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QUANTUM ONE-WAY PERMUTATION OVER THE FINITE

FIELD OF TWO ELEMENTS

ALEXANDRE DE CASTRO¹

Abstract. In quantum cryptography, a one-way permutation is a bounded
unitary operator U : H → H on a Hilbert space H that is easy to com-
pute on every input, but hard to invert given the image of a random in-
put. Levin [Probl. Inf. Transm., vol. 39 (1): 92-103 (2003)] has conjec-
tured that the unitary transformation g(a, x) = (a, f(x) + ax), where f is any
length-preserving function and a, x ∈ GF2‖x‖ , is an information-theoretically
secure operator within a polynomial factor. Here, we show that Levin’s one-
way permutation is provably secure because its output values are four max-
imally entangled two-qubit states, and whose probability of factoring them
approaches zero faster than the multiplicative inverse of any positive polyno-
mial poly(x) over the Boolean ring of all subsets of x. Our results demonstrate
through well-known theorems that existence of classical one-way functions im-
plies existence of a universal quantum one-way permutation that cannot be in-
verted in subexponential time in the worst case. Keywords: quantum one-way

permutation; CHSH inequality; controlled NOT gate; negligible probability;
(pseudo)randomness.

1. Introduction.

One of the remarkable effects of (pseudo)randomness is breaking the symmetries
inherent in many natural and artificial phenomena [1]. Because one-way permu-
tations are quite heavily involved in the generation of (pseudo)randomness, they
are seen as (pseudo)random generators themselves [2]. In the following, we will
analyze Levin’s construction [3] that addresses the existence of a specific one-way
permutation, a one-to-one and onto mapping whose probability of security failure
is negligible for a cryptographic key of arbitrary length. We will show that such a
one-way permutation is a unitary operator that breaks its own symmetry, yielding
a quantum cryptography protocol that is polynomially secure.

Preliminaries: Consider the Clauser-Horne-Shimony-Holt (CHSH) scenario [4],
where two spatially separated parties labeled Alice and Bob can accept binary
inputs a, x ∈ {0, 1} and getting output bits a’, x’∈ {0, 1}. We can generate correla-
tions between the output values and the input bits of a PR (Popescu-Rohrlich) box
[5] from a stochastic mechanism which depends on the temporal order of the inputs
[6, 7]. Suppose that the input a is the temporal parameter, a control bit so that a’
occurs before x’. Then, for the group homomorphism {+1,−1,×} 7→ {0, 1,⊕} so
that its inverse is also a group homomorphism, the condition a’:= 0 and x’:= a∧ x
or a’:= 1 and x’=: 1 ⊕ a ∧ x produces the correlation a’⊕x’:= a ∧ x, where ⊕ is
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the addition modulo 2 (XOR) and the field’s multiplication operation (×) corre-
sponds to the logical AND function (Eq. 1). This mapping between two isomorphic
groups can be written as a 2-ary (total) function g : (a, x) 7→ [a’:= a, x’:= (f ∈
{0, 1}) ⊕ a ∧ x] defined for all possible input values, so that the communication
system yields the PR correlation characterized by the following (conditional) prob-
ability distribution:

(1) Pr(a, x/a′
, x

′) =

{

1/2, a’⊕x’:= a ∧ x
0, otherwise

whence, the input state of g can only be guessed with negligible probability from
its output state.

1.1. Definition. Let g : {0, 1}∗ → {0, 1}∗ be a length-preserving 2-ary total func-
tion that is easy to compute on every input but hard to invert given the image of
a random input [8, 9]. The function g is called strongly one way if and only if the
probability Pr of inverting g is negligible (Eq. 2). Pr is negligible if it approaches
zero faster than the multiplicative inverse of any positive polynomial:

(2) PrA(g)∈g−1g ∈ O(1/poly),

where A is any probabilistic polynomial time algorithm [10]. In other words, a bad
event that occurs with negligible probability Prg−1g←g < 1/poly would be highly
unlikely to occur even if we repeated the experiment polynomially many times.
Otherwise, a function is called weakly one way if Prg−1g←g > 1/poly, i.e., if an event
that occurs with noticeable probability occurs almost always when the experiment
is repeated a polynomial number of times.

1.1.1. Remark. Inputs of g(a, x) = (a, f(x) + ax) have ≤ 1 siblings on average for
any length-preserving f and a, x ∈ GF2‖x‖ (see in [3]):

i) The function f is length preserving if for every x ∈ {0, 1}∗ it holds that the
length of the input is the same as the length of the output.

ii) The output f(x) + ax, where a is a key bit, can be replaced by another hash
function, a function that is used to map data of arbitrary sizes to data of fixed
sizes.

iii) ‖x‖ = length(x), and GF2 is the Galois Field of two elements.

1.1.2. Conjecture. The above g is one way, for any OWF (one-way function) f , and
has the same (within a polynomial factor) security (see in [3]):

i) This security scheme is provably secure if the probability of inverting g grows
asymptotically no faster than the multiplicative inverse of any positive polynomial
p(x) for all large enough ‖x‖.

ii) The polynomial p(x) is positive over GF2‖x‖ if p(x) > 0 for every x ∈ GF2‖x‖ .

2. Proof.

The function g(a, x) with a, x ∈ GF2‖x‖ is known as the universal one-way func-
tion. The question of whether one-way functions exist can be reduced to the ques-
tion of whether this specific permutation is one way [11].



