verifier
V ∗, if we invoke V ∗ on both instances in X1 and X2, it should have the same behavior in
these two settings since these instances are indistinguishable. This vague idea leads us to
introduce the input-distribution-switching technique, which enables us to prove that if the
ensembles (X1,W1) and (X2,W2) further satisfy the following properties:

– Given a sample x from X1, it is hard to find the unique witness for x;
– For every x in the support of X2, witnesses in RL2(x) are uniformly distributed.

Then the classic constant-round public-coin protocols are actually witness hiding for (X1,W1).
The idea of considering different types of distributions X1 and X2 on the common in-

put already appeared in Goldreich’s definition of strong witness indistinguishability [Gol01],
but there they do not require indistinguishability of (X1,W1) and (X2,W2) since such re-
quirement on the witness distributions W1 and W2 would trivialize the definition of witness
indistinguishability. We also note that it is not clear whether there exist constant-round
public-coin strong witness indistinguishable proofs for non-trivial languages (see also Ap-
pendix C of [Gol04]).

In our setting, the indistinguishability requirement on witness distributions W1 and W2

is helpful in achieving significant positive results on witness hiding protocols that bypass
some previously known limitations. We give several examples of such distribution ensembles
(X1,W1) based on standard assumptions such as DDH, the existence of lossy trapdoor
functions [PW08] and subgroup decision assumptions [DN02, BGN05, GOS12], and applying
the above result we show the classic protocols of [Blu86, GMW91, DN00, GOS12] are actually
witness hiding under sequential repetition for a wide range of useful cryptographic problems
with unique witnesses.

2 Preliminaries

In this section we present for completeness some definitions we will use throughout this
paper.

Basic Notations. We write the set {1, 2, ...,m} as [m]. For a distribution D over a finite
set S ⊆ {0, 1}∗, we denote by x← D the process that the sample x ∈ S is drawn according
to the distribution D. We say a function µ(·) is negligible if for every polynomial p(·), we
have µ(n) < 1/p(n) for sufficiently large n. We abbreviate probabilistic polynomial-time
with PPT.

Let L be an NP language defined by a polynomially bounded relation RL = {(x,w) :
x ∈ L;w is a witness for x ∈ L}, and let RL(x) = {w : (x,w) ∈ RL} denote the set of the
witnesses of x ∈ L.

Let n be security parameter. We say two ensembles, X = {Xn}n∈N and Y = {Yn}n∈N,
are computationally distinguishable if for every PPT D, there exists a negligible function
µ(n) such that

|Pr [D(Xn) = 1]− Pr [D(Yn) = 1] | ≤ µ(n).

Interactive Proofs. An interactive proof system 〈P, V 〉 [GMR89] for a language L is a
pair of interactive Turing machines in which the prover P wishes to convince the verifier V
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of some statement x ∈ L. We denote by 〈P, V 〉(x) the output of V at the end of interaction
on common input x, and without loss of generality, we have the verifier V outputs 1 (resp.
0) if V accepts (resp. rejects).

Definition 1 (Interactive Proofs). A pair of interactive Turing machines 〈P, V 〉 is called
an interactive proof system for language L if V is a PPT machine and the following condi-
tions hold:

– Completeness: For every x ∈ L, Pr[〈P, V 〉(x) = 1] = 1.
– Soundness: For every x /∈ L, and every (unbounded) prover P ∗, there exists a negligible

function µ(n) (where |x| = n) such that

Pr[〈P ∗, V 〉(x) = 1] < µ(n).

An interactive argument [BCC88] is an interactive proof except that for which soundness
is only required to hold against PPT cheating provers. We often use “protocol” to refer to
both proof system and argument system.

Witness Indistinguishability. Witness indistinguishable proof system guarantees that if
the statement has two independent witnesses, then the malicious verifier cannot tell which
witness is being used by the prover in an execution of the protocol.

Definition 2 (Witness Indistinguishability). Let L be an NP language defined by RL.
We say that 〈P, V 〉 is witness indistinguishable for relation RL if for every PPT V ∗ and every
sequence {(x,w,w′)}x∈L, where (x,w), (x,w′) ∈ RL the following two probability ensembles
are computationally indistinguishable:

{〈P (w), V ∗〉(x)}x∈L
c
≈ {〈P (w′), V ∗〉(x)}x∈L.

Witness Hiding. Loosely speaking, witness hiding of a protocol [FS90] refers to the fol-
lowing property: for an input x ∈ L that is being proven, if a verifier can extract a witness
in RL(x) after interacting with the prover, then he could have done so without such an
interaction. This notion is formally defined with respect to a distribution ensemble over
inputs as follows.

Definition 3 (Distribution of Hard Instances). Let L be an NP language defined by
RL. Let X = {Xn}n∈N be a distribution ensemble. We say that X is hard for RL if for every
PPT machine M

Pr [M(Xn) ∈ RL(Xn)] < µ(n).

Definition 4 (Witness Hiding (under Sequential Repetition)). Let L be an NP
language defined by RL, (X,W) = {(Xn,Wn)}n∈N be a distribution over RL. We say 〈P, V 〉
is witness hiding for (X,W) if for every PPT machine V ∗

Pr [〈P (Wn), V ∗〉 (Xn) ∈ RL(Xn)] < µ(n).

We say that 〈P, V 〉 is witness hiding under sequential repetition if it is witness hiding for
(X,W) under any polynomially number of sequential repetitions.

Remark 1. According to our definition of witness hiding, it is easy to verify that if there
is witness hiding protocol for (X,W), then the distribution ensemble X = {Xn}n∈N on
instances must be hard.
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Zero Knowledge Proofs. A stronger security notion for the prover of an interactive proof
system is zero knowledge, which requires the entire view of a malicious verifier can be
reconstructed by a PPT algorithm efficiently.

Definition 5 (Zero Knowledge Proofs). We say that an interactive proof system 〈P, V 〉
for language L is zero knowledge if for any PPT V ∗, there exists a PPT Sim such that

{V iewP
V ∗(x)}x∈L

c
≈ {Sim(x)}x∈L.

