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Abstract

We construct a 4-round multi-party computation protocol in the plain model for
any functionality, secure against a malicious adversary. Our protocol relies on the
sub-exponential hardness of the Learning with Errors (LWE) problem with slightly
super-polynomial noise ratio, and on the existence of adaptively secure commitments.
Our round complexity matches a lower bound of Garg et al. (EUROCRYPT ’16), and
outperforms the state of the art of 6-rounds based on similar assumptions to ours, and
5-rounds relying on indistinguishability obfuscation and other strong assumptions.

To do this, we construct an LWE based multi-key FHE scheme with a very simple
one-round distributed setup procedure (vs. the trusted setup required in previous LWE
based constructions). This lets us construct a 3-round semi-malicious protocol without
setup using the approach of Mukherjee and Wichs (EUROCRYPT ’16). Finally, subex-
ponential hardness and adaptive commitments are used to “compile” the protocol into
the fully malicious setting.
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1 Introduction

Secure Multi-party Computation (MPC) allows mutually suspicious parties to evaluate a
function on their joint private inputs without revealing these inputs to each other. One
fruitful line of investigation is concerned with the round complexity of these protocols. More
specifically, we consider a model where at each round, each party is allowed to broadcast a
message to everyone else. We allow the adversary to be malicious and corrupt any fraction
of the parties.

If a Common Random String (CRS) is allowed, then two rounds are necessary and
sufficient for secure multi-party protocols under plausible cryptographic assumptions
[GGHR14, MW16].

Without relying on trusted setup, it was still known that constant round protocols are
possible [BMR90], but the exact round complexity remained open. A lower bound in the
simultaneous message model was established in the recent work of Garg et al. [GMPP16],
who proved that four rounds are necessary. They also showed how to perform multi-party
coin flipping in four rounds (under strong assumptions), whic can then be used to generate
a CRS and execute the aforementioned protocols in the CRS model. That technique
implied a five-round protocol based on 3-round 3-robust non-malleable commitments1 and
indistinguishability obfuscation, and a 6 round protocol based on 3-round 3-robust non-
malleable commitments and LWE.

For the important special case of only two parties, it is known that two message proto-
cols with sequential rounds, i.e. each party talks in turn, are necessary and sufficient in the
CRS model [JS07, HK07] and five message protocols are necessary and sufficient without
setup [KO04, ORS15].

Our Results. Our work addresses the following fundamental question:

Can we obtain round-optimal multi-party computation protocols without setup?

We answer this question in the affirmative, obtaining a round-optimal multi-party com-
putation protocol in the plain model for general functionalities in the presence of a malicious
adversary. Informally, we prove the following:

Theorem 1. (Informal) Assuming the existence of adaptive commitments, as well as the
sub-exponential hardness of Learning-with-Errors, there exists a four-round protocol that
securely realizes any multi-party functionality against a malicious adversary in the plain
model without setup.

To establish this result, we depart from the coin flipping approach of [GMPP16]
and instead rely on a new generalized notion of multi-key fully homomorphic encryp-

1Such commitments can be instantiated from adaptive PRGs [PPV08] (adaptive commitments) or one-
way permutations secure w.r.t. sub-exponential time adversaries [COSV16].
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tion [LTV12] which we show how to construct based on the hardness of LWE. In a nut-
shell, whereas prior LWE based constructions required trusted setup (essentially a CRS)
[CM15, MW16, BP16, PS16], we show that the setup procedure can be distributed. Each
party only needs to broadcast a random string2, and generate its public key based on the
collection of strings by all other parties. We show that the resulting scheme is secure even
when some of the broadcast strings are adversarial (and even when the adversary is rush-
ing). Similarly to Mukherjee and Wichs [MW16], we can transform our multi-key FHE
into an MPC protocol in the semi-malicious model (where the adversary is only allowed to
corrupt parties in a way that is consistent with some random tape). Our protocol requires
3 rounds without setup (vs. 2 rounds in the CRS model), and only requires polynomial
hardness of LWE with slightly super polynomial noise ratio.

To get security in the malicious adversary model, we rely on other strong assump-
tions. In particular, we use a two-round adaptively secure commitment scheme (e.g., as
constructed by Pandey, Pass and, Vaikuntanathan [PPV08], using Naor’s protocol [Nao91]
with adaptive PRGs). Moreover, we need a sub-exponential version of the LWE assump-
tion.

Concurrent work. In a concurrent and independent work, Ananth, Choudhuri, and
Jain construct a maliciously-secure 4-round MPC protocol based on one-way permutations
and sub-exponential hardness of DDH [ACJ17]. Their approach is very different from ours,
they construct and use a “robust semi-honest” MPC protocol from DDH, while our main
building block is an LWE-based 3-round protocol against semi-malicious adversaries.

2 Overview of our Protocol

Our starting point is the multi-key FHE approach to MPC, first introduced by [LTV12].
As explained above, it was shown in [MW16] that the Clear-McGoldrick scheme [CM15]
implies a 2 round protocol in the semi-malicious setting in the CRS model under LWE,
and using NIZK it is possible to also achieve fully malicious security. Constructing a multi-
key FHE without setup and with the necessary properties for compiling it into an MPC
protocol is still an open problem, but we show that the trusted setup can be replaced by a
distributed process which only adds a single round to the MPC protocol. While our final
solution is quite simple, it relies on a number of insights as to the construction and use of
multi-key FHE.

1. While the schemes in [GSW13, CM15, MW16] rely on primal Regev-style LWE-based
encryption as a basis for their FHE scheme, it is also possible to instantiate them
based on the dual -Regev scheme [GPV08] (with asymptotically similar performance).
However, the same form of CRS is required for this instantiation as well, so at first
glance it does not seem to offer any advantages.

2 Essentially its public matrix for a dual-Regev encryption scheme [Reg09, GPV08].
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2. The multi-key FHE schemes of [CM15, MW16] are presented as requiring trusted
setup, but a deeper look reveals that this trusted setup is only needed to ensure a
single property, related to the functionality: In LWE based encryption (Regev or
dual-Regev) the public key contains a matrix A and a vector t · A (possibly with
some additional noise, depending on the flavor of the scheme) where t is the secret
key. In order to allow multi-key homomorphism between parties that each have their
own Ai, ti, it is only required that the values bi,j = tiAj for all i, j, are known to all
participating parties (upto small noise). The use of CRS in previous works comes in
setting all Ai to be the same matrix A, which is taken from the CRS, and thus the
public key bi ≈ tiAi = tiA is the only required information.

3. Lastly, we notice that dual-Regev with the appropriate parameters is leakage resilient
[DGK+10]. This means that so long as a party honestly generates its ti and Ai, it
can expose arbitrary (length-bounded) information on ti without compromising the
security of its own ciphertexts. Combining this with the above, we can afford to
expose all bi,j = tiAj without creating a security concern (for appropriate setting of
the parameters).

Putting the above observations together, we present a multi-key FHE scheme with a
distributed setup, in which each party generates a piece of the common setup, namely the
matrix Ai. After this step, each party can generate a public key pki containing all vectors
bi,j , the respective secret key is the vector ti. Given all pki and the matrices Ai, it is
possible to perform multi-key homomorphism in a very similar manner to [CM15, MW16].
The 3-round semi-malicious protocol is therefore as follows.

Round 1: Distributed Setup. Every player Pi broadcasts a random matrix Ai of the
appropriate dimension.

Round 2: Encryption. Each party generates a public/secret key-pair for the multi-key
FHE, encrypts its input under these keys, and broadcasts the public key and cipher-
text.

Round 3: Partial Decryption. Each party separately evaluates the function on the en-
crypted inputs, then use its secret key to compute a decryption share of the resulting
evaluated ciphertext and broadcasts that share to everyone.

Epilogue: Output. Once all the decryption shares are received, each party can combine
them to get the function value, which is the output of the protocol.

This skeleton protocol can be shown to be secure in the semi-malicious adversary model,
but it is clearly insecure in the presence of a malicious adversary. Although the protocol
can tolerate adversarial choice of the first-round matrices Ai, the adversary can still violate
privacy by sending invalid ciphertexts in Round 2 and observing the partial decryption that
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the honest players send in the next round. It can also violate correctness by sending the
wrong decryption shares in the last round.

These two attacks can be countered by having the parties prove that they behaved
correctly, namely that the public keys and ciphertexts in Round 2 were generated honestly,
and that the decryption shares in Round 3 were obtained by faithful decryption. To be
effective we need the proof of correct encryption to complete before the parties send their
decryption shares (and of course the proof of correct decryption must be completed before
the output can be produced). Hence, if we have a k-round proof of correct encryption
(and a (k + 1)-round proof of correct decryption) then we get a (k + 1)-round protocol
overall. Much of the technical difficulties to achieve malicious security in the current work
are related to using 3-round proofs of correct encryptions, resulting in a 4-round protocol.

2.1 The Maliciously-Secure Protocol

Our maliciously-secure protocol builds on the above 3-round semi-malicious protocol, and
in addition it uses a two-round adaptive commitment protocol aCom = (acom1, acom2), a
three-round proof of correct encryption ΠWIPOK = (p1, p2, p3), and a four-round proof of
correct decryption ΠFS = (fs1, fs2, fs3, fs4). (The names ΠWIPOK and ΠFS are meant to hint
on the implementation of these proofs, see more discussion in the next subsection.)

Round 1: Distributed Setup, commitment & proof. Every party i broadcasts its
setup matrix Ai. It also broadcasts the first message acom1 of the adaptive com-
mitment for its randomness and input, the first message p1 of the proof of correct
encryption, and the first message fs1 of the proof of correct decryption (both proofs
with respect to the committed values).

Round 2: Continued commitment & proofs. Each party broadcasts acom2, p2, fs2.

Round 3: Encryption & proofs. The parties collect all the first round matrices Ai and
run the key-generation and encryption procedures of the multi-key FHE. Then, each
party broadcasts its public key and encrypted input. In the same round, each party
also broadcasts messages p3, fs3.