2.1. Definition. Given a permutation of n elements g : {1, ..., n} → {1, ..., n},
its permutation matrix is a square binary (orthogonal) matrix which has exactly
one entry of 1 in each row and each column and 0′s elsewhere. Its elements are
(n = ‖x‖)-bit arrays that can be represented as polynomials over the Galois fields
GF2‖x‖ [12].

2.1.1. Remark. For constructing a Galois extension of GF2, e.g., the finite field
GF2length=3 that represents the coordinates of the vertices defining a three-dimensional
hypercube in which the sides are one unit in length, we need to choose an irreducible
polynomial of degree 3 [13, 14].

Let the Table 1 below be the polynomial arithmetic modulo x3 ⊕ x ⊕ 1. Over
the finite field with characteristic 2 (1+1=0), the field′s multiplication operation
corresponds to the logical AND gate, and the field′s addition operation corresponds
to the logical XOR gate. Hence, g(a, x) = (a, f(x)⊕ (a ∧ x)), and:

i) For sibling = 1 (even input), x = a implies that f(x) = x[(I(x)]; consequently,
g(a, x) = (a, x2 ⊕ x) because x = x2 over the finite field with characteristic 2 (see
Table 1).

ii) For sibling < 1 (odd input), x 6= a implies that f(x) = x2 ⊕ 1[NOT (x)];
consequently, g(a, x) = (a, x2 ⊕ x ⊕ 1) because x ⊕ 1 = x2 ⊕ 1 over the finite field
with characteristic 2 (see Table 1).

Note that x2 ⊕ x⊕ 1 > 0 and x2 ⊕ x < 1 for x = {0, 1}.
Thus,

g(0, 0) = (0, 0) ⇒









g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44









×









1
0
0
0









=









1
0
0
0









∴









g11
g21
g31
g41









=









1
0
0
0









,

and

g(1, 0) = (1, 1) ⇒









1 0 g13 g14
0 1 g23 g24
0 0 g33 g34
0 0 g43 g44









×









0
0
1
0









=









0
0
0
1









∴









g13
g23
g33
g43









=









0
0
0
1









.

as g22 = 1 and g12 = g32 = g42 = 0 for g(0, 1) = (0, 1). In the same way, for
g(1, 1) = (1, 0), g34 = 1 and g14 = g24 = g34 = 0.

Table 1. Logical operator precedence. For a = NOT (x), g(a, x) =
(a, (x2 ⊕ 1) ⊕ ((x2 ⊕ 1) ∧ x2)). Otherwise, g(a, x) = (a, x ⊕
(x ∧ x)).

000 001 010 011 100 101 110 111
(AND) 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1

000 0 0 0 0 0 0 0 0 0
001 1 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1
010 x 0 x x2 x2 + x x+ 1 1 x2 + x+ 1 x2 + 1
011 x+ 1 0 x+ 1 x2 + x x2 + 1 x2 + x+ 1 x2 1 x
100 x2 0 x2 x2 + 1 x2 + x+ 1 x2 + x x x2 + 1 1
101 x2 + 1 0 x2 + 1 1 x2 x x2 + x+ 1 x+ 1 x2 + x
110 x2 + x 0 x2 + x x2 + x+ 1 1 x2 + 1 x+ 1 x x2

111 x2 + x+ 1 0 x2 + x+ 1 x2 + 1 x 1 x2 + 1 x2 x+ 1



000 001 010 011 100 101 110 111
(XOR) 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1

000 0 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1
001 1 1 0 x+ 1 x x2 + 1 x2 x2 + x+ 1 x2 + x
010 x x x+ 1 0 1 x2 + x x2 + x+ 1 x2 x2 + 1
011 x+ 1 x+ 1 x 1 0 x2 + x+ 1 x2 + x x2 + 1 x2

100 x2 x2 x2 + 1 x2 + x x2 + x+ 1 0 1 x x+ 1
101 x2 + 1 x2 + 1 x2 x2 + x+ 1 x2 + x 1 0 x+ 1 x
110 x2 + x x2 + x x2 + x+ 1 x2 x2 + 1 x x+ 1 0 1
111 x2 + x+ 1 x2 + x+ 1 x2 + x x2 + 1 x2 x+ 1 x 1 0

Therefore, the function g is represented by the permutation matrix:

(a, x2 ⊕ x) (a, x2 ⊕ x⊕ 1) (a, x2 ⊕ x) (a, x2 ⊕ x⊕ 1)
g(a<1,x=a) 1 0 0 0
g(a<1,x>a) 0 1 0 0
g(a>0,x<a) 0 0 0 1
g(a>0,x=a) 0 0 1 0

where the four columns correspond to the orthogonal basis |00〉, |01〉, |11〉, |10〉 of
the Hilbert space H4.

This covariance matrix form of standardized random variables denotes taht the
average over the possible outcomes of all measurements may take on together ac-
cording to the conditional joint probability distribution. Such a matrix form of
total 2-ary unitary operator g is the controlled NOT (CNOT ) function, a two-
qubit universal quantum gate defined for all possible input values, where a is the
control variable and x is the target variable.