Where {V iewP
V ∗(x)}x∈L denotes the distribution of the view of the malicious verifier V ∗ in

the real interaction.

3 Tailored Instance Compression for Search Problems

The study of instance compression was initiated by Harnik and Naor [HN10]. We tailor their
definition for our purpose. Roughly speaking, a tailored instance compression scheme for a
(search) NP problem can compress a long instance(s) into a shorter instance, and given the
solution to the shorter instance, we can solve all the original instance(s). It should be noted
that the impossibility results of [FS11, Dru15] with respect to NP-complete languages also
hold for our tailored definition.

Definition 6 (Tailored Instance Compression for Search Problem). Let L be a NP
language and RL its NP relation. A (`, ε)-tailored instance compression scheme for RL

consists of three PPT algorithms (Z,C,U), such that for sufficient large n:

– (x, st) ← Z(x1, · · · , x`): On input xi ∈ L for i ∈ [`], the PPT instances compression
algorithm Z outputs a single x ∈ L and the state st.

– RL(Z(x1, · · · , x`)\st) 3 w ← C((x1, w1), · · · , (x`, w`)): On input (xi, wi) ∈ RL for i ∈
[`], the PPT witness compression algorithm C outputs a witness w to the instance x
generated by Z(x1, · · · , x`).

– (w1, · · · , w`)← U(x,w, st): On input x ∈ L, st, together with the corresponding witness
w ∈ RL(x), the PPT unfolding algorithm U outputs the witnesses wi ∈ RL(xi) for all
i ∈ [`].

– For all w ∈ RL(x), the following holds:

Pr[(x, st)← Z(x1, . . . , x`); (w1, . . . , w`)← U(x,w, st) : ∧`i=1 wi ∈ RL(xi)] > ε.

Remark 2. Our definition is stronger than the one of [HN10] in several respects. In the defi-
nition 2.25 of [HN10], the retrieving algorithm (that corresponds to our witness compression
algorithm) does not take witnesses to (x1, . . . , x`) as input, and thus is not required to be
efficient; the unfolding algorithm above is also not required in [HN10], but that is the key
for our applications of instance compression scheme (if exists).

Observe that the one-more like assumptions can be rephrased in the framework of in-
stance compression. For example, the one-more DL assumption is equivalent to assume
non-existence of (`, ε)-tailored instance compression scheme for DL with weaker require-
ments: 1) The witness compression algorithm is not required; 2) The instance compression
algorithm is allowed to output `−1 instances (which leads to much weak compression ratio)
and the unfolding algorithm needs to take `− 1 witnesses correspondingly.
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4 Embedding Reduction: the Security of Schnorr and
Guillou-Quisquater Protocols and Instance Compression

In this section, we develop an embedding reduction technique to base the witness hiding
security3 of Schnorr protocol on non-existence of tailored instance compression scheme for
discrete logarithm. Similar results can also be obtained for the Guillou-Quisquater’s pro-
tocol and some other Σ-protocols for group homomorphisms. Note that, given a successful
adversary V ∗, our technique yields a tailored instance compression scheme with parameters
much stronger than the ones in [BP02], and thus strengthens the results of [BP02].

4.1 The Security of Schnorr Protocol

Let G be a cyclic group of order q with the generator g, where q is a prime such that q | p−1,
p is a prime 2n−1 ≤ p ≤ 2n. Given a common input y, the Schnorr protocol allows the prover
P wants to convince the verifier V of knowledge of the unique discrete logarithm w of y
(i.e., y = gw). Formal description of this protocol can be found in Fig. 1.

Public: group G, group order q, generator gPublic: group G, group order q, generator g

Prover P (w) Verifier V (y = gw)

r
R←− Zq

a
R←− gr

z ← r + cw

a

c
R←− Zqc

z

check gz
?
= a · yc

Fig. 1: Schnorr identification scheme

Given (g,G), we define the NP relation R(g,G) := {(y, w) : y = gw}. We show that a
successful adversarial verifier will lead to a non-trivial tailored instance compression scheme
for discrete logarithm (DL) instances.

Theorem 1. If there exists a PPT algorithm V ∗ that breaks witness hiding of Schnorr
protocol with probability p (i.e. V ∗ after interaction with the prover P outputs a valid discrete
logarithm w of y with probability greater than p), then there exists (`, p`−1)-tailored instance
compression scheme for DL instances in G for any `.

Remark 3. It should be noted that for a negligible probability ε, the (`, ε)-tailored instance
compression scheme (if exists) is barely applicable. For achieving meaningful compression
scheme from V ∗, we should set ` to be (arbitrary) constant when p is an inverse polynomial;
if p is negligibly close to 1, then ` can be set to be (arbitrary) polynomial. Note also that
the technique of [BP02] gives us only ` = 2.

3 As mentioned, this is equivalent to the identification security in the case where the adversary
communicates with P (sk) in a single execution.
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We first construct two efficient subroutines D and B for our embedding reduction. On
input two instances (y1, y2), the algorithm D interacts with V ∗ (where y1 serves as the
common input, and y2 serves as the first prover message) until the challenge c from V ∗

is received, and outputs a new instance yc1y2; on input discrete logarithm z of yc1y2, the
algorithm B interacts with V ∗ until the output of V ∗ is received, and outputs two discrete
logarithms of the two instances (y1, y2). Formal descriptions of D and B can be found in
Algorithm DV ∗and BV ∗ .

DV ∗

input : instances y1, y2 ∈ G, random tape RV

1: Run V ∗ with random tape RV on instance y1;
2: Send y2 as the first prover message to V ∗;

output: output: If V ∗ answers with a challenge c ∈ Zq, output y = yc
1y2; else output ⊥.