Round 4: Verification & decryption. Each party runs the verifier algorithm for the
ΠWIPOK proof of correct encryption, verifying all the instances. If all of them passed
then it evaluates the function on the encrypted inputs, then uses its secret key to
compute a decryption share of the resulting evaluated ciphertext, and broadcasts
that share to everyone. It also broadcasts the message fs4 of the proof of correct
decryption.

Epilogue: Verification & output. Once all the decryption shares and proofs are re-
ceived, each party runs the verifier algorithm for the ΠFS proof of correct decryption,
again verifying all the instances. If all of them passed then it combines all the de-
cryption shares to get the function value, which is the output of the protocol.
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If any of the messages is missing or mal-formed, or if any of the verification algorithms fail,
then the parties are instructed to immediately abort with no output.

As explained in the next section, subtle technicalities arise in the security proof that
lead to an extended version of the above protocol description.

2.2 A Tale of Malleability and Extraction

To prove security of our protocol, we must exhibit a simulator that can somehow extract
the inputs of the adversary, so that it can send these inputs to the trusted party in order to
get the function output. To that end we make the three-round proof of correct encryption
a Proof of Knowledge (POK), and let the simulator use the knowledge extractor to get
these adversarial inputs.

At the same time, we must ensure that this proof of knowledge is non-malleable, so
that the extracted adversarial inputs do not change between the real protocol (in which the
honest parties prove knowledge of their true input) and the simulated protocol (in which
the simulator generates proofs for the honest players without knowing their true inputs).
A few subtle technicalities are discussed below.

Two-round commitment with straight-line extraction. The main technical tool
that we use in our proofs is two-round adaptive commitments, that the parties use to
commit to their inputs and randomness. Commitments in this scheme are marked by tags,
and the scheme has the remarkable property of adaptive security : Namely, commitments
with one tag are secure even in the presence of an oracle that breaks commitments for
all other tags. Such schemes where constructed by Pandey et al. [PPV08], using Naor’s
scheme [Nao91] with adaptive PRGs.

Some hybrid games in our proof of security are therefore staged in a mental-experiment
game where such a breaking oracle exists, providing us with straight-line (rewinding-free)
extraction of the values that the adversary commits to, while keeping the honest-party
commitments secret. Looking ahead, straight-line extraction is used in some of our hybrids
to fake the (WIPOK) zero knowledge proofs.

However, we also need our other primitives (MFHE, POK, etc.) to remain secure
in the presence of a breaking oracle, and we use complexity leveraging for that purpose:
We assume that these primitives are sub-exponentially secure, and set their parameters
much larger that those of the commitment scheme. This way, all these primitives remain
secure even against sub-exponential time adversaries that can break the commitment by
brute force. When arguing the indistinguishability of two hybrids, we reduce to the sub-
exponential security of these primitives and use brute force to implement the breaking
oracle in those hybrids.3

3Technically we “only” need to assume standard security in a world with such a breaking oracle, which
is a weaker assumption than full sub-exponential security.
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Delayed-input proofs. In the three-round proofs for correct encryption and in the four-
round proofs for correct decryption, the statement to be proved is not defined until just
before the last round of the protocols. We therefore need to use delayed-input proofs that
can handle this case and squeeze rounds in order to achieve a four round protocol.

Fake proofs via Feige-Shamir. The simulator needs to fake the four-round proof of
correct decryption on behalf of the correct parties, as it derives their decryption shares
from the function output that it gets from the trusted party. For this purpose we use a
Feige-Shamir-type four-round proof [FS90], which has a trapdoor that we extract and let
us fake these proofs.

WI-POK with a trapdoor. Some steps in our proof have hybrid games in which the
commitment contains the honest parties’ true inputs while the encryption contains zeros. In
such hybrids, the statement that the values committed to are consistent with the encryption
is not true, so we need to fake that three-round proof as well.

For that purpose we use another Feige-Shamir-type trapdoor as follows: Each party
chooses a random string R, encloses R̂ = OWF (R) with its first-flow message, encloses
R inside the commitment aCom (together with its input and randomness) and adds the
statement R̂ = OWF (R) to the list of things that it proves in the 3-round POK protocol.

In addition, the parties execute a second commitment protocol bCom (which is normally
used to commit to zero in the real protocol), and we modify the POK statement to say
that EITHER the original statement is true, OR the value committed in that second
commitment bCom is a pre-image of the R̂ value sent by the verifier in the first round.
Letting the POK protocol be witness-indistinguishable (WI-POK), we then extract the R
value from the adversary (in some hybrids), let the challenger commit to that value in the
second commitment bCom, and use it as a trapdoor to fake the proof in the POK protocol.

We note that the second commitment bCom need not be non-malleable or adaptive, but
it does need to remain secure in the presence of a breaking oracle for the first commitment.
Since we already assume a 2-round adaptive commitment aCom, then we use the same
scheme also for this second commitment, and appeal to its adaptive security to argue that
the second commitment remains secure in the presence of a breaking oracle for the first
commitment.

Public-coin proofs. In the multi-party setting, the adversary may choose to fail the
proofs with some honest parties and succeed with others. We thus need to specify what
honest parties do in case one of the proofs fail. The easiest solution is to use public-coin
proofs with perfect completeness, and have the parties broadcast their proofs and verify
them all (not only the ones where they chose the challenge). This way we ensure that if
one honest party fails the proof, then all of them do.
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Part I

3-Round Semi-Malicious Protocols

3 LWE-Based Multi-Key FHE with Distributed Setup

Notations. Throughout the text we denote the security parameter by κ. A function
µ : N → N is negligible if for every positive polynomial p(·) and all sufficiently large κ’s it
holds that µ(κ) < 1

p(κ) . We often use [n] to denote the set {1, ..., n}.
d ← D denotes the process of sampling d from the distribution D or, if D is a set,

a uniform choice from it. For two distributions D1 and D2, we use D1 ≈s D2 to denote
that they are statistically close, D1 ≈c D2 denotes computational indistinguishability, and
D1 ≡ D2 denotes identical distributions.

3.1 Definitions

An encryption scheme is multi-key homomorphic if it can evaluate circuits on ciphertexts
that are encrypted under different keys. Decrypting an evaluated ciphertext requires the
secret keys of all the ciphertexts that were included in the computation. In more detail, a
multi-key homomorphic encryption scheme (with trusted setup) consists of five procedures,
MFHE = (MFHE.Setup,MFHE.Keygen,MFHE.Encrypt,MFHE.Decrypt,MFHE.Eval):

• Setup params ← MFHE.Setup(1κ): On input the security parameter κ the setup
algorithm outputs the system parameters params.

• Key Generation (pk, sk)← MFHE.Keygen(params): On input params the key gen-
eration algorithm outputs a public/secret key pair (pk, sk).

• Encryption c ← MFHE.Encrypt(pk, x): On input pk and a plaintext message x ∈
{0, 1}∗ output a “fresh ciphertext” c. (We assume for convenience that the ciphertext
includes also the respective public key.)

• Evaluation ĉ := MFHE.Eval(params; C; (c1, . . . , c`)): On input a (description of a)
Boolean circuit C and a sequence of ` fresh ciphertexts (c1, . . . , c`), output an “eval-
uated ciphertext” ĉ. (Here we assume that the evaluated ciphertext includes also all
the public keys from the ci’s.)

• Decryption x := MFHE.Decrypt((sk1, . . . , skN ), ĉ): On input an evaluated cipher-
text c (with N public keys) and the corresponding N secret keys (sk1, . . . , skN ),
output the message x ∈ {0, 1}∗.

The scheme is correct if for every circuit C on N inputs and any input sequence
x1, . . . , xN for C, we set params ← MFHE.Setup(1κ) and then generate N key-pairs and
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N ciphertexts (pki, ski) ← MFHE.Keygen(params) and ci ← MFHE.Encrypt(pki, xi), then
we get

MFHE.Decrypt
(
(sk1, . . . , skN ),MFHE.Eval(params; C; (c1, . . . , cN ))

)
= C(x1, . . . , xN )]

except with negligible probability (in κ) taken over the randomness of all these algorithms.4

Local decryption and simulated shares. A special property that we need of the
multi-key FHE schemes from [CM15, MW16], is that the decryption procedure consists of a
“local” partial-decryption procedure evi ← MFHE.PartDec(ĉ, ski) that only takes one of the
secret keys and outputs a partial decryption share, and a public combination procedure that
takes these partial shares and outputs the plaintext, x← MFHE.FinDec(ev1, . . . , evN , ĉ).

Another property of these schemes that we need is the ability to simulate the decryption
shares. Specifically, there exists a PPT simulator ST , that gets for input:
– the evaluated ciphertext ĉ,
– the output plaintext x := MFHE.Decrypt((sk1, . . . , skN ), ĉ),
– a subset I ⊂ [N ], and all secret keys except the one for I, {skj}j∈[N ]\I .

The simulator produces as output simulated partial evaluation decryption shares:
{ẽvi}i∈I ← ST (x, ĉ, I, {skj}j∈[N ]\I). We want the simulated shares to be statistically close
to the shares produced by the local partial decryption procedures using the keys {ski}i∈I ,
even conditioned on all the inputs of ST .

We say that a scheme is simulatable if it has local decryption and a simulator as
described here. As in [MW16], in our case too we only achieve simulatability of the basic
scheme when all parties but one are corrupted (i.e., when the set I is a singleton).

3.1.1 Distributed Setup

The variant that we need for our protocol does not require the setup procedure to be run by
a trusted entity, but rather it is run in a distributed manner by all parties in the protocol.
In our definition we allow the setup to depend on the maximum number of users N . This
restriction does not pose a problem for our application.

• Distributed Setup paramsi ← MFHE.DistSetup(1κ, 1N , i): On input the security
parameter κ and number of users N , outputs the system parameters for the i-th
player paramsi.

The remaining functions have the same functionality as above, where params =
{paramsi}i∈[N ], the key generation takes i as an additional parameter in order to spec-
ify which entry in params it refers to.

