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Abstract. We present the first fault attack on cryptosystems based on supersingular isogenies. During
the computation of the auxiliary points, the attack aims to change the base point to a random point
on the curve via a fault injection. We will show that this would reveal the secret isogeny with one
successful perturbation with high probability. We will exhibit the attack by placing it against signature
schemes and key-exchange protocols with validations in place. Our paper therefore demonstrates the
need to incorporate checks in implementations of the cryptosystem.

1 Introduction

Cryptosystems based on isogenies between supersingular elliptic curves were proposed by Jao and De Feo
in 2011 [JF11] as a candidate for cryptographic protocols in the post-quantum world. Instead of relying on
the discrete logarithm problem which is susceptible to Shor’s algorithm [Sho97], it is based on the number-
theoretic problem of finding isogenies between supersingular elliptic curves.

Cryptosystems based on isogenies have their genesis in an unpublished manu-script by Couveignes [Cou06]
and were later rediscovered by Rostovtsev and Stolbunov [RS06]. A paper by Charles, Goren and Lauter
[CLG09] constructed a hash function and in doing so, it was the first paper to use supersingular isogeny
graphs to build cryptographic functions. However, Childs, Jao and Soukharev [CJS14] managed to find a
quantum algorithm that was able to break the cryptosystems in [Cou06,RS06] in sub-exponential time by
reducing the problem of finding an isogeny between isogenous ordinary curves to a hidden shift problem
which can be solved by a quantum algorithm (Kuperberg’s algorithm [Kup05]). The reduction is based on
the abelian group action of the class group of the endomorphism ring of the elliptic curve. This action is
absent in the supersingular case and hence their reduction does not apply.

Since the publication of [JF11], protocols such as the interactive identification protocol [FJP14] and
various signature schemes have been introduced [GPS16,YAJ+17,JS14,XTW12,SC16] to add to the key-
exchange and encryption protocols introduced in [JF11]. A cryptanalysis paper [GPST16] has highlighted
their vulnerability to adaptive attacks and the importance of countermeasures. Some implementation papers
have introduced side-channel protection such as constant time operations [CLN16]. However, threats posed
by fault attacks have been absent in the literature.

Fault attacks exploit the leakage of sensitive information when the implementation operates under un-
expected circumstances. Biehl, Meyer and Müller [BMM00] extended fault attacks on RSA cryptosystems
to systems using elliptic curves. Ciet and Joye [CJ05] then refined the methods and made the attack more
practical. The key insight in both papers was the absence of the a6 elliptic curve parameter in the scalar
multiplication computation. The fault changed the base point P to some P ′. This meant that the output
point [λ]P ′, where λ is the secret, might be in a group where solving the elliptic curve discrete logarithm
problem was feasible, hence allowing for the recovery of some information about λ.

In this work, we will examine the effects of changing a point P to some random P ′ and attempt to
recover the secret, which in this case is an isogeny φ. The attack would be able to recover the entire secret
φ from a single output φ(P ′) with high probability. This compares well against the fault attack presented in
[CJ05] where a single successful perturbation only reveals partial information of the secret. We will present a
fault attack in the context of several signature schemes and key-exchange protocols. The attack would work
against the countermeasure proposed by Kirkwood et al. [KLM+15] which is based on the Fujisaki–Okamoto
transform. The main observation that underlies the attack is that users should never reveal the image of
random points under the secret isogeny.



The main result of the paper will be presented in Section 3. Prior to that, Section 2 will cover both the
mathematical notions and the cryptographic protocols required to understand this paper. In Section 4 we
will analyse the attack and discuss its feasibility.