BV ∗

input : z ∈ Zq, y1, y2 ∈ G, random tape RV

1: Execute the Schnorr protocol with V ∗ in exactly the same way as D(y1, y2, RV ) until
receiving the challenge c from V ∗;

2: Send z, which is supposed to be such that gz = y1
cy2, to V ∗ ;

output: If V ∗ outputs the witness w satisfying y1 = gw, output z1 = w and z2 = z − cw;
else output ⊥.

The compression algorithm ZV ∗

input : (y1, y2, · · · , y`)
1: st← {y1, · · · , y`};
2: set y0

j = yj , for j = 1, 2, · · · , `;
3: for i← 0 to l − 1 do

4: for j ← 1 to 2l−i−1 do

5: yi
2j−1 ← yi

2j−1 · gr
i
2j−1 , yi

2j ← yi
2j · gr

i
2j , where ri2j−1, r

i
2j

R←− Zq;

6: RV
i
j

R←− {0, 1}poly(n), where poly(n) denotes the length of the random tape RV
i
j ;

7: yi+1
j ← DV ∗(yi

2j−1, y
i
2j , RV

i
j) (if D outputs ⊥, return ⊥);

8: Add (yi+1
j , ri2j−1, r

i
2j , RV

i
j) to st;

9: end

10: end

11: set y ← yl
1;

12: Return y, st;

As illustrated in Figure 2, our embedding black-box reduction naturally corresponds to
a pair of efficient algorithms, a compression algorithm Z and an unfolding algorithm U. In
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The unfolding algorithm UV ∗

input : y ∈ G, w ∈ Zq, st

1: set yl
1 ← y, zl1 ← w;

2: for i = l − 1 to 0 do

3: for j = 1 to 2l−i−1 do
4: Retrieve yi

2j−1, y
i
2j ,r

i
2j−1, r

i
2j and RV

i
j from st;

5: (zi2j−1, z
i
2j)← BV ∗(zi+1

j , yi
2j−1, y

i
2j , RV

i
j) (if B outputs ⊥, return ⊥);

6: zi2j−1 ← zi2j−1 − ri2j−1, zi2j ← zi2j − ri2j ;

7: end

8: end

output: (w1, w2, · · · , w`) = (z01 , z
0
2 , · · · , z0` )

the first phase, the compression algorithm Z, taking as input discrete logarithm instances
(y1, . . . , y`), invokes D recursively to generate new instance, each time D transforming two
new instances into a new single one. Z outputs the final single instance y = y31 and the
corresponding st consisting of all instances input to D and the random tape of Z.

On input a witness w = z31 to y = y31 , the unfolding algorithm U invokes B recursively,
by feeding B with a discrete logarithm of an instance, to solve two instances. Finally, U will
solve all instances (y1, y2, ..., y`).

For our analysis to go through, given two instances y1, y2, the compression algorithm Z
has to choose two random strings r1, r2 and a fresh random tape for V ∗, and then runs D
on input (y1g

r1 , y2g
r2). Z will store all these randomnesses in st. The formal descriptions

of Z and U can be found in Algorithm DV ∗and BV ∗respectively. Without loss of generality,
we assume that ` = 2l for some integer l.

Proof. (of Theorem 1)

From the picture in Figure 2, we see the symmetry that, on input two instances (yi2j−1, y
i
2j),

DV ∗(yi2j−1, y
i
2j , RV

i
j) generates a new instance yi+1

j ; whereas, on input a discrete logarithm

zi+1
j of yi+1

j , BV ∗(zi+1
j , yi2j−1, y

i
2j , RV

i
j) produces the two discrete logarithms (zi2j−1, z

i
2j) of

the two instances (yi2j−1, y
i
2j) that are inputs to D.

We say an algorithm wins if it does not output “⊥”. Note that all these invocations of
D are independent, and that, for every i,j, the V ∗ success probability p is the probability
that both DV ∗(yi2j−1, y

i
2j , RV

i
j) and BV ∗(zi+1

j , y2j−1, y2j , RV
i
j) win, that is,

Pr[DV ∗(yi2j−1, y
i
2j , RV

i
j) wins ∧BV ∗(zi+1

j , y2j−1, y2j , RV
i
j) wins] = p.

Observe that in the entire reduction there are exactly (`−1) pairs of invocations of DV ∗

and BV ∗ , thus we have the probability

Pr[(y, st)← ZV ∗(y1, y2, · · · , y`); (w1, w2, · · · , w`)← UV ∗(y, st, w) : ∧`i=1yi = gwi ].

is p`−1.

Note that when given as input all the witnesses (w1, · · · , w`) of the target instances
(y1, · · · , y`) to Z, Z is able to compute the witness to every instance output by D. Thus by
making a straightforward adaptation of Z we get a PPT witness compression algorithm C
as desired. This completes the proof.

ut
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y01 ← y1 y02 ← y2 y03 ← y3 y04 ← y4 y05 ← y5 y06 ← y6 y07 ← y7 y08 ← y8

DV ∗(y01 , y
0
2) DV ∗(y03 , y

0
4) DV ∗(y05 , y

0
6) DV ∗(y07 , y

0
8)

DV ∗(y11 , y
1
2) DV ∗(y13 , y

1
4)

y1
1 ← (y0

1)c
0
1y0

2 y1
2 ← (y0

3)c
0
2y0

4 y1
3 ← (y0

5)c
0
3y0

6 y1
4 ← (y0

7)c
0
4y0

8

DV ∗(y21 , y
2
2)

y2
1 ← (y1

1)c
1
1y1

2 y2
2 ← (y1

3)c
1
2y1

4

(y, st)

y := y3
1 ← (y2

1)c
2
1y2

2

(y1, . . . , y8)ZV ∗

(y, w, st)UV ∗

BV ∗(z31 , y
2
1 , y

2
2)

z31 ← w

BV ∗(z21 , y
1
1 , y

1
2) BV ∗(z22 , y

1
3 , y

1
4)

z21 z22

BV ∗(z11 , y
0
1 , y

0
2) BV ∗(z12 , y

0
3 , y

0
4) BV ∗(z13 , y

0
5 , y

0
6) BV ∗(z14 , y

0
7 , y

0
8)

z11 z12 z13 z14

w1 = z01 w2 = z02 w3 = z03 w4 = z04 w5 = z05 w6 = z06 w7 = z07 w8 = z08

(w1, . . . , w8)

Fig. 2: Simplified reduction for ` = 8. We assume that V ∗ is deterministic and with proba-
bility 1 it breaks witness hiding of Schnorr protocol.
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4.2 Security of the Guillou-Quisquater Protocol

In this section we state a similar result on Guillou-Quisquater identification protocol [GQ88].
The reduction is essentially the same as the one for Schnorr protocol, and here we omit it.

