
Privacy-Preserving Multi-Party Bartering
Secure Against Active Adversaries

Stefan Wüller1, Ulrike Meyer1, and Susanne Wetzel2

1 RWTH Aachen University, Aachen, Germany
{wueller,meyer}@itsec.rwth-aachen.de

2 Stevens Institute of Technology, Hoboken, NJ, USA
swetzel@stevens.edu

Abstract. A majority of electronic bartering transactions is carried out
via online platforms. Typically, these platforms require users to disclose
sensitive information about their trade capabilities which might restrict
their room for negotiation. It is in this context that we propose a novel
decentralized and privacy-preserving bartering protocol for multiple par-
ties that offers the same privacy guarantees as provided by traditional
bartering and by cash payments. The proposed protocol is even secure
against an active attacker who controls a majority of colluding parties.

1 Introduction

Bartering—the cashless act of exchanging goods and services—has been prac-
ticed since the early days of humanity. The traditional form of bartering requires
a party to find another party such that their offers and demands align. Consider
the following example from [13]: Alice demands a tool while Bob demands some
medicine. For the case that each of them offers what the other party demands,
both parties are lucky since they can barter. But for the case that Alice offers
food instead of medicine, they have to find a larger trade cycle where more than
two parties exchange their offered commodities in a cyclic fashion. So, Alice and
Bob could try to find a third party, Carol, who is willing to exchange medicine for
food. As this simple example already shows, the major drawback of traditional
bartering is the inevitable need for coordination, i.e., a group of parties whose
offers and demands align have to be in the same place at the same time [13]. In
modern economies, this coordination issue was resolved by the introduction of
currencies which serve as a mediator and thus eliminate the need for the explicit
search of trade cycles.

Nevertheless, in recent years bartering became popular again [11]. This is
also due to the emerging of online bartering platforms such as U-Exchange,
BarterQuest, or TradeYa [18, 1, 17] which typically provide a variety of function-
alities facilitating the bartering process (including the cumbersome search for
trade partners) between individuals as well as businesses. These functionalities
comprise supporting the specification of offers and demands; searching, brows-
ing, and filtering the offers of other users; searching for trade partners in some

2 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel

automated fashion; or supporting negotiating of the final exchange rates. How-
ever, an inherent requirement of these platforms is that a user has to disclose her
offered and demanded commodities (along with the corresponding quantities) to
at least the operator and oftentimes to all other users—even those who do not
qualify as trade partners.

The goal of this paper is to devise a bartering process that offers the same
privacy guarantees ideally provided by traditional bartering or traditional cash
currencies. More precisely, we require that a party only learns what it receives
and what it has to send (and what can be deduced from it). In particular, a
party does not learn anything about the capabilities and the activities of parties
it does not directly trade with. Our solution does not require a (trusted) third
party to observe or coordinate the bartering transactions.

One of the first steps in this direction was proposed in [21, 22]. The authors
devise a privacy-preserving multi-party bartering protocol which is based on
secure multi-party computation (SMPC) techniques. However, this protocol only
provides security in the semi-honest model, i.e., under the strict assumption that
all parties follow the protocol specification but try to learn as much information
as possible from participating in the protocol. We extend on the protocol in [21,
22] and propose a privacy-preserving multi-party bartering protocol which pro-
vides security against malicious (i.e., active) adversaries. Analogously to [21,
22], our novel bartering protocol allows a party to specify a quote indicating
its offered and desired commodity as well as the corresponding quantity ranges
at which the party is willing to trade. Given a set of parties along with their
private quotes, our protocol automatically and securely determines the actual
trade comprising the trade partner constellation (i.e., who trades with whom)
as well as the commodities and quantities to be traded. A party’s quote remains
private throughout the entire protocol execution. From participating in the bar-
tering protocol, a party merely learns its local view consisting of its direct trade
partners and the quantities of the commodities to be sent and received. Our pro-
tocol is able to incorporate any selection strategy for selecting the trade partner
constellation as long as the strategy is a function of the considered trade part-
ner constellations. Examples for a selection strategy one may choose include the
maximization of the number of parties able to trade, the minimization of the
length of the trade cycles in the actual trade, as well as a combination of both.
Furthermore, our protocol includes a privacy-preserving mechanism to replace a
manual negotiation of the final exchange rates. This mechanism is implemented
by sampling the actual quantities out of private intervals where the boundaries
of such an interval are determined from the negotiation ranges specified by the
involved parties. Our privacy-preserving bartering protocol allows the sampling
of the quantities according to an arbitrary discrete distribution. Note that for
the case that the negotiation of the quantities is left to the parties, a party which,
e.g., has to make the first offer or which has the least bargaining experience may
be discriminated. Our approach motivates the parties to honestly specify their
negotiation ranges.

