
Decentralized Blacklistable Anonymous
Credentials with Reputation

Rupeng Yang1,2 ⋆, Man Ho Au2 ⋆⋆, Qiuliang Xu1 ⋆⋆, and Zuoxia Yu2

1 School of Computer Science and Technology, Shandong University,
Jinan, 250101, China

orbbyrp@gmail.com, xql@sdu.edu.cn
2 Department of Computing, The Hong Kong Polytechnic University,

Hung Hom, Hong Kong
csallen@comp.polyu.edu.hk, zuoxia.yu@gmail.com

Abstract. Blacklistable anonymous credential systems provide service
providers with a way to authenticate users according to their historical
behaviors, while guaranteeing that all users can access services in an
anonymous and unlinkable manner, thus are potentially useful in prac-
tice. Traditionally, to protect services from illegal access, the credential
issuer, which completes the registration with users, must be trusted by
the service provider. However, in practice, this trust assumption is usu-
ally unsatisfied. Besides, to better evaluate users, it is desired to use
blacklists, which record historical behaviors of users, of other service
providers, but currently, this will threaten the security unless a strong
trust assumption is made. Another potential security issue in current
blacklistable anonymous credential systems is the blacklist gaming at-
tack, where the service provider attempt to compromise the privacy of
users via generating blacklist maliciously.

In this paper, we solve these problems and present the decentralized
blacklistable anonymous credential system with reputation, which in-
herits nearly all features of the BLACR system presented in Au et.al.
(NDSS’12). However, in our new system, no trusted party is needed to
register users. Moreover, blacklists from other service providers can be
used safely in the new system assuming a minimal trust assumption
holds. Besides, the new system is also partially resilient to the blacklist
gaming attack. Technically, the main approach to solving these prob-
lems is a novel use of the blockchain technique, which serve as a public
append-only ledger and are used to store credentials and blacklists. To
simplify the construction, we also present a generic framework for con-
structing our new system. The general framework can be instantiated
from three different types of cryptographic systems, including the RSA
system, the classical DL system, and the pairing based system, and all
these three types of instantiations can be supported simultaneously in
the framework. To demonstrate the practicability of our system, we also
give a proof of concept implementation for the instantiation under the

⋆ This work was mainly done when doing the internship at The Hong Kong Polytechnic
University.

⋆⋆ Corresponding author.



RSA system. The experiment results indicate that when authenticating
with blacklists of reasonable size, our implementation can fulfill practical
efficiency demands, and when authenticating with empty blacklists, it is
more efficient than that of Garman et al. (NDSS’14), which presents a
decentralized anonymous credential system without considering revoca-
tion.

1 Introduction

There always exists a conflict between users and service providers (SP) on the
Internet. On the one hand, the SPs need to protect their services from illegal
users and users with misbehaviors, thus hope to know the exact identity and
historical behaviors of each user. On the other hand, the users would like to
protect their privacy, and thus hope to access services in an anonymous and
unlikable manner.

The blacklistable anonymous credential system [11,39] is a good attempt to
address this conflict. In this system, each SP maintains a blacklist to record users
with misbehaviors, and a user attempting to access services of a SP is required to
prove that he is legitimately registered and that he is not in the blacklist of the
SP. Both the authentications and the maintenance of the blacklists are conducted
in an anonymous and unlinkable fashion, thus privacy of users are well protected.
Compared to traditional anonymous credential systems [9, 12–15, 18, 20], the
blacklistable anonymous credential system supports revocation of users, thus can
protect SPs from users with misbehaviors. Moreover, compared to some other
revocable anonymous credential systems [12,13], this is achieved without relying
on a trusted third party, so in practice the blacklistable anonymous credential
system is preferable.

Subsequently, there are a series of works following this line of research. Some
of them consider how to improve the efficiency [32, 40, 45], and some others
consider how to utilize historical behaviors of users in a cleverer way [5,6,42,44].
In particular, in [6], an anonymous credential system supporting fine-grained
“blacklist” is proposed. In this system, instead of merely putting misbehaved
users into the blacklist, the SP will rate behaviors of users in using the services.
The rated scores can be either positive or negative for good and bad behaviors
respectively, and belong to different categories based on types of behaviors rated.
When authenticating, SPs can set complex policies about these scores, and a
user attempting to access services of a SP needs to prove that he is legitimately
registered and that his scores satisfy the policy of the SP. Likewise, all those
operations are conducted in an anonymous and unlinkable fashion. For simplicity
of notation, in this section, we still use the word “blacklist” to denote this fine-
grained type of “blacklists”, and will not distinguish them from the normal ones
if not necessary.

To better explain how these blacklistable anonymous credential systems work,
we illustrate the workflow for them in Figure 1.a. Generally speaking, a user who
wants to access services of a SP first registers himself to the credential issuer



and gets a credential back. Then he requests a policy from the SP and proves to
the SP that he has a valid credential and that he satisfies the policy of the SP
each time he wants to access the services of a SP. Behaviors of the user will be
rated by the SP after he finishes using the services. Note that to protect services
from illegal access, the credential issuer must be trusted by the SP. Therefore, it
is usually suggested that the credential issuer should be acted by the SP itself.
However, in practice, this suggestion is often contradicted. Considering a SP
who runs a forum about alcohol abuse, anyone who registers for this service
runs the risk of revealing his drinking problem to the SP. So, at worst, no one
would register for using this forum. As a result, the SP faces the dilemma of
either trusting a third party credential issuer and suffering potential attacks or
insisting on issuing credentials all by itself and suffering a loss of potential users.
A similar dilemma occurs when we consider the blacklist management. More
precisely, services will be better protected if the SP can refer to blacklists of
other SPs and further evaluate a user according to his historical behaviors when
using other services, but it may bring additional security issues if the shared
blacklists are fake. Besides these two problems, current blacklistable anonymous
credential systems are also vulnerable to the blacklist gaming attack, where a
malicious SP attempts to learn the identity of the user via providing a maliciously
generated blacklist during the authentication.

User

Credential Issuer

SP

1. Register

2. Issue Credential

3. Request

4. Send Blacklist

5. Authenticate

Rating Records Pool
6. Put Rating

(a)

Public Append-Only Ledger

UserSP

1. Register

2. Collect Data

3. Put Requirement
4. Get Requirement

5. Authenticate

6. Put Rating

(b)

Fig. 1 Workflows of the traditional blacklistable anonymous credential systems (left)
and our new decentralized blacklistable anonymous credential system with reputation

(right).

The first problem, namely the requirement of a trusted credential issuer, is
partially solved in [27], in which a decentralized anonymous credential system is
constructed. In particular, in [27], a blockchain based public append-only ledger
is employed to replace the credential issuer, and to register in the system, a
user just needs to put his personal information attached with his credential



to the ledger. When authenticating, a user needs to prove that his credential
belongs to a set, which is selected by the SP from credentials of all registered
users. However, in [27], the authors have not considered revocation of users, and
it is unknown whether their techniques can be applied to decentralize current
blacklistable anonymous credential systems. Besides, the other two problems,
namely the blacklist management problem and the blacklist gaming attack, are
still open.

1.1 Our Results

In this paper, we solve these open problems by defining and constructing the de-
centralized blacklistable anonymous credential system with reputation (DBLACR),
whose workflow is illustrated in Figure 1.b. More precisely, similar to that in [27],
in our new system, there is no central credential issuer, and a user registers via
uploading his credential together with his personal information to the public
append-only ledger, which can be instantiated with the blockchain technique.
Each SP collects data from the ledger automatically and put its requirement,
including the selected candidate users set and the blacklist, to the ledger reg-
ularly. When a user wants to access a service of a SP, he first gets the latest
requirement of the SP from the ledger, then he checks its validity and whether
he satisfies it. If both tests are passed, he then proves to the SP that he satisfies
its requirement. The user can access the service if the proof is valid, and scores
for his behavior in using the service will be rated and put on the ledger by the
SP then.

The DBLACR system can achieve an enhanced security guarantee, which
is summarized in Table 1. Roughly speaking, its security is superior to that
of existing blacklistable anonymous credential systems in the following three
aspects.

– The registration is decentralized. In our new system, no trusted credential
issuer is needed, and each SP can select candidate users by itself. Thus, se-
curity for the SPs is improved. Note that the user does not need to indicate
which service he would like to access when registering and only the fact that
he wants to access at least one service in the system is revealed. Thus, the
real purpose of the user is well hidden if there are some common and insensi-
tive services in the system. Therefore, our solution will not compromise the
privacy of users.

– There is a consistency between the used blacklist and the shared blacklist for
any SP. This is because a SP will put his own used blacklist in the public
append-only ledger, thus cannot share a fake blacklist without being caught.
The property implies that to refer to blacklists of other SPs, a SP only needs
to trust that they will not use a fake blacklist when conducting their own
authentication protocols instead of trusting that they will not share a fake
blacklist. So, to a great extent, the SP can employ blacklists of other SPs
safely and makes better evaluations for users.



– The system is partially resilient to the blacklist gaming attacks, thus provides
a better protection for the privacy of users during the authentication. This is
achieved in two aspects. First, as in our system SPs update their blacklists
regularly, a malicious SP can only make a less powerful passive blacklist
gaming attack in each time period, where it fixes a blacklist in the beginning.
Besides, in our system, a user can learn whether he could pass the verification
in advance and will not attempt to launch an authentication if he does not
satisfy the requirement, thus less information is leaked from authentication
results. We give a more detailed discussion on how these two modifications
could boost the security in Sec. 3.

Table 1: The Comparison.

Decentralized Blacklist Blacklist Blacklist-Gaming
Registration Supporting Sharing Resilience

BLAC[39] 7 † ‡ 7

EPID[11] 7 † ‡ 7

PEREA[40] 7 † 7 7

PE(AR)2[45] 7 † 7 7

FAUST[32] 7 † 7 7

BLACR[6] 7 3 ‡ 7

EXBLACR[42] 7 3 ‡ 7

PERM[5] 7 3 7 7

FARB[44] 7 3 7 7

DAC[27] 3 7 - -
Ours 3 3 3 3∗

We compare the security of our constructed DBLACR system with that of current
blacklistable anonymous credential systems and that of the decentralized anonymous
credential system in this table. The column “Decentralized Registration” indicates
whether the user registration can be completed without a trusted credential issuer. The
column “Blacklist Supporting” indicates whether the system supports authentication
based on historical behaviors of users, and the symbol † suggests that only a basic
blacklist is supported. The column “Blacklist Sharing” indicates whether blacklists
can be shared among different SPs, and the symbol ‡ suggests that blacklists can be
shared if SPs trust each other. The column “Blacklist-Gaming Resilience” indicates
whether the system is secure against blacklist gaming attacks, and the symbol 3∗

suggests that our system is partially resilient to the blacklist gaming attacks.

It seems that our newly constructed system is just natural extensions of the
system in [27], and those enhanced security properties can be achieved triv-
ially via the introduction of the blockchain technique. However, there still exists
many technical obstacles. One obstacle is that in the construction in [27], dou-
ble discrete logarithm proof, which is fairly expensive in both computation and
communication, is desired, thus their system is not very efficient. Things get
even worse in our scenario since proving that one is not in a blacklist is also



very costly. Therefore, we need to develop new construction techniques to cir-
cumvent the employment of the double discrete logarithm proof and improve the
efficiency. Another obstacle is that the introduction of the blockchain technique
only guarantee that SPs are not likely to share fake blacklist items, but in some
systems [5, 32, 40, 44, 45] blacklist sharing is unavailable even every SP shares
correct blacklist. So, we need to construct our systems carefully to ensure that
they are compatible with blacklist sharing.