2 Preliminaries

2.1 Mathematical background

Let E and E′ be elliptic curves defined over a finite field Fq of characteristic p, then an isogeny between
them is a non-zero morphism that maps the group identity of E to the group identity of E′. If φ : E → E′ is
an isogeny, then it is a group homomorphism from E(Fq) to E′(Fq) [Sil09, III.4.8] Equivalently, we are able
to represent an isogeny φ as an algebraic morphism of the form

φ(x, y) =

(
f1(x, y)

g1(x, y)
,
f2(x, y)

g2(x, y)

)
where φ(O) = O and fi, gi ∈ Fq[x, y]. In this case, we say that E and E′ are isogenous over Fq. The degree
of an isogeny is defined to be its degree as an algebraic morphism and is denoted by deg φ. Isogenies with
the same domain and range are known as endomorphisms. The map [n] : E → E given by

[n]P = P + · · ·+ P︸ ︷︷ ︸
n times

is the multiplication-by-n map on E and is an example of an endomorphism. The kernel of this endomorphism
is the set of n-torsion points which we denote by

E[n] =
{
P ∈ E

(
Fq
) ∣∣ [n]P = O

}
.

If p - n, then the set of n-torsion points of an elliptic curve has the group structure E[n] ∼= Z/nZ × Z/nZ
[Sil09, III.6.4].

Given an isogeny φ : E → E′, there exists a unique isogeny φ̂ : E′ → E such that

φ ◦ φ̂ = [deg φ] = φ̂ ◦ φ .

We call φ̂ the dual isogeny of φ [Sil09, III.6.1]. Hence we can see that isogenous curves form an equivalence
class.

An isogeny φ : E → E′ is separable if the induced extension of the function fields is separable. All of the
isogenies that we will encounter in this paper will be separable. The size of the kernel of a separable isogeny
is the same as the degree of the isogeny [Sil09, III.4.10]. In fact, the link between a separable isogeny and its
kernel goes deeper: the kernel of a separable isogeny uniquely defines the isogeny up to isomorphism [Sil09,
III.4.12]. To express this idea, we use the notation E/G to represent the codomain of some isogeny φ from
E with kernel G. Given a finite subgroup G, an isogeny with kernel G can be computed using an algorithm
by Vélu [Vél71].

Given an elliptic curve E, the set of all endomorphisms over Fq, together with the zero isogeny, forms a
ring. Addition in the ring is given by point-wise addition, and multiplication by composing endomorphisms.
The endomorphism ring forms an algebra over Z and is of dimension at most 4 [Sil09, III.4.2,III.7.5]. In fact
dimZ EndE = 2 or 4 and in the first case, we say that E is ordinary and in the second case, we say that E
is supersingular. For the remainder of this paper, the elliptic curves we will encounter will be supersingular.

2.2 Supersingular isogeny cryptosystem

In this section, we will review the key-exchange protocol, interactive identification protocol and the various
signature schemes. The key-exchange and the identification protocols were first introduced in [JF11,FJP14].
Thereafter, signature schemes were introduced in [JS14,GPS16,YAJ+17], where the latter two are based on
the identification protocol.

2



Key-exchange Suppose that Alice and Bob wish to establish a shared secret. There are three steps to the
protocol that will achieve this objective.

Set-up: Fix a prime p of the form p = `eAA · `
eB
B · f ± 1 where `A and `B are small distinct primes, f is a

small cofactor, and eA and eB are positive integers such that `eAA ≈ `
eB
B . Now fix a supersingular elliptic

curve E over Fp2 and pick bases {PA, QA} and {PB , QB} for the `eAA and `eBB -torsion subgroups.
Key generation: Alice picks random elements a1, a2 ∈ Z/`eAA Z, not both divisible by `A, and computes
the subgroup GA = 〈[a1]PA + [a2]QA〉. She then uses the formula from Vélu to compute a curve EA =
E/GA and an isogeny φA : E → EA, where kerφA = GA. Alice also computes the points φA(PB) and
φA(QB). She then sends the tuple (EA, φA(PB), φA(QB)) to Bob. Bob performs the computation mutatis
mutandis on his end.
Key derivation: Upon receipt of Bob’s tuple (EB , φB(PA), φB(QA)), Alice computes the subgroup
G′A = 〈[a1]φB(PA) + [a2]φB(QA)〉 and uses Vélu’s formula to compute the elliptic curve EAB = EB/G

′
A.