Privacy-Preserving Multi-Party Bartering Secure Against Active Adversaries 3

Contributions: Building on [21, 22], we propose the first privacy-preserving multi-
party bartering protocol which provides security against malicious adversaries.
Due to the special purpose design of the bartering protocol presented in [21,
22], a straight-forward transformation to the malicious model is not possible.
Instead, new design approaches, e.g., for restricting a party’s local view and for
the integration of a negotiation mechanism, are required. At the core of our bar-
tering protocol are two novel building blocks which also provide security in the
malicious model. First, we introduce a privacy-preserving building block imple-
menting the conditional random selection (CRS) functionality which has been
introduced in [20]. CRS allows to obliviously select one random data entry which
satisfies a specified condition out of a private set of data entries and can be used
in the context of bartering for determining an actual trade [21, 22]. Second, we
introduce a building block for randomly sampling elements out of a private in-
terval (given by encrypted interval boundaries only) w.r.t. an arbitrary discrete
distribution. In the context of bartering, we use this protocol to have a flexible
means for determining trade rates. These novel building blocks are of general
interest beyond the context of bartering. While the complexity of the protocol
from [21, 22] linearly depends on the cardinality of the commodity space, our
novel design approach results in a protocol with complexity independent of the
number of supported commodities.3

Outline: The remainder of this paper is organized as follows. After reviewing
related work in Section 2, we provide an overview on designing SMPC proto-
cols for the malicious model (Section 3). Subsequently, we devise an intuitive
terminology for multi-party bartering based on graphs and provide an intuition
for the functionalities of our novel protocol (Section 4). In Section 5, we review
existing building blocks used in the context of our work and present two novel
building blocks for conditional random selection and for random sampling from
a private interval according to an arbitrary discrete distribution. Building on
that, we introduce our novel privacy-preserving bartering protocol (Section 6).
The paper closes with some remarks on future work.

2 Related Work

Our work models bartering in the same way as the privacy-preserving multi-party
bartering protocol which is secure against semi-honest adversaries introduced by
Wüller et al. [21, 22]. For a given set of parties and their quotes, the bartering
protocol allows to securely determine an actual trade comprising the trade con-
stellation of the parties as well as the commodities and quantities to be traded.
Our work presented in this paper extends their setting in that we provide security
against malicious adversaries. This requires the design of a new bartering proto-
col composed of new building blocks which are of general interest. While in [21,
22] only a basic level of fairness w.r.t. the selection of the quantities to be traded

3 Note that the novel design approach can also be applied to [21, 22] in order to improve
the efficiency.

4 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel

is considered, in this paper, we extend the notion of fairness by providing an
opportunity to reduce the probability of imbalanced determined quantities (for
details see Section 6). Note that the extended notation of fairness can directly
be applied to the two-party bartering protocol presented in [23].

To the best of our knowledge, to date there are no other privacy-preserving
bartering approaches for more than two parties which provide security against
malicious adversaries. For the two-party case, a privacy-preserving bartering
protocol has been introduced in [23]. However, privacy-preserving bartering pro-
tocols for the two-party case cannot be used for the much more complicated
bartering setting with more than two parties. This is due to the fact that these
protocols are not capable of determining trade cycles between more than two
parties [21].

As detailed in [12], bartering transactions offer a richer structure of exchanges
compared to transaction in the context of e-commerce (and auctions). Conse-
quently, privacy-preserving protocols for e-commerce scenarios or auctions can
not be directly applied for implementing a privacy-preserving bartering protocol.