Notice that for a = x, CNOT |a〉⊗|x〉 7→ |a〉⊗|x2⊕x〉 and, for a 6= x, CNOT |a〉⊗
|x〉 7→ |a〉⊗|x2⊕x⊕1〉, where the hashing x2⊕x⊕1 = NOT (x2⊕x), with x = {0, 1}.
The controlled NOT gate acts on two qubits, and applies the NOT gate =

(

0 1
1 0

)

to the target qubit |x〉 if the first (control) qubit, |a〉, is in state |1〉. Otherwise, it

applies the identity gate =

(

1 0
0 1

)

if the the first qubit is in state |0〉.
Considering the PR correlation given in Eq. 1, the 2-ary (total) function g can

be written as CNOT (a, x) = (a’, x’), with x’=

{

a ∧ x , if a = 0
1⊕ a ∧ x , if a = 1

Thus, CNOT gate is completely specified by its truth table for 0 ∼ +1 and
1 ∼ −1:

whence, NOT

(

+1
−1

)

=

(

−1
+1

)

.

2.2. Theorem. Let (Ω, F , Pr) be a Kolmogorov probability space with sample
space Ω, event space F , and probability measure Pr. Let a, x be random vari-
ables; hence, the Clauser-Horne-Shimony-Holt (CHSH) inequality for correlations
|〈·〉(0,0) + 〈·〉(0,1) + 〈·〉(1,0) − 〈·〉(1,1)| ≤ 2 holds in the Kolmogorov axiomatization

[15], where 〈·〉(a,x∈GF2)
denotes the expectation values for x2 ⊕ x and x2 ⊕ x⊕ 1.



Input/Output Input/Output

Target = 0 |0〉|0〉 7→ |+ 1〉|+ 1〉 |1〉|0〉 7→ | − 1〉| − 1〉

Target = 1 |0〉|1〉 7→ |+ 1〉| − 1〉 |1〉|1〉 7→ | − 1〉|+ 1〉

Control = 0 Control = 1

Thus, |〈x2 ⊕ x〉H(0,0) + 〈x2 ⊕ x⊕ 1〉H(0,1) + 〈x2 ⊕ x⊕ 1〉H(1,0) − 〈x2 ⊕ x〉H(1,1)| ≤ 2,

measured on the Hadamard basis H = {|+〉, |−〉} (see Eq. 3). Therefore, the

hidden (Markov) model, |〈x2 ⊕ x⊕ 1〉Hx={0,1}| ≤ 1, is the normalized upper bound

to the correlation [x⊕NOT (x)]x={0,1} between two outcomes of the experiment

(see Fig.1, below). For this symmetric function, the variable x = {0, 1} (input
state) is not directly visible, since 0 and 1 are equiprobable. However, the output
dependent on the input state x = {0, 1} is visible. According to reasoning assuming
local hidden variable theory [16], the correlation measure cannot exceed the value

2, but there are four states of two qubits which lead to the maximal value of 2
√
2.

NOT (x)

0

−|1〉

+|1〉

1√
2
|0〉 − 1√

2
|1〉

1√
2
|0〉 + 1√

2
|1〉

x⊕
N
O
T
(x)

|0〉
|0〉

x

x
⊕
N
O
T
(x
)

Fig.1. The absolute value of the symmetric
difference −1 ≤ 〈x⊕NOT (x)〉H

x={0,1} ≤ +1

is the normalized Euclidean metric from
the point in two-dimensional rectangular

space

[

|0〉 =

(

1
0

)]

⊕
[

|1〉 =

(

0
1

)]

= 1√
2

(

1
1

)

to the origin of the Cartesian

coordinate system of the complex plane.
In the Argand diagram, one can see that
[x⊕NOT (x)]

x={0,1} and its complex con-

jugate has the same absolute value. Hence,

|〈x2 ⊕ x⊕ 1〉H
x={0,1}| ≤ 1, where NOT logic

gate can be simulated by addition (mod-
ulo 2) operation, NOT (x) = x2 ⊕ 1, with
x ∈ GF2||x|| . Namely, one quantum bit can
contain at most one classical bit of informa-
tion, which is in accordance with the Holevo
bound [17].

2.2.1. Remark. Let the controlled NOT function be CNOT (|a〉⊗ |x〉) 7→ |a〉⊗ |a⊕
x〉, with the output values {+1,−1} and its inputs, {0, 1}, so that 0 ∼ +1 and
1 ∼ −1. The correlations [x2 ⊕ x]x={0,1} and [x2 ⊕ x⊕ 1]x={0,1} are used to realize

the Bell states, and their conjugates, Φ± and Ψ±.
Consider the Hadamard basis {|+〉, |−〉} of a one-qubit register given by the

size-2 (discrete Fourier transform) DFT

(

1 1
1 −1

)

|x〉x={0,1}:

(3) |x〉x=0,1
H−→ 1√

2
[(−1)x|x〉+ |1− x〉].



The following quantum circuits, QXOR(xH , I(x)) and QXOR(xH , NOT (x)),
evolve the four inputs, |a〉|x〉 for a, x = {0, 1}, into the four entangled states of two
qubits:

i) For |x〉 = |a〉, and x2 = x over GF2||x|| , we have:

|x = 0〉

∣

∣x2
〉

H

+++

QXOR[ 1√
2
(|0〉+ |1〉), |0〉] = 1√

2
|0〉|0〉+ 1√

2
|1〉|1〉 = |Φ+〉.

|x = 1〉

∣

∣x2
〉

H

+++

QXOR[ 1√
2
(|0〉 − |1〉), |1〉] = 1√

2
|0〉|1〉 − 1√

2
|1〉|0〉 = |Ψ−〉.

ii) For |x〉 6= |a〉, and x2 ⊕ 1 = x⊕ 1 over GF2||x|| , we have:

|x = 0〉

∣

∣x2 ⊕ 1
〉

H

+++

QXOR[ 1√
2
(|0〉+ |1〉), |1〉] = 1√

2
|0〉|1〉+ 1√

2
|1〉|0〉 = |Ψ+〉.

|x = 1〉

∣

∣x2 ⊕ 1
〉

H

+++

QXOR[ 1√
2
(|0〉 − |1〉), |0〉] = 1√

2
|0〉|0〉 − 1√

2
|1〉|1〉 = |Φ−〉.