She then uses the j-invariant of EAB as the shared secret. Bob proceeding likewise would also obtain the
j-invariant of EAB to use as the shared secret. The protocol can be summarised in Fig. 1.

E EA

EB EAB

φA

φB

φ′
A

φ′
B

Fig. 1: Key-exchange protocol

Interactive identification protocol This interactive identification protocol has four steps: set-up, com-
mitment, challenge and response.

Set-up: Fix a prime p of the form p = `eAA · `
eB
B · f ± 1 where `A and `B are small distinct primes, f is a

small cofactor and eA and eB are positive integers such that `eAA ≈ `eBB . Now fix a supersingular elliptic
curve E over Fp2 .
The prover picks a random element S ∈ E[`eAA ] with order `eAA and computes φ : E → E/〈S〉 = ES .
Then, the prover generates a basis {PB , QB} for E[`eBB ]. The prover then computes and publishes the
tuple

(E,PB , QB , ES , φ(PB), φ(QB))

as the public key.

The two parties then repeat the next three steps until a security threshold is reached.

Commitment: The prover chooses random elements r1, r2 ∈ Z/`eBB Z, not both divisible by `B and
computes the point R = [r1]PB + [r2]QB . The prover then computes the isogeny ψ : E → E/〈R〉 = ER
and the curve ERS = ES/〈φ(R)〉 = ES/〈[r1]φ(PB)+[r2]φ(QB)〉 = E/〈R,S〉. The prover sends (ER, ERS)
to the verifier.
Challenge: The verifier sends the challenge bit c ∈ {0, 1}.
Response: In response, the prover reveals (R,φ(R))1 if c = 0 or ψ(S) if c = 1. In the former case, the
verifier would check that E/〈R〉 ∼= ER and ES/〈φ(R)〉 ∼= ERS . In the latter case, the verifier checks that
ER/〈ψ(S)〉 ∼= ERS .

1 It is also possible to compress (R,φ(R)) by sending (r1, r2) instead (c.f. [AJK+16]). The verifier can then recover
R and φ(R) given PB , QB , φ(PB) and φ(QB).
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E ES

ER ERS

φ

ψ ψ′

φ′

Fig. 2: Interactive identification protocol

Digital signature scheme This non-interactive signature scheme is the result of applying the Fiat–Shamir
transform on the interactive identification protocol presented above. This scheme was introduced in [GPS16]
and [YAJ+17]. The signature scheme uses the output of the hash as a string of challenge bits to generate a
string of responses corresponding to the challenges. The verification step then involves verifying the response
in the signature for each challenge bit.
Details of the scheme are given in §A.1.

Undeniable signature scheme The undeniable signature scheme [JS14] is a “three-dimensional” analogue
to key-exchange protocol which is “two-dimensional” in the sense that we consider a commutative cube
instead of a commutative square. Given a signature, the scheme is able to confirm the signature if the
signature is valid, or disavow an invalid signature without having to reveal a valid signature.
Details of the scheme are given in §A.2.

2.3 The Kirkwood et al. Validation Method

Kirkwood et al. introduced a method to secure the key-exchange protocol of isogeny cryptosystems. This
is based on the Fujisaki–Okamoto transform [FO99] which is also explained by Peikert [Pei14, §5.2] and
Galbraith et al. [GPST16, §2.3]. The method allows for one party to validate the other, but for the ease
of exposition, let us suppose that Alice is using a static secret and Bob needs to prove to her that he is
performing the protocol correctly.

Bob would prove to Alice that he performed the protocol correctly by executing the key-exchange,
encrypting the random seed used to generate his private key and sending this ciphertext to Alice for her to
verify that the random seed leads to the correct keys.