Here, we overcome those obstacles and give a general framework to construct
our DBLACR system, which can greatly reduce the complexity of the construc-
tion. To guarantee that the construction is compatible with blacklist sharing, the
framework is similar to the constructions in [6, 39], which can support blacklist
sharing when SPs trust each other. To avoid the use of the double discrete loga-
rithm proof, we give an instantiation of our framework based on the RSA system,
which can achieve a much better efficiency compared to the construction in [27].
Thus, our system is also preferable even no user revocation is needed. Beyond
the RSA based instantiation, we also provide a classical DL system based in-
stantiation and a pairing system based instantiation, which provide more choices
for practical applications. In fact, our general framework can support multiple
instantiations simultaneously, i.e. users with credentials generated under differ-
ent instantiations are authenticated in the same way, and even the type of the
credential used is hidden. To demonstrate the feasibility and practicability of our
system, we also give a proof of concept implementation of the RSA system based
instantiation, whose result indicates that our implementation is fairly practical
and can be deployed in many real world scenarios.

2 Preliminaries

In this section, we review the notations, cryptographic assumptions, and cryp-
tographic primitives used in this paper.

Notations. For a set S, we write x $← S to indicate that x is sampled uniformly
from S. We write negl(·) to denote a negligible function. For two random vari-

ables X and Y, we write X
c
≈ Y to denote that X and Y are computationally

indistinguishable.

2.1 Cryptographic Assumptions.

Strong RSA Assumption ([7, 26]). Given a randomly generated RSA mod-
ules n that is a product of two safe primes, and a random element y ∈ Z∗

n, it is
hard to compute x ∈ Z∗

n and interger exponent e > 1 such that xe ≡ y mod n.

LD-RSA Assumption [41]. LetN = (2p′+1)(2q′+1) be a product of two large
safe primes and g is a generator of QRN . Let p0, q0, p1, q1 be four sufficiently
large and distinct primes, and n0 = p0q0, n1 = p1q1. Then we have (N, g, n0, n1,

gp0+q0)
c≈ (N, g, n0, n1, g

p1+q1).



Discrete Logarithm (DL) Assumption [21]. Let G be a cyclic group with

generator g. Given h
$← G, it is hard to compute x such that gx = h.

Decisional Diffie-Hellman (DDH) Assumption. Let G be a cyclic group

of prime order p, and g be a generator. Then we have (G, g, ga, gb, gab)
c
≈ (G,

g, ga, gb, gc), where a, b, c
$←Zp.

DDH-II Assumption [17]. The original DDH-II assumption works in a prime
order sub-group of a group Z∗

p for prime p, here we extend it to the quadratic
residue group QRN , where N is the product of two safe primes. Let g be a
generator of QRN , then for any distribution X with a super-logarithmic min-

entropy, we have (g, gx, gy, gxy)
c
≈ (g, gx, gy, gz), where x← X and y, z

$← ZN .

2.2 Cryptographic Primitives.

Zero-knowledge proof of knowledge. In a zero-knowledge proof of knowl-
edge [29] system, a prover proves to a verifier that he possesses the witness for
a statement without revealing any additional information. In this paper, we will
in fact use non-interactive zero knowledge proof of knowledge, which works in
a non-interactive manner, and requires that the proof system has the following
properties.

1. Completeness. This property states that if a proof is generated by an honest
prover that indeed possesses the witness for a true statement, then an honest
verifier will accept this proof.

2. Soundness. This property states that for any (malicious) prover, if a state-
ment is not true, then the prover cannot generate a valid proof with non-
negligible probability.

3. Zero Knowledge. This property states that a valid proof of a true state-
ment can be generated by a simulator who is only given the description of
the statement (but may control the random oracle or the generation of the
common reference string).

4. Extractability. This property states that there exists a simulator (who may
control the random oracle or the generation of the common reference string)
that can extract the correct witnesses from any valid proof.

5. Simulation Soundness. This property states that the soundness property
holds even the (malicious) prover sees fake proofs of false statements gener-
ated by a zero knowledge simulator.

6. Simulation Extractability. This property states that the extractability prop-
erty holds even the (malicious) prover sees fake proofs of false statements
generated by a zero knowledge simulator.

To construct a proof system satisfying those properties, one can apply the well-
known Fiat-Shamir heuristic [24] to transform a three round public coin interac-
tive zero-knowledge proof of knowledge (sigma protocol) into a non-interactive
one. One advantage led by the Fiat-Shamir transform is that the transformed



non-interactive proof system can in addition admit a message as input, thus
it is also called signature proof of knowledge (SPK), and is usually written as
SPK{(w) : S}[m], where S is the statement to be proved, w is the witness,
and m is the message. For convenience, the message m can be omitted if it
is not explicitly indicated in context. When constructing our system, we may
need to construct SPK systems for complicated statements that are combined
by some simple components via logic compositions. To handle them, we can ap-
ply the technique presented in [19], which allows one to prove that indexes of
true statements in a set of statements satisfy some monotone function.

Commitment Scheme. A commitment scheme allows a user to generate a
commitment on a value, which ensures that the user cannot change his choice
after committing, and that no one can learn anything about the value from
the commitment. We will use the Strong-RSA assumption based commitment
scheme in [26], which works in a quadratic residue group QRN with generators g,
h, where N is the product of two safe prime. To commit an integer a, one samples
r uniformly at random from ZN/4 and computes the commitment as c = gahr; to
verify whether an opening (a, r) of a commitment c is correct, one just needs to
check if gahr = c. Note that the commitment scheme is additive homomorphic,
i.e. given c1 and c2, which are commitments of a1, a2 respectively, one can obtain
the commitment of a1 + a2 simply by computing c = c1 · c2. We will also use
the DL assumption based commitment schemes [35], which works similar to the
strong-RSA assumption based one and is also additive homomorphic.

Dynamic Accumulator. An accumulator [10], can accumulate a large set of
inputs into a small value (the accumulator). It also provides a way to efficiently
compute a short witness for any element in the accumulated set, which can help
verify whether the element is indeed incorporated into the accumulator. Security
of accumulator requires that no one can generate a valid witness for an element
not in the accumulated set. In this paper, we will use the strong-RSA assumption
based accumulator [13], which works as follows:

– Setup(1n)→ (N,u). On input a security parameter, this algorithm samples
two prime numners p and q, and compute N=pq. It also picks a seed value
u ∈ QRN that u̸=1, and outputs the public parameter (N, u).

– Acc ((N, u), R) → A. On input the public parameter (N,u), this algorithm
accumulates a set of prime numbers R = {r1, r2, . . . , rn} into the accumulator
A = ur1r2...rn mod N .

– Witness ((N, u), r, R) → w. On input the public parameter (N, u), a set R
and a value r ∈ R, this algorithm outputs the accumulation of all the other
value in R besides r. Namely, w = Acc ((N,u), R− {r}).

– Verify ((N, u), r, w,A) → {0, 1}. On input the public parameter (N, u), a
value r, a witness w and an accumulator A, the algorithm outputs 1 if and
only if wr = A mod N .

One property of this accumulator scheme is that the accumulator can be incre-
mentally updated when new elements are added to the set. Besides, as stated in



[13], the accumulator admits an efficient SPK system proving that a committed
value is in an accumulator.

CL Signature Schemes. A CL signature scheme [12,14] is a signature scheme
that allows a signer to sign on the commitment of a message, and allows one
to prove the possession of a valid message signature pair in a zero knowledge
manner. Thus it can provide both the authentication and the privacy of message.
We will use the strong-RSA assumption based CL signature presented in [14],
which works as follows. As in our construction, the protocol of signing on a
commitment will not be applied, we just omit this protocol here.

– Key Generaton. On input a security parameter 1λ, the key generation
algorithm first samples two safe primes p and q, and computes n = pq of
length ℓn. Then it samples random generators a, b, c of QRn, and outputs
pk = (n, a, b, c) and sk = p.

– Signing. The signing algorithm signs messages with length at most ℓm.
On input a message m ∈ [0, 2ℓm) and a secret key p, the signing algorithm
samples a random prime number e of length ℓe = ℓm + 2 and a random
number s of length ℓs = ℓn + ℓm + ℓ where ℓ is the security parameter, and
computes the value v that ve = ambsc mod n. The signature is just (e, s, v).

– Verification. On input a signature tuple (e, s, v) and a message m, the
verification algorithm outputs 1 if ve = ambsc mod n and 2ℓe−1 < e < 2ℓe .

– Proof of Knowledge of Signature. The prover’s secret input includes
a message x, a randomness rx, and a signature (s, e, v) on x. The public
input includes the public key (g, h) ∈ QRn of a commitment scheme and
a commitment Cx = gxhrx on x with randomness rx. The prover samples
w, rw as random values of length ℓn, computes z = we, r′w = rwe, Cv = vgw,
Cw = gwhrw , and Π = SPK{(s, v, e, x, rx, w, z, rw, r′w) : Cx = gxhrx ∧Ce

v =
axbscgz ∧ Cw = gwhrw ∧ Ce

w = gzhr′w ∧ 2ℓe−1 < e < 2ℓe ∧ x < 2ℓm}, and
outputs (g, h, Cx, Cv, Cw,Π).

It is worth noting that via merely modification, the scheme can in fact sign
multiple messages simultaneously. To achieve this, we only need to include mul-
tiple ‘a’s in the public key and use one for each message in the signing algorithm.

2.3 The Public Append-Only Ledger

We will also use a public append-only ledger, which is formally described in Fig.
2, in constructing our DBLACR system. Roughly speaking, a trusted party is
employed to maintain a list of public information, and will protect the integrity
of data put in the ledger and guarantee a consistent view of the ledger for every
party. Every participant can add new information to this list, and once the data
are uploaded, nobody, including the data owner himself, can delete or modify
them. Also, as the trusted party will check the correctness of the pseudonym,
no one can impersonate another participant to publish information. Besides, the
trusted party can provide everyone with the latest data list, thus ensuring that
the views of the public ledger for all participants are consistent.



Functionality F⋆
BB

The functionality F⋆
BB running with parties P1, . . . , Pn and an ideal adversary S

proceeds as follows:

– Initialize. Initialize with an empty list L in the beginning.
– Store. Upon input (Store, Pi, Nym, M), checks that Nym is the correct

pseudonym for Pi, then stores the tuple (Nym,M) to L and notify S that a
new item is added to the public list L.

– Retrieve. Upon input (Retrieve, Pi), sends the public list L to Pi.

Fig. 2 The ideal functionality F⋆
BB for public append-only ledger.

It is a folklore that the public append-only ledger can be instantiated via the
blockchain technique, and there are already some works constructing advanced
applications based on this assumption [25, 27, 34, 36]. In this paper, we will also
assume this assumption holds, and build our system on the blockchain technique.

3 The Definition of The Decentralized Blacklistable
Anonymous Credential System with Reputation

3.1 The Syntax

There are two types of entities, namely the users and the service providers, and
a public ledger in the DBLACR system, and the system consists of the following
protocols:

– Setup. To setup the system, a trusted party is employed to generate the
public parameter of the system. Note that this party is only used in the setup
phase and we only need to trust that it will generate the public parameter
honestly and will erase all the internal states of the generation process.

– Registration. In this protocol, a user registers himself to the system. To
complete this task, a user just needs to put some information to a public
ledger, which should include some auxiliary proof data and his attributes to
aid the SPs in deciding whether to accept the user as a valid candidate user
for accessing their services.

– Authentication. This protocol is executed between a user and a SP. The
user attempts to access services of the SP in an anonymous and unlinkable
fashion, and the SP will accept the user if and only if the user fulfills its
requirement, which will be explained later in this section.

– Interaction with The Ledger. The public ledger in this system is public
and accessible to every participant, including the users and the SPs. In ad-
dition, the SPs can put data to the ledger. In particular, it can upload its
requirement to the ledger regularly. Besides, it can submit a rating for the



anonymous user in an authentication event (or the rating for this authenti-
cation event for short) and submit a revocation of a rating record submitted
by itself.