The Guillou-Quisquater Protocol Let N = pq be an RSA modulus (i.e. p and q are
large distinct primes for security parameter n) and e < ϕ(N) be an odd prime satisfying
gcd(d, ϕ(N)) = 1 and ed ≡ 1 mod ϕ(N). The Guillou-Quisquater protocol proceeds as
follows (See Figure 3). The prover P wants to convince the verifier V of the unique e-th
root w modulo N of a given number y. First, P chooses r ∈ Z∗N at random and sends
a = re mod N to the verifier V . Upon receiving the verifier’s challenge c, P responses with
z = r · wc. V accepts if and only if ze = a · yc.

Given (e,N), we define the NP relation Re,N := {(y, w) : y = wemodN}. Similar to the
Schnorr protocol, we have the following theorem.

Public: composite integer N , y ∈ Z∗N , prime e ∈ Z∗N

Prover P (w) Verifier V (y = we mod N)

r
R←− Z∗N

a
R←− re mod N

z ← r · wc

a

c
R←− Zec

z

check ze
?
= a · yc

Fig. 3: GQ identification scheme

Theorem 2. If there exists a PPT algorithm V ∗ that breaks witness hiding of Guillou-
Quisquater protocol with probability p (i.e. V ∗ after interaction outputs the witness w with
probability greater than p), then there exists (`, p`−1)-tailored instance compression scheme
for RSA instances in Z∗N for any `.

Remark 4. We also note that our reduction can also apply to Σ−protocols for group homo-
morphisms [Mau15, CFGV13].

5 Some Consequences of Existence of Good Tailored Instance
Compression Schemes for DL and RSA

In this section, we show some strong consequences of the existence of good tailored in-
stance compression schemes for DL and RSA problems. To simplify our presentation, we
consider only (poly(n), 1 − negl(n))-tailored instance compression schemes, where poly(n)
denotes an arbitrary polynomial in security parameter n. Such an instance compression
scheme can be constructed from the efficient adversary that can break the witness hiding of
Schnorr/Guillou-Quisquater protocol with probability negligibly close to 1. We also stress
that, as showed in [Pas11], even for such an adversary, no black-box reduction can turn it
into an algorithm that breaks some standard assumptions and reach a contradiction.
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5.1 Extremely Communication-Efficient Zero Knowledge Protocols for
AND-DL and AND-RSA

Suppose that there is a (poly(n), 1−negl(n))-tailored instance compression scheme (Z,C,U)
for DL. In this subsection we further assume that the compression algorithm Z is determin-
istic without loss of generality: Since almost all possible random tapes for Z are good in the
sense that on every such random tape Z will output an instance, together with some state
information, for which the unfolding algorithm will succeed, we can publish a good random
tape and let each party execute Z on the same random tape when needed.

The immediate consequence of such a tailored instance compression scheme is that, for an
arbitrary polynomial `, the AND-DL statement, {(y1, y2, . . . , y`, g,G) : ∃w1, w2 . . . , w`, s.t.∧`i=1

gwi = yi}, have a proof of size |wi|, since we can have both the prover and the verifier run Z
on (y1, y2, . . . , y`) and obtain a single instance y of the same size of yi, and then the prover
send the w (such that gw = y) to the verifier, which accepts if gw = y and all wi, obtained
from the unfolding algorithm U, satisfy gwi = yi.

With this succinct proof for the AND-DL statement, the Feige-Shamir zero knowl-
edge protocol of [FS90] for AND-DL statements can be implemented in an extremely
communication-efficient way (with communication of size O(1) group elements).

Protocol Feige-Shamir

Common input: y1, y2, . . . , y` ∈ G.

The prover P ’s input: w1, w2, . . . , w`, s.t. ∧`i=1 g
wi = yi.

First phase: The verifier chooses w′0, w
′
1

R←− Zq independently and at random, compute

y′0 = gw
′
0 and y′1 = gw

′
1 , and then execute the 3-round ΣOR protocol (OR-composition

of the Schnorr protocol[CDS94]), in which V plays the role of the prover, to prove the
knowledge of the witness to the statement (y′0 ∨ y′1);

Second phase: Both the prover and the verifier run Z on (y1, y2, . . . , y`) and obtain a
new instance y ∈ G, and then the prover runs the witness compression algorithm C on
w1, w2, . . . , w` to obtain w such that gw = y, and proves to the verifier the knowledge of the
witness to the statement (y ∨ y′0 ∨ y′1) using ΣOR protocol of [CDS94].

This leads to the following proposition.

Proposition 1. If there exists (poly(n), 1− negl(n))-tailored instance compression scheme
for AND-DL, then for an arbitrary polynomial `, the AND-DL statement, {(y1, y2, . . . , y`, g,G) :
∃w1, w2 . . . , w`, s.t. ∧`i=1 g

wi = yi}, has a zero knowledge protocol with communication com-
plexity of O(1) group elements.

5.2 Special Hash Combiner

The second consequence is a construction of non-trivial hash combiner for hash functions
based on DL problem, which would help a set of ` mutually untrusting parties set up a
single trusted collision-resistant hash function from a given group.

Consider the cyclic group G mentioned in Section 4.1. Let y = gw for some w. hy : Zq
2 →

G is collision resistant hash functions (CRHFs) based on DL problem defined as follows:

hy(m0,m1) = gm0ym1 .