4We often consider a slightly weaker notion of homomorphism, where the Setup algorithm gets also a
depth-bound d and correctness is then defined only relative to circuits of depth upto d.
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3.1.2 Semantic security and simulatability

Semantic security for mult-ikey FHE is defined as the usual notion of semantic security.
For the distributed setup variant, we require that semantic security for the i-th party holds
even when all {paramsj}j∈[N ]\{i} are generated adversarially and possibly depending on
paramsi.

Namely, we consider a rushing adversary that chooses N and i ∈ [N ], then it sees
paramsi and produces paramsj for all j ∈ [N ] \ {i}. After this setup, the adversary is
engaged in the usual semantic-security game, where it is given the public key, chooses two
messages and is given the encryption of one of them, and it needs to guess which one was
encrypted.

Simulatability is defined as before, but now the evaluated ciphertext is produced by the
honest party interacting with the same rushing adversary (and statistical closeness holds
even conditioned on everything that the adversary sees).

3.2 A “Dual” LWE-Based Multi-Key FHE with Distributed Setup

For our protocol we use an adaptation of the “dual” of the multi-key FHE scheme from
[CM15, MW16]. Just like the “primal” version, our scheme uses the GSW FHE scheme
[GSW13], and its security is based on the hardness of LWE.

Recall that the LWE problem is parametrized by integers n,m, q (with m > n log q)
and a distributions χ over Z that produces whp integers much smaller than q. The LWE
assumption says that given a random matrix A ∈ Zn×mq , the distribution sA + e with
random s ∈ Znq and e← χm is indistinguishable from uniform in Zmq .

For the “dual” GSW scheme below, we use parameters n < m < w < q with m > n log q
and w > m log q, and two error distributions χ, χ′ with χ′ producing much larger errors
than χ (but still much smaller than q). Specifically, consider the distribution

χ′′ = {a← {0, 1}m, b← χm, c← χ′, output c− 〈a, b〉}. (1)

We need the condition that the statistical distance between χ′ and χ′′ is negligible (in
the security parameter n). This condition holds, for example, if χ, χ′ are discrete Gaus-
sian distributions around zero with parameters p, p′, respectively, such that p′/p is super-
polynomial (in n).

• Distributed Setup paramsi ← MFHE.DistSetup(1κ, 1N , i): Set the parameters q =
poly(N)superpoly(n) (as needed for FHE correctness), m > (Nn+ 1) log q+ 2κ, and

w = m log q. Sample and output a random matrix Ai ∈ Z(m−1)×n
q .

• Key Generation (pki, ski) ← MFHE.Keygen(params, i): Recall that params =
{paramsi}i∈[N ] = {Ai}i∈[N ]. The public key of party i is a sequence of vectors
pki = {bi,j}j∈[N ] to be formally defined below. The corresponding secret key is a
low-norm vector ti ∈ Zmq .
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We will define bi,j , ti such that for Bi,j =

(
Aj
−bi,j

)
it holds that tiBi,j = bi,i − bi,j

(mod q) for all j.

In more detail, sample a random binary vector si ← {0, 1}m−1, we set bi,j = siAj mod
q. Denoting ti = (si, 1), we indeed have tiBi,j = bi,i − bi,j (mod q).

• Encryption c ← MFHE.Encrypt(pki, µ): To encrypt a bit µ under the public key
pki, choose a random matrix R ∈ Zn×wq and a low-norm error matrix E ∈ Zm×wq , and
set

C := Bi,iR+ E + µG mod q, (2)

where G is a fixed m-by-w “gadget matrix” (whose structure is not important for
us here , cf. [MP12]). Furthermore, as in [CM15, MW16], encrypt all bits of R in
a similar manner. For our protocol, we use more error for the last row of the error
matrix E than for the top m − 1 rows. Namely, we choose Ê ← χ(m−1)×w and

e′ ← χ′w and set E =

(
Ê
e′

)
.

• Decryption µ := MFHE.Decrypt((sk1, . . . , skN ), ĉ): The invariant satisfied by ci-
phertexts in this scheme, similarly to GSW, is that an encryption of a bit µ relative
to secret key t is a matrix C that satisfies

tC = µ · tG+ e (mod q) (3)

for a low-norm error vector e, where G is the same “gadget matrix”. The vector t is
the concatenation of all ski = ti for all parties i participating in the evaluation.

This invariant holds for freshly encrypted ciphertexts since tiBi,i = 0 (mod q), and
so ti(Bi,iR+E +µG) = µ · tiG+ tiE (mod q), where e = tiE has low norm (as both
ti and E have low norm).

To decrypt, the secret-key holders compute u = t ·C mod q, outputting 1 if the result
is closer to tG or 0 if the result is closer to 0.

• Evaluation ĉ := MFHE.Eval(params; C; (c1, . . . , c`)): Since ciphertexts satisfy the
same invariant as in the original GSW scheme, then the homomorphic operations in
GSW work just as well for this “dual” variant. Similarly the ciphertext-extension
technique from [CM15, MW16] works also for this variant exactly as it does for the
“primal” scheme (see below). Hence we get a multi-key FHE scheme.

3.2.1 Security

Security with distributed setup follows from LWE so long as (m−1) > (Nn+1) log q+2κ.
The basis for security is the following lemma, which is essentially the same argument from
[DGK+10] showing that dual Regev is leakage resilient for bounded leakage.
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Lemma 1. Let Ai ∈ Z(m−1)×n
q be uniform, and let Aj for all j 6= i be chosen by a rushing

adversary after seeing Ai. Let si ← {0, 1}m−1 and bi,j = siAj. Let r ∈ Znq be uniform,
e← χm−1, e′ ← χ′. Then, under the LWE assumption, the vector c = Air+ e and number
c′ = bi,ir+ e′ are (jointly) pseudorandom, even given the bi,j’s for all j ∈ [N ] and the view
of the adversary that generated the Aj’s.

Proof: Consider the distribution of c, c′ as in the lemma statement. We notice that
c′ = bi,ir + e′ = siAir + e′ = sic − sie + e′. The proof proceeds by a sequence of hybrids.
Our first hybrid changes the distribution of c′ to c′ = sic+ e′. Noting that c′− sic is drawn
from χ′′ before the change and from χ′ after the change (cf. Eqn. (1)), we get that the
statistical distance between the hybrids is negligible.

In the next hybrid, we use LWE to replace c with a uniform vector. Since c could have
been sampled before si or any of the Aj with j 6= i, LWE implies indistinguishability with
the previous hybrid.

Finally, we apply the leftover hash lemma, noting that all the bi,j ’s only leak at most
Nn log q bits of information on si and therefore the average min-entropy of si is at least
(m − 1) − Nn log q > log q + 2κ. Using the leftover hash lemma with c as seed and si as
source, we have that (c, sic) are jointly statistically indistinguishable from uniform. This
implies that (c, c′) are jointly statistically indistinguishable from uniform, even given all
Aj , bi,j for all j ∈ [N ]. The lemma follows.

Applying this lemma repeatedly for every column via a hybrid argument shows that
the ciphertext components c = AiR+ Ê and c′ = bi,iR+ e′ are also jointly pseudorandom,
even given the view of the adversary, and semantic security of the scheme follows.

3.2.2 Multi-key Homomorphism and Simulatability

The other components of the multi-key FHE scheme from [CM15, MW16] work for our
variant as well, simply because the encryption and decryption formulas are identical (except
with slightly different parameter setting), namely Equations (2) and (3). Below we briefly
sketch these components for the sake of self-containment.

The ciphertext-expansion procedure. The “gadget matrix” G used for these schemes
has the property that there exists a low-norm vector u such that Gu = (0, 0, . . . , 0, 1).
Therefore, for every secret key t = (s|1) we have tGu = 1 (mod q). It follows that if C is
an encryption of µ wrt secret key t = (s|1), then the vector v = Cu satisfies

〈t, v〉 = tCu = (µtG+ e)u = µtGu+ 〈e, u〉 = µ+ ε (mod q)

where ε is a small integer. In other words, given an encryption of µ wrt t we can construct
a vector v such that 〈t, v〉 ≈ µ (mod q). Let A1, A2 be public parameters for two users
with secret keys t1 = (s1|1), t2 = (s2|1), and recall that we denote bi,j = siAj and

Bi,i =

(
Ai
−siAi

)
=

(
Ai
−bi,i

)
.
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Let C = B1,1R+E + µG be fresh encryption of µ w.r.t B1,1, and suppose that we also
have an encryption under t1 of the matrix R. We note that given any vector δ, we can
apply homomorphic operations to the encryption of R to get an encryption of the entries
of the vector ρ = ρ(δ) = δR. Then, using the technique above, we can compute for every
entry ρi a vector xi such that 〈t1, xi〉 ≈ ρi (mod q). Concatenating all these vectors we get
a matrix X = X(δ) such that t1X ≈ ρ = δR (mod q).

We consider the matrix C ′ =

(
C X
0 C

)
, where X = X(δ) for a δ to be determined

later. We claim that for an appropriate δ this is an encryption of the same plaintext µ
under the concatenated secret key t′ = (t1|t2). To see this, notice that

t2C = (s2|1)

((
A1

−s1A1

)
R+ E + µG

)
≈ (b2,1 − b1,1)R+ µt2G (mod q),

and therefore setting δ = b1,1 − b2,1, which is a value that can be computed from pk1, pk2

we get

t′C ′ = (t1C | t1X + t2C) ≈ (µt1G | (b1,1 − b2,1)R+ (b2,1 − b1,1)R+ µt2G)

= µ(t1G | t2G) = µ(t1|t2)

(
G

G

)
,

as needed. As in the schemes from [CM15, MW16], this technique can be generalized to
extend the ciphertext C into an encryption of the same plaintext µ under the concatenation
of any number of keys.

Partial decryption and Simulatability. This aspect works exactly as in [MW16,
Thm 5.6]. Let v be a fixed low-norm vector satisfying Gv = (0, 0, . . . , 0, dq/2e) (mod q)
(such a vector exists). Let C be an encryption of a bit µ relative to the concatenated secret
key t = (t1|t2| . . . |tN ) (whose last entry is 1). Then on one hand C satisfies Eqn. (3) so we
have

tCv = µ tGv︸︷︷︸
=dq/2e

+ 〈e,v〉︸ ︷︷ ︸
=ε,|ε|�q

≈ µ · dq/2e (mod q).