This simple network applies the Hadamard gate given by Eq. 3 to the first
wire and XORs the randomized first wire into the second wire yielding the max-
imally entangled states |Φ±〉 = (|0〉 ± |1〉)QXOR|0〉 = QXOR(|0〉 ± |1〉, |0〉) =
QXOR(|0〉, |0〉)±QXOR(|1〉, |0〉) and |Ψ±〉 = (|0〉± |1〉)QXOR|1〉 = QXOR(|0〉±
|1〉, |1〉) = QXOR(|0〉, |1〉) ± QXOR(|1〉, |1〉), where the normalization constant is
omitted. The quantum exclusive OR operation (QXOR) corresponds to CNOT
gate that flips the second (target) qubit if the first (control) qubit is |1〉 and does
nothing if the control qubit is |0〉.



Let Ψ+ = ||Ψ+〉| and Φ− = ||Φ−〉| be the expectations of the correlations
[x⊕NOT (x)]x={0,1}, after the quantum circuit to perform a Hadamard transform

followed by controlled NOT gate on the input values. From the sum of Ψ+ and
Φ−, we can write down the set of four correlations in the experiment:

[x⊕NOT (x)]x=0
H−CNOT−−−−−−−→ 1√

2
||01〉+ |10〉|

(+)

[x⊕NOT (x)]x=1
H−CNOT−−−−−−−→ 1√

2
||00〉 − |11〉|

2[x⊕NOT (x)]x={0,1}
H−CNOT−−−−−−−→ 1√

2
||01〉+ |10〉|+ 1√

2
||00〉 − |11〉| (=)

whence, 〈x⊕NOT (x)〉H−CNOT

x={0,1} ≥ 1
2
√
2
||00〉 + |10〉| + |10〉 − |11〉|, once by subad-

ditivity property (triangle inequality), ||00〉 + |10〉| + |10〉 − |11〉| ≤ ||01〉 + |10〉| +
||00〉 − |11〉|. As x ⊕ NOT (x) = 1 for x ∈ GF2||x|| , we have that the sum of cor-

relations is S ≤ 2
√
2, where S = ||00〉+ |01〉+ |10〉 − |11〉| on the Hadamard basis

H = {|+〉, |−〉}. Thus, the mathematical formalism shows that quantum correla-
tions go up to Tsirelson’s bound of the CHSH inequality.

Notice that the exclusive disjunction x⊕NOT (x) = x2⊕x⊕1 is the polynomial
representation of the power set FΩ of the universal set Ω = {x’, x”, x”’}. Its subsets
are {} := 0, {x’} := x2, {x”} := x, {x”’} := 1, {x’, x”} := x2⊕x, {x’, x”’} := x2⊕1,
{x”, x”’} := x⊕ 1 and {x’, x”, x”’} := x2⊕x⊕ 1, namely the Cartesian coordinates
of the Euclidean space R

3.

The set of the subsets of the FΩ ordered by inclusion composes a poset – a
partially ordered set in which binary relations as ≤ hold for some pairs of elements
of the set, but not for all –, where the irreducible polynomial x2⊕x⊕1 over GF2||x||

dependents on itself for its existence. In this ontological dependency defined on the
three-dimensional space model of the physical universe1, the basis elements of a
bigger Hibert space H0, which is a superset of the conventional Hibert space H,
evolve into basis elements [18] in accordance with the Hasse diagram shown in Fig.2.
Consequently, asymptotic behaviour is associated with FΩ, once the universal set
is large enough.

1Verify that xx ⊕ x ⊕ 1 is the universal set (of everything) in the computational

knowledge engine https://www.wolframalpha.com/input/?i=(x+and+x)+xor+x+xor+1.
Verify also that NOT (x2 ⊕ x ⊕ 1) = x2 ⊕ x is the empty set {∅} in
https://www.wolframalpha.com/input/?i=(x+and+x)+xor+x. Another interesting point
about the polynomial x2 ⊕ x⊕ 1 can be seen in [21].



111

110 101 011

100 010 001

000

Fig.2. Ontology chart [19, 20](Hasse diagram) of the par-
tially ordered set of all subsets of {x’, x”, x”’}. The sub-
sets {} = (000), {x’} = (100), {x”}, {x”’} = (001),
{x’, x”} = (110), {x’, x”’} = (101), {x”, x”’} = (011) and
{x’, x”, x”’} = (111) are basis elements that evolve into
{x’, x”, x”’}, and represent the coordinates of the vertices
defining a 3-D hypercube. By the Cantor’s first uncount-
ability proof, such an Euclidean space has the same car-
dinality of the unit interval [0, 1]. The segment [0, 1] is
a subset of R, and it has the cardinality of the contin-
uum. Therefore, the edge of the 3-D hypercube whose side
has length one unit is equal to the cube root of its vol-

ume 3
√
1 =

{

1
−1/2 ± i

√
3/2

, where the Galois conjugates

−1/2 ± i
√

3/2 are zeros of the minimal polynomial poly(x).
Every minimal polynomial is irreducible over GF2||x|| .