The Requirement. The requirement for users to access services of a SP includes
three parts, namely the candidate users set C, the policy PR and the rating
records list L. The set C consists of candidate users for accessing the services
and each item in C is a unique string for a candidate user (in practice, this is the
user’s credential). The list L consists of rating records used for evaluating users,
and each item in L is a unique string for a rating record. In more detail, the main
part of each rating record is a tuple (sid, tid, s) where sid is the unique string of
the SP submitting this rating, tid is the unique string for the rated authentication
event, and s is the rating for tid, which is a set of scores in different categories.
In particular, each item in s is a tuple (c, ς) where c represents a category and
ς is the score for the category c. The policy PR is identical to that in [6]. More
precisely, it consists of two parts, namely a DNF boolean formula F and a set of
adjusting factor lists. The formula F takes a set of scores in different categories
as input, and each variable in F is a tuple (c, d), which will be evaluated to 1 iff
the given score in category c is not less than the threshold d. The set of adjusting
factor lists is used to aid calculating the scores of a user, and consists of two
weights lists for each category, where each weight is a positive number.

A user uid is said to satisfy a requirement (C,PR,L) if uid ∈ C and the scores
of uid calculated according to L and PR satisfy PR. More precisely, to calculate
the scores for a user uid, one first filters all rating records for authentication
events launched by uid in L. Then it sums up scores from these rating records
to get scores of uid in each category. To better reward (or penalize) users with
repeated good (or bad) behaviors, positive scores and negative scores in each
category will be summed up with weights from respective adjusting factor lists
defined in PR. These calculated scores are then employed to evaluate each vari-
able of the DNF boolean formula F in PR and finally the result of F . The scores
is said to satisfy PR if F is evaluated to 1 according to them.

To generate a valid requirement, a SP needs to generate a valid candidate
users set, a well-formed policy and a valid rating records list. A candidate users
set C is said valid if every user in C has been registered to the system. Besides, the
SP also needs to ensure that for each candidate user, the attached auxiliary proof
data are valid, and the attributes fulfill its terms of services. A policy is said well-
formed if it contains a well-formed DNF boolean formula and a set of 2k positive
number lists, where k is the number of categories. A rating records list L is said
valid if each rating record with main part (sid, tid, s) in L is not revoked by sid
and the authentication event tid is acceptable and is authenticated with the SP
sid. Besides, to avoid including maliciously rated scores in the requirement, the
SP also needs to ensure that each selected rating record submitted by a SP sid
has been put in the requirement of sid.



3.2 The Security

To formally define the security of our system, we first present an ideal DBLACR
system that is instantiated via a trusted party TP with a public ledger:

– Registration. To register himself to the system, a user with a unique iden-
tity string uid first logs into the trusted party TP , then he sends his personal
information, namely, attr and aux, which are his attributes and proof of
his identity respectively, to TP . Then TP stores (uid, attr, aux) in its public
ledger.

– Authentication. A user with a unique identity string uid would like to
authenticate to a SP with a unique identity string sid. First, the user uid
logs into the trusted party TP and sends a request (‘request’, sid) to TP .
Then TP checks the validity of the latest requirement (C,PR,L) of sid. If
the requirement is legal, then TP checks if uid satisfies the requirement of
sid, and sends the result result to uid, who needs to decide if to proceed
the protocol then. If uid proceeds, then TP assigns a unique identifier tid
for this authentication event, stores (tid, C,PR,L) in its private ledger and
sends a tuple (‘request’, sid, tid, result) to sid. TP also stores (tid, sid) in
its private ledger if the result is ‘valid’. Upon receiving the request (and
the recommended result), sid needs to decide if it would like to proceed the
protocol, and sends a response, which is either ‘accept’ or ‘reject’, back if it
proceeds. Finally, Tp forwards the response along with tid to uid.

– Interaction with The Ledger. Every participant can obtain all data in
the public ledger of the trusted party via submitting a “retrieve” request to
TP . Besides, a SP sid can also upload its new requirement (C,PR,L) to TP ,
and a record (sid, C,PR,L) will be recorded. Also, it can submit a rating s
for an authentication event tid. Then a tuple (rid, sid, tid, s, C,PR,L) will be
recorded in the public ledger if tid has occurred, where rid is the identifier
for this record, and (C,PR,L) is the requirement for the authentication event
tid and has been recorded by TP in its private ledger. In addition, it can also
publish a statement revoking a rating record rid that he has submitted, and
a record (‘revoke’, rid, sid) will be recorded in the public ledger. We remark
that the validity of those submitted data will not be checked when the data
are uploaded, instead, it will be checked when the data are used.

Security of DBLACR system requires that the protocols can emulate the
ideal protocols. Formally, we require that:

Definition 1. Let RealA(1
λ) be the joint distribution of the outputs of all par-

ties of the real world protocols and the output of the real world adversary A.
Let IdealS(1

λ) be the joint distribution of the outputs of all parties of the ideal
world protocols and the output of the ideal world adversary S. A DBLACR sys-
tem is secure if for all PPT real world adversary A, there exists a PPT ideal
world adversary S, who controls the ideal-world players corresponding to the
real-world players controlled by A and has black box access to A, such that:

RealA(1
λ)

c≈ IdealSA(1λ).



Definition 1 can imply a variety of security properties, here we highlight a
few that are most concerned in practice:

– Authenticity. The authenticity property guarantees that SPs are assured
to accept authentication events only from users satisfying their requirements.

– Anonymity. The anonymity property guarantees that all a SP learns from
an authentication event is if the authenticating user satisfies its current re-
quirement.

– Non-Frameability. The non-frameability property guarantees that if a SP
is honest, then users satisfying the current requirement of this SP can always
successfully authenticate to it.

– Sybil-Attack Resilience. The Sybil attack [23] allows users to get new
credentials after their current credentials are blacklisted, thus may expose
services to users with misbehaviors. In our new system, since users register
to the system via uploading their identities to the public ledger, the Sybil
attack can be prevented if SPs only select users whose identities have not
been uploaded previously as candidate users.

– Authenticity of Registration. This property guarantees that SPs can
decide which users are legitimate directly and do not have to resort to a third
party to complete this task. The property can provide a better protection
for SPs.

– Privacy of Registration. This property guarantees that only the fact that
the registered user hopes to access at least one service supported by the
system can be learned from a registration event. As personal information is
usually required in registration, this property is significant in protecting the
privacy of users.

– Consistency of Blacklists. This property guarantees that each rating
record selected by a SP will be honestly assessed unless there exist SPs
hoping to expose their services to possible malicious users. The property can
greatly reduce the requirement of trust when using rating records from other
SPs.

– Blacklist-Gaming Attack Resilience. The blacklist gaming attack [40]
allows a SP to compromise the privacy of users via generating blacklists (re-
quirements) maliciously. Our new system is partially resilient to the blacklist
gaming attack and this is achieved in the following two aspects. First, in our
new system, the SPs can only update their requirements regularly, thus in
each time period, the requirement used in authentication protocols is fixed.
Compared to that in previous systems, where the malicious SP can use an
adaptively chosen blacklist during each authentication event, the privacy of
users is better protected now. To demonstrate this, we consider the follow-
ing scenario. Via Some auxiliary information, a SP conjectures that the next
authentication event is launched by the same user who launches a previous
authentication event with identifier “t”. In current blacklistable anonymous
credential systems, the SP can definitely verify its conjecture via providing a
blacklist with merely “t” in it. However, this attack is not applicable in our
system since no SP is able to use a temporary blacklist in an authentication.



Next, in our new system, as a user could obtain the latest requirement of
a SP from the public ledger, he can check whether he is able to pass the
verification in advance and will not attempt to launch the authentication
protocol if he does not satisfy the requirement. To see why this can better
protect the privacy of users, we consider the following scenario. Again, via
some auxiliary information, a SP learns that the following authentication
events will be launched by one of two lists of users. It also learns whether
each user in these two lists satsifies a pre-defined requirement. Previously,
even restricting the malicious SP to the pre-defined requirement, it can still
determine the list of users in use if there exists an index i that the ith users
in the two lists are different in satisfying the requirement. In contrast, in
our new system, the malicious SP can learn nothing if the numbers of users
satisfying the requirement in these two lists are identical.

We remark that the first four properties are already achieved in current
blacklistable anonymous credential systems. The property “authenticity of reg-
istration” and the property “privacy of registration” have also been achieved
previously, but no system has these two properties simultaneously, and our sys-
tem is the first one that can protect both the security of the SPs and that of
the users in the registration. The last two properties are new security properties
that are only available in our new system.

4 A General Framework for Constructing Decentralized
Blacklistable Anonymous Credential System with
Reputation

In this section, we provide a general framework for constructing the decentral-
ized blacklistable anonymous credential system with reputation. The general
construction is built from several components, so we first introduce these basic
algorithms and protocols. Then we describe how to combine these components
to complete the construction. Finally, we give a security proof to illustrate the
security of our construction.

4.1 Building Blocks

Our DBLACR system can be instantiated from various public key systems, and
for each public key system, we need the following sub-protocols to help build
our system:

A Key Generation Algorithm. On input a security parameter 1λ, the key
generation algorithm returns a public key/secret key pair, namely, (pk, sk) ←
KeyGen(1λ). In our system, the public key is the credential of a user, and the
secret key is the witness for it. So we require that the key generation algorithm
has the following properties:

– Verifiability. There exists a polynomial-time algorithm T s.t. T (pk, sk) = 1
iff the pair (pk, sk) is a legal key pair of the public key system.



– Onewayness. Given the public key pk, it is computationally hard to compute
a secret key sk such that T (pk, sk) = 1.

– Collision Resistance. It is computationally hard to find a pair of different
secret keys (sk1, sk2) and a public key pk such that T (pk, sk1) = T (pk,
sk2) = 1.

A Ticket Generation Algorithm. On input a secret key sk, the ticket gen-
eration algorithm generates a ticket for sk, namely, τ ← TicketGen(sk). In our
system, each ticket will be the representation of an authentication event, and an
authentication event with a ticket τ will be regarded as launched by the owner
of a secret key sk iff S(sk, τ) = 1. So we require that the ticket generation
algorithm has the following properties:

– Verifiability. There exists a polynomial-time algorithm S s.t. S(sk, τ) = 1 iff
τ is a valid ticket of sk.

– Indistinguishability. Let (pk, sk) ← KeyGen(1λ), then for any probabilistic

polynomial time adversary A, Pr[b $← {0, 1}; b← AOb(pk)] ≤ 1/2+ negl(λ),
where O0 outputs a ticket of sk each time invoked, and O1 outputs a random
element in the range of the ticket generation algorithm each time.

– Verifying Consistency. For any secret keys sk1, sk2, if there exists a τ s.t.
S(sk1, τ) = S(sk2, τ) = 1, then for any τ ′ in the range of the ticket generation
algorithm, we have S(sk1, τ

′) = S(sk2, τ
′).

– Connectivity. Let (pk, sk)← KeyGen(1λ), τ ← TicketGen(sk), and sk′ be a
secret key s.t. S(sk′, τ) = 1, then given (pk, sk′), one can efficiently compute
sk.

An SPK System Proving The Possession of The Secret Key. We need
an SPK system to prove that the prover possesses the secret key sk of a given
public key pk. Formally, the prover needs to prove SPK{(sk) : T (pk, sk) = 1}.
Here, we require the SPK system (and SPK systems below) to have the security
properties described in Sec. 2.

An SPK System Proving the Validity of A Public Key and A Ticket.
We need an SPK system proving that the prover possesses a secret key sk for
a given ticket τ and the secret key is associated with a public key in a given
set C. Formally, the prover needs to prove SPK{(sk, pk) : S(sk, τ) = 1 ∧ T (pk,
sk) = 1 ∧ pk ∈ C}.