On the other hand, breaking C into N bands of m rows each (i.e, C = (CT1 |CT2 | . . . |CTN )T

with each Ci ∈ Zm×mNq ), we have tCv =
∑N

i=1 tiCiv. Hence in principle we could set
the partial decryption procedure as evi = MFHE.PartDec(C, ti) := tiCiv mod q, and the
combination procedure will just add all these evi’s and output 0 if it is smaller than q/4
in magnitude and 1 otherwise.

To be able to simulate (when there areN−1 corruptions), we need the partial decryption
to add its own noise, large enough to “drown” the noise in tCv (but small enough so
decryption still works). Given the ciphertext C, N − 1 keys tj for all j ∈ [N ] \ {i},
and the plaintext bit µ, the simulator will sample its own noise e and output the share
evi = µ · dq/2e+ e−

∑
j tjCjv mod q.
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4 A Semi-Malicious Protocol without Setup

The semi-malicious adversary model [AJL+12] is a useful mid-point between the semi-
honest and fully-malicious models. Somewhat similarly to a semi-honest adversary, a semi-
malicious adversary is restricted to run the prescribed protocol, but differently than the
semi-honest model it can choose the randomness that this protocol expects arbitrarily
and adaptively (as opposed to just choosing it at random). Namely, at any point in the
protocol, there must exists a choice of inputs and randomness that completely explain the
messages sent by the adversary, but these inputs and randomness can be arbitrarily chosen
by the adversary itself. A somewhat subtle point is that the adversary must always know
the inputs and randomness that explain its actions (i.e., the model requires the adversary
to explicitly output these before any messages that it sends).

We still assume a rushing adversary that can choose its messages after seeing the mes-
sages of the honest parties (subject to the constraint above). Similarly to the malicious
model, an adversarial party can abort the computation at any point. Security is defined
in the usual way, by requiring that a real-model execution is simulatable by an adver-
sary/simulator in the ideal model, cf. Definition 7 in Section 5.3.

4.1 A Semi-Malicious Protocol from Multi-Key FHE with Distributed
Setup

Our construction of 3-round semi-malicious protocol without setup is nearly identical to
the Mukherjee-Wichs construction with a common reference string [MW16, Sec. 6], except
that we use multi-Key FHE with distributed setup, instead of their multi-Key FHE with
trusted setup. We briefly describe this construction here for the sake of self-containment.

• To compute an N -party function F : ({0, 1}∗)N → {0, 1}∗ on input vector w, the
parties first run the setup round and broadcast their local parameters paramsi.

• Setting params = (params1, . . . , paramsN ), each party runs the key generation to
get (pki, ski) ← MFHE.Keygen(params, i) and then the encryption algorithm ci ←
MFHE.Encrypt(pki, wi), and broadcasts (pki, ci).

• Once the parties have all the public keys and ciphertexts, they each evaluate ho-
momorphically the function F and all get the same evaluated ciphertext ĉ. Each
party applies its partial decryption procedure to get evi ← MFHE.PartDec(ĉ, ski) and
broadcasts its decryption share evi to everyone.

• Finally, given all the shares evi, every party runs the combination procedure and
outputs µ← MFHE.FinDec(ev1, . . . , evN , ĉ).
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Security. Security is argued exactly as in [MW16, Thm. 6.1]: First we use the simu-
latability property to replace the partial decryption by the honest parties by a simulated
partial decryption (cf. [MW16, Lem. 6.2]), and once the keys of the honest parties are
no longer needed we can appeal to the semantic security of the FHE scheme (cf. [MW16,
Lem. 6.3]).

Exactly as in the Mukherjee-Wichs construction, here too the underlying multi-key
scheme only satisfies simulatability when all but one of the parties are corrupted, and as
a result also the protocol above is only secure against adversaries that corrupt all but one
of the parties. Mukherjee and Wichs described in [MW16, Sec. 6.2] a transformation from
a protocol secure against exactly N − 1 corruptions to one which is secure against any
number of corruptions. Their transformation is generic and can be applied also in our
context, resulting in a semi-malicious-secure protocol.

Part II

4-Round Malicious Protocols

5 Tools and Definitions

We use tools of commitment and proofs to “compile” our semi-malicious protocol to a pro-
tocol secure in the malicious model. Below we define these tools and review the properties
that we rely on.

5.1 Commitment Schemes

Commitment schemes allow a committer C to commit itself to a value while keeping it
(temporarily) secret from the receiver R. Later the commitment can be “opened”, allowing
the receiver to see the committed value and check that it is consistent with the earlier
commitment. In this work, we consider commitment schemes with statistically binding.
This means that even an unbounded cheating committer cannot create a commitment that
can be opened in two different ways. We also use tag-based commitment, which means that
in addition to the secret committed value there is also a public tag associated with the
commitment. The notion of hiding that we use is adaptive-security (due to Pandey et al.
[PPV08]): it roughly means that the committed value relative to some tag is hidden, even
in a world that the receiver has access to an oracle that breaks the commitment relative
to any other tag.

Definition 1 (Adaptively-secure Commitment[PPV08]). A tag-based commitment scheme
(C,R) is statistically binding and adaptively hiding if it satisfies the following properties:

Statistical binding: For any (computationally unbounded) cheating committer C∗ and
auxiliary input z, it holds that the probability, after the commitment stage, that
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there exist two executions of the opening stage in which the receiver outputs two
different values (other than ⊥), is negligible.

Adaptive hiding: For every cheating PPT receiver R∗ and every tag value tag, it holds
that the following ensembles are computationally indistinguishable.

• {viewR
∗(tag),Btag

aCom (m1, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

• {viewR
∗(tag),Btag

aCom (m2, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

where view
R∗(tag),Btag
aCom (m, z) denotes the random variable describing the output of

R∗(tag) after receiving a commitment to m relative to tag using aCom, while in-
teracting with a commitment-breaking oracle Btag.

The oracle Btag gets as input an alleged view v′ and tag tag′. If tag′ 6= tag and v′ is a
valid transcript of a commitment to some value m′ relative to tag′, then Btag returns
that value m′. (If there is no such value, or if tag = tag′, then B′tag returns ⊥. If
there is more than one possible value m′ then Btag′ returns an arbitrary one.)

To set up some notations, for a two-message commitment we let aCom1 = aComtag(r)
and aCom2 = aComtag(m; aCom1; r′) denote the two messages of the protocol, the first
depending only on the randomness of the receiver and the second depending on the message
to be committed, the first-round message from the receiver, and the randomness of the
sender.

5.2 Interactive Proofs

Given a pair of interactive Turing machines, P and V , we denote by 〈P (w), V 〉(x) the
random variable representing the (local) output of V , on common input x, when interacting
with machine P with private input w, when the random input to each machine is uniformly
and independently chosen.

Definition 2 (Interactive Proof System). A pair of interactive machines 〈P, V 〉 is called
an interactive proof system for a language L if there is a negligible function µ(·) such that
the following two conditions hold:

• Completeness: For every x ∈ L, and every w ∈ RL(x), Pr[〈P (w), V 〉(x) = 1] = 1.

• Soundness: For every x /∈ L, and every P ∗, Pr[〈P ∗, V 〉(x) = 1] ≤ µ(κ)

In case the soundness condition is required to hold only with respect to a computationally
bounded prover, the pair 〈P, V 〉 is called an interactive argument system.

Definition 3 (ZK). Let L be a language in NP, RL a witness relation for L, (P, V ) an
interactive proof (argument) system for L. We say that (P, V ) is statistical/computational
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ZK, if for every probabilistic polynomial-time interactive machine V there exists a prob-
abilistic algorithm S whose expected running-time is polynomial in the length of its first
input, such that the following ensembles are statistically close/computationally indistin-
guishable over L.

• {〈P (y), V (z)〉(x)}κ∈Nx∈{0,1}κ∩L,y∈RL(x),z∈{0,1}∗

• {S(x, z)}κ∈Nx∈{0,1}κ∩L,y∈RL(x),z∈{0,1}∗

where 〈P (y), V (z)〉(x) denotes the view of V in interaction with P on common input
x and private inputs y and z, respectively.

Definition 4 (Witness-indistinguishability). Let 〈P, V 〉 be an interactive proof (or argu-
ment) system for a language L ∈ NP. We say that 〈P, V 〉 is witness-indistinguishable
for RL, if for every probabilistic polynomial-time interactive machine V ∗ and for every
two sequences {w1

κ,x}κ∈N,x∈L and {w2
κ,x}κ∈N,x∈L, such that w1

κ,x, w
2
κ,x ∈ RL(x) for every

x ∈ L ∩ {0, 1}κ, the following probability ensembles are computationally indistinguishable
over κ ∈ N.

• {〈P (w1
κ,x), V ∗(z)〉(x)}κ∈Nx∈{0,1}κ∩L,z∈{0,1}∗

• {〈P (w2
κ,x), V ∗(z)〉(x)}κ∈Nx∈{0,1}κ∩L,z∈{0,1}∗

Definition 5 (Proof of knowledge). Let (P, V ) be an interactive proof system for the
language L. We say that (P, V ) is a proof of knowledge for the witness relation RL for the
language L it there exists an probabilistic expected polynomial-time machine E, called the
extractor, and a negligible function µ(·) such that for every machine P ∗, every statement
x ∈ {0, 1}κ, every random tape x ∈ {0, 1}∗, and every auxiliary input z ∈ {0, 1}∗,

Pr[〈P ∗r (z), V 〉(x) = 1] ≤ Pr[EP ∗r (x,z)(x) ∈ RL(x)] + µ(κ)

An interactive argument system 〈P, V 〉 is an argument of knowledge if the above con-
dition holds w.r.t. probabilistic polynomial-time provers.