3 Preliminaries

In the following, we first recap general notation, the Paillier cryptosystem, as
well as the definition of security we use throughout the paper. Then, we provide
a brief overview of the SMPC framework from [3, 4] which we utilize to design
protocols secure against malicious adversaries.

3.1 Notation and Definitions

To indicate that a is drawn uniformly at random from A, we write a←$ A. Nu
refers to the set of natural numbers less than or equal to u ∈ N. L[i] refers to
entry li of vector L = (l1, . . . , ln) with i ∈ Nn. For some predicate B, let [B]
denote the Iverson bracket where [B] = 1 if B is true and otherwise [B] = 0.
Given an integer interval [λ, µ] with λ, µ ∈ N, the width of an interval, written
|[λ, µ]| is defined as µ−λ. We denote the index set of all parties P1, . . . , Pι (ι ∈ N)
participating in a multi-party protocol as P := {1, . . . , ι}.

3.2 Paillier Threshold Cryptosystem

The Paillier cryptosystem [14] is an additively homomorphic encryption scheme
which provides for semantic security. In order to design privacy-preserving pro-
tocols, we use the (τ, ι) threshold variant of Paillier introduced in [7] where the
private decryption key is distributed amongst ι parties such that τ parties (τ ≤ ι)
have to cooperate in order to decrypt a ciphertext. In the following, we outline
the key generation and the encryption function of this threshold variant of the
Paillier cryptosystem.

Privacy-Preserving Multi-Party Bartering Secure Against Active Adversaries 5

Key Generation: For a given security parameter s, choose two primes p and q of
bit length s/2 such that there exist two primes p′ and q′ with p = 2p′ + 1 and
q = 2q′+1 and compute N := p ·q. Set N ′ := p′q′, β ←$ Z∗N , (a, b)←$ Z∗N×Z∗N ,
and g := (1 +N)a · bN mod N2. The private key βN ′ is shared among ι parties
using Shamir’s (τ, ι) secret sharing scheme [16]. The public key is the same for
all ι parties and consists of g, N , and Θ := L(gN

′β) = aN ′β mod N , where
L(x) := (x− 1)/N .

Encryption: A message m in plaintext space P := ZN is computed by select-
ing r ←$ Z∗N and computing c = E(m) := gmrN mod N2 where the resulting
ciphertext c is an element of the ciphertext space C := Z∗N2 .

For matters of convenience, we omit the public and private key from our
notation. P forms an additive group (ZN ,+) and C forms a multiplicative group
(Z∗N2 , ·). Let m,m1,m2 ∈ P and a ∈ Z\{0}. Then, the ((τ, ι) threshold) Paillier
cryptosystem provides for homomorphic addition

E(m1) +h E(m2) := E(m1) · E(m2)

such that D(E(m1) ·E(m2)) = D(E(m1 +m2)) and homomorphic scalar multi-
plication

E(m)×h a := (E(m))a

such that D((E(m))a) = D(E(a · m)). We define E(m) ×h 0 := E(0) and
E(m1)−hE(m2) := E(m1)+h (E(m2))−1 such that D(E(m1)+h (E(m2))−1) =
D(E(m1 − m2)). A ciphertext c can be randomized by computing Rnd(c) :=
c +h E(0) where E(0) is a fresh encryption of 0. Given two ciphertexts E(m1),
E(m2) and knowing the upper bound for the number d ∈ N of decimal places of
m2 with (m1 · 10d +m2) < N , we define the homomorphic concatenation of two
ciphertexts as

E(m1) ||h E(m2) := E(m1)×h 10d +h E(m2).

In the following, we write JmK := E(m) in order to refer to an encryption of
a plaintext m.

3.3 Secure Multi-Party Computation

Secure multi-party computation allows a set of ι parties to compute an ι-input
functionality F such that each participating party learns nothing beyond its
prescribed output and what can be deduced from it in combination with its
private input. The security (i.e., privacy and correctness) of the computation is
guaranteed even in the presence of an adversary controlling a fixed set of parties.