An SPK System Proving The Fulfilment of A Policy. We also need an
SPK system proving that the prover possesses a secret key sk for a given ticket τ
and the secret key represents a user whose scores evaluated according to a policy
PR and a rating records list L satisfies RR. For simplicity of description, in this
section, we define a boolean function E that outputs 1 iff the latter condition is
satisfied. Then, the prover needs to prove SPK{(sk) : S(sk, τ) = 1 ∧ E(PR,L,
sk) = 1}.



4.2 The Construction

Now, we present the general construction of our DBLACR system, which is
built on the sub-protocols shown in Sec.4.1 and a public append-only ledger
with ideal functionality F⋆

BB . Recall that the construction supports multiple
public key systems simultaneously. Formally, we have:

Setup. On input a security parameter 1λ, a trusted party runs the setup al-
gorithm for each sub-protocol of each public key system and outputs all those
generated public parameters as the public parameter for the DBLACR system.

Registration. To register himself to the system, a user with auxiliary proof data
aux and attributes attr first generates his public key/secret key pair (pk, sk)←
KeyGen(1λ) for one of the supported public key systems. Then he computes
ΠR←SPK{(sk) : T (pk, sk) = 1}[aux∥attr]. Finally, he stores the tuple (Nym,
pk,ΠR, attr, aux) to the public ledger via F⋆

BB , where Nym is his pseudonym in
the public ledger. We remark that here the user can use a temporary pseudonym
and not a permanent one.

Authentication. In this protocol, a user uid attempts to authenticate with a
service provider sid. Interactions between these two parties are summarized in
Fig. 3. For the clarity of presentation, here we assume that there are k public key
systems employed in our system, and denote them as Ψ1, . . . , Ψk respectively. All
algorithms in Ψi will be labeled with a superscript “(i)”, and w.l.o.g. we assume
that the user uid chooses the first public key system when registering.

In more detail, in this protocol, the user uid first downloads the require-
ment (C,PR,L) for accessing services of sid from the public ledger. Then he
verifies the validity of this requirement.3 If the requirement is valid, the user
then checks whether he satisfies the requirement. If not, he aborts the pro-
tocol even without communicating with sid. Otherwise, uid sends a request
to sid and gets a challenge m∥sid′ back, where m is a randomly chosen bit
string whose length is polynomial in the security parameter. Then, uid checks
whether sid = sid′ and if so he generates a ticket T and a proof ΠA, and sends
(T ,ΠA) to sid. More precisely, to generate the ticket T , the user computes
τ1 ← TicketGen(1)(sk), randomly samples τi in the range of TicketGen(i)(·) for
i ∈ [2, k], and sets T = {τ1, . . . , τk}. To generate the proofΠA, the user computes

ΠA = SPK{(sk, pk) :
∨k

i=1(T
(i)(pk, sk) = 1∧pk ∈ Ci∧S(i)(sk, τi) = 1∧E(i)(PR,

L(i), sk) = 1)}[m∥sid], which is constructed by employing the technique in [19]
to combine the proof of “validity of a public key and a ticket” and the proof
of “fulfillment of a policy” for each public key system, where Ci consists of all
public keys of Ψi that are in C, and L(i) consists of all rating records in L but
for each record the ticket T ′ = (τ ′1, . . . , τ

′
k) is replaced with τ ′i . Upon receiving

3 Checking the validity of C and L may be difficult and time-consuming for a normal
user, so he could skip this step or only verify a fraction of them. This will not
degrade the security too much since the requirement is public to everyone and an
invalid requirement in the public ledger may be discovered by an honest participant
soon.



the response (T , ΠA), sid verifies the proof and sends the result, which will be
“accept” iff the proof is valid, back to uid.

Interactions in the Authentication Protocol.

UF⋆
BB

(uid, sid, sk, pk, C,PR,L)

SPF⋆
BB

(sid, C,PR,L)

(‘request’, sid)

m∥sid

(T , ΠA)

accept or reject

Fig. 3 Interactions in the authentication protocol. Here, we use “U” to denote the user,
and “SP” to denote the service provider.

Interaction with The Ledger. To obtain data from the public ledger, a par-
ticipant just needs to submit a “retrieve” request to F⋆

BB . To put data to the
public ledger, a SP just needs to submit a “store” request together with its per-
manent pseudonym and its data to F⋆

BB . The submitted data vary depending
on the purpose of the SP. In particular, when a SP would like to submit a rating
s, it needs to put a tuple (rid, T , s, Γ ) to the public ledger, where rid is a unique
string identifying this rating record, T is the ticket for the rated authentica-
tion event, and Γ is the transcript of this authentication event, which is used
to prove that the rated authentication event can be accepted by this SP. When
a SP would like to submit a revocation of a rating record rid, it needs to put
a tuple (‘revoke’, rid) to the public ledger. When a SP would like to publish a
new requirement, it first generates a valid requirement (C,PR,L), then puts it
to the public ledger. To generate a valid requirement, apart from meeting those
demands listed in Sec. 3.1, the SP should further ensure that each selected user
in C is attached with a valid proof ΠR. We remark that all those data uploaded
to the public ledger will not be verified in this phase, instead, the verification
will be postponed until the data are used.

The Security. Security of our system is guaranteed by Theorem 1 stated as
following, whose proof is put in Appendix A.2.

Theorem 1. The system presented in Sec. 4.2 is a secure DBLACR system if
each sub-protocol has the properties demanded in Sec. 4.1.

5 Instantiations from Different Public Key Cryptographic
Systems

To demonstrate the utility of our general framework, in this section, we instan-
tiate sub-protocols defined in Sec. 4.1 under three different types of public key



systems, namely, the classical DL system, the pairing based system, and the
RSA system.

The system built from the classical DL system based instantiations can be
viewed as an extension of the decentralized anonymous credential system pre-
sented in [27]. Similar to the system in [27], our system also works in a q-order
subgroup (G, q, g) of the group Z∗

p for large primes p and q. Moreover, secret keys
of users are also random numbers in Zq, and we will also employ the technique
in [27] to conduct the proof of “the possession of the secret key” and the proof
of “the validity of a public key and a ticket”. However, in our instantiations,
the credential (public key) of a user with a secret key x will be gx instead of a
commitment of x. Besides, compared to the system in [27], here we further need
a ticket generation algorithm and a proof of “the fulfilment of a policy”, which
are constructed by applying the method in [6]. One obstacle in extending the
construction in [6], which is based on the pairing system, to our classical DL
setting is that we cannot find a proper classical DL based CL signature scheme.
To solve this problem, we use the dynamic accumulator scheme employed in
constructing the proof of “the validity of a public key and a ticket” instead.

The system built from the pairing system based instantiations looks very sim-
ilar to the one instantiated from the classical DL system, due to resemblances
between the two public key systems in the abstract level. However, in a classi-
cal DL system, group elements are numbers, while in a pairing system, group
elements are points in an elliptical curve. As a result, the accumulator, which is
employed to accelerate the membership proof used in the proof of “the validity
of a public key and a ticket” in the classical DL setting, cannot be applied here
in the pairing setting. Therefore, we can only employ the “or proof” directly to
complete the task.

Note that the proof of “the validity of a public key and a ticket” is constructed
inefficiently in both the classical DL setting and the pairing setting, due to the
inefficiency of the membership proof in these two constructions. More precisely,
in the classical DL setting, similar to that in [27], one needs to prove that he
possesses the secret key of a public key accumulated in an accumulator. As
the secret key is the discrete logarithm of the public key on g, double discrete
logarithm proof should be employed, which implies that the prover needs to
perform 80 to 128 iterations of the protocol. Things get even worse in the pairing
setting, since here one have to use the “or proof” directly to prove that his public
key is in a specific set, which will lead to a communication and computation cost
that grow linearly with the size of the set. To solve these problems, we propose
the new RSA system based instantiations, where the secret key and the public
key are in a polynomial relation (instead of an exponent relation), which can
better fit the accumulator related proofs and lead to an improved efficiency.

Next, we will provide detailed construction of sub-protocols from the RSA
system in Sec. 5.1, and construction of sub-protocols from the classical DL system
in Sec. 5.2. We omit the pairing system based instantiation here since it is too
similar to the classical DL system based instantiation.



5.1 Instantiations of Sub-Protocols from The RSA System

Our RSA based sub-protocols works in a quadratic residue group QRN with a
generator g, where N is the product of two big safe prime numbers.

The Key Genaration Algorithm. Upon input a security parameter 1λ, the
key generation algorithm generates the secret key sk = (p, q) and the public key
pk = n, where p and q are two safe primes and n = 2pq + 1 is also a prime.

To check the validity of a key pair given pk = n and sk = (p, q), one just
needs to check that p and q are safe prime numbers with identical lengths,
n = 2pq + 1, and n is a prime. Onewayness of the key generation algorithm
comes from the factoring assumption directly, and the key generation algorithm
is collision resistant because the map from the secret key to the public key is
injective.

The Ticket Genaration Algorithm. Upon input a secret key sk = (p, q),
the ticket generation algorithm generates the ticket τ = (b, t) by first sampling

r
$← ZN , then computing b = gr mod N and t = bp+q mod N .
Given a secret key sk = (p, q) and a ticket τ = (b, t), to verify the validity of

the ticket, one just needs to check whether t = bp+q mod N . Indistinguishability
of the ticket generation algorithm comes from the LD-RSA assumption and the
DDH-II assumption. Formally, we describe this in Lemma 1 and prove this in
Sec. A.1.

Lemma 1. Assuming both the LD-RSA assumption and the DDH-II assumption
hold in the quadratic residue group QRN , then the RSA system based ticket
generation algorithm has the indistinguishability property.

Given two secret keys sk = (p, q) and sk′ = (p′, q′) that S(sk, τ) = S(sk′,
τ) = 1 for some τ = (b, t), we can conclude that (p + q) = (p′ + q′) = logb t
mod φ(N)/4. In fact, in our system, we also restrict that valid secret keys cannot
be too large, namely, cannot exceed φ(N)/4, and implicitly require the prover
to prove this in their proof, so we actually have p+ q = p′ + q′. As a result, the
set of valid tickets for sk is identical to that for sk′, i.e. for any τ ′ in the range of
the ticket generation algorithm, S(sk, τ ′) = S(sk′, τ ′). Also, to compute a secret
key sk given the public key pk = n for sk and sk′, one just needs to compute
µ = p′ + q′ and ν = (n− 1)/2, and solve the equation x2 − µx+ ν = 0.

An SPK System Proving The Possession of The Secret Key. In this proof
system, one needs to prove that he possesses a secret key sk = (p, q) for a properly
generated public key pk = n. Here, we divide the task into two parts. First, the
prover proves that (n − 1)/2 is a product of two primes. This is accomplished
by employing the proof system proposed in [28], and actually, we only need the
first two stages of the proof.4 Then, the prover needs to prove that he knows two
numbers p, q with identical lengths that satisfy 2pq + 1 = n. To instantiate this
proof system, we apply the framework presented in [31], which provides a simple

4 To ensure an honest user can generate the proof, we further require that the secret
key sk = (p, q) satisfies that p ̸= q mod 8 in the key generation algorithm.



method to prove knowledge of discrete logs that are in an interval and fulfil a set
of equations over groups of unknown order. More precisely, let g, h be random

generators of the groupQRN and n′ = (n−1)/2, the prover samples r1, r2
$← ZN ,

computes a = qr1, C0 = gr1 , C1 = gphr1 , C2 = gqhr2 , and proves SPK{(p, q, r1,
r2, a) : C0 = gr1∧C1 = gphr1∧C2 = gqhr2∧Cq

0 = ga∧gn′
ha = Cq

1∧p ∈ [2ℓn/2−∆,
2ℓn/2+∆]∧q ∈ [2ℓn/2−∆, 2ℓn/2+∆]}, where ∆ is chosen according to the secret
key space of the concrete key generation algorithm employed and we use ℓn to
denote the length of n in this section. Finally, the generated proof is a simple
concatenation of these two parts. As it has been proved in the first part that
(n− 1)/2 is a product of two primes, and in the second part that pq = (n− 1)/2
and p and q are of identical lengths, the proof can ensure that (p, q) is exactly
the secret key for the properly generated pk.