Delayed-Input Witness Indistinguishability. The notion of delayed-input Witness
Indistinguishability formalizes security of the prover with respect to an adversarial verifier
that adaptively chooses the input statement to the proof system in the last round. Once we
consider such adaptive instance selection, we also need to specify where the witnesses come
from; to make the definition as general as possible, we consider an arbitrary (potentially
unbounded) witness selecting machine that receives as input the views of all parties and
outputs a witness w for any statement x requested by the adversary. In particular, this
machine is a (randomized) Turing machine that runs in exponential time, and on input a
statement x and the current view of all parties, picks a witness w ∈ RL(x) as the private
input of the prover.
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Let 〈P, V 〉 be a 3-round Witness Indistinguishable proof system for a language L ∈ NP
with witness relation RL. Denote the messages exchanged by (p1, p2, p3) where pi denotes
the message in the i-th round. For a delayed-input 3-round Witness Indistinguishable proof
system, we consider the game ExpAWI between a challenger C and an adversary A in which
the instance x is chosen by A after seeing the first message of the protocol played by the
challenger. Then, the challenger receives as local input two witnesses w0 and w1 for x
chosen adaptively by a witness-selecting machine. The challenger then continues the game
by randomly selecting one of the two witnesses and by computing the third message by
running the prover’s algorithm on input the instance x, the selected witness wb and the
challenge received from the adversary in the second round. The adversary wins the game
if he can guess which of the two witnesses was used by the challenger.

Definition 6 (Delayed-Input Witness Indistinguishability). Let ExpAWIA〈P,V 〉 be a delayed-
input WI experiment parametrized by a PPT adversary A and an delayed-input 3-round
Witness Indistinguishable proof system 〈P, V 〉 for a language L ∈ NP with witness relation
RL. The experiment has as input the security parameter κ and auxiliary information aux
for A. The experiment ExpAWI proceeds as follows:

ExpAWIA〈P,V 〉(κ, aux):

Round-1: The challenger C randomly selects coin tosses r and runs P on input
(1κ; r) to obtain the first message p1;

Round-2: A on input p1 and aux chooses an instance x and a challenge p2.
The witness-selecting machine on inputs the statement x and the current view
of all parties outputs witnesses w0 and w1 such that (x,w0), (x,w1) ∈ RL. A
outputs x,w0, w1, p2 and internal state state;

Round-3: C randomly selects b ← {0, 1} and runs P on input (x,wb, p2) to
obtain p3;

b′ ← A((p1, p2, p3), aux, state);

If b = b′ then output 1 else output 0.

A 3-round Witness Indistinguishable proof system for a language L ∈ NP with witness
relation RL is delayed-input if for any PPT adversary A there exists a negligible function
µ(·) such that for any aux ∈ {0, 1}∗ it holds that

|Pr[ExpAWIA〈P,V 〉(κ, aux) = 1]− 1/2| ≤ µ(κ)

The most recent 3-round delayed-input WI proof system appeared in [COSV16].

Feige-Shamir ZK Proof Systems. For our construction we use the 3-round, public-
coin, input-delayed witness-indistinguishable proof-of-knowledge ΠWIPOK based on the work
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of Feige, Lapidot, Shamir [FLS99], and the 4-round zero-knowledge argument-of-knowledge
protocol of Feige and Shamir ΠFS [FS90].

Recall that the Feige-Shamir protocol consists of two executions of a WIPOK protocol
in reverse directions. The first execution has the verifier prove something about a secret
that it chooses, and the second execution has the prover proving that either the input
statement is true or the prover knows the verifier’s secret. The zero-knowledge simulator
then uses the knowledge extraction to extract the secret of the verifier, making it possible
to complete the proof.

5.3 Secure Computation

The security of a protocol is analyzed by comparing what an adversary can do in the
protocol to what it can do in an “ideal model”. A protocol is secure if any adversary
interacting in the real protocol can do no more harm than if it was involved in this “ideal”
computation.

Execution in the ideal model. In the “ideal model” we have an incorruptible trusted
third party to whom the parties send their inputs. The trusted party computes the func-
tionality on the inputs and returns to each party its respective output. Even this model is
not completely “ideal”, however, since some malicious behavior that cannot be prevented
(such as early aborting) is permitted here too. An ideal execution proceeds as follows:

Inputs: Each party obtains an input, denoted w.

Send inputs to trusted party: An honest party always sends w to the trusted party.
A malicious party may, depending on w, either abort or send some w′ ∈ {0, 1}|w| to
the trusted party.

Trusted party answers malicious parties: The trusted party is informed of the set
of malicious parties M , and let us denote the complementing set of honest parties
by H.

Once it received all the inputs, the trusted party first replies to the malicious parties
with FM (w).

Trusted party answers second party: The malicious parties reply to the trusted
party by either “proceed” or “abort”. If they all reply “proceed” then the trusted
party sends FH(w) to the honest parties. If any of them reply “abort” then the
trusted party sends ⊥ to the honest parties.

Outputs: An honest party always outputs the message it received from the trusted
party. A malicious party may output an arbitrary (probabilistic polynomial-time
computable) function of its initial input and the message received from the trusted
party.
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The random variable containing the joint outputs of the honest and malicious parties
in this execution (including an identification of the set M of malicious parties) is
denoted IDEALF ,S(κ,w), where κ is the security parameter and w are the inputs.

Execution in the real model. In the real model ,where there is no trusted party, a ma-
licious party may follow an arbitrary feasible strategy; that is, any strategy implementable
by (non-uniform) probabilistic polynomial-time machines. In particular, the malicious
party may abort the execution at any point in time (and when this happens prematurely,
the other party is left with no output). The (static) adversary chooses the set M of ma-
licious parties before it receives any inputs to the protocol, and it can be rushing, in that
in every communication round it first sees the messages from the honest parties and only
then chooses the messages on behalf of the malicious parties.

Let F : ({0, 1}∗)N → ({0, 1}∗)N be an N -party function, let Π be an N -party protocol
for computing F , and let A be an adversary. The joint execution of Π with adversary A in
the real model, denoted REALΠ,A(κ,w) (with κ the security parameter and w the inputs),
is defined as the output of the honest and malicious parties (and an identification of the
set M of malicious parties), resulting from the protocol interaction.

Definition 7 (secure MPC). Let F and Π be as above. Protocol Π is said to securely
compute F (in the malicious model) if for every (non-uniform) probabilistic polynomial-
time adversary A for the real model, there exists a (non-uniform) probabilistic expected
polynomial-time adversary S for the ideal model, such that:

{IDEALF ,S(κ,w)}κ∈N,w∈({0,1}∗)N
c
≈ {REALΠ,A(κ,w)}κ∈N,w∈({0,1}∗)N .

Notations. For a sub-protocol π between two parties Pi and Pj , denote by
(p1

i,j , . . . , pt
i,j) the view of the messages in all t rounds where the subscripts (i, j) de-

note that the first message of the sub-protocol is sent by Pi to Pj . Likewise, subscripts
(j, i) denote that the first message of the sub-protocol is sent by Pj to Pi.

6 A Malicious Protocol without Setup

Our 4-round protocol for the malicious case is obtained by “compiling” the 3-round semi-
malicious protocol from Section 4, adding round-efficient proofs of correct behavior. The
components of this protocol are:

• The 3-round semi-malicious protocol from Section 4, based on the “dual”-GSW-
based multi-key FHE scheme with distributed setup. We denote this multi-key FHE
scheme by MFHE = (MFHE.DistSetup,MFHE.Keygen,MFHE.Encrypt,MFHE.Eval,
MFHE.PartDec,MFHE.FinDec).
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• Two instances of a two-round adaptively secure commitment scheme, supporting
tags/identities of length κ. We denote the first instance by aCom = (acom1, acom2)
and the second by bCom = (bcom1, bcom2).

• A one-way function OWF .

• A three-round public coin witness-indistinguishable proof of knowledge with delayed
input, ΠWIPOK = (p1, p2, p3), for the NP-Language LWIPOK

P from Figure 2. We often
refer to this protocol as “proof of correct encryption”, but what it really proves is
that EITHER the encryption is consistent with the values committed in aCom, OR
the value committed in bCom is a pre-image under OWF of values sent by the other
parties.

• A four-round zero-knowledge argument of knowledge with delayed input, ΠFS =
(fs1, fs2, fs3, fs4), for the NP-Language LFS

P from Figure 2. We often refer to this
protocol as “proof of correct decryption”.

The parameters for the MFHE scheme, the OWF , and the two proof systems, are cho-
sen polynomially larger than those for the commitment schemes. Hence (assuming sub-
exponential security), all these constructions remain secure even against an adversary that
can break aCom, bCom by exhaustive search.

The protocol. Let F : ({0, 1}∗)N → {0, 1}∗ be a deterministic N -party function to be
computed. Each party Pi holds input xi ∈ {0, 1}κ and identity idi.

5 The protocol consists
of four broadcast rounds, where messages (m1

t , . . . ,m
N
t ) are exchanged simultaneously in

the t-th round for t ∈ [4]. The message flow is detailed in Figure 1, and Figure 3 depicts
the exchanged messages between two parties Pi and Pj . Blue messages are sub-protocols
where party Pi is the prover/committer and party Pj is the verifier/receiver, red messages
are the opposite.

5Known transformations yield also protocols for randomized functionalities without increasing the
rounds, see [Gol04, Section 7.3].
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Protocol ΠMPC

Private Inputs: For i ∈ [N ], party Pi has input xi.
Round 1: For i ∈ [N ] each party Pi proceeds as follows:

1. Choose randomness ri = (rgeni , renci ) for the MFHE scheme.

2. Choose an unrelated κ-bit randomness value Ri, and set R̂i = OWF (Ri).

3. For every j, engage in a two-round commitment protocol with Pj for the values (xi, ri, Ri), using an
instance of aCom with tag idi. Note that the first message in this protocol is sent by Pj (so Pi sends
the first message to all the Pj ’s for their respective commitments). Denote the messages initiated in

each sub-protocol by Pi to Pj by acomi,j
1 .