2.2.2. Remark. Measuring the first bit of the pairs |Ψ+〉 and |Φ−〉 in the com-
putational basis yields a 0 or 1 with probability 1/2. Likewise, measuring its
second bit yields the same outcome with the same probability. Therefore, mea-
suring one bit of the maximally entangled two-qubit Bell states yields a random

outcome. Hence, we can rewrite the EPR pairs |〈x2 ⊕ x⊕ 1〉Hx={0,1}| ≤ 1 as a

Markov’s inequality poly(x)Prpoly(x)=0,1 ≤ 〈x2 ⊕ x⊕ 1〉GF
2||x||

, where the sample

space poly(x) = |x2⊕x⊕1| is the indicator random variable 1F : Ω 7→ R defined by
1F(x) = 1 if x ∈ FΩ, otherwise, 1F(x) = 0. The measure Prpoly(x)=0,1 is the prob-

ability of factoring, Prpoly(x)=0, or non-factoring, Prpoly(x)=1, the Bell states |Ψ+〉
and |Φ−〉 generated by QXOR(xH , NOT (x)). Recall that the polynomial poly(x)
is factorable overGF2||x|| if poly(x) = u(x)v(x) with both non-constant polynomials
u(x) and v(x) ∈ GF2||x|| , otherwise, poly(x) is irreducible. If the degree of poly(x)
is 2, then poly(x) is a non-factorable polynomial over the finite field GF2||x||=3 if
and only if p(x) has no root in GF2||x||=3 , i.e., poly(x) = 1 for x = {0, 1}.

For the sake of simplicity, from now on, we will replace ⊕ 7→ (+), and will use
⊕ only where strictly necessary to ensure the coherence of the operation. The
notation will also be simplified, once the computational basis and Hadamard basis
are isomorphic.

2.3. Theorem. The probability of factoring poly(x), Prpoly(x)=0, is negligible if
and only if the product poly(x)Prpoly(x)=0 approaches 0 asymptotically for any
positive polynomial poly(x) > 0. (See a proof of this theorem for negligible func-
tions in [10]).

2.3.1. Remark. Any positive polynomial over GF2||x|| is reduced to the irreducible
polynomial poly(x) = x2⊕x⊕1 > 0. Thus, poly(x) is almost surely non-factorable,
since the probability of non-reducing it, Prpoly(x)=1, is equal to one.

Let the factorization of poly(x) be a tail event E ∈ F in the probability space
(Ω,F ,Pr) that happens almost surely if Pr[E] = 1. Equivalently, E occurs al-
most surely if the probability of E not occurring is Pr[Ec] = 0, where Ec is the
complementary event (Kolmogorov′s zero–one law, see proof in [22]).

Consequently, poly(x)Prpoly(x)=0 < 1, because the probability of factoring poly(x)
vanishes for x = {0, 1}. As a result, Prpoly(x)=0 is negligible, once it approaches



0 quickly as Prpoly(x)=0 < 1
poly(x) , where poly(x) = x2 + x + 1 > 0 and the

field’s addition operation (+) corresponds to the exclusive OR logical operation
(⊕) given the random input x = {0, 1}. Notice that we can map the elements
of the Hadamard basis to the computational basis using the group homomor-
phism {+1,−1,×} 7→ {0, 1,⊕} so that its inverse is also a group homomorphism.
Then, the exclusive disjunction x ⊕ NOT (x) = x2 ⊕ x ⊕ 1 can be rewritten as
x2 ⊕ x ⊕ 1 := l’∧¬l”, once the field’s multiplication operation corresponds to the
logical AND operation over the field of two elements. It is not difficult to see that for
l’= l”= l”’, l’∧¬l’= (l’∨l”∨l”’)∧ (¬l’∨¬l”∨¬l”’) can be written as 3CNF (conjunc-
tive normal form) clauses, (l’∨l”∨l”’)∧(l’∨l”∨¬l”’)∧(l’∨¬l”∨l”’)∧(l’∨¬l”∨¬l”’)∧
(¬l’∨l”∨l”’)∧(¬l’∨l”∨¬l”’)∧(¬l’∨¬l”∨l”’)∧(¬l’∨¬l”∨¬l”’), which is unsatisfiable.
As a result, factoring the polynomial poly(x) overGF2||x||=3 is as hard as solving the
Boolean satisfiability problem (SAT): the variables of the Boolean formula above
can be consistently replaced by the values TRUE or FALSE in such a way that the
formula evaluates to TRUE?

Try this Fortran code to see:
PROGRAM RANDOM

LOGICAL x,y,z
y = .NOT. x
z = .TRUE.
x .neqv. y = z

WRITE(*,*) x
END
Is there another programming language able to solve this problem?
There is no deterministic way even if we repeat the experiment polynomially

many times, since Prpoly(x)=0 is negligible over the Boolean ring of all subsets of x.

2.3.2. Remark. The question above can directly be replaced by the problem of
whether poly(x) > 0 with any reasonable probability distribution on its inputs can
be factored in polynomial time on average. [23, 24, 25].