An SPK System Proving the Validity of A Public Key and A Ticket.
In this proof system, one needs to prove that he possesses a secret key sk =
(p, q) associated with a public key pk = n in a given set C and that a given
ticket τ = (b, t) is generated from this secret key. To prove the first part of the
statement, we can apply the approach presented in [22], which also builds on the
framework of [31]. More precisely, the prover first accumulates public keys in C
with a dynamic accumulator, then proves in zero-knowledge the possession of
the secret key of a public key in the accumulator. To further prove that the given
ticket is also generated from the same secret key, he can just plug the equation
t = bpbq into existing proofs. Formally, the prover needs to prove SPK{(p, q,
n, r, a1, a2) : T1 = gr ∧ T2 = hrgn ∧ Tn

1 = ga1 ∧ T3 = srgq ∧ T q
1 = ga2 ∧ Tn

4 =
vya1 ∧ T q

5 g = za2gn ∧ t = bp+q ∧ n ∈ [2ℓn − ∆1, 2
ℓn + ∆1] ∧ q ∈ [2ℓn/2 − ∆2,

2ℓn/2 +∆2]}, where ∆1, ∆2 are chosen according to the concrete key generation

algorithm used, r
$← ZN , a1 = rn, a2 = rq, g, h, y, z, s are random generators

of the group QRN , T1 = gr, T2 = hrgn, T3 = srgq, T4 = wyr, T5 = zrg2p,

v = g
∏

n′∈C n′
is the accumulator for the set C and w = g

∏
n′∈C−{n} n′

is the
witness for n ∈ C. We remark that as in our system, all selected public keys are
valid, the prover does not need to reprove this here.

An SPK System Proving The Fulfilment of A Policy. In this proof system,
given a ticket τ = (b, t), a policy PR and a rating records list L, one needs to prove
that he possesses a secret key sk = (p, q) that represents a user whose scores
evaluated according to PR and L satisfies PR, and that τ is generated from sk.
We exploit the idea in [6] to construct the proof system, but will employ RSA-
based cryptographic primitives instead of those pairing-based ones. In particular,
we will apply strong-RSA assumption based additive homomorphic commitment
scheme [26] and CL signature scheme [14], and we will also apply the framework
in [31] to construct our proof system.

More precisely, the proof system is constructed in two tiers. First, as the
policy PR is evaluated by checking whether scores of a user in different categories
satisfy a given DNF formula, we can first construct proof systems for each literal
separately and combine them by the general framework in [19] then. To construct
the proof system for each literal, which proves that the score of the user for a



category is not less than (or ‘less than’ if a negation symbol appears) a given
threshold, we first filter data related to the target category. In more detail, we
regard each rating record as a term (b, t, ς), where (b, t) is the ticket for an
authentication event and ς is the rated score in the target category for this
authentication event. According to the value of ς, we divide the whole rating
records list into two parts, namely the meritlist, which contains terms with
ς ≥ 0, and the blacklist, which contains the rest terms. Also, we only consider
the two adjusting factor lists for the target category. Before constructing the
proof system, we still need to solve two problems, one of which is that we need
a way to prove that correct adjusting factor is used, and the other one is that
we need an accurate range proof. Both problems can be solved by introducing
the CL signature scheme. In more detail, to ensure that the correct adjusting
factor is used, each adjusting factor list will be attached with a public key of the
CL signature scheme, and each term (an adjusting factor) in the list will also be
attached with a signature (signed by the service provider), which is signed on
the adjusting factor together with its index, and is used to bind them. Besides,
to build an accurate range proof, which is used to prove that the score of the
user is not less than (or less than) the threshold θ for the target category, we
also require the service provider in our system to attach the threshold θ with
a public key of the CL signature scheme as well as signatures for integers in
[θ, θmax] (or [θmin, θ]), where θmax and θmin are the upper bound and the lower
bound of possible scores in the target category respectively. Now, let x = p+ q,
lm be the size of the meritlist, lb be the size of the blacklist, the proof consists
of the following parts:

1. A set of auxiliary commitments aux+ = (C+
1 , C̃+

1 , . . . , C+
lm
, C̃+

lm
) together

with a proof Π+ = (Π+
1 , . . . , Π+

lm
). Let (n, a1, a2, b, c) be the public key

of the CL signature scheme for the adjusting factor list of the meritlist.
Also, for each i ∈ [1, lm], let (bi, ti, ςi) be the ith element in the meritlist,
κi = ∥{j | j ∈ [1, i] ∧ bxj = tj mod N∥}∥, and (∆κi , (eκi , sκi , vκi)) be the
κith element in the adjusting factor list for the meritlist. Then, for i ∈ [1,

lm]: 1) if bxi ̸= ti mod N , then both C+
i and C̃+

i are commitments of 0; 2)

otherwise, C̃+
i is a commitment of 1, and C+

i is a commitment of ∆κiςi. Also,

for each i ∈ [1, lm], Π+
i proves that C+

i and C̃+
i are properly generated, and

is an “or proof” of two parts:
The first part is for the case that bxi ̸= ti mod N , and is the proof SPK{(x,
αi,1, αi,2, βi,1, βi,2, γi, γ̃i) : t = bx ∧ Ui,2 = g

αi,1

1 g
αi,2

2 ∧ 1 = U−x
i,2 g

βi,1

1 g
βi,2

2 ∧
Ui,1 = t

αi,1

i b
−βi,1

i ∧C+
i = gγi

2 ∧ C̃
+
i = gγ̃i

2 ∧ x < 2ℓn/2+2}, where αi,1, αi,2, γi
and γ̃i are sampled uniformly at random from ZN , βi,1 = αi,1x, βi,2 = αi,2x,

g1, g2 are generators of QRN , Ui,1 = t
αi,1

i b
−βi,1

i , and Ui,2 = g
αi,1

1 g
αi,2

2 . We
remark that to verify the validity of this part, the verifier should also reject
the proof if Ui,1 = 1.
The second part is a proof for the case bxi = ti mod N , and is a con-
catenation of three proofs Π+

1,i,Π
+
2,i and Π+

3,i. The first proof Π+
1,i is the

main body of this part, and we have Π+
1,i = SPK{(x, γi, γ̃i, κi, βi,3,∆κi ,



αi,3, αi,4) : t = bx ∧ ti = bxi ∧ C̃+
i = g1g

γ̃i

2 ∧ D̃i = gκi
1 g

βi,3

2 ∧ C+
i =

U
∆κi
i,3 gγi

2 ∧ Ui,4 = gκi
1 g

αi,3

2 ∧ Ui,5 = g
∆κi
1 g

αi,4

2 ∧ x < 2ℓn/2+2}, where αi,3,

αi,4, γi and γ̃i are sampled uniformly at random from ZN , βi,3 =
∑i

j=1 γ̃j ,

g1, g2 are generators of QRN , D̃i =
∏i

j=1 C̃j , Ui,3 = gςi1 , and Ui,4 and Ui,5

are commitments of κi and ∆κi respectively. The second proof Π+
2,i, which

proves the possession of a signature on κi and ∆κi , works in the group
QNn and we have Π+

2,i = SPK{(sκi , vκi , eκi , κi,∆κi , wi, zi, rw,i, r
′
w,i, r1,i,

r2,i) : T
eκi
v,i = aκi

1 a
∆κi
2 bsκi cgzi ∧ Tw,i = gwihrw,i ∧ T

eκi
w,i = gzihr′w,i ∧ T1,i =

gκihr1,i ∧ T2,i = g∆κihr2,i ∧ 2ℓe−1 < eκi < 2ℓe ∧ κi < 2ℓm ∧ ∆κi < 2ℓm},
where wi, rw,i, r1,i, r2,i are sampled uniformly at random from Zn, zi = wieκi ,
r′w,i = rw,ieκi , g, h are generators of QRn, Tv,i = vκig

wi , Tw,i, T1,i, T2,i are
commitments of wi, κi,∆κi respectively, and ℓe, ℓm are defined in the signa-
ture scheme. Since Π+

1,i and Π+
2,i are generated in different groups, we also

need the third proof Π+
3,i to connect them, which proves that Ui,4 and T1,i

are commitments of the same value, and Ui,5 and T2,i are commitments of
the same value. Here, we apply the technique in [16] to accomplish it.

2. A set of auxiliary commitments aux− = (C−
1 , C̃−

1 , . . . , C−
lb
, C̃−

lb
) together

with a proof Π− proving that each items in aux− is properly generated,
which is generated in the same way as the generation of aux+ and Π+.

3. A proofΠS proving that the final score, which is comitted in the commitment
C =

∏lm
i=1 C

+
i

∏lb
i=1 C

−
i , is above (or below) the threshold θ. It is sufficient

to prove that one of the signature associated with the threshold θ is on the
committed value of C, and we can prove this statement in the same way as
we have used when generating Π+

2,i in Π+.

Finally, the proof for each literal is Π = (aux+, aux−, Π+,Π−,ΠS).

5.2 Instantiations of Sub-Protocols from The Classical DL System

Our classical DL system based sub-protocols works in a q-order subgroup (G,
q, g) of a group Z∗

p, where p and q are both primes, and in a quadratic residue
group QRN , where N is the product of two big safe prime numbers.

The Key Genaration Algorithm. Upon input a security parameter 1λ, the
key generation algorithm generates the secret key sk = x and the public key

pk = gx, where x
$← Zq.

To check the validity of a key pair given pk = h and sk = x, one just needs
to check whether h = gx. Onewayness of the key generation algorithm comes
from the DL assumption directly, and the key generation algorithm is collision
resistant because the map from the secret key to the public key is injective.

The Ticket Genaration Algorithm. Upon input a secret key sk = x, the

ticket generation algorithm generates the ticket τ = (b, t) by first sampling r
$←

Zq, then computing b = gr and t = bx.



Given a secret key sk = x and a ticket τ = (b, t), to verify the validity of the
ticket, one just needs to check whether t = bx. Indistinguishability of the ticket
generation algorithm comes from the DDH assumption directly. The verifying
consistency and the connectivity hold since for any ticket τ , there exists exactly
one secret key sk satisfying S(sk, τ) = 1.

An SPK System Proving The Possession of The Secret Key. In this
proof system, one needs to prove that he possesses a secret key sk = x for a
properly generated public key pk = h. Here we can use the protocol presented
in [37], which proves knowledge of discrete logarithms, to complete this task.

An SPK System Proving the Validity of A Public Key and A Ticket.
In this proof system, one needs to prove that he possesses a secret key sk = x
associated with a public key pk = h in a given set C and that a given ticket τ = (b,
t) is generated from this secret key. To prove the first part of the statement,
we can apply the same technique used in [27]. More precisely, the prover first
uses the Stron-RSA assumption based dynamic accumulator, which works in the
quadratic residue group QRN , to accumulate all public keys in C. Then he uses
the double discrete logarithm technique [38] to prove the possession of the secret
key of a public key in the accumulator. To further prove that the given ticket is
also generated from the same secret key, he can just plug the equation t = bx

into existing proofs.