Let x := (x1, . . . , xι) and let F : ({0, 1}∗)ι → ({0, 1}∗)ι, x 7→ (F1(x), . . . ,
Fι(x)) be an ι-input functionality where Pv (v ∈P) provides its private input
xv ∈ {0, 1}∗ and obtains its prescribed (private) output Fv(x). Let π be an ι-
party protocol implementing functionality F . We write IC = {i1, ..., it} ⊂P for

6 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel

the index set of t < ι corrupted parties controlled by the adversary. We consider
a malicious adversary which may instruct the corrupted parties to arbitrarily
deviate from the protocol specification.

In the SMPC model from [2], security is stated in terms of the ideal world
vs. the real world paradigm. The capabilities of an adversary A in the real world
execution of π are compared to the capabilities of an adversary S interacting
in the ideal world where the parties have access to a trusted third party which
computes the target functionality F and provides each party with its prescribed
output. Consequently, the computation of F in the ideal world achieves the
highest level of security. In the real world, the parties do not have access to
a trusted third party but have to execute protocol π in order to obtain their
respective outputs. In the following, the ideal world (resp., real world) view of a
party refers to the information (e.g., the received messages) it learns during the
computation of F (resp., execution of π).

The random variable IDEALF ,S(x, IC , k, a) denotes the ι + 1 tuple which
includes the output of all ι parties and the output of the adversary S for input
x, the index set of corrupted parties IC , security parameter k, and auxiliary
input a ∈ {0, 1}∗. Functionality F is computed in the ideal world under the
attack of adversary S. Analogously, the random variable REALπ,A(x, IC , k, a)
denotes the ι+ 1 tuple which is comprised of the outputs where π is executed in
the real world under the attack of adversary A.

Definition 1. (Security in the Malicious Model.) Let π be a ι-party protocol
implementing the ι-party functionality F . Protocol π securely implements F in
the malicious model iff for any static real world adversary A which corrupts a
subset IC of t parties there exists an ideal world adversary S such that

IDEALF ,S := {IDEALF ,S(x, IC , k, a)}x,IC ,k,a
c≡

{REALπ,A(x, IC , k, a)}x,IC ,k,a =: REALπ,A

where
c≡ denotes computational indistinguishability.

3.4 CDN Framework for Secure Computations

Our novel privacy-preserving bartering protocol is designed on top of the CDN
framework [4, 3] which allows ι parties to securely compute a protocol π (imple-
menting functionality F) in the presence of a malicious adversary who controls
at most a minority of τ < ι/2 corrupted parties. Security is defined accord-
ing to Definition 1 with the restriction that |IC | < dι/2e. Furthermore, each
party is allowed to additionally receive a public input and output. Assuming
an honest majority guarantees the termination of a protocol execution with the
correct computation result. The CDN-framework assumes a threshold homomor-
phic cryptosystem satisfying a set of specific properties. The threshold variant
of the Paillier cryptosystem presented in Section 3.2 satisfies these properties
and will be used in the remainder of the paper. In order to prevent a corrupted
party from cheating, each party has to prove (by the means of zero knowledge

Privacy-Preserving Multi-Party Bartering Secure Against Active Adversaries 7

proofs) that it follows the protocol. Once a party is found to deviate from the
protocol specification it is excluded from the further execution of the protocol.
For the sake of brevity, we will not explicitly address this case in the following
sections.

At the core of the CDN framework there is a universal protocol FuncEvalF
which expects the description of an arithmetic circuit implementing functional-
ity F . The circuit has to be composed of some basic gates (see below). A gate ρ
is a kind of black box protocol characterized by the fact that it obtains encrypted
input, specifies how to compute some gate functionality G on that input, and
returns the encrypted result of the computation.

Loosely speaking, the evaluation of protocol FuncEvalF can be divided into
the following three phases [23]:

Input Phase: All parties encrypt their private inputs and broadcast the cor-
responding ciphertext(s). Additionally, for each broadcasted ciphertext a party
proves in zero knowledge that it knows the corresponding plaintext.

Computation Phase: All parties jointly evaluate the given circuit gate by gate.
Each gate obtains an encrypted input and provides an encrypted output which
in turn may constitute the input for another gate.