Clearly, finding a collision for hy is equivalent to solving the discrete logarithm problem
w = logg y.
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Definition 7 (Hash Combiner for CRHFs Based on DL Problem). A non-uniform
PPT Turing machine H : R× Zq

2 → {0, 1}v is said to be a randomized (k, `)-combiner for
CRHFs based on DL, if it satisfies the following conditions:

– For any given ` elements of G (i.e. y1, · · · , y`), for every r ∈ R, Hy1,y2,··· ,y`(r, ·, ·) is
a collision resistant hash function, if at least k components yi can be used to construct
collision resistant hash functions hyi(·, ·).

– For every PPT adversary B breaks the collision resistent hash combiner Hy1,y2,··· ,y`(r, ·, ·),
there exists a PPT reduction R, s.t. RB can find collisions for at least ` − k + 1 hash
functions hyi , i ∈ [`], with overwhelming probability.

Now we will show that the combiner for CRHFs based on the DL problem can be
constructed by the compression algorithm for DL instances. The previous papers [Pie07,
CRS+07, Pie08] showed that there doesn’t exist “fully”4 black-box combiners whose output
length is significantly smaller than what can achieved by trivially concatenating the output of
any `− k + 1 of the components. We can construct a special non-black-box (1, `)-combiner
for CRHFs based on DL problem whose output length is significantly smaller using the
instances compression algorithm mentioned in Corollary 2, under the discrete logarithm
assumption.

Proposition 2. Suppose there exists (poly(n), 1 − negl(n))-tailored instance compression
algorithms for any given `(= poly(n)) DL instances y1, y2, . . . , y` in G. Then there exists
a randomized (1, `)-combiner Hy1,y2,...,y`(r, ·, ·) for CRHFs based on DL problem, with the
same output length v as the regular discrete logarithm hash functions hyi .

Proof. Assume that there exists (poly(n), 1 − negl(n))-tailored instance compression algo-
rithms for DL. That is, for any polynomial `, there exists a pair of PPT algorithms (Z,U),
for w = logg y, such that

Pr[(y, st)← Z(y1, . . . , y`); (w1, . . . , w`)← U(y, w, st) : ∧`i=1 wi = logg yi] > 1− negl(n).

The combiner has the following form:

H(y1,y2,··· ,y`)(r,m0,m1) = hy(m0,m1) = gm0ym1 .

where y ← Z(y1, y2, · · · , y`), and r is the same random tape as the compression algorithm
Z used.

Note that a pair of collisions for hy will give the discrete logarithm of y, which in turn can
be used (by applying U) to solve all DL instances y1, . . . , y`, and therefore we can find a pair
of collisions for each hash function hyi efficiently. Thus this combiner is a (1, `)-combiner for
CRHFs based on DL problem as defined in Definition 7.

ut

Application of Special Hash Combiner: How to Set Up a Global Hash. Suppose
in a multi-party setting, a given number of participants, P1, · · · , P`, each Pi has its own
hash function hyi with the same common parameter G, g, and want to set up a single hash
function trusted by all of them. The need for a global hash function was also addressed
in [CLP13]. While we can’t simple choose some participant’s hash function as the global
hash function for obvious reasons. we can use our special hash combiner to solve this puzzle:
Each participant runs the instance compression algorithm Z on these (y1, · · · , yl) locally

4 Fully black box combiners mean both constructions and security proofs are black-box.
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and generates a single common y ∈ G, and then they set H(g,y) : (m0,m1)→ gm0ym1 to be
the global hash function. This function is collision-resistant free since every collision would
lead to a solution to the instance y′, which will enable the unfolding algorithm U to find all
discrete logarithms of these random yi’s, and thus if there is one yi generated at random by
an honest party, no PPT algorithm can find a collision for H(g,y).

6 Witness Hiding Protocols for Distributions on Some Hard
Relations with Unique Witnesses

In this section we prove a general theorem on witness hiding of constant-round public-coin
proofs systems for unique witness relations and present its applications to several crypto-
graphic problems.

6.1 A General Theorem

Let L1 and L2 be NP languages (possibly the same), RL1
and RL2

be their corresponding
witness relations. Let (X1,W1) = {(X1

n,W
1
n)}n∈N be a distribution ensemble over RL1

with
unique witnesses, and (X2,W2) = {(X2

n,W
2
n)}n∈N be a distribution ensemble over RL2 with

multiple witnesses.

Theorem 3. If the above distribution ensembles satisfy the following conditions:

1. (X1,W1) and (X2,W2) are computationally indistinguishable.

2. For sufficiently large n, for every PPT machine M , there is negligible function µ(n),
such that

Pr
[
(x,w)← (X2

n,W
2
n);w′ ←M(x,w) : w′ ∈ RL(x) ∧ w 6= w′

]
< µ(n).

3. For every n and x in X2
n, witnesses in RL2(x) are uniformed distributed.5

Then, any witness indistinguishable constant-round public-coin proof systems (including the
parallelized version of 3-round public-coin proofs of [Blu86, GMW91] and ZAPs of [DN00,
GOS12]) are witness hiding (under sequential repetition) for (X1,W1).

Proof. Let 〈P, V 〉 be an arbitrary witness indistinguishable proof system. In the following,
we present our proof only for the standalone case. Note that the same proof works also for
these protocols under sequential repetition.

Suppose, towards a contradiction, that there are infinitely many n, a polynomial p, and
a PPT verifier V ∗ such that

Pr
[〈
P (W 1

n), V ∗
〉

(X1
n) ∈ RL1

(X1
n)
]
>

1

p(n)
. (1)

Let S be the set of such n’s. Fix an n ∈ S and consider the following two experiments:

EXPb (b ∈ {1, 2}): Sample (x,w)← (Xb
n,W

b
n), play the role of honest prover P (x,w) and

interact with V ∗(x). When V ∗ terminates, output what V ∗ outputs.