Applied to the Jao–De Feo protocol, we will briefly explain how Bob can prove to Alice that he has
executed the protocol correctly. This is especially applicable if Alice is using a static key and Bob is potentially
a malicious party.

1. Alice computes and sends the public key (EA, φA(PB), φA(QB)).
2. Bob receives Alice’s public key (EA, φA(PB), φA(QB)).
3. Bob obtains his random seed rB from a random source and derives his private key using a key derivation

function, KDF1,
(b1, b2) = KDF1(rB) .

He uses the secret key to compute GB = 〈[b1]PB + [b2]QB〉, and uses the Vélu formula to compute φB
and EB = E/GB .

4. Bob derives the shared secret j(EAB) using his private key and Alice’s public key. He then computes a
session key (SK) and a validation key (VK) using a key derivation function, KDF2,

SK | VK = KDF2(j(EAB)) .

5. Bob sends his public key (EB , φB(PA), φB(QA)) and cB = EncVK(rB ⊕ SK) to Alice.
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6. Using her private key and Bob’s public key, Alice computes the shared secret j(E′AB) and derives the
session and validation keys SK ′ and VK ′. She uses these to compute

r′B = DecVK′(cB)⊕ SK ′ .

She then computes Bob’s secret keys from r′B and recomputes all of Bob’s operations and compares
(E′B , φ

′
B(PA), φ′B(QA)) with (EB , φB(PA), φB(QA)).

If they are equal, then Alice verifies that Bob has computed the protocol correctly and proceeds to use
SK ′ = SK for future communication with Bob. Else, the protocol terminates in a non-accepting state.

This validation method can be used for both the key-exchange and the encryption protocols. It also compels
one party to reveal the secret used and so requires a change in secret keys after each verification. This
protocol is summarised in Fig. 3.

Alice Bob

Compute PKA
EA, φA(PB), φA(QB)

Compute PKB

Compute SSB
EB , φB(PA), φB(QA)

cB = EncVK(rB ⊕ SK)
Compute SSA

Compute r′B

Compute PK′
B

Fig. 3: The Kirkwood et al. validation method for supersingular key-exchange.

3 Fault attack

Assume that the protocol under attack reveals the x-coordinate of the image of a point under the secret
isogeny. The fault attack aims to force the implementation to output the image of a random point under the
secret isogeny. This would allow the adversary to recover the secret. We will see how this is accomplished
and see the different scenarios where the fault attack may be employed.

Our first observation is that computations do not involve the y-coordinate of the points. Given a curve E
and a point P , a perturbation in the x-coordinate of P would result in another point P ′ on the same curve
over a quadratic extension. Indeed, given any x, we recover the y-coordinate of P ′ by solving a quadratic
equation which always has a solution in Fp2 . In particular, any x ∈ Fp2 either corresponds to a point on E
or a point on its quadratic twist E′. In [CLN16], the most efficient implementation of the cryptosystem thus
far, computations do not distinguish between the curve E and its quadratic twist E′, hence the isogeny will
be evaluated correctly on any x ∈ Fp2 . In a more general setting where the twists of the curves are treated
separately, the faulted point will be on E with probability 1/2 and on the twist with probability 1/2. Hence
the adversary may assume, after a series of faults, that a perturbed point will lie on E.

The perturbed point would be a random point on the curve. In §3.1, we will show how one recovers the
secret isogeny given the image of the random point. This is not dissimilar to [JS14, Remark 3.1], where
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Jao and Soukharev noted that a party should never disclose any information that allows an adversary to
evaluate φA on E[`eAA ]. The method to recover φA given the image of a random point in E[`eAA ] is mentioned
in [FJP14, §5.1] and explained in detail in §3.1. In fact, we will show that a party should never reveal the
image of random points under the secret isogeny.