4. For every j, prepare the first message pi,j1 of ΠWIPOK (acting as the Prover) for the NP-Language

LWIPOK

Pi
= Li,j,1 ∨ Li,j,2 for j ∈ [N ] \ {i} and the first message fsi,j1 of ΠFS (acting as the Verifier) for

LFS

Pj
= (Lj,i,1 ∧ Lj,i,3) where the NP-Languages Li,j,1,Li,j,2,Li,j,3 are defined in Figure 6.

5. Run the distributed setup of MFHE to get paramsi = MFHE.DistSetup(1κ, 1N , i).

6. For all j(6= i) broadcast the message mi,j
1 :=

(
acomi,j

1 , pi,j1 , fsi,j1 , R̂i, paramsi

)
to party Pj .

Round 2: For i ∈ [N ] each party Pi proceeds as follows:

1. Generate the second commitment messages acomj,i
2 for aComidi(xi, ri, Ri), the second message pj,i2 of

the ΠWIPOK proof system, and the second message fsj,i2 of the ΠFS proof system.

2. For every j, engage in a two-round commitment protocol with Pj for the value 0, using an instance of
bCom with tag idi. As before, Pi sends the first message to all the Pj ’s for their respective commit-

ments, and we denote the message sent from Pi to Pj by bcomi,j
1 .

3. For all j broadcast the messages mi,j
2 := (acomj,i

2 , p
j,i
2 , fs

j,i
2 , bcom

i,j
1 ).

Round 3: For i ∈ [N ] each party Pi proceeds as follows:

1. Generate the second messages bcomj,i
2 corresponding to all bComidi(0), the final message pi,j3 of the

ΠWIPOK protocol, and the third message fsi,j3 of ΠFS.

2. Set params = {paramsi}i∈[N ]. Use randomness rgeni , renci to generate a key pair for MFHE, (pki, ski)←
MFHE.Keygen(params, i), and an encryption of the private input ci = MFHE.Encrypt(pki, xi).

3. For all j broadcast the message mi,j
3 := (pki, ci, p

i,j
3 , fsi,j3 , bcomj,i

2 ).

Round 4: If any pj,i does not pass verification then abort. Otherwise each party Pi proceeds as follows:

1. Compute the evaluated ciphertext ĉ := MFHE.Eval(params;F ; (c1, . . . , cN )), and the decryption shares
evi ← MFHE.PartDec(ĉ, (pk1, . . . , pkN ), i, ski).

2. Prepare the final message fsj,i4 of ΠFS protocol.

3. For all j, broadcast the message mi,j
4 := (evi, fs

j,i
4 ).

Output phase: If any fsi,j does not pass verification then abort. Else run the combining algorithm on the
decryption shares, and output y ← MFHE.FinDec(ev1, . . . , evN , ĉ).

Figure 1: Protocol ΠMPC with respect to party Pi.
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NP-Language LWIPOK

Pi
and LFS

Pi
for ΠFS and ΠWIPOK proof systems where Pi acts as the prover:

Fix the identities idi, and then for all i, j define:

Li,j,1 =


(
R̂i, R̂j , params, acomj,i

1 , bcom
j,i
1

pki, ci, ĉ, acom
j,i
2 , bcom

j,i
2

)
∣∣∣∣∣∣∣∣∣∣∣∣

∃ (xi, r
gen
i , renci , ski, Ri, ωi) :

acomj,i
2 = aComidi(xi, r

gen
i , renci , Ri; acom

j,i
1 ;ωi)

∧ R̂i = OWF (Ri)

∧ (ski, pki) = MFHE.Keygen(params, i; rgeni )

∧ ci = MFHE.Encrypt(pki, xi; r
enc
i )



Li,j,2 =

{(
R̂i, R̂j , params, acomj,i

1 , bcom
j,i
1

pki, ci, ĉ, acom
j,i
2 , bcom

j,i
2

) ∣∣∣∣∣∃ (R′, ζi) : R̂j = OWF (R′)

∧ bcomj,i
2 = bComidi(R

′; bcomj,i
2 ; ζi)

}

Li,j,3 =


(
R̂i, R̂j , params, acomj,i

1 , bcom
j,i
1

pki, ci, ĉ, acom
j,i
2 , bcom

j,i
2

) ∣∣∣∣∣∣∣∣∣∣
∃ (xi, r

gen
i , renci , ski, Ri, ωi) :

acomj,i
2 = aComidi(xi, r

gen
i , renci , Ri; acom

j,i
1 ;ωi)

∧ (ski, pki) = MFHE.Keygen(params; rgeni )

∧ evi = MFHE.PartDec(ĉ, i, ski)


We define LWIPOK

Pi
= {Li,j,1 ∨ Li,j,2}j and LFS

Pi
= {Li,j,3}j .

Figure 2: NP-Language Li,j,1,Li,j,2,Li,j,3 for ΠFS and ΠWIPOK proof systems.

6.1 Proof of Security

Theorem 2. Assuming sub-exponential hardness of LWE, and the existence of an
adaptively-secure commitment scheme, there exists a four-broadcast-round protocol for
securely realizing any functionality against a malicious adversary in the plain model with
no setup.

To prove Theorem 2, we note that the two assumptions listed suffice for instantiating all
the components of our protocol ΠMPC: the commitment is used directly for aCom and bCom,
and sub-exponential LWE suffices for everything else. We also note that while we think
of the protocol from Figure 1 as a “compilation” of the 3-round protocol from Section 4
using zero-knowledge proofs, it is not a generic compiler, as it relies on the specifics of our
semi-malicious protocol. See more discussion in Section 6.2 below.

Below we prove security of ΠMPC by describing a simulator and proving that the simu-
lated view is indistinguishable from the real one.

6.1.1 Description of the Simulator

Let P = {P1, . . . , PN} be the set of parties, let A be a malicious, static adversary in the
plain model, and let P∗ ⊆ P be the set of parties corrupted by A. We construct a simulator
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Figure 3: Messages exchanged between party Pi and Pj in ΠMPC. (acom1, acom2)
and (bcom1, bcom2) are commitments, (p1, p2, p3) belong to the 3-round ΠWIPOK,
(fs1, fs2, fs3, fs4) belong to the 4-round ΠFS, and (params, pk, c, ev) denote the MFHE mes-
sages. Blue messages are sub-protocols where party Pi is the prover/committer and party
Pj is the verifier/receiver, red messages are the opposite.

S (the ideal world adversary) with access to the ideal functionality F , such that the ideal
world experiment with S and F is indistinguishable from a real execution of ΠMPC with A.
The simulator S only generates messages on behalf of parties P\P∗, as follows:

Round 1 Messages S → A: In the first round, S generates messages on behalf of each
honest party Ph /∈ P∗, as follows:

1. Choose randomness rh = (rgenh , rench ) for the MFHE scheme and an unrelated κ-bit

randomness value Rh, and set R̂h = OWF (Rh).

2. For every j engage in a two-round commitment protocol with Pj . To this

end, prepare the first message acomh,j
1 corresponding to the execution of

aComidj (xj , r
gen
j , rencj , Rj ;ωj) on behalf of Ph, acting as the receiver of the commit-
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ment. Since the commitment aCom is a two-round protocol, the message of the
committer Pj is only sent in the second round.

3. Prepare the first message ph,j1 of ΠWIPOK (with Ph as Prover) for the NP-Language

LWIPOK
Ph

, and the first message fsh,j1 of ΠFS (with Ph as Verifier) for LFS
Pj

.

4. Run paramsh ← MFHE.DistSetup(1κ, 1N , h).

5. Send the message mh,j
1 =

(
acomh,j

1 , ph,j1 , fsh,j1 , R̂h, paramsh

)
to A.

Round 1 Messages A → S: Also in the first round the adversary A generates the

messages mj,h
1 =

(
acomj,h

1 , pj,h1 , fsj,h1 , R̂j , paramsj

)
on behalf of corrupted parties j ∈ P∗ to

honest parties h /∈ P∗. Messages {acomj,h
1 } correspond to an execution of aComidh(0;ωh).

Round 2 Messages S → A: In the second round S generates messages on behalf of
each honest party Ph ∈ P∗ as follows:

1. Complete the commitment to the zero string generating the second messages acomj,h
2

corresponding to all executions of aComidh(0;ωh).

2. Honestly prepare the second message pj,h2 (fsj,h2 ) of ΠWIPOK(ΠFS) initiated by Pj acting
as the prover (verifier) in the first round.

3. Generate the second commitment messages bcomh,j
1 for bComidj (0; ζj) where party

Ph acts as the Receiver.

4. Send the message mh,j
2 = (acomj,h

2 , pj,h2 , fsj,h2 , bcomh,j
1 ) to A.

Round 2 Messages A → S: In the second round the adversaryA generates the messages
mj,h

2 := (acomh,j
2 , ph,j2 , fsh,j2 , bcomj,h

1 ) on behalf of corrupted parties j ∈ P∗ to honest parties

h /∈ P∗. Messages {acomh,j
2 } correspond to an execution of aComidj (xj , r

gen
j , rencj , Rj ;ωj)

and messages {bcomj,h
1 } correspond to an execution of bComidh(0; ζh)

Round 3 Messages S → A: In the third round S generates messages on behalf of each
honest party Ph /∈ P∗ as follows:

1. Generate the second messages bcomj,h
2 corresponding to all bComidh(0; ζh).

2. Set params = (params1, . . . , paramsN ) for the MFHE scheme and generate the keys
(pkh, skh) = MFHE.Keygen(params, h; rgenh ). Generate an encryption of zero using
randomness rench , ch = MFHE.Encrypt(pkh,0; rench ).
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3. Honestly prepare the final message ph,j3 (fsh,j3 ) of ΠWIPOK(ΠFS) initiated by Ph acting
as the prover (verifier) in the first round.

4. Send the message mh,j
3 = (pkh, ch, p

h,j
3 , fsh,j3 , bcomj,h

2 ) to A.

Round 3 Messages A → S: S receives mj,h
3 = (pkj , cj , p

j,h
3 , fsj,h3 , bcomh,j

2 ) fromA, where

messages {bcomh,j
2 } correspond to an execution of bComidj (0; ζj).