5 This condition can be significantly relaxed, but we stick to it for simplifying presentation.
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Denote by WINb that EXPb outputs a witness for x. By the indistinguishability of
(X1,W1) and (X2,W2), we have that for some negligible function µ(n)

Pr
[
WIN2

]
= Pr

[〈
P (W 2

n), V ∗
〉

(X2
n) ∈ RL2

(X2
n)
]
>

1

p(n)
− µ(n). (2)

It follows from the second property of (X2
n,W

2
n) that

Pr
[
(x,w)← (X2

n,W
2
n) : 〈P (w), V ∗〉 (x) = w′ ∈ RL2

(x) ∧ w′ 6= w
]
< µ(n). (3)

Now by (2) and (3), we have

Pr
[
(x,w)← (X2

n,W
2
n) : 〈P (w), V ∗〉 (x) = w′ ∧ w′ = w

]
>

1

p(n)
− µ(n), (4)

which can be rewritten as

Pr
[(
x,w)← (X2

n,W
2
n) : 〈P (w), V ∗

〉
(x) = w′ ∧ w′ = w

]
=
∑
x

∑
w

Pr [〈P (w), V ∗〉 (x) = w′ ∧ w′ = w] Pr
[
w ←W 2

n |x
]

Pr
[
x← X2

n

]
>

1

p(n)
− µ(n).

Theorem 3 follows from the following two claims.

Claim 1. There exists x in the support of X2
n satisfying the following two conditions:

−
∑
w

Pr [〈P (w), V ∗〉 (x) = w′ ∧ w′ = w] Pr
[
w ←W 2

n |x
]
>

1

2p(n)
− µ(n).

−
∑
w

Pr [〈P (w), V ∗〉 (x) = w′ ∈ RL2
(x) ∧ w′ 6= w] Pr

[
w ←W 2

n |x
]
< µ(n).

Claim 2. There exists x in the support of X2
n, w1, w2 ∈ RL2

(x) such that

|Pr [〈P (w1), V ∗〉 (x) = w1]− Pr [〈P (w2), V ∗〉 (x) = w1] | > 1

poly(n)
.

Note that Claim 2 holds for each n ∈ S, and thus we conclude that V ∗ breaks the witness
indistinguishability of 〈P, V 〉 on a sequence {(x,w1, w2)}x∈X2

n,n∈S, which contradicts the fact
that 〈P, V 〉 is witness indistinguishable for multiple witnesses relation. This proves theorem
3. ut

We now give the detailed proofs of the above two claims.

Proof (of Claim 1). We define the following two events:

– EVENTeq: 〈P (w), V ∗〉 (x) = w′ ∧ w′ = w.
– EVENTneq: 〈P (w), V ∗〉 (x) = w′ ∈ RL2

(x) ∧ w′ 6= w.

and two sets:

– H: {x :
∑

w Pr [EVENTeq] Pr
[
w ←W 2

n |x
]
> 1

2p(n) − µ(n)}.
– K: {x :

∑
w Pr [EVENTneq] Pr

[
w ←W 2

n |x
]
< µ(n)}.
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Observe that

1

p(n)
− µ(n) < Pr

[(
x,w)← (X2

n,W
2
n) : 〈P (w), V ∗

〉
(x) = w′ ∧ w′ = w

]
=
∑
x∈H

∑
w

Pr [EVENTeq] Pr
[
w ←W 2

n |x
]

Pr
[
x← X2

n

]
+
∑
x/∈H

∑
w

Pr [EVENTeq] Pr
[
w ←W 2

n |x
]

Pr
[
x← X2

n

]
=
∑
w

Pr [EVENTeq] Pr
[
w ←W 2

n |x ∈ H
]

Pr
[
x← X2

n : x ∈ H
]

+
∑
w

Pr [EVENTeq] Pr
[
w ←W 2

n |x /∈ H
]

Pr
[
x← X2

n : x /∈ H
]
,

which, by the definitions of EVENTeq and set H, leads to

Pr
[
x← X2

n : x ∈ H
]
>

1

2p(n)
− µ(n). (5)

Similarly, by (3), we have

µ(n) > Pr
[(
x,w)← (X2

n,W
2
n) : 〈P (w), V ∗

〉
(x) = w′ ∈ RL2(x) ∧ w′ 6= w

]
=
∑
x∈K

∑
w

Pr [EVENTneq] Pr
[
w ←W 2

n |x
]

Pr
[
x← X2

n

]
+
∑
x/∈K

∑
w

Pr [EVENTneq] Pr
[
w ←W 2

n |x
]

Pr
[
x← X2

n

]
=
∑
w

Pr [EVENTneq] Pr
[
w ←W 2

n |x ∈ K
]

Pr
[
x← X2

n : x ∈ K
]

+
∑
w

Pr [EVENTneq] Pr
[
w ←W 2

n |x /∈ K
]

Pr
[
x← X2

n : x /∈ K
]
,

which, by the definitions of EVENTneq and set K, leads to

Pr
[
x← X2

n : x ∈ K
]
> 1− µ′(n) (6)

for some negligible function µ′(n).
Thus, by (5) and (6), we conclude

Pr
[
x← X2

n : x ∈ H ∩K
]
>

1

2p(n)
− µ(n)− µ′(n),

which means there exist at least one x in the support of X2
n that satisfies both conditions

of Claim 1, as desired. ut

The proof of Claim 2 is based on Claim 1.