3.1 Recovery of isogeny from image of random point

Let E/Fp2 be a supersingular elliptic curve where p = `eAA · `
eB
B · f ± 1. Then with (PA, QA), (PB , QB), and

(PC , QC) being the generators of E[`eAA ], E[`eBB ], and E[f ] respectively, a random point X ∈ E(Fp2) takes
the form

X = [u]PA + [v]QA + [w]PB + [x]QB + [y]PC + [z]QC

for some u, v, w, x, y, z ∈ Z.
Now suppose that we are given the image of X under the secret isogeny φA, then we will show how one

can use the knowledge of φA(X) to recover φA. Since φA is a group homomorphism and we know that X
can be expressed as a linear combination of PA, QA, PB , QB , PC , and QC , we have

φA(X) = φA([u]PA + [v]QA + [w]PB + [x]QB + [y]PC + [z]QC)

= [u]φA(PA) + [v]φA(QA) + [w]φA(PB)

+ [x]φA(QB) + [y]φA(PC) + [z]φA(QC) .

Now our aim is to isolate a linear combination of φA(PA) and φA(QA). To that end, we perform the
operation

[`eBB · f ]φA(X) = [`eBB · f ]([u]φA(PA) + [v]φA(QA))

= [u′]φA(PA) + [v′]φA(QA) ,

and we find ourselves in the scenario described in [JS14, Remark 3.1] and [FJP14, §5.1].
Once we have [u′]φA(PA)+[v′]φA(QA), the subgroup generated by this point will help with the construc-

tion of the dual isogeny of φA hence recovering φA.

Lemma 1. Let E1 be a supersingular elliptic curve over Fp2 , where p = `eAA `eBB f ± 1. Suppose φ : E1 → E2

is an isogeny of degree `eAA with a cyclic kernel and let {P,Q} be generators of E1[`eAA ]. Then for any
X ∈ E1[`eAA ], define ψ : E2 → E′ such that kerψ = 〈φ(X)〉, then there exists some θ : E′ → E1 of degree `εA,
ε ≤ eA, such that

φ̂ = θ ◦ ψ .

Proof. Using [GPST16, Lemma 1], we may suppose that kerφ = 〈P + [α]Q〉. Hence

φ(P ) = φ(P )− φ(P + [α]Q)

= −[α]φ(Q) .

Then expressing X = [u]P + [v]Q for some u, v, we have

〈φ(X)〉 = 〈[u]φ(P ) + [v]φ(Q)〉 = 〈[v − αu]φ(Q)〉 = 〈[`kA]φ(Q)〉 ,

where k is the `A-adic valuation of (v − αu).
Let ψ : E2 → E′ be an isogeny with kernel given by 〈φ(X)〉 = 〈[`kA]φ(Q)〉. Pick any Y ∈ E1[`eAA ] and

write Y = [r]P + [s]Q for some r, s.
If k = 0, then

ψ ◦ φ(Y ) = ψ(φ([r]P + [s]Q))

= ψ([s− rα]φ(Q))

= O .
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So it is clear that E1[`eAA ] ⊆ ker(ψ ◦φ). The reverse inclusion is obvious since ker(ψ ◦φ) does not contain any
non-trivial element of order co-prime to `A. So ψ ◦ φ = [`eAA ], which implies, by the uniqueness of the dual

isogeny, that ψ = φ̂, and θ : E1 → E1 is the identity isogeny.
If k > 0,

ψ ◦ φ(Y ) = ψ(φ([r]P + [s]Q))

= ψ([s− rα]φ(Q)) .

Note that ψ ◦ φ(Y ) has order at most `kA, since

[`kA]ψ ◦ φ(Y ) = [s− rα]ψ([`kA]φ(Q)) = O .

Now denote by γ ∈ Z≥0, the `A-adic valuation of s− rα, then

ord(ψ ◦ φ(Y )) = ord(ψ([s− rα]φ(Q)))

= `k−γA .