Time complexity analysis: Let the bigger Hilbert space H0 ⊇ H be the same size
as the set of all subsets. H0 has the cardinality of the continuum; therefore, the
(discrete) distribution 1/poly(x) over GF2, where every element2 x = −x, converges
to the bell-shaped (continuous) curve of the probability density function of the
Cauchy distribution (its left tail is shown in Fig.3), with integral principal value
(P.V.) equal to 1/2 and probability Prx∈FΩ given by

(4)
1

N

∫ +∞

−∞

1

poly(x)
dx = 1,

where the normalizing constant N = 2π
√

1/3.

2The unitary operator NOT 2(x) = I(x):

[

0 1
1 0

]

×

[

0 1
1 0

]

=

[

1 0
0 1

]

. Thus (x2 + 1)2 = x2,

hence, x2 + 1 = ±x, and we have poly(x) = x2 + x+ 1 or poly(x = −x) = x2 − x+ 1, once every
element x = x2 of GF2 satisfies the property x⊕ x = 0.



Cauchy P.V.

1/2
x

PDF ′s

x ∼ Gaussian

x ∼ Cauchy

Fig.3. The probability density func-
tion of the Cauchy distribution (Eq.
4) can be written as

PDFCauchy =
1

π

α

(x− µ)2 + α2
,

where α is the half width at half max-
imum and µ is the statistical median.
PDFCauchy is similar in appearance
to Gaussian curve, however, the val-
ues for away from P.V. are much more
likely than they would be with a Nor-
mal distribution since its tails drop off
much more slowly.

As the sample space is large enough and the input x is a Cauchy-distributed
random variable, the polynomial x2+x+1 > 0, with x ∈ GF2||x|| , is asymptotically
almost surely a hard core, once the presence of the heavy extreme values in the
Cauchy distribution means that the average value does not converge to a fixed
value. The Cauchy distribution is a heavy-tailed distribution belonging to the
subexponential class whose probability density function decreases at a polynomial
rate as x→ −∞ and x→ +∞, as opposed to an exponential rate. (The polynomial
x2 + x + 1 = x + (x2 + 1) ∈ GF2||x|| , where input x in x2 + 1 is also a (standard)
Cauchy-distributed random variable (Witch of Agnesi).

Consequently, the probability of factoring the predicate poly(x) = x2+x+1 > 0
for x = {0, 1} — which is identical to finding a way that 3CNFSAT evaluates to
TRUE — is subexponentially bounded making the factorization of poly(x) an NP-
complete problem, which is in accordance with the exponential time hypothesis [26].
Thus, the running time T (x) of any cryptanalysis algorithm to factorize poly(x) on
inputs of size ||x|| grows faster than polynomial time, since 3CNFSAT cannot be
decided in the subexponential class.

Considering that every exponential time algorithm takes longer than a subexpo-
nential time algorithm as ||x|| increases, then, the running time of any algorithm
to factorize poly(x) is order of complexity T (x) = 2O(x) in big O-notation.

It is straightforward to see that the expectation of the squared deviation (vari-
ance) of the random variable x can be radically altered by the extremes of the
Cauchy distribution. Hence, if the variance is unpredictable, the maximally entan-
gled state x2 + x + 1 > 0 ∈ GF2||x|| is asymptotically almost surely a hard-core
predicate which is easy to compute given x, but is hard to compute x given its out-
put of a single bit. This predicate (hidden Markov model) provides every one-way
functions with a hidden bit of the same security. It yields a ”perfect” random gen-
erator (PRG) with maximum entropy probability [27] from any one-way bijection,
since the input x computed from the output can only be guessed with probability
1/2. This maximum min-entropy — the smallest entropy measure in the family of
Rényi′s entropies — is a measure of how correlated the state poly(x) is.

2.4. Theorem. Let one-to-one correspondence g be a function defined as g(a, x) =
(a, h(x)), where the length of a is the same as that of x, and h(x) = f(x)+ ax over
GF2||x|| . The Boolean inner product 〈a⊕ x〉a 6=x provides a one-way function with

a hidden bit of the same security. (See the proof of this theorem in [2, 10, 27, 28].



2.4.1. Remark. The hard-core predicate of g is the parity function of a random
subset of the inputs of g. If g has a hard-core predicate h(x), then it must be
strongly one way. Hence, the probability of inverting g, Prg−1g←g, is the same
probability of factoring the hard-core h(x). Then, the probability of inverting g is
negligible because the probability of factoring the maximally entangled state h(x) =
f(x) + ax = poly(x) ∈ GF2||x|| , with x 6= a, is less than 1

x2+x+1>0 . Consequently,

Prg−1g←g approaches zero faster than 1
poly(x)>0 given the random input x = {0, 1},

where poly(x) = x2 ⊕ x ⊕ 1 is the only positive polynomial3 among the 23 = 8
polynomials over GF2||x||=3 .

2.5. Theorem. If P 6= NP 4, then, some strongly non-invertible functions are in-
vertible (see proof in [29]).

2.5.1. Corollary. Let g be the controlled NOT gate, and its unitary (and Hermitian)
matrix written in the form:

(5) UCNOT =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









, U2
CNOT =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

The liner operator UCNOT = U−1CNOT = UT
CNOT is orthogonal. Hence, g is

involutory: a bijective map that is its own inverse, i.e., a mirror symmetry because
when it is applied twice in succession, every state returns to its original value. A
bijective function from a set to itself is a permutation [31].

2.5.2. Remark. It is straightforward to see that strongly non-invertible functions
are invertible from the definition itself of one-way functions. (See a thermodynamic
approach of one wayness [32] in input-saving machines [33, 34]).