Proof (of Claim 2). Fix a x in the support of X2
n that satisfies the two conditions of Claim

1. Note that W 2
n is uniformed distributed on RL2

(x), and by the first condition of Claim 1,
we have a w1 ∈ RL2

(x) such that

Pr [〈P (w1), V ∗〉 (x) = w1] >
1

2p(n)
− µ(n).
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By the second condition of Claim 1, we can obtain another witness w2 ∈ RL2
(x), w2 6=

w1, such that

Pr [〈P (w2), V ∗〉 (x) = w1] < µ(n),

since otherwise, we would have

∑
w

Pr [〈P (w), V ∗〉 (x) = w′ ∈ RL2
(x) ∧ w′ 6= w] Pr

[
w ←W 2

n |x
]

>
∑

w2(6=w1)

Pr [〈P (w2), V ∗〉 (x) = w1] Pr
[
w2 ←W 2

n : w2 6= w1

]
=

∑
w2(6=w1)

Pr [〈P (w2), V ∗〉 (x) = w1]
|RL2

(x)| − 1

|RL2
(x)|

>
1

poly(n)
· |RL2

(x)| − 1

|RL2(x)|
,

which breaks the second condition of Claim 16. Thus we obtain a desired tuple (x,w1, w2),
completing the proof of Claim 2. ut

6.2 Examples of Distributions on Unique Witness Relations

In this subsection, we present some examples of distribution (X1,W1) on hard unique witness
relations that satisfy the “if conditions” of Theorem 3, including distributions over OR-DDH
tuples with unique witnesses, the images of lossy trapdoor functions and commitments
with unique openings. Thus, for these distributions on unique witness relations, the classic
constant-round public-coin proof systems, such as parallelized version of classic 3-round
public-coin proofs of [Blu86, GMW91] and ZAPs of [DN00, GOS12], are witness hiding.

Example 1: OR-DDH Tuples with Unique Witnesses. The first example is for dis-
tribution (X1,W1) on hard instances with unique witnesses based on DDH assumption.
DDH assumption: Let Gen be a randomized algorithm that on security parameter 1n

outputs (G, g, q), where G is a cyclic group of order q with generator g. Then for a randomly
chosen triplet (a, b, c), for every PPT algorithm A and sufficient large n, there exists a
negligible function µ(n) such that

|Pr[A(1n, (G, g, q), ga, gb, gab) = 1]− Pr[A(1n, (G, g, q), ga, gb, gc) = 1]| < µ(n).

Consider the following two distribution ensembles (X1,W1) =
{

(X1
n,W

1
n)
}
n∈N and

(X2,W2) =
{

(X2
n,W

2
n)
}
n∈N based on the DDH assumption:

– (X1
n,W

1
n) = {((G, g, q), x, w) : (G, g, q) ← Gen(1n), the instance x is an OR-DDH tu-

ples (ga1 , ga2 , ga1a2) or (gb1 , gb2 , gc) (where c 6= b1b2) with the unique witness w =
(a1, a2, a1a2)};

– (X2
n,W

2
n) = {((G, g, q), x, w) : (G, g, q)← Gen(1n), the instance x is an OR-DDH tuples

(ga1 , ga2 , ga1a2) or (gb1 , gb2 , gb1b2) with multiple witnesses w0 = (a1, a2, a1a2), w1 =
(b1, b2, b1b2)}.

Based on Theorem 3, we have that all the witness hiding protocols for (X2,W2) above
are also witness hiding for (X1,W1) above, under DDH assumption.

6 Note that |RL2(x)| > 1.
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Example 2: Lossy Trapdoor Functions. We now present another example of distribu-
tion ensembles (X1,W1) based on lossy trapdoor functions.

Recall the definition of lossy trapdoor functions [PW08]. Let n be the security parameter
(representing the input length of the function) and `(n) be the lossiness of the collection.

Definition 8. A collection of (m, k)-lossy trapdoor functions is given by a tuple of PPT
algorithms (Gen,F,F−1). It satisfying the following property:

– Easy to sample an injective function with trapdoor: Geninj(·) := Gen(·, 1) outputs (s, t)
where s is the description of an injective function fs and t is its trapdoor, F(s, ·) computes
the function fs(·) over the domain {0, 1}n, and F(t, ·) computes the function f−1s (·). If
a value y is not in the image of fs, then F(t, y) is unspecified.

– Easy to sample a lossy function: Genlossy(·) := Gen(·, 0) outputs (s,⊥) where s is the de-
scription of function fs, and F(s, ·) computes the function fs(·) over the domain {0, 1}m
whose image has size at most 2m−k.

– Hard to distinguish injective and lossy: the first outputs of Geninj and Genlossy are com-
putationally indistinguishable.

Now we consider the following two distribution ensembles (X1,W1) =
{

(X1
n,W

1
n)
}
n∈N

and (X2,W2) =
{

(X2
n,W

2
n)
}
n∈N based on lossy trapdoor function:

– (X1
n,W

1
n) := {((s, y), w) : s← Geninj(1

n);w ← {0, 1}n; fs(w) = y}.
– (X2

n,W
2
n) := {((s, y), w) : s← Genlossy(1n);w ← {0, 1}n; fs(w) = y}.

Based on Theorem 3, we have that all the witness hiding protocols for (X2,W2) above
are also witness hiding for (X1,W1) above, under the existence of lossy trapdoor functions.

Example 3: Commitments with Unique Openings Our third example of distribution
ensembles (X1,W1) is based on mixed commitments [DN02, GOS12].

A mixed commitment scheme is basically a commitment scheme has two different fla-
vors of key generation algorithms. In the binding mode, Gen1 generates a perfect binding
commitment key, in which case a valid commitment uniquely defines one possible message.
In the hiding mode, Gen2 generates a perfect hiding commitment key, in which case the
commitment reveals no information whatsoever about the message. Moreover, two kinds of
keys are computationally indistinguishable.

Define the following two distribution ensembles (X1,W1) = {(X1
n,W

1
n)}n∈N and (X2,W2) =

{(X2
n,W

2
n)}n∈N based on the mixed commitments:

– (X1
n,W

1
n) = {((x, pk), w) : pk ← Gen1(1n);m

R←−M ; r
R←− R;x← Compk(m; r)}.

– (X2
n,W

2
n) = {((x, pk), w) : pk ← Gen2(1n);m

R←−M ; r
R←− R;x← Compk(m; r)}.

Assuming the existence of mixed commitments, all the witness hiding protocols for
(X2,W2) above are also witness hiding for (X1,W1) above.