Output Phase: All parties who are still participating in the protocol jointly ex-
ecute a private decryption protocol providing each party with its prescribed
output.

We write (JoK) ← G(JxK) (resp., (JoK) ← ρ(JxK)) to indicate that all parties
have common encrypted input JxK and common encrypted output JoK.

One of the basic gates proposed in [3, 4] is a multiplication gate (Ja · bK) ←
ρMult((JaK, JbK)) allowing to multiply two common ciphertexts JaK and JbK of
plaintexts a, b ∈ P such that each party obtains the result Ja · bK. The broad-
cast complexity of ρMult is in O(ιs) for security parameter s while the round
complexity is in O(1).

Theorem 1. (cf. [4].) The FuncEvalF protocol securely evaluates F in the pres-
ence of a malicious adversary controlling a minority of parties.

Generalizations: In the literature, several generalizations have been proposed
for the CDN framework: Although the original version of the CDN framework
requires that F is a deterministic functionality and assumes an honest majority,
Theorem 1 is still valid for computing probabilistic functionalities and allowing
all but one parties being controlled by an adversary [3, 15, 5]. In the former case,
it has to be assured that the random bits influencing the protocol output are
jointly computed and remain encrypted throughout the protocol execution. In
case an adversary controls a majority of parties, protocol termination can not
be guaranteed.

Furthermore, there exists a sophisticated technique to integrate new gates
into the CDN framework. Strictly speaking, the integration of a new gate requires

8 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel

one to prove that the simulated view of all parties is statistically indistinguishable
from the real world view of all parties (given the encrypted input and output).
However, Schoenmakers et al. argue that it suffices to show that a gate can
be simulated in a statistically indistinguishable manner for inputs of a special
form [15, 8, 10]. This technique exploits the modularity of the proof of Theorem 1
in [3] which is centered around an intermediary distribution YADb which is a
function of an encrypted bit b. More precisely, the proof shows that

IDEALF ,S
p≡ YAD0 c≡ YAD1 s≡ REALπ,A,

where
p≡ and

s≡ refer to perfect and statistical indistinguishability, respectively. A
distinguisher for distributions IDEALF ,S and REALπ,A yields a distinguisher for
distributions YAD0 and YAD1. Since the gap between YAD0 and YAD1 depends
on the single encrypted bit b, the security of a protocol is reduced to the security
of the underlying cryptosystem. Consequently, a gate obtaining input JxK can
be simulated for input Jx̃K = J(1− b)x〈0〉 + bx〈1〉K where x〈0〉 and x〈1〉 represent
x in the YAD0 and YAD1 distributions, respectively. Note that the simulator is
provided with x〈0〉, x〈1〉, and JbK. More details on this proof technique are given
in [15, 8, 10].

4 Overview

4.1 Bartering Terminology

For a set of parties, a trade generically indicates which party receives (or sends)
which quantity of which commodity from (or to) which other party. We allow
each party to specify one offered and one desired commodity and focus on so-
called (1 : 1) trades where each party either receives and sends nothing or receives
some quantity of its desired commodity from at exactly one party and sends some
quantity of its offered commodity to one party.

More specifically, we consider a set of ι parties {Pv : v ∈P} with P := Nι
and a publicly known finite set C := {c1, . . . , c|C |} of divisible commodities. Each

party Pv specifies exactly one quote q(v) := (o(v),d(v)) where o(v) and d(v) are

Pv’s offer and demand, respectively. We model o(v) as a 2-tuple o(v) := (c
(v)
o , q

(v)
o)

where c
(v)
o ∈ C specifies the commodity offered by Pv and q

(v)
o ∈ N\{0} denotes

the maximum quantity at which c
(v)
o is offered. Similarly, we model d(v) :=

(c
(v)
d , q

(v)
d) with c

(v)
d ∈ C referring to Pv’s desired commodity and q

(v)
d ∈ N\{0}

indicating the minimum quantity at which this commodity is desired by Pv.
With q(v) a party Pv indicates that it is satisfied with a trade if it receives

at least q
(v)
d units of commodity c

(v)
d and sends at most q

(v)
o units of c

(v)
o . The

quantity ranges of the offered and desired commodities of a party Pv are defined

as Q
(v)
o := [1, q

(v)
o] and Q

(v)
d := [q

(v)
d ,∞]. We write q

(v,v′)

c
(v)
o

in order to indicate at

which quantity Pv′ will receive commodity c
(v)
o from Pv (v, v′ ∈P, v 6= v′).