Consider g defined on pairs of strings of the same length, so that g(a, x) =
(a, f(x)⊕ x) (pg. 94 in [10]).

Thus, it is self-evident that the functions

(6) g =

[

f(x)= I(x) 02
02 f(x)=NOT(x)

]

and f(x) have information-theoretic security within the same polynomial factor.
Let the hard-core h(x) in g be a permutation f ’(x) = f(x) ⊕ x, where f is any

(length-preserving) one-way function. As the output of the XOR bitwise operation
f ’(x) = f(x)⊕x is true if and only if the inputs are not alike; otherwise, the output
is false, f(x) in Eq.6 can only be represented by the polynomials f(x) = x [I(x)]
or f(x) = x⊕ 1 [NOT (x)] over GF2||x|| .

Let GF2||x|| a field and f(x) a polynomial in GF2||x|| . If deg[f(x)] = 1, then,
f(x) is non-factorable over GF2||x|| . This is obvious because the polynomial f(x)
is factorable over GF2||x|| if and only if f(x) = u(x)v(x) with both non-constant
polynomials u(x) and v(x). If f(x) = u(x)v(x) for some u(x), v(x) ∈ GF2||x|| ,

3Evidently, any positive polynomial over GF2||x|| is reduced to x2 ⊕ x⊕ 1.
4The P

?
= NP problem is to determine whether every language accepted by some nonde-

terministic algorithm in polynomial time is also accepted by some (deterministic) algorithm in
polynomial time [30]. P 6= NP if and only if a total 2-ary one-way functions exists [8, 9].



then, deg[f(x)]=deg[u(x)]+deg[v(x)]. However, deg[u(x)]+deg[v(x)] are nonnega-
tive integers over the integral domain GF2||x|| , hence, one of the degrees must be
0. Thus, either u(x) or v(x) must be a constant polynomial. It follows that f(x)
is almost surely non-factorable5 over GF2||x|| . Hence, f(x) = x or f(x) = x ⊕ 1
are length-preserving one-way functions over GF2||x|| , and any length-preserving
one-way function over GF2||x|| is reduced to them. As a result, f ’(x) = x2 ⊕ x or
f ’(x) = x2 ⊕ x⊕ 1, where x = x2 over GF2||x|| .

Notice that the polynomial x2⊕x is factorable over GF2||x|| because it outputs 0
for x = {0, 1}. Otherwise, the polynomial x2⊕x⊕1 is almost surely non-factorable
over GF2||x|| because the probability of factoring it is negligible. Consequently,
f ’(x) is weakly one way for every even input and strongly one way for every input
odd (see Remark 2.2.1). However, the polynomial x2⊕x⊕1 = (x2⊕x)⊕1 outputs 1
for x = {0, 1}, then, by symmetry, x2⊕x = 1⊕1 yielding x2⊕x = 0 for x = {0, 1}.
As a result, the exclusive disjunctions x2 ⊕ x and x2 ⊕ x ⊕ 1 are deducible from
each other, since XOR operation is involutory. Therefore, every strongly one-way
function is also weakly one way, once any positive polynomial over GF2||x|| and any
polynomial zero over GF2||x|| is reduced to x2 ⊕ x ⊕ 1 = 1 and x2 ⊕ x = 0 over
GF2||x||=3 , respectively. As there is a one-to-one correspondence between a complex
number and its complex conjugate, the equipollence between the polynomials x2⊕x
and x2 ⊕ x ⊕ 1 is self-evident, since Bell states and its conjugates |φ+〉/|φ−〉 and
|ψ−〉/|φ+〉 are generated by x2⊕x and x2⊕x⊕1, respectively (see detail in Remark
2.2.1).

Recall that the three-dimensional space {x’, x”, x”’} is represented by the Hasse
diagram shown in Fig.2. In that ontological chart, a state is partially ordered with
another state, where in every such pair of states we will label the first as Alice and
the second as Bob. There are 23 possible combinations of such states given in the
Table 2 below:

Table 2. Polynomial representation of the pairs Alice and Bob.

Alice Bob Probability
x′x′′x′′′ Polynomial x′x′′x′′′ Polynomial

111 x2 + x+ 1 000 0 Pr1
110 x2 + x 001 1 Pr2
101 x2 + 1 010 x Pr3
100 x2 011 x+ 1 Pr4
011 x+ 1 100 x2 Pr5
010 x 101 x2 + 1 Pr6
001 1 110 x2 + x Pr7
000 0 111 x2 + x+ 1 Pr8

where Pri, with i = 1, ..., 8, is the probability of a of a specific combination occurring
in the sample space including all possible combinations. The bit arrays, Alice and

5The functions I(x) = x ≡ x2 and NOT (x) = x ⊕ 1 ≡ x2 ⊕ 1 hold. However, x and x ⊕ 1
are irreducible (non-factorable), while x2 and x2 ⊕ 1 are reducible (factorable) over GF2||x|| . The

probability density function 1/(x2 + 1) is the Witch of Agnesi, a heavy-tailed distribution belonging
to the subexponential class (see time complexity analysis in Remark 2.3.1), while the reciprocal
random variable 1/x is an exponential random variable (exponential of the uniform random variable
x = {0, 1}).



Bob, are polynomials pi(x) ∈ GF2||x||=3 = {0, 1} (as shown in Table 1, Remark
2.1.1).