7 Concluding Remarks and Open problems

We provide the first positive result on the witness hiding security of the classic proof systems
for some hard distributions over relations with unique witnesses satisfying certain conditions,
including distributions over OR-DDH triplet with unique witnesses, the images of lossy
trapdoor functions and commitments with unique openings.
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For some hard distributions over relations with unique witnesses that do not satisfy these
conditions, such as distributions over DL and RSA problems, we introduce an embedding
technique and show that the Schnorr/Guillou-Quisquater protocols are witness hiding unless
(`, ε)-tailored instance compression schemes for DL/RSA exist. In the standalone setting,
our result improves the positive result of [BP02].

We strongly believe that for Schnorr and Guillou-Quisquater protocols there are no
efficient adversary that can break their witness hiding with probability negligibly close to 1,
though it is shown in [Pas11] that we cannot prove this based on standard assumption via
black-box reduction. We show that such an adversary can be used to construct (poly, 1 −
negl(n))-tailored instance compression scheme for DL/RSA, which will leads to surprising
consequences.

Our results also leave several problems.

1. The first problem is to pinpoint the necessary and sufficient conditions on the hard
distribution that admits constant-round public-coin witness hiding protocol.

2. It is known that instance compression scheme is impossible with respect to NP-complete
languages, and that the DL and RSA problems are unlikely to be NP-complete. We
wonder if tailored instance compression schemes (with moderate parameters) exist for
DL/RSA. We think both positive and negative answers to this problem would have
interesting consequences.

References

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci, 37(2):156–189, 1988.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts.
In TCC, volume 3378 of LNCS, pages 325–341. Springer, 2005.

[Blu86] Manuel Blum. How to prove a theorem so no one else can claim it. In ICM, pages
1444–1451, 1986.

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The
one-more-RSA-inversion problems and the security of chaum’s blind signature scheme.
J. Cryptology, 16(3):185–215, 2003.

[BP02] Mihir Bellare and Adriana Palacio. GQ and schnorr identification schemes: Proofs
of security against impersonation under active and concurrent attacks. In CRYPTO,
volume 2442 of LNCS, pages 162–177. Springer, 2002.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In CRYPTO, volume 839 of LNCS,
pages 174–187. Springer, 1994.

[CFGV13] Dario Catalano, Dario Fiore, Rosario Gennaro, and Konstantinos Vamvourellis. Alge-
braic (trapdoor) one-way functions and their applications. In TCC, volume 7785 of
LNCS, pages 680–699. Springer, 2013.

[CLP13] Ran Canetti, Huijia Lin, and Omer Paneth. Public-coin concurrent zero-knowledge in
the global hash model. In TCC’13, volume 7785 of LNCS, pages 80–99. Springer, 2013.

[CRS+07] Ran Canetti, Ronald L. Rivest, Madhu Sudan, Luca Trevisan, Salil P. Vadhan, and
Hoeteck Wee. Amplifying collision resistance: A complexity-theoretic treatment. In
Advances in Cryptology - CRYPTO 2007, 27th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 19-23, 2007, Proceedings, pages 264–283,
2007.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In FOCS, pages 283–293.
IEEE, 2000.

21



[DN02] Ivan Damg̊ard and Jesper Buus Nielsen. Perfect hiding and perfect binding universally
composable commitment schemes with constant expansion factor. In CRYPTO, volume
2442 of LNCS, pages 581–596. Springer, 2002.

[Dru15] Andrew Drucker. New limits to classical and quantum instance compression. SIAM J.
Comput., 44(5):1443–1479, 2015.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In
STOC, pages 416–426. ACM, 1990.

[FS11] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct
pcps for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):690–
728, 1991.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques. Cam-
bridge University Press, 2001.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-
knowledge. J. ACM, 59(3):11, 2012.

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge protocol
fitted to security microprocessor minimizing both transmission and memory. In EURO-
CRYPT, volume 330 of LNCS, pages 123–128. Springer, 1988.

[HN10] Danny Harnik and Moni Naor. On the compressibility of NP instances and crypto-
graphic applications. SIAM J. Comput., 39(5):1667–1713, 2010.

[HRS09] Iftach Haitner, Alon Rosen, and Ronen Shaltiel. On the (im)possibility of arthur-merlin
witness hiding protocols. In TCC, volume 5444 of LNCS, pages 220–237. Springer, 2009.

[Mau15] Ueli Maurer. Zero-knowledge proofs of knowledge for group homomorphisms. Designs,
Codes and Cryptography, 77(2–3):663–676, 2015.

[Pas06] Rafael Pass. Parallel repetition of zero-knowledge proofs and the possibility of basing
cryptography on NP-hardness. In IEEE CCC, pages 96–110. IEEE, 2006.

[Pas11] Rafael Pass. Limits of provable security from standard assumptions. In STOC, pages
109–118. ACM, 2011.

[Pie07] Krzysztof Pietrzak. Non-trivial black-box combiners for collision-resistant hash-
functions don’t exist. In Advances in Cryptology - EUROCRYPT 2007, 26th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Barcelona, Spain, May 20-24, 2007, Proceedings, pages 23–33, 2007.

[Pie08] Krzysztof Pietrzak. Compression from collisions, or why CRHF combiners have a long
output. In Advances in Cryptology - CRYPTO 2008, 28th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, pages
413–432, 2008.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
STOC, pages 187–196. ACM, 2008.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In EURO-
CRYPT, volume 434 of LNCS, pages 688–689. Springer, 1989.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In EURO-
CRYPT, volume 1233 of LNCS, pages 256–266. Springer, 1997.

[ZZC+14] Jiang Zhang, Zhenfeng Zhang, Yu Chen, Yanfei Guo, and Zongyang Zhang. Black-box
separations for one-more (static) CDH and its generalization. In ASIACRYPT, volume
8874 of LNCS, pages 366–385. Springer, 2014.

22


	On Instance Compression, Schnorr/Guillou-Quisquater, and the Security of Classic Protocols for Unique Witness Relations
	Yi Deng1,2, Xuyang Song1, Jingyue Yu1 and Yu Chen1,2