An SPK System Proving The Fulfilment of A Policy. In this proof system,
given a ticket τ = (b, t), a policy PR and a rating records list L, one needs to
prove that he possesses a secret key sk = x that represents a user whose scores
evaluated according to PR and L satisfies PR, and that τ is generated from
sk. We exploit the idea in [6] to construct the proof system, but will employ
classical DL system based cryptographic primitives instead of those pairing-
based ones. One problem is that we cannot find a proper classical DL based CL
signature scheme to help prove that correct adjusting factor is used and that a
score is in the required interval. To solve this problem, we use the strong-RSA
based dynamic accumulator. More precisely, for an adjusting factor list with
m elements, let l = 2ℓl be a proper number greater than the upper bound of
weights in the adjusting factor list; let L be a proper number much larger than
(m+1)l, and L′ = 2ℓL satisfying (m+1)l < L′ < L; given C1 and C2, which are
commitments of an index i and a weight ∆, let k be the minimal natural number
satisfying i · l + ∆ + k · L is prime; to prove that ∆ is exactly the ith element
in an adjusting factor list, the prover first computes Ck as a commitment of k,
C3 = Cl

1 · C2, and C = C3 · CL
k . Then he computes zj = j · l +∆j + kj · L for

j ∈ [1,m], where ∆j is the jth element in the adjusting factor list and kj is
the minimal natural number satisfying zj is a prime, and accumulates all those
zj . Finally, he proves that the committed value in C is in the accumulator, the
committed value in C3 is in [0, L′ − 1], and the commitment value in C2 is in
[0, l − 1], where the latter two statements can be proved via a range proof [33].
To prove that a score s is in an interval [l, u] given a commitment C of s, let
L be a proper number much larger than u, L′ = 2ℓL satisfying u < L′ < L,



and k be the minimal natural number satisfying s + kL is a prime, the prover
first computes Ck as a commitment of k and C ′ = C · CL

k . Then he computes
zi = i + kiL for i ∈ [l, u], where ki is the minimal natural number satisfying zi
is a prime, and accumulates all those zi. Finally, he proves that the committed
value in C ′ is in the accumulator and the committed value in C is in [0, L′ − 1].

6 The Implementation

To demonstrate the practicability of our system, in this section, we provide a
proof of concept implementation for it. The implementation includes two rel-
atively independent parts, namely, the public ledger part and the credential
system part, and we describe the results for them in Sec. 6.1 and in Sec. 6.2
respectively.

6.1 The Public Ledger

First, we explore how the public ledger could be realized. As have discussed in
Sec. 2, the public ledger can be instantiated via the blockchain technique. So, we
choose the Bitcoin and the Ethereum, which are the two most popular blockchain
technique instantiations currently, as the test object. The test is conducted on a
personal computer with a 3.16GHz Intel(R) Core(TM)2 Duo Processor E8500,
8GB RAM and 500GB disk, running ARCHLinux version 4.10.6. The Bitcoin
client run in the experiment is Bitcoin Core Version 0.14.0 and the Ethereum
client is go-ethereum 1.5.9. The result is summarized in Table 2.

Table 2: Comparison of Public Ledger Instantiations.

Bitcoin Ethereum

Market Cap 19257718797 USD 4376127411 USD
Initial Data Size 118GB 15 GB
Initial Sync Time 9h 5h
Ease of Use Difficult Easy
Data Size Limit 80bytes *
Cost 0.5342 USD 0.0225 USD
Confirmation Time 6min / 70min a few seconds / 3min

The row “Market Cap” indicates the market capitalizations of each instantia-
tion, and the data come from [1]. This can reflect the robustness of the blockchain
to some extent. The row “Initial Data Size” and the row “Initial Sync Time” in-
dicates the disk space and time needed before one could employ the public ledger.
We remark that both results are tested in the “fast” mode: the latest Bitcoin core
client introduce a default “assumevalid” option, which will hardwire the latest



block in the software and skip the verification of content in preceding blocks; the
Ethereum blockchain is synced with the “fast” option, with which each trans-
action in blocks old enough will be partially downloaded (only the transaction
outcomes are downloaded) and will not be verified. The row “Ease of Use” and
the row “Data Size Limit” indicates the accessibility of using blockchain as a
public ledger. For Bitcoin, in each transaction, there exists a field OP RETURN
allowing one to put up to 80 bytes arbitrary data [3] on it, but it seems that the
Bitcoin community do not hope people to use this field, and the client Bitcoin
Core also does not provide a convenient way to implement this functionality.
Thus, we test this facility via a third party open source project on GitHub [30].
For Ethereum, putting data in a transaction is natively supported. There is also
no explicit limits on the size of data put in a transaction, but for each block,
there is a block gas limit, which is about 4 millions for current blocks. As it
will consume gas to attach data to a transaction, one could only put dozens
to hundreds kilobytes data in one transaction now according to the content of
the data. The row “Cost” indicates the amount of money cost to put data on
the blockchain. For Bitcoin, this is the transaction fee for rewarding the miners.
One can send a transaction with no transaction fee, but this transaction may be
not handled by miners in time and even be regarded as a spam transaction. Ac-
cording to statistics (data from [4]), to hope miners to deal with the transaction
immediately, the transaction fee should be above 1.8× 10−6 BTC per byte, and
for our purpose, which will send a transaction of about 250 bytes (about 200
bytes for the basic transaction and about 50 bytes for the attached data), the
transaction fee should be 0.00045 BTC, which is about 0.5342 USD according
to the price of 1 BTC at April 14th, 2017. For Ethereum, the cost comes from
the gas consumed. Currently, each gas is about 2 × 10−8 Ether, and according
to the yellow paper of Ethereum [43], a transaction will cost 21000 gas for it-
self, and each non-zero byte put in the data field will cost 68 gas, so it could
cost one about 0.000556 Ether, or about 0.0266 USD according to the price of
1 Ether at April 14th, 2017, if he would like to put 100 bytes on the Ethereum
blockchain. In our experiment, we put 32 bytes in a transaction and this cost us
0.00047 Ether (0.0225 USD). The row “Confirmation Time” indicates the time
needed to wait for the transactions and the data to be confirmed. For Bitcoin,
on average, it will take 10 minutes to generate a new block, so on average, it
will take about 5 minutes to see the data appear on the blockchain, and about
1 hour to confirm that the data are put in the blockchain (6 confirmation). For
Ethereum, the new block appears every a few seconds, so the data will appear
on the blockchain immediately. As claimed by the Ethereum Blog [2], 10 con-
firmation in Ethereum is enough to achieve a similar degree of security as that
of 6 confirmation in Bitcoin, so it may take about 3 minutes to wait for the
confirmation of the transaction/data.

From the experiment result, we observe that neither the Bitcoin nor the
Ethereum can support large data storage. So in practice, to use them as a public
ledger, one should first upload the data to some public cloud, then put the link
(40 to 60 bytes for a dropbox link and 10 to 20 bytes if google url shorten service is



used) and hash value of the data (32 bytes if SHA-256 is used) to the blockchain.
In this way, the functionality of the public ledger still reserves. Another problem
is that while it is quite easy for a service provider to sync and maintain a Bitcoin
blockchain or an Ethereum blockchain in its server, this is not the case for a
normal user. To tackle this problem, we suggest users with constrained devices
to use a lightweight client or refer to an online service to complete interactions
with the public ledger (they could exploit multiple approaches to retrieve data
to boost the security), and this will not harm the security as long as there exists
services providing correct Bitcoin or Ethereum blockchain information. When
comparing the Bitcoin and the Ehtereum, it seems that the Bitcoin blockchain is
more robust, while the Ethereum is also very secure and is much more convenient
to use. Thus, in practice, Ethereum seems a better choice. There are also some
other blockchain instantiations, e.g. the Namecoin, the Emercoin, the Nxt etc.,
providing convenient ways to putting data on the blockchain, but the market
capitalizations for them is much smaller (a few thousandth) compared to the
Bitcoin and the Ethereum, and it seems that they do not provide much better
features compared to Ethereum. Therefore, we prefer to employ Ethereum to
realize our system.

6.2 The Credential System

Then we examine the practicality of the credential system part of our system.
The implementation is for the RSA-based instantiation, which is the most effi-
cient one among all three instantiations. To simplify the criterion for evaluating
the experiment result, we only consider a simple policy with a single category,
threshold 0, and no adjusting factor, and a rating records list with one blacklist.
The experiment is conducted on a Macbook Pro with 8GB of 1866MHz LPDDR3
onboard memory and a 2.7GHz dual-core Intel Core i5 processor, running OSX
10.12.4. The test code is written in C based on the OPENSSL library (version
1.0.2).

There are two main operations, namely the registration and the authentica-
tion, in the system, thus our experiment also focuses on the performance of these
two protocols. First, we test the performance of the registration protocol, includ-
ing the time for a user to generate a credential, the time for a service provider to
verify a credential, and the credential size. As the user may already have a key
pair when joining the system, the time consumption for generating a credential
is tested in two modes, namely the normal mode, where the user needs to gen-
erate both the key pair and the proof, and the pre-computation mode, where
credential is generated on a given public key/secret key pair. Then, we test the
performance of the authentication protocol, including the time for generating a
proof, the time for verifying a proof, and the size of the proof. Since the user
can access the requirement in advance and precompute some parts, we will test
the times for generating a proof both with and without pre-computation.

The experiment performance is measured under different parameters, includ-
ing the security parameter, the candidate users set size, and the blacklist size.
In more detail, we will consider security parameters of 1024 bits, 2048 bits, and



3072 bits, which can achieve a security strength of about 80 bits, 112 bits, and
128 bits respectively (according to [8]), and summarize the performance of our
system under different security parameters in Table 3. we will consider candidate
users set size of 10000, 20000, 50000 100000, and 200000, and blacklist size of
1000, 2000, 3000, 4000, and 5000, and summarize the performance of the au-
thentication protocol under these parameters in Figure 4. When analyzing the
relation between the performance and one particular parameter, the other two
parameters will be set as default, and the default values of the security param-
eter, the candidate users set size, and the blacklist size are 2048 bits, 50000,
3000 respectively. Besides, we also test the performance for the setting with an
empty blacklist, which is exactly the scenario considered in [27], and compare
our results with theirs in Figure 5.

Table 3: The performance of the registration protocol and the authentication protocol
under different security parameters with 50000 users and 3000 blacklist records.

GC GC-P VC CS GP GP-P VP PS

1024 bits 1.316s 0.153s 0.047s 70.1 KB 10.878s 0.021s 5.686s 3.1 MB
2048 bits 19.296s 0.932s 0.295s 139.9 KB 51.917s 0.036s 29.289 6.2 MB
3072 bits 69.578s 2.959s 0.910s 209.8 KB 142.123s 0.047s 84.872s 9.3 MB

Here, we use GC, GC-P, and VC to denote time consumed in generating a credential,
generating a credential with pre-computation, and verifying the validity of a credential
respectively; we use GP, GP-P, and VP to denote time consumed in generating a proof,
generating a proof with pre-computation, and verifying a proof respectively; and we use
CS and PS to denote the size of a credential and an authentication proof respectively.

From the experiment results, we can conclude that our system is quite prac-
tical when deployed in practice. First, at the user side, the time consumption
in the registration phase is acceptable even no pre-computation is made, and
it is extremely fast to generate a proof in the authentication phase if the user
could pre-compute. At the service provider side, it is also fairly fast to verify
the validity of a credential, but it seems time-consuming to verify the validity
of a proof. Nonetheless, the service provider often controls more computation
resources, and it can also further reduce the time consumption via parallelizing
the verification algorithm, so it will take less time to wait for the verification in
real world applications. Besides, the size of the credential and the proof is also
not very large, thus the communication cost of our system is also quite low. One
advantage of our system is that the proof size is independent of the size of the
candidate users set, and the time costs at both the user side and the service
provider side hardly increase with the increasing of the candidate users set size,
thus our system is scalable in the number of supported users. It worth noting
that this is important for the usefulness of our system, since a large number
of registered users is always desired to protect the privacy of particular users.
However, this is not the case for the blacklist size, as both the communication
cost and the computation cost grow linearly with the size of the blacklist. So,



10000 20000 50000 100000 200000
0

20

40

60

80

100

Candidate Users Set Size

T
im

e
(s
ec
)

GP

VP

GP-P (× 1000)

0

2

4

6

8

10

S
iz
e
(M

B
)

PS

(a) Performance for the authentication protocol under different candidate users set size with secu-
rity parameter 2048 bits and 3000 blacklist records. GP, GP-P and VP are times for generating a
proof without pre-computation, generating 1000 proofs with pre-computation, and verifying a proof
respectively, and PS is the size of the authentication proof.