Privacy-Preserving Multi-Party Bartering Secure Against Active Adversaries 9

GC Compatibility Graph Def. 2

GTPC Trade Partner Constellation Graph Def. 3

GPTPC Potential Trade Partner Constellation Graph Def. 4

GAT Actual Trade Graph Def. 6

Table 1: Summary of the main bartering terms.

To allow for an intuitive visualization, all further bartering terminology is
defined in terms of graph theory. Figure 1 provides an example and shows how
the terms build on each other.

For the set of quotes of all parties Q := {q(1), . . . ,q(ι)} a directed graph,
referred to as compatibility graph GC, can be constructed where each node is
identified with a party index in P. A directed edge (v, v′) between two nodes v

and v′ indicates that condition (c
(v)
o = c

(v′)
d)∧ (q

(v)
o ≥ q(v

′)
d) is satisfied, i.e., that

Pv can satisfy the demand of Pv′ . Formally, a compatibility graph is defined as
follows:

Definition 2. (Compatibility Graph.) For a given set of quotes Q = {q(1), . . . ,

q(ι)} with q(v) = ((c
(v)
o , q

(v)
o), (c

(v)
d , q

(v)
d)) with v ∈ P, a compatibility graph

GC is a simple directed graph (V,E) with V := {1, . . . , ι} and (v, v′) ∈ E iff

[(c
(v)
o = c

(v′)
d) ∧ (q

(v)
o ≥ q(v

′)
d)] = 1 where v, v′ ∈P, v 6= v′.

Let deg+(v) (v ∈ V) refer to the indegree of node v (resp., let deg−(v) refer
to the outdegree of node v) and let deg(v) := deg+(v) + deg−(v).

Similarly as for a compatibility graph, the nodes of a trade partner constella-
tion graph GTPC are identified with the (same) party indices in P. However, the
edges of a trade partner constellation graph are generic as well as independent
of any set of quotes Q and for each node v it holds that it either has exactly one
incoming and one outgoing edge (i.e., deg+(v) = deg−(v) = 1) or otherwise it
is isolated (i.e., deg(v) = 0). Put differently, a trade partner constellation graph
either indicates that a party Pv does not actively participate in the encoded con-
stellation or specifies Pv’s trade partners. In the latter case, GTPC determines
exactly one party from which Pv receives some quantity of a commodity (Pv’s
offerer) as well as exactly one party to which Pv has to send some quantity of
a commodity (Pv’s demander). The definition of a trade partner constellation
graph ensures that each party which sends some quantity of a commodity in
turn receives some quantity of another commodity.

Definition 3. (Trade Partner Constellation Graph.) A trade partner constel-
lation graph GTPC is a simple directed graph (V,E) with V := {1, . . . , ι} and
∀v ∈ V : (deg−(v) = 1 ∧ deg+(v) = 1) ∨ (deg(v) = 0).

An m-cycle in a compatibility graph or in a trade partner constellation graph
is referred to as an m-trade cycle. To ensure that commodities can be traded ac-
cording to the direction of the edges in a trade partner constellation graph, it has

10 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel

32 No Author Given

GAT

i 2 {1, ..., 4}

GTPC
i v GC

◆

32 No Author Given

GAT

i 2 {1, ..., 4}

GTPC
i v GC

◆

32 No Author Given

GAT

i 2 {1, ..., 4}

GTPC
i v GC

◆

Privacy-Preserving Multi-Party Bartering 29

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

q
⇤(1,2)

c
(1)
o

q
⇤(2,3)

c
(2)
o

q
⇤(3,4)

c
(3)
o

q
⇤(4,1)

c
(4)
o

Privacy-Preserving Multi-Party Bartering 29

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

q
⇤(1,2)

c
(1)
o

q
⇤(2,3)

c
(2)
o

q
⇤(3,4)

c
(3)
o

q
⇤(4,1)

c
(4)
o

10 No Author Given

Gate 3. ⇢!�

RIE-D for randomly sampling from a private interval according to
distribution D (l 2P).