Then, S proceeds to extract the witness corresponding to each proof-of-knowledge
(pj,h1 , pj,h2 , pj,h3 ) completed in the first three rounds, using rewinding.

To this end, S applies the knowledge extractor of ΠWIPOK to obtain the “witnesses”
which consist of the inputs and secret keys of the corrupted parties (xj , rj)

6. S also
uses the zero-knowledge simulator of ΠFS to obtain the “trapdoors” associated with that
protocol. (Note that here we rely on the specific structure of Feige-Shamir proofs, where
the zero-knowledge simulator extracts a “verifier secret” after the 3rd round, that makes
it possible to simulate the last round.)

Next S sends {xj}j∈[N ]\{h} to the ideal functionality F which responds by sending back
y such that y = F ({xj}j∈[N ]).

Round 4 Messages S → A: In the fourth round S generates messages on behalf of each
honest party Ph /∈ P∗ as follows:

1. Generate the evaluated ciphertext ĉ := MFHE.Eval(params;F ; (c1, . . . , cN )).

2. S reconstructs all the secret keys {skj}j∈P∗ from the witnesses {rgenj }j∈P∗ , and com-

putes the simulated decryption shares {evh}h/∈P∗ ← ST (y, ĉ, h, {skj}j∈P∗). (The
simulator ST is the one provided by [MW16, Sec. 6.2].7)

3. Simulate the final message fsj,h4 of ΠFS protocol using the extracted trapdoor.

S sends the message mh,j
4 = (evh, fs

j,h
4 ) on behalf of Ph.

Round 4 Messages A → S: In the last round the adversary A generates the messages
on behalf of corrupted parties in P∗. For each party j ∈ P∗ our simulator receives messages
mj,h

4 = (evj , fs
h,j
4 ) from A.

This completes the description of the simulator.

6For simplicity of exposition, we omit the rest of the witness values.
7To use ST from [MW16, Sec. 6.2] we need to evaluate the protocol on a different function F ′ rather

than F , we ignore this detail in the rest of the presentation here.
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6.1.2 Proof of Indistinguishability

Overview. We need to prove that for any malicious (static) adversary A, the view gen-
erated by the simulator S above is indistinguishable from the real view, namely:

{IDEALF ,S(κ, ·)}κ
c
≈ {REALΠ,A(κ, ·)}κ

To prove indistinguishability, we consider a sequence of hybrid experiments. Let H0 be the
hybrid describing the real-world execution of the protocol, and we modify it in steps:

H1 Use the zero-knowledge simulator to generate the proof in the 4-round ΠFS, indistin-
guishability follows by the ZK property of ΠFS.

H2 Starting in this hybrid, the challenger is given access to a breaking oracle Btag (with
tag = (idh, ?) where h is one of the honest parties). Here the challenger uses the

breaking oracle to extract the values committed to by the adversary in acomh,A
2 (in

the second round), then commits to these same values in bcomA,h2 on behalf of the
honest party (in the third round). Indistinguishability follows by the adaptive-hiding
of bCom.

H3 Change the proof in ΠWIPOK to use the “OR branch”. Indistinguishability follows by
the WI property of ΠWIPOK (which must hold even in the presence of the breaking-
oracle Btag).

H4 Here the challenger also has access to the ideal-world functionality that gives it the
output of the function. Having extracted the secret keys using Btag, the challenger
simulates the decryption shares of the honest parties rather than using the decryption
procedure. Indistinguishability follows since the FHE scheme is simulatable.

H5 Encrypt 0’s rather than the true inputs. Indistinguishability follows due to the
semantic security of the encryption scheme.

H6 Commit to 0’s in acomA,h2 , rather than to the real inputs. Indistinguishable due to
the adaptive-hiding of aCom.

H7 Revert the change in H3, make the proof in ΠWIPOK use the normal branch rather
than the “OR branch”. Indistinguishability follows by the WI property of ΠWIPOK.

H8 Revert the change in H2 and thus commit to zero in bcomA,h2 (instead of committing
to the extracted values). Indistinguishability follows by the adaptive-hiding of bCom.

H9 Here the challenger no longer has access to a breaking oracle, and instead it uses the
POK extractor to get the randomness and inputs (witnesses) from ΠWIPOK. Indis-
tinguishability follows from the extraction property of ΠWIPOK, combined with the
one-wayness of OWF .
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As H9 no longer uses the inputs of the honest parties, the view of this hybrid can be
simulated. (We also note that the simulator does not use a breaking oracle, rather it is a
traditional rewinding simulator.)

Security in the presence of a breaking oracle: Note that some of our indistin-
guishability arguments must holds in worlds with a breaking oracle Btag. In particular, we
require that aCom is still hiding, that LWE still holds, and that ΠWIPOK is still witness-
indistinguishable in the presence of the oracle. The hiding property of aCom follows directly
from its adaptive-hiding property. As for LWE and ΠWIPOK, security in the presence of Btag
follows from sub-exponential hardness and complexity leveraging. Namely, in the relevant
reductions we can implement Btag ourselves in subexponential time, while still relying on
the hardness of LWE or ΠWIPOK.

Another point to note is that using the zero-knowledge simulator (in hybrids H2-H9)
requires rewinding, which may be problematic when doing other reductions. As we explain
below, we are able to handle rewinding by introducing many sub-hybrids, essentially cutting
the distinguishing advantage by a factor equal to the number of rewinding operations. We
now proceed to give more details.

H0: This hybrid is the real execution. In particular, H0 starts the execution of A provid-
ing it fresh randomness and input {xj}Pj∈P∗ , and interacts with it honestly by performing
all actions of the honest parties with uniform randomness and input. The output consists
of A’s view.

H1: In this hybrid the challenger uses the zero-knowledge simulator of ΠFS to generate
the proofs on behalf of each honest party Ph, rather than the honest prover strategy as
is done in H0. We note that the challenger in this hybrid needs to rewind the adversary
A (up to the second round) as needed for the Feige-Shamir ZK simulator. Since in these
two hybrids the protocol ΠFS is used to prove the same true statement, then the simulated
proofs are indistinguishable from the real ones, so we get:

Lemma 6.1. H0 ≈s H1.

H2: In this “mental-experiment hybrid” the challenger is given access to a breaking oracle
Bidh , with the tag being the identity of an arbitrary honest parties (h /∈ P∗). The challenger
begins as in the real execution for the first two rounds, but then it uses Btag to extract the

values (xj , rj , Rj) of all the adversarial players j ∈ P∗ from acomh,j
2 .

Then the challenger changes the commitments bcomj,h
2 on behalf of the honest party

Ph, committing to the values Rj that were extracted from acomh,j
2 (and thus making the

language Lh,j,2 –the “OR branch”– in ΠWIPOK a true statement).8

8The commitment bCom starts in the second round, but this is a two-round commitment so the com-
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Lemma 6.2. H1 ≈c H2.

Proof: Since the only differences between these hybrids are the values committed to
in bcomj,h, then indistinguishability should follow from the adaptive-hiding of the com-
mitment scheme bCom (as the challenger never queries its breaking oracle with any tag
containing the identity idh of the honest party).

One subtle point here, is that in both H1 and H2 we use the rewinding Feige-Shamir ZK
simulator, so we need to explain how the single value bcomj,h

2 provided by the committer in
the reduction (which is a commitment to either 0 or Rj) is used in all these transcripts. To
that end let M be some polynomial upper bound on the number of rewinding operations
needed by the zero-knowledge simulator. The reduction to the security of bCom will choose
at random t ∈ [1,M ] and will only use the bCom committer that it interacts with to commit
to a value in the t’th rewinding, committing to 0 in all the rewindings i < t and to the
value Rj (that it has from the breaking oracle) in all the rewindings i > t.

By a standard argument, if we can distinguish between H1 ≈c H2 with probability ε
then the reduction algorithm can distinguish commitments to 0 and Rj with probability
ε/M .

H3: In this hybrid, we change the witness used in ΠWIPOK on behalf of each honest party
Ph. In particular, all ΠWIPOK executions use the “OR branch” Lh,j,2.

Lemma 6.3. H2 ≈c H3.

Proof: We make sub-hybrids that change one honest party at a time, and show that a dis-
tinguisher D that distinguishes two such sub-hybrids can be used by another distinguisher
D′ to distinguish between the two witnesses of ΠWIPOK (as per Definition 6).

Description of D′: D′ plays the role of both the challenger and the adversary in the
two hybrids, except that the prover messages of ΠWIPOK (on behalf of Ph) are obtained
from the external prover that the WI-distinguisher D′ has access to.

At the third round of the protocol, D′ has the statement that Ph needs to prove, and it
gets the two witnesses for that statement from the witness-selecting machine in Definition 6.
Sending the statement and witnesses to its external prover, D′ obtains the relevant ΠWIPOK

message (for one of them). D′ also uses these witnesses to complete the other flows of the

protocol (e.g., the commitments bcomj,h
2 that include some of these witnesses). Once the

protocol run is finished, it gives the transcript to D and outputs whatever D outputs.
As above, we still need to support rewinding by the Feige-Shamir ZK simulator, while

having access to only a single interaction with the external prover, and we do it by sub-
sub-hybrids where we embed this interaction in a random rewinding t, producing all the
other proofs by the H2 challenger (for i < t) or the H3 challenger (for i > t). It is clear
that the advantage of D′ is a 1/M fraction of the advantage of D.

mitted value only affects the second message in the commitment, which happens in the third round of the
larger protocol.
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We note that D′ above still uses the breaking oracle Btag (to extract the ΠFS secrets), so
we need to assume that delayed-input-WI holds even in a world with the breaking oracle. As
explained above, we rely on complexity leveraging for that purpose. That is, we let D′ run
in subexponential time (so it can implement Btag itself), and set the parameters of ΠWIPOK

large enough so we can assume witness-indistinguishability even for such a strong D′. (We
can implement subexponential WI protocol from subexponential LWE.)