2,000 4,000

20

40

60

80

Size of Blacklist

T
im

e
(s
ec
)

GP

VP

(b) Time for generating and
verifying a proof under differ-
ent blacklist size with secu-
rity parameter 2048 bits and
50000 users. GP and VP are
times for generating (without
pre-computation) and verifying
a proof respectively.

2,000 4,000
0

50

100

Size of Blacklist

T
im

e
(m

s)

GP-P

(c) Time (in milliseconds)
for generating a proof with
pre-computation under different
blacklist size with security pa-
rameter 2048 bits and 50000
users.

2,000 4,000

2

4

6

8

10

Size of Blacklist

S
iz
e
(M

B
)

PS

(d) Size (in Megabyte) of an
authentication proof under dif-
ferent blacklist size with secu-
rity parameter 2048 bits and
50000 users.

Fig. 4 Performance of our system under different candidate users set size and blacklist
size.

it is better to employ our system in settings with a small blacklist. We leave
how to upgrade the system to being scalable in the size of the blacklist as an
open problem. When comparing the efficiency of our system with that in [27],
we observe that our efficiency is much better than theirs, thus our system is
preferable even no revocation is considered.

References

[1] Cryptocurrency market capitalizations. https://coinmarketcap.com/. Accessed:
2017-04-15.

[2] On slow and fast block times. https://blog.ethereum.org/2015/09/14/

on-slow-and-fast-block-times/.
[3] Op return. https://en.bitcoin.it/wiki/OP_RETURN. Accessed: 2017-04-15.
[4] Predicting bitcoin fees for transactions. https://bitcoinfees.21.co/. Accessed:

2017-04-14.

https://coinmarketcap.com/
https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/
https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/
https://en.bitcoin.it/wiki/OP_RETURN
https://bitcoinfees.21.co/


1024 2048 3072
0

0.5

1

1.5

2

2.5

3

3.5

4

Security Parameter (bits)

T
im

e
(s
e
c
)

GP-O VP-O

GP-G VP-G

0

10

20

30

40

50

60

70

80

S
iz
e
(K

B
)

PS-O

PS-G

Fig. 5 Comparison between the performance of our authentication protocol with empty
blacklist and the performance of the authentication protocol in [27]. Since in their ex-
periment, accumulator is computed separately, we also do not count time consumed by
this part in the test. Here, GP-O and VP-O are times for generating an authentication
proof without pre-computation and verifying an authentication proof in our system
respectively; GP-G and VP-G are respective times in [27]; and PS-O and PS-G are our
authentication proof size and theirs respectively.

[5] M. H. Au and A. Kapadia. Perm: Practical reputation-based blacklisting without
ttps. In CCS, pages 929–940. ACM, 2012.

[6] M. H. Au, A. Kapadia, and W. Susilo. Blacr: Ttp-free blacklistable anonymous
credentials with reputation. In NDSS, 2012.

[7] N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In EUROCRYPT, pages 480–494. Springer, 1997.

[8] E. Barker. Recommendation for key management–part 1: General (revision 4).
2015.

[9] M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. P-signatures and
noninteractive anonymous credentials. In TCC, pages 356–374. Springer, 2008.

[10] J. Benaloh and M. De Mare. One-way accumulators: A decentralized alternative
to digital signatures. In EUROCRYPT, pages 274–285. Springer, 1993.

[11] E. Brickell and J. Li. Enhanced privacy id: A direct anonymous attestation scheme
with enhanced revocation capabilities. In Proceedings of the 2007 ACM workshop
on Privacy in electronic society, pages 21–30. ACM, 2007.

[12] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In EUROCRYPT, pages
93–118. Springer, 2001.

[13] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In CRYPTO, pages 61–76. Springer,
2002.

[14] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In
International Conference on Security in Communication Networks, pages 268–289.
Springer, 2002.

[15] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In CRYPTO, pages 56–72. Springer, 2004.



[16] J. Camenisch, M. Michels, et al. Separability and efficiency for generic group
signature schemes. In Annual International Cryptology Conference, pages 413–
430. Springer, 1999.

[17] R. Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In CRYPTO, page 455. Springer, 1997.

[18] D. Chaum. Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM, 28(10):1030–1044, 1985.

[19] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In CRYPTO, pages 174–187.
Springer, 1994.

[20] I. B. Damg̊ard. Payment systems and credential mechanisms with provable secu-
rity against abuse by individuals. In CRYPTO, pages 328–335. Springer, 1988.

[21] W. Diffie and M. Hellman. New directions in cryptography. IEEE transactions
on Information Theory, 22(6):644–654, 1976.

[22] Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in ad
hoc groups. In EUROCRYPT, pages 609–626. Springer, 2004.

[23] J. R. Douceur. The sybil attack. In International Workshop on Peer-to-Peer
Systems, pages 251–260. Springer, 2002.

[24] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO, pages 186–194. Springer, 1986.

[25] C. Fromknecht, D. Velicanu, and S. Yakoubov. A decentralized public key in-
frastructure with identity retention. IACR Cryptology ePrint Archive, 2014:803,
2014.

[26] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In CRYPTO, pages 16–30. Springer, 1997.

[27] C. Garman, M. Green, and I. Miers. Decentralized anonymous credentials. In
NDSS, 2014.

[28] R. Gennaro, D. Micciancio, and T. Rabin. An efficient non-interactive statistical
zero-knowledge proof system for quasi-safe prime products. In CCS, pages 67–72.
ACM, 1998.

[29] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on computing, 18(1):186–208, 1989.

[30] G. Greenspan. Project php-op return. https://github.com/coinspark/php-OP_
RETURN. Accessed: 2017-04-15.

[31] A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In EUROCRYPT,
pages 571–589. Springer, 2004.

[32] P. Lofgren and N. Hopper. Faust: Efficient, ttp-free abuse prevention by anony-
mous whitelisting. In Proceedings of the 10th annual ACM workshop on Privacy
in the electronic society, pages 125–130. ACM, 2011.

[33] W. Mao. Guaranteed correct sharing of integer factorization with off-line share-
holders. In Public Key Cryptography, pages 60–71. Springer, 1998.

[34] I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous dis-
tributed e-cash from bitcoin. In S&P, pages 397–411. IEEE, 2013.

[35] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Annual International Cryptology Conference, pages 129–140. Springer,
1991.

[36] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In S&P, pages 459–
474. IEEE, 2014.

[37] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of cryptology,
4(3):161–174, 1991.

https://github.com/coinspark/php-OP_RETURN
https://github.com/coinspark/php-OP_RETURN


[38] M. Stadler. Publicly verifiable secret sharing. In International Conference on the
Theory and Applications of Cryptographic Techniques, pages 190–199. Springer,
1996.

[39] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith. Blacklistable anonymous
credentials: blocking misbehaving users without ttps. In CCS, pages 72–81. ACM,
2007.

[40] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith. Perea: Towards practical
ttp-free revocation in anonymous authentication. In CCS, pages 333–344. ACM,
2008.

[41] P. P. Tsang and V. K. Wei. Short linkable ring signatures for e-voting, e-cash and
attestation. In International Conference on Information Security Practice and
Experience, pages 48–60. Springer, 2005.

[42] W. Wang, D. Feng, Y. Qin, J. Shao, L. Xi, and X. Chu. Exblacr: Extending blacr
system. In ACISP, pages 397–412. Springer, 2014.

[43] G. Wood. Ethereum yellow paper, 2014.
[44] L. Xi and D. Feng. Farb: fast anonymous reputation-based blacklisting without

ttps. In Proceedings of the 13th Workshop on Privacy in the Electronic Society,
pages 139–148. ACM, 2014.

[45] K. Y. Yu, T. H. Yuen, S. S. Chow, S. M. Yiu, and L. C. Hui. Pe (ar) 2:
Privacy-enhanced anonymous authentication with reputation and revocation. In
ESORICS, pages 679–696. Springer, 2012.

A Omitted Proofs

A.1 Proof of Lemma 1

Proof. To prove Lemma 1, we define the following games, between whom the
indistinguishabilities can be reduced to either the LD-RSA assumption or the
DDH-II assumption.

– Game0. This is the original game where the oracle is answered honestly.
More precisely, when the challenge b is 0, then tickets of the secret key
sk of the given public key pk are responded; when the challenge b is 1, then
tickets sampled uniformly at random from the range of the tickets generation
algorithm, namely QR2

N , are responded.
– Game1. This is identical to Game0 except that when b = 0, tickets of a ran-

domly generated secret key sk′ are responded. Indistinguishability between
Game0 and Game1 comes from the LD-RSA assumption directly. Note that
given a ticket of a particular secret key (either sk or sk′), one can easily
computes random tickets of the same secret key via rerandomizing the given
ticket.

– Game2. This is identical to Game1 except that when b = 0, the challenger

will first samples r∗
$← ZN , then answer each query with a tuple (h, hr∗),

where h is sampled freshly and uniformly from QRN each time. Since the
public key for sk′ is not given, sk′ still has a high min-entropy. Thus, indis-
tinguishability between Game1 and Game2 can be reduced to the DDH-II
assumption.



– Game3. This is identical to Game2 except that when b = 0, the challenger
answers each query with a tuple (h1, h2), where both h1 and h2 are sampled
freshly and uniformly from QRN each time. Indistinguishability between
Game3 and Game2 comes from the standard DDH assumption, which can
be implied by the DDH-II assumption, directly.

Note that in Game3, the oracle is answered identically for both the case b = 0
and the case b = 1, and that completes the proof.

A.2 Proof of Theorem 1

Proof. We first define the ideal world adversary S based on a real world adversary
A, which proceeds as follows:
The Ideal World Adversary S. In the beginning, the ideal world adversary S
runs the setup protocol of the decentralized blacklistable anonymous credential
system with reputation, and give the generated public parameter params to
A. It also initializes the public ledger functionality F⋆

BB . Besides, it initializes
severarl private lists aiding its simulating. More precisely, it create two empty
lists UA and UH for recording corrupted users and honest users respectively.
Each item in UH will be a tuple (uid, sk, pk) where uid is the identifier of a user
in the ideal world and (sk, pk) is the key pair for him in the simulated world,
and each item in UA will be a tuple (uid,K) where uid is the identifier of a user
in the ideal world and K consists of key pairs for him in the simulated world. It
also create lists SA and SH for recording corrupted service providers and honest
service providers respectively, and this time, it fill these two lists with items in
the form of “(sid,Nym)” instead of creating two empty lists, where sid is the
identifier of a service provider in the ideal world and Nym is the pseudonym of
a service provider for storing data to the public ledger in the simulated world.
Here, S is able to store data via F⋆

BB under the pseudonym of any honest service
provider. Besides, It also creates an empty list AL for recording authentication
events and an empty list RL for recording the correspondence between rating
records in the ideal world and that in the simulated world. Here, each item in
AL is a tuple (tid, sid, T , Γ ), where tid and sid are the ideal world identifiers
for the authentication event and for the invloved service provider respectively,
and T and Γ are the ticket and the transcript for the authentication event in
the simulated world respectively. Each item in RL is a tuple (rid, rid′), where
rid and rid′ are the ideal world identifier and the simulated world identifier for
rating records respectively.

During the simulation, S will monitor the public ledger of TP and that of the
simulated world, thus can capture the latest modifications to them. For clarity
of notation, we denote the public ledger of TP as “public ledger” and denote
that in the simulated world world as “bulletin board”.