Taking into account the Sakurai’s Bell inequality [38], we can have that Pr3 +
Pr4 ≤ Pr3+Pr4+Pr2+Pr7 holds, where the probabilities are always nonnegative

Pri = |pi(x)|, with every polynomial pi(x) =
〈pi(x)〉
|x2+x+1| . The polynomial x2 + x+ 1

is the powerset of all possible combinations over GF2||x||=3

Therefore, the modulo 2 arithmetic is (i) |(x2+1)+x2| ≤ |(x2+1)+x2+(x2+1)+1|
for Alice, and (ii) |x+(x+1)| ≤ |x+(x+1)+1+(x2+x)| for her logical complement,
Bob. By subadditivity, we have |x2+x+1| ≤ |x2+x| for both configurations, where
x = x2 over GF2||x|| .

As the polynomials x2+x+1 and x2+x are logically deducible from each other
over the finite field with characteristic 2, then, the inequality is reversed. Namely,
|x2 + x| ≤ |x2 + x + 1| because x2 + x is ground set of x2 + x + 1 in the partially
ordered set {x’, x”, x”’}.

Consider, now, the Cantor-Schröder-Bernstein theorem below:
Theorem: Given two sets A (Alice) and B (Bob). If t’: A → B and t”: B → A

are both injections, then, there exists a bijective function A ∼ B (see proof in
[39, 40]).

Thus, x2 + x can be exchanged by x2 + x+1 so that |x2 + x+1| ≤ |x2 + x+1|,
since there is a one-to-one correspondence between the polynomials for x = {0, 1}
(they are equivalent). In fact, the powerset x2+x+1 over GF2||x||=3 has cardinality
strictly less than or equal to itself cardinality, as shown in Fig.2. Consequently, the
multiplicative inverse 1

poly(x) ≥ 1
poly(x) holds, where poly(x) = |x2 + x+ 1|.

As ]0, 1[⊆ R and [0, 1] ⊆ R have the same cardinality, the multiplicative inverse
1

poly(x) <
1

poly(x) for x = {0, 1}, obviously. This condition implies that the strongly

one-way function x2+x+1 ∈ GF2||x|| —polynomial whose (negligible) probability of
factoring it approaches zero quickly — exists because the weakly one-way function
x2 + x ∈ GF2||x|| exists — polynomial whose (noticeable) probability of factoring
it does not approach zero too quickly. The reverse is also true, since every strongly
one-way function is also weakly one-way [29, 41]. Therefore, x2 + x is separable
(classically correlated) because the probability of factoring it is not less than 1

poly(x) .

Otherwise, x2 + x + 1 is entangled (or non-separable) because the probability of
factoring it is not greater than 1

poly(x) .

This multiplicative inverse polynomial distance between an entangled state and
the separable set reduces the separability criterion in bidirectional quantum con-
trolled schemes [35, 36, 37] to an NP-hard problem [42].

In accordance with Fig.1, the size-2 (discrete Fourier transform) DFT over the
finite field with characteristic 2 generates the unit vector |x + NOT (x)〉 with co-
ordinates ( 1√

2
, 1√

2
) making a 45◦ angle with the axes in the plane. Hence, the

probability amplitude (wave function) is equal to the reciprocal of
√
2 computed

over R. This number satisfies sin(45◦), therefore, [sin(45◦)]2 = [ 1
poly(x) ]

2, where

poly(x) = |x2 + x + 1|. Consequently, the trigonometric inequality 1
2 [

1
poly(x) ]

2 ≤
1
2 [sin(22.5

◦)]2+ 1
2 [sin(22.5

◦)]2 holds. As a result, 0.2500 ≤ 0.1464, and the inequal-
ity is maximally violated for the values predicted for the “Bell test angles [43].”
However, 1

poly(x) ≥ 1
poly(x) over GF2||x|| , and considering that the ring of integers

modulo 2 consists only of idempotent elements, we have that [ 1
poly(x) ]

2 = 1
poly(x) ,



hence, 1
2 [

1
poly(x) ]

2 ≥ 1
2 [sin(22.5

◦)]2 + 1
2 [sin(22.5

◦)]2. As a result, 0.2500 ≥ 0.1464,

and the inequality is not violated for the values predicted for the “Bell test angles”.
This logical loophole [44, 45, 46, 47, 48, 49] stems directly from the existence of
one-way functions, since the weak one-way function, x2+x, can be used to produce
the strong one-way function, x2+x+1 in accordance with the amplifying hardness
(Yao’s XOR Lemma) [11, 50].

2.6. Conclusion. Levin and Goldreich [2, 28] proved that the hard core of the
universal one-way function g is a hidden bit (deterministic) model able to generate
randomness. (See also pseudorandom generator theorems [10, 27]). Here, our
one-way protocol showed that the (pseudo)randomness – necessary and sufficient
condition – to buid the secure scheme g is achieved, since the Bell inequality can
be reduced to polynomial inequality |x2 + x + 1| ≤ |x2 + x + 1|. Whence, the
asymptotic security |x2 + x + 1|Prg−1g ≤ 1 for Prg−1g ≤ 1 is obtained from a
deterministic process over the Boolean ring of all subsets of x. Conversely, there
is no deterministic process that produces |x2 + x + 1|Prg−1g > 1 for Prg−1g ≤ 1,
although both conditions are deducible from each other. Such an “equalness-of-
strength” shows that the problem of determining whether a given state is entangled
or separable is at least as hard as the hardest problems in NP .
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