[Note that ε = k − γ.]
So choose Y such that γ = 0 and define θ : E′ → E1 such that ker θ = 〈ψ ◦ φ(Y )〉. Then using the above

argument, we can see that θ ◦ ψ = φ̂. Furthermore, it is clear that deg θ ≤ `eAA . ut

The lemma tells us that given the image of a point in E1[`eAA ] under an `eAA -isogeny, φ, we are able to
find an isogeny ψ which is close to the dual isogeny of φ. To obtain the dual isogeny, one has to first recover
θ. If ε is sufficiently small, one will be able to recover θ by brute force. In fact, we will examine the size of ε
in §4 and show that ε is small in most cases.

Hence we have the following algorithm to recover isogenies given the image of random points.

Algorithm 1: Recovering the dual isogeny after fault injection.

Data: φ(X)
Result: φ̂

1 Set λ← `eBB · f ;
2 Set T ← [λ]φ(X);
3 Set ψ : E2 → E′ as the isogeny with kernel T ;
4 if ord(T ) = `eAA then
5 Return ψ;
6 else
7 Brute force for θ;
8 Return θ ◦ ψ;

3.2 Fault Models

We will now demonstrate the fault attack in the following scenarios:

– Interactive identification protocol
– Digital signature scheme
– Undeniable signature protocol
– Static key-exchange protocol
– Static key-exchange protocol with the Kirkwood et al. validation method

The feasibility of each of these will be discussed in §4.1
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Interactive identification protocol and signature schemes In the interactive identification protocol,
to learn the prover’s long-term secret S, the adversary needs to perturb the computation of the point
φ(R). During the prover’s computation, the adversary will introduce a perturbation immediately before the
computation of φ(R). In particular the adversary would attempt to inject a fault into the fetching operation
and cause a fault in R. This will cause the faulted point R′ to be, with high probability, a point of full
order. Successfully doing so would allow for the recovery of the secret isogeny φ. To obtain the output of the
faulted point, the adversary needs the challenge bit to be 0 as described in §2.2. This would happen 50% of
the time and since identification schemes typically require a large number of passes, this must happen with
high probability. The adversary could check the order of the points in the responses (if the challenge bit is
0) and the faulted point would have order larger than `eAA . Using this information, the adversary would be
able to use Algorithm 1 to recover S.

Due to its similarity to the identification protocol, to learn the signer’s long-term secret S in the digital
signature scheme, the steps the adversary takes are identical to the process above. The aim now is to inject a
fault during the computation of φ(Ri) (c.f. §A.1) for some i’s. A successful fault coinciding with the challenge
bit being 0 would produce a point of order larger than `eAA , so the adversary has to find that point in the
signature by testing the orders of the points in the signature.

In the undeniable signature protocol the adversary will be able to learn the long term secret φA by
inducing a fault in φM (PC) before the computation of φM,AM (φM (PC)) (c.f. §A.2). Using φM,AM (X), the
adversary would learn φM,AM and equivalently, φM (GA). Since φM is computable from the message, the
adversary would be able to recover GA.

Static key-exchange protocol Consider the static key-exchange protocol described in §2.2. Suppose an
adversary is trying to learn Alice’s static secret isogeny and has the ability to cause a fault in Alice’s
computation. After introducing a fault in the computation of φA(PB), Alice would then proceed to publish
the public key tuple

(EA, φA(X), φA(QB)) .

The adversary will then be able to recover φA using Algorithm 1.
Notice that this would not be prevented by the validation method presented in §2.3. Since the validation

method will only be able to detect misdemeanours carried out by Bob, it will not be able to prevent the
fault attack. In particular, throughout the validation process the public key of Alice is only computed once
and is never checked by the method. Hence the fault attack would not be detected by this validation and an
adversary would be able to recover the secret isogeny as previously described.

Remark 1. The attack may also be implemented on the ephemeral key-exchange protocol, but in both settings
the attack would cause a failure to establish a shared secret key.