H4: The difference from H3 is that in H4 we simulate the decryption shares of the honest
parties. More specifically, the challenger in H4 has access also to the ideal functionality,
and it proceeds as follows:

1. It completes the first three broadcast rounds exactly as in H3.

2. Having extracted the input of all the corrupted parties, the challenger sends all these
inputs to the ideal functionality F and receives back the output y = F ({xj}j∈[N ]).

3. Having extracted also all the secret keys of the corrupted parties, the challenger has
everything that it needs to compute the simulated decryption shares of the honest
parties, {evh}h/∈P∗ ← ST (y, ĉ, h, {skj}j∈P∗).

4. The challenger computes also the last message of ΠFS (using the simulator as before),
and sends it together with decryption shares {evh}h in the last round.

Lemma 6.4. H3 ≈s H4.

Proof: The only change between these two experiments is that the partial decryption
shares of the honest parties are not generated by partial decryption. Instead they are
generated via the the threshold simulator ST of the MFHE scheme. By the simulatability of
threshold decryption, the partial decryptions shares are statistically indistinguishable.

H5: We change H4 by making S broadcast encryptions of 0 on behalf of the honest parties
in the third round, instead of encrypting the real inputs.

Lemma 6.5. H4 ≈c H5.

Proof: The proof follows directly from semantic security, which in our case follows from
LWE. As in the previous hybrid, here too we need this assumption to hold even in the
presence of a breaking oracle, and we lose a factor of M in the distinguishing probability
due to rewinding.
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H6: In this hybrid, we get rid of the honest parties’ inputs {(xh, rh)}h (that are present

in the values of acomj,h
2 ). Formally, H6 is identical to H5 except that in the first round it

sets xh = 0 for all h /∈ P∗.

Lemma 6.6. H5 ≈c H6.

Proof: This proof is very similar to the the proof of H1 ≈c H2, and indistinguishability
follows from adaptive-hiding of aCom. Since the challenger never asks its breaking oracle
Btag to break commitments relative to the honest party’s tags (and since these committed
values are no longer used by the challenger for anything else), then having the honest
parties commit to xh is indistinguishable from having it commit to 0.

H7: In this hybrid we essentially reverse the change that was made in going from H2 to
H3. Namely, since now both the encryption and the commitment at each honest party are
for the value 0 then there is no need to use the “OR branch” in ΠWIPOK. Hence we return
in using the honest prover strategy there, relative to the input xh = 0. As in Lemma 6.3
indistinguishability follows by the WI property of ΠWIPOK.

H8: Revert the change that was made in going from H1 to H2 and thus commit to a
random value sh in bcomj,h

2 . Indistinguishability follows by the computational hiding of
bCom, just like in Lemma 6.2.

H9: In this hybrid the challenger no longer has access to the breaking oracle Btag. Instead,
it uses the knowledge extractor of ΠWIPOK to get the input and secret keys of the corrupted
parties, and the “standard” zero-knowledge simulator to get the proof in ΠFS.

Lemma 6.7. H8 ≈s H9.

Proof: The only difference between these hybrids is the method used by the challenger
to extract the adversary secrets. Two technical points needs to be addressed here:

• This hybrid requires rewinding by both the FS ZK simulator and the FLS knowledge
extractor, so we need to argue that after polynomially many trials they will both
succeed on the same transcript. This is a rather standard argument (which essen-
tially boils down to looking at the knowledge-extractor inside ΠFS and the one used
explicitly in ΠWIPOK as extracting knowledge for and AND language.)

• We also need to argue that the value extracted from the adversary by the ΠWIPOK

extractor in H9 is a witness for Li,j,1 and not for Li,j,2. This is done by appealing
to the one-wayness of OWF , if there is a noticeable probability to extract an Li,j,2
witness in H9 then we get an inverter for this one-way function.
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We conclude that in both H8 and H9 we succeed in extraction with about the same prob-
ability, and moreover extract the very same thing, and (statistical) indistinguishability
follows.

Observing that the hybrid H9 is identical to the ideal-world game with the simulator
completes the proof of security.

6.2 Discussion and Open Problems

Compiling semi-malicious to malicious protocols. Our protocol and its proof can
be viewed as starting from a 3-round semi-malicious protocol and “compiling” it into a
4-round malicious protocol using commitments and zero-knowledge proofs. However our
construction is not a generic compiler of semi-malicious to malicious protocols, rather it
relies on the specifics of our 3-round semi-malicious protocol from Section 4. At the very
least, our construction needs the following two properties of the underlying semi-malicious
protocol:

Public-coin 1st round. In our protocol we must send the second-round messages of the
underlying protocol no later than the 3rd round of the compiled protocol. We thus
have at most two rounds to prove that the first-round messages are valid, before we
must send the second-round messages, severely limiting the type of proofs that we
can use.

This is not a problem in our case, since the first round of the semi-malicious protocol
is public coin, i.e., the parties just send to each other random bits. Hence, there
is nothing to prove about them and the semi-malicious protocol can withstand any
messages sent by the adversary.

Committing 2nd round. We also use the fact that the second round of the semi-
malicious protocol is fully committing to the input, since our simulator extracts
the inputs after these rounds.

We remark that in some sense every 3-round semi-malicious protocol with a public-coin first
round and fully-committing second round can be thought of as a multi-key homomorphic
encryption with distributed setup, by viewing the random coins send in the first round as
the params, and the second-round messages as encryptions of the inputs.

Adaptive commitments. Although the intuitive property that we need from the com-
mitment component of our protocol is non malleability, our actual proof relies heavily on
the stronger notion of adaptive security, that lets us use straight-line extraction from the
adversary’s commitment. While it is plausible that our 3-round semi-malicious protocol
can be “compiled” using only non-malleable commitments and avoid complexity leveraging,
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we were not able to do it, this question remains open.9

Another open problem is to base two-round adaptive commitments on more standard
assumptions. The only construction we have is the original one due to Pandey et al. from
adaptive PRGs [PPV08]. It is plausible that the new two-round commitment scheme of
Lin, Pass, and Soni [LPS17] from “Time-Lock Puzzles” can be made adaptively secure,
though it was not claimed in [LPS17].
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Vaikuntanathan, and Daniel Wichs. Multiparty computation with low commu-
nication, computation and interaction via threshold FHE. In David Pointcheval
and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 483–501. Springer, Heidelberg, April 2012.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of
secure protocols (extended abstract). In 22nd ACM STOC, pages 503–513.
ACM Press, May 1990.

[BP16] Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key
FHE with short ciphertexts. In Matthew Robshaw and Jonathan Katz, edi-
tors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 190–213. Springer,
Heidelberg, August 2016.

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled
FHE from learning with errors. In Rosario Gennaro and Matthew J. B. Rob-
shaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 630–656.
Springer, Heidelberg, August 2015.

[COSV16] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Concur-
rent non-malleable commitments (and more) in 3 rounds. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS,
pages 270–299. Springer, Heidelberg, August 2016.

[DGK+10] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and
Vinod Vaikuntanathan. Public-key encryption schemes with auxiliary inputs.

9The concurrent work of [ACJ17] achieves a “compilation” of their robust semi-honest protocol to the
malicious setting based on complexity leveraging and non-malleable commitments.

32

http://eprint.iacr.org/2017/402


In Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 361–381.
Springer, Heidelberg, February 2010.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowl-
edge proofs under general assumptions. SIAM J. Comput., 29(1):1–28, 1999.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding
protocols. In 22nd ACM STOC, pages 416–426. ACM Press, May 1990.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round
secure MPC from indistinguishability obfuscation. In Theory of Cryptography
- 11th Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA,
February 24-26, 2014. Proceedings, pages 74–94, 2014.

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroni-
adou. The exact round complexity of secure computation. In Marc Fischlin
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A The Need for Dual GSW

For the interested reader, we explain below why we need to use the “dual” rather than
“primal” GSW scheme for our multi-key FHE. The main difference is that in the scheme
from [CM15, MW16], the common matrix A has dimension (n − 1)-by-m (with m > n),
while in our scheme the dimensions are flipped and the matrix A = (A1| . . . |An) is of
dimension (m − 1)-by-Nn with m > Nn. While it is possible that a secure one-round
distributed setup procedure exists also for the “primal” scheme, we were not able to find
one that we can prove secure under any standard assumption. Below we detail some specific
failed attempts.
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Failed attempt #1, parties choose different columns. Consider a protocol in which
each party Pi is choosing a random n×m′ matrix Ai (n < m′), and then using the column-
concatenation of all the Ai’s, A = (A1|A2| . . . |AN ).

Since n < m′, an adversary (who controls PN without loss of generality), can just set
its matrix as AN = G where G is the GSW “gadget matrix”. That gadget matrix has
the property that given any vector v ≈ sG it is easy to find s, making it possible for the
adversary to recover the secret keys of the honest parties. (This is exactly where the “dual”
scheme helps: the adversary still sees some “leakage” v ≈ sAN , but it cannot recover s
since s still has a lot of min-entropy even given that leakage.)

Failed attempt #2, parties choose different rows. One way to avoid attacks as
above is to let each party choose a random n′ ×m matrix Ai and set A ∈ ZNn′×mq as the

row-concatenation of the Ai’s, A
T = (AT1 | . . . |ATN ). It is now easy to prove that sA+ e is

pseudorandom (under LWE), no matter what the adversary does. But this arrangement
opens another avenue of attack: The adversary (still controlling PN ) set AN = A1, so the
bottom few rows in A are equal to the top few rows. Hence, also the bottom few rows in
AR are equal to the top few rows, which lets the adversary distinguish AR from a uniform
random U .

At this point one may hope that if we let the parties choose different diagonals then
neither of the attacks above would apply, but this is not the case. For example, an adversary
controlling all but one party can force the matrix A to have many identical rows, which
would mean that so does the matrix AR. More generally, it seems that any arrangement
where each party chooses a subset of the entries in A will let the adversary force A to
be low rank, and hence also AR will be of low rank. (Here too the “dual” scheme works
better, since the attacker sees AR+ E rather than AR itself.)
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