Once A registers a new user to the system via storing a tuple (Nym, pk,
ΠR, attr, aux) to the bulletion board, S will register this user in the ideal world
via the following process. First, S verifies the validity of ΠR and attempts to
extract a secret key from ΠR. If either the ΠR is invalid or the extraction fails,



S stops the registeration process. Assuming the extracted secret key is sk, then
S computes τ ← TicketGen(sk). Next, for each item (uid′, sk′, pk′) in UH , S
checks if S(sk′, τ) = 1, and stops the registeration if so. Also, for each item
(uid′,K) ∈ UA and each (sk′, pk′) ∈ K, S checks if S(sk′, τ) = 1 and appends
(sk, pk) to the set K if so. If neither checks passes, then S creates a new user
“uid” in the ideal world, register it in the ideal world by sending a registeration
request with personal information (attr, aux) to the trusted party TP , and adds
a new item (uid, {(sk, pk)}) in UA.

Once TP writes a tuple (uid, attr, aux) to the public ledger after an honest
user registers himself in the ideal world, S also registers this user in the simulated
world. More precisely, S first chooses one type of supported public key system
and runs its key generation algorithm to generate the public key/secret key pair
(pk, sk). Then it simulate a fake proof ΠR = SPK{(sk) : T (pk, sk) = 1} via the
simulation algorithm of the SPK system. Finally, it stores (Nym, pk,ΠR, attr,
aux) to the bulletin board where Nym is a newly generated pseudonym, and
appends (uid, sk, pk) to UH .

Once the adversary stores a new rating record (Nym, rid, T , s, Γ ) to the
bulletin board, S dumps this rating record to the ideal world via the following
process. First, S queries Nym in SA, and stops the dump process if no record
with Nym is found in SA. Note that this will not affect the usage of the rating
record since a rating record is regarded as illegal if it is stored with a pseudonym
not inSH∪SA andA cannot stores data to the bulletin board with a pseudonym
of an honest service provider. S continues the dump process after it finds an
item (sid,Nym) in SA, and queries the tuple (T , Γ ) in AL. If a record (tid,
sid′, T , Γ ) is found in AL, S further checks whether sid is identical to sid′.
It stops if sid ̸= sid′, and submits (tid, s) to TP if sid = sid′. If no record
with (T , Γ ) is found in AL, which means that this authentication event occurs
between two parites controlled by the adversary, S will attempts to duplicate this
authentication event in the ideal world. More precisely, it first verifies whether
the authentication event is accepted by the service provider sid, and stops if the
answer is no. Then it attempts to extract a secret key from the proof in Γ and
query the extracted secret key in UA. It stops if it fails in conducting these two
steps. Assuming a secret key sk is extracted and a user uid in UA is located
to possess the secret key sk, S then runs the authentication protocol in the
ideal world on behalf of the user uid and the service provider sid. Note that to
guarantee the consistency of the transcript Γ and the ideal world authentication
event, S will also evaluate the requirement (C,PR,L) from Γ , submits it to
the public ledger before starting the authentication, and restore the orginal one
after the authentication event. After receiving a response (no matter whether it
is ‘valid’ or ‘invalid’) along with a string tid from TP , S submits (tid, s) to TP on
behalf of sid, and adds a tuple (tid, sid, T , Γ ) in AL. We reamrk that whenever
S succeeds in submitting a rating to TP , it also put the tuple (rid′, rid) into RL,
where rid′ is the identifier for the rating record in the ideal world.

Once TP writes a tuple (rid, sid, tid, s, C,PR,L) to the public ledger after an
honest service provider submits his rating to the trusted party, S also dumps this



rating record to the simulated world. In more details, S first queries sid in SH

and gets a tuple (sid,Nym) back. Then it queries tid in AL. If it finds a tuple
(tid, sid, T , Γ ) in AL, it then stroes the tuple (Nym, rid′, T , s, Γ ) to the bulletin
board, where rid′ is chosen uniformly at random. If it fails in finding a tuple
with tid in AL, which means the authentication event tid occurs between two
honest parties, S will generates a fake transcript for this authentication event. To
complete this, S first transforms C and L into their counterparts C′ and L′ in the
real world. Then it generates a fake ticket T by randomly sampling each part, and
generates a fake proofΠA via the simulation algorithms of the SPK systems. The
fake transcript is Γ = (sid, C′,PR,L′; ‘request’∥sid;m∥sid, ; (T ,ΠA)), where m
is chosen uniformly at random. Next, S stores the tuple (Nym, rid′, T , s, Γ ) to
the bulletin board, where rid′ is chosen uniformly at random, and adds a tuple
(tid, sid, T , Γ ) in AL. We reamrk that whenever S succeeds in storing a rating
to the bulletin board, it also put the tuple (rid, rid′) into RL, where rid′ is the
identifier for the rating record in the simulated world.

Once the adversary stores a revocation statement (‘revoke’, Nym, rid) to
the bulletin board, S dumps this revocation statement to the ideal world via the
following process. First, S queries Nym in SA and queries rid in RL. It stops
the dump process if either no record with Nym is found in SA or no record with
rid is found in RL. Next, S submits (‘revoke’, rid′) to TP on behalf of sid after
it finds an item (sid,Nym) in SA and an item (rid′, rid) in RL.

Once TP writes a tuple (‘revoke’, rid, sid) to the public ledger after an honest
service provider submits his revocation statement to the trusted party, S also
dumps this revocation statement to the simulated world. To complete this, S
queries sid inSH and gets an item (sid,Nym). Also it queries rid inRL and gets
an item (rid, rid′). Then it stores (‘revoke’, Nym, rid′) to the bulletin board.

Once the adversary stores a new requirement (Nym, C,PR,L) to the bulletin
board, S dumps this requirement to the ideal world via the following process.
First, S queries Nym in SA, and stops the dump process if no record with
Nym is found in SA. Next, after finding an item (sid,Nym) in SA, S attempts
to generate the corresponding requirement (C′,PR,L′) in the ideal world. More
precisely, for each public key pk in C, S queries pk in UA ∪UH , and puts the uid
to C′ if a user uid is located to possess the public key pk; otherwise, it assigns
a temporary uid s.t. (uid, ∗) ̸∈ UA ∪ UH to pk and stores this uid to C′. Also,
for each identifier rid in L, S queries rid in RL, and puts rid′ to L′ if it finds
a tuple (rid′, rid); otherwise, it assigns a temporary rid′ s.t. (rid′, ∗) ̸∈ RL to
rid and stores this rid′ to L′. Finally, S deduplicate the set C′ and uploads the
requirement (C′,PR,L′) to TP on behalf of sid.

Once TP writes a tuple (sid, C,PR,L) to the public ledger after an honest
service provider uploads his policy to the trusted party, S also dumps this policy
to the simulated world. To complete this, S queries sid in SH and gets an item
(sid,Nym). Then it generates the corresponding requirement (C′,PR,L′) in the
simulated world. To generate C′, S queries each item uid of C in UH , and puts
pk in C′ after it finds a tuple (uid, sk, pk); it also queries uid in UA, and puts
all public keys from K into C′ after it finds a tuple (uid,K). To generate L′,



S queries each item rid of L in RL, and puts rid′ in L′ after it finds a tuple
(rid, rid′). Finally it stores (Nym, C′,PR,L′) to the bulletin board.

Besides monitoring the public ledger in each world, S should also handle
authentication events between a corrupted party and an honest party.

Upon receiving an authentication request (‘request’, sid, tid, result) from TP ,
where sid is a service provider controlled by A, tid is the identifier for this
authentication event, and result is the recommended result from TP , which is
either ‘valid’ or ‘invalid’, S stops if the result is ‘invalid’. Otherwise, it sends
a tuple (‘request’, sid) to A. If A aborts, S also stops this authentication event.
Otherwise, S will get a challenge m∥sid′ back. If sid ̸= sid′, S sends ‘abort’ to
A and stops this authentication event. Otherwise, S sends a tuple (T ,ΠA) to
A, where T is a fake ticket generated by randomly sampling each part, and ΠA

is a fake proof generated via the simulation algorithm of the SPK systems, and
adds (tid, sid, T , Γ ) in AL, where Γ = (sid, C,PR,L; ‘request’∥sid;m∥sid; (T ,
ΠA)) is the transcript of this authentication event. If A aborts, S also stops this
authentication event. Otherwise, A will sends a response, which is either ‘accept’
or ‘reject’, to S, and S forwards this response to TP .

Upon receiving an authentication request (‘request’, sid) from A, S first
checks if sid is an honest service provider and stops the authentication event
if sid is not an honest service provider. Then S samples m uniformly at random
and sends m∥sid to A. If A aborts, S stops the authentication event. If the
response is a tuple (T ,ΠA), S will continue the authentication event in the ideal
world. More precisely, it first verifies the proof ΠA. If ΠA is invalid, S sends
‘reject’ to A and stops the authentication event. Then it attempts to extract
a secret key from ΠA and query the extracted secret key in UA. If it fails in
conducting these two steps, S sends ‘reject’ to A and stops the authentication
event. Assuming a secret key sk is extracted and a user uid in UA is located to
possess the secret key sk, S then logs into TP on behalf of uid and sends the
request (‘request’, sid) to TP . Then, S receives a result from TP and choose to
proceeds. Then, it receives the final result together with an identifier tid back,
and forwards the result back to A. Finally, S records the tuple (tid, sid, T , Γ )
in AL, where Γ = (sid, C,PR,L; ‘request’∥sid;m∥sid; (T ,ΠA)) is the transcript
of this authentication event.

At the end of the simulation, S will output what A outputs.

The Indistinguishability. Next, we argue that the joint distribution of the
output of S and the outputs of all parties in the ideal world is indistinguishable
from the joint distribution of the output of A and outputs of all parties in a real
world system. It is sufficient to prove that the view of A in the real world and
that in the world simualted by S is computationally indistinguishable. To argue
this, we define the following games, between whom the indistinguishabilities can
be reduced to properties of building blocks straightforwardly:

– Gamereal. This is the real world, namely, the system constructed in this
work is run between several honest parties and some parties controlled by
the adversary A.



– Game1. This is identical to Gamereal except that every proof generated by
honest users are replaced with a simulated one. Indistinguishability between
Gamereal and Game1 comes from the zero knowledge property of those em-
ployed SPK systems.

– Game2. This is identical to Game1 except that every ticket generated by
honest users is generated by randomly sampling each part. Indistinguisha-
bility between Game1 and Game2 comes from the indistinguishability of the
ticket generation algorithm.

– Game3. This is identical to Game2 except that a proof ΠR or ΠA gener-
ated by the adversary A will be regarded as invalid if the proof cannot be
extracted with an extractor. Indistinguishability between Game2 and Game3
comes from the simulation extractbility of the employed SPK systems.

– Game4. This is identical to Game3 except that a proof ΠR or ΠA generated
by the adversary A will be regarded as invalid if the extracted secret key
is the secret key of an honest user. Indistinguishability between Game3 and
Game4 comes from the onewayness of the key generation algorithm.

– Game5. This is identical to Game4 except that a proof ΠA generated by
the adversary A will be regarded as invalid if the extracted secret key is
not a secret key of a dishonest user. Indistinguishability between Game4 and
Game5 comes from the collision resistance of the key generation algorithm
and the simulation soundness of the employed SPK systems.

– Game6. This is identical to Game5 except that a proof ΠR generated by
the adversary A will be regarded as invalid if S(sk′, τ) = 1 where sk′ is the
secret key of an honest user, and τ is a ticket generated by the extracted
secret key. Indistinguishability between Game5 and Game6 comes from the
connectivity of the ticket generation algortihm and the onewayness of the
key generation algorithm.

– Game7. This is identical to Game6 except that an authentication response
(τ,ΠA) generated by the adversary A will be rejected if the extracted secret
key does not fulfils the requirement (according to the context). Indistin-
guishability between Game6 and Game7 comes from the verifying consis-
tency of the ticket generation algorithm and the simulation soundness of the
employed SPK systems.

– Gameideal. This is the world simulated by S. It is not hard to check that
Gameideal is identical to Game7.

That completes the proof.


	Decentralized Blacklistable Anonymous Credentials with Reputation