3.3 Countermeasures

A simple countermeasure to this attack is to implement order checking before the publication of the auxiliary
points. Another countermeasure that can be placed on the identification protocol and hence the signature
scheme is the compression of the points R,φ(R) if the challenge bit is 0. Sending r1 and r2 allows the verifier
to recompute R and φ(R) using the public keys and will prevent the adversary from learning the faulted
auxiliary point. Note that the compression of ψ(S) will not be useful since the attack does not attack that
point.

4 Analysis of attack

As seen in the proof of Lemma 1, to obtain the dual of the isogeny, we need k = 0, or failing that, have ε
small. But since ε is dependent on k, we will study k instead.
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We start by fixing some α ∈ Z/`eAA Z and suppose that u and v are selected randomly in Z/`eAA Z, then
we have

Pr (`nA divides (u− αv)) =
1

`nA
.

Indeed, it is clear that we can treat ρ = u − αv as a single random variable, so this reduces to finding
Pr(`nA divides ρ), where ρ is randomly selected from Z/`eAA Z. Since one in every `nA elements is divisible by
`nA, we have the claim.

So k = 0 with probability 1− 1
`A

. More generally, k = κ with probability `A−1
`κ+1
A

. So we see that the isogeny

ψ obtained from the procedure in §3 will be close to being the dual isogeny and brute forcing for θ is feasible.
Lastly, we will address the issue of the faulted point φ(X) not having an order divisible by `eAA . This

would have the effect of decreasing the degree of ψ and so increase the degree of θ. But notice that we can
repeat the same analysis as the above to conclude that the degree of θ would be small with high probability.

Hence we have shown that Algorithm 1 has a high probability of recovering the secret isogeny.

4.1 Feasibility of attack models

Let us now study the feasibility of the attacks discussed in §3.2. We will see that the attacks would work
well against signature schemes but not against key-exchange protocols.

Signature schemes The presence of a long-term secret and the availability of auxiliary points makes
the signature schemes extremely attractive for an adversary attempting a fault attack on the supersingular
isogeny cryptosystem. Note that while a fault would affect the validity of the signatures, the signer will not
change the long-term secret due to an invalid signature. Hence the adversary would be able to break the
signature scheme. We have to add that the compression of points is an effective countermeasure that foils
the attack and would also reduce the size of the responses.

Key-exchange protocols Suppose that one party is using a static key in the key-exchange protocol. An
adversary would be able to recover the secret isogeny if the static public key is recomputed for each exchange.
However, this is unlikely to happen since φA(PB) and φA(QB) will be hardcoded for efficiency.

Now suppose that the adversary is attacking the key-exchange protocol with ephemeral keys. If the secrets
are not authenticated, the adversary would be able to compute φA(PB), and send that in place of φA(X).
This way, both parties would be able to derive the same shared secret. Since recovering φA from φA(X) can
be done efficiently, and computing φA(PB) is also efficient, performing the substitution before a time-out in
the connection is very feasible. However, it should be noted that without authentication, it might be better
to use a man-in-the-middle attack.
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A Signature schemes in detail

A.1 Digital signature scheme

The signature scheme has three steps: key generation, signing and verifying.

Set-up and key generation: Fix a prime p of the form p = `eAA · `
eB
B · f ± 1 where `A and `B are small

distinct primes, f is a small cofactor and eA and eB are positive integers such that `eAA ≈ `eBB . Now fix
an elliptic curve E over Fp2 . Next, let t = 0.5blog2 pc and fix a hash function H : {0, 1}∗ → {0, 1}t.
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The signer picks a random element S ∈ E[`eAA ] with order `eAA and computes φ : E → E/〈S〉 = ES . The
signer then generates a basis {PB , QB} for E[`eBB ], and computes and publishes the tuple

(E,PB , QB , ES , φ(PB), φ(QB))

as the public key.
Signing: The signer needs to produce t challenges. So for each i = 1, . . . , t, choose random elements
r1,i, r2,i ∈ Z/`eBB Z such that not both are divisible by `B and computes the points

Ri = [r1,i]PB + [r2,i]QB ,

Ti = [r1,i]φ(PB) + [r2,i]φ(QB)

and the isogenies

ψi : E → E/〈Ri〉 = ERi ,

φ′i : ES → ES/〈Ti〉 = ETi .

Given a message m, the signer computes

h = H (m,ER1
, . . . , ERt , ET1

, . . . , ETt) .

The bit-string of h would serve as the sequence of challenge bits.
If the i-th bit of h is 0, the signer sets zi = (Ri, φ(Ri))

2. If the i-th bit of h is 1, the signer sets zi = ψi(S).
The signature would then be the tuple

(h, z1, z2, . . . , zt) .

Verifying: To verify the signature, the verifier would use the output of the hash as the challenge bits
and use the same verification procedure as seen in §2.2 to verify each zi as the response to the challenge
bits.

A.2 Undeniable signature scheme

This signature scheme has three steps: key generation, signing and verifying. The last step is split into
confirmation or disavowal.

Set-up and key generation: Fix a hash function H : {0, 1}∗ → Z. Fix a prime p of the form p =
`eAA · `

eM
M · `

eC
C ·f±1 and fix a supersingular elliptic curve E over Fp2 . Now pick bases {PA, QA}, {PM , QM}

and {PC , QC} for the `eAA , `eMM and `eCC -torsion points respectively. The signer then randomly picks elements
a1, a2 ∈ Z/`eAA Z not both divisible by `A, computes the subgroup GA = 〈[a1]PA+ [a2]QA〉 and uses Vélu’s
formula to compute EA = E/GA and the isogeny φA : E → EA. The signer computes the image of PC
and QC under this isogeny and publishes the tuple (EA, φA(PC), φA(QC)).
Signing: Given a message M , the signer computes the hash h = H(M) and the subgroup GM = PM +
[h]QM . Next, the signer computes the following isogenies:

• φM : E → EM = E/GM
• φM,AM : EM → EAM = E/φM (GA)
• φA,AM : EA → EAM = E/φA(GM )

The signature then consists of the tuple

(EAM , φM,AM (φM (PC)), φM,AM (φM (QC))) .

2 It is also possible to compress zi by sending r1,i and r2,i instead. The verifier can then recover R and φ(R) given
PB , QB , φ(PB) and φ(QB).

11



Verification: Since this is an undeniable signature scheme, there are two components to this: the confir-
mation protocol and the disavowal protocol.
In the former protocol, given the signature

(EAM , φM,AM (φM (PC)), φM,AM (φM (QC))) ,

the objective is to confirm EAM . In the latter, given the signature (EF , FP , FQ), the objective is to disavow
the signature.

Confirmation:
1. The signer picks random elements c1, c2 ∈ Z/`eCC Z not both divisible by `C , computes the subgroup
GC = 〈[c1]PC + [c2]QC〉 and computes

EC = E/GC , EMC = EM/φM (GC) ,

EAC = EA/φA(GC) , EAMC = EMC/φC,MC(GA) .

2. The signer publishes (EC , EAC , EMC , EAMC , φC(PM ) + [h]φC(QM )).
3. The verifier randomly selects b ∈ {0, 1}.

If b = 0: the signer outputs kerφC . The verifier then computes φC , φM,MC , φA,AC and φF :
EF → EFC and checks that each isogeny maps between the curves in the commitment. The
verifier also computes φC,MC and checks that it matches the commitment.
If b = 1: the signer outputs kerφC,AC and the verifier then computes φMC,AMC , φAC,AMC and
checks that EAMC is the codomain.

Disavowal: The disavowal step is almost exactly the same as the confirmation step with the exception
in the last step where if b = 0, the verifier would see that EFC 6∼= EAMC .

E

EM

EA

EAM

φM

φA

φA,AM

φM,AM

(a) Signing
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(b) Confirmation/Disavowal

Fig. 4: Commutative diagrams generated during protocol
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