Input: Pl holds J�K, JµK, !�, JR0K, . . . , JR!�K
Output: Pl outputs JeK

1 J�K := JµK�h J�K
2 For i from 0 to !�:

2.1 JviK ⇢int
RBVG(|Ri|)

2.2 JwiK ⇢Switch(Jri,1K, . . . , Jri,|Ri|�1K, JviK)
3 Je�K ⇢Switch(Jw0K, . . . , Jw!�K, J�K)
4 JeK := Je�K + J�K

i f(k; i) (8k 2 [0, i]) Ri

0 Pr[x=0] = 1 R0 = (0)

1 Pr[x=0] = Pr[x=1] = 1/2 R1 = (0, 1)

2 Pr[x=0] = Pr[x=2] = 1/4; Pr[x=1] = 1/2 R2 = (0, 1, 1, 2)

3 Pr[x=1] = Pr[x=3] = 1/8; Pr[x=1] = Pr[x=2] = 3/8 R3 = (0, 1, 1, 1, 2, 2, 2, 3)

4
Pr[x=1] = Pr[x=4] = 1/16; Pr[x=1] = Pr[x=3] = 1/4; R4 = (0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,

Pr[x=2] = 3/8 3, 3, 4)

Table 2: Construction of Ri for D = B and !� = 4 (i 2 N0
!�

).

P Q o↵er demand

P1 q(1) = ((A, 10), (C, 5))

P2 q(2) = ((B, 4), (A, 6))

P3 q(3) = ((C, 10), (B, 3))

P4 q(4) = ((C, 8), (A, 4))

Privacy-Preserving Multi-Party Bartering 29

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

q
⇤(1,2)

c
(1)
o

q
⇤(2,3)

c
(2)
o

q
⇤(3,4)

c
(3)
o

q
⇤(4,1)

c
(4)
o

8 No Author Given

Je01K := Je1K⇥h W ('1) = J0K
...

Je0iK := ...

...

Je0jK := ...

...

Je0|TPCS|K :=

Mapping Phase: (...)

JL1K = (JTPT
(1)
1 K,)

...

JL⌘K = (JTPT
(⌘)
1 K, . . .)

Selection Phase: ... returns (Jc⇤0K, . . . , Jc⇤⌘K) = ()

Output Phase: ... decrypt ... such that Pl learns c⇤l = TPT
(l)
i where TPT

(1)
i =

(4, 3), TPT
(2)
i = (3, 4), TPT

(3)
i = (1, 2), TPT

(4)
i = (2, 1), TPT

(5)
i = (0, 0).

Misc

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

q
(1,2)
A

q
(2,3)
B

q
(3,1)
C

1 2

34

8 No Author Given

Je01K := Je1K⇥h W ('1) = J0K
...

Je0iK := ...

...

Je0jK := ...

...

Je0|TPCS|K :=

Mapping Phase: (...)

JL1K = (JTPT
(1)
1 K,)

...

JL⌘K = (JTPT
(⌘)
1 K, . . .)

Selection Phase: ... returns (Jc⇤0K, . . . , Jc⇤⌘K) = ()

Output Phase: ... decrypt ... such that Pl learns c⇤l = TPT
(l)
i where TPT

(1)
i =

(4, 3), TPT
(2)
i = (3, 4), TPT

(3)
i = (1, 2), TPT

(4)
i = (2, 1), TPT

(5)
i = (0, 0).

Misc

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

q
(1,2)
A

q
(2,3)
B

q
(3,1)
C

1 2

34

Privacy-Preserving Multi-Party Bartering 29

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

q
⇤(1,2)

c
(1)
o

q
⇤(2,3)

c
(2)
o

q
⇤(3,4)

c
(3)
o

q
⇤(4,1)

c
(4)
o

8 No Author Given

Je01K := Je1K⇥h W ('1) = J0K
...

Je0iK := ...

...

Je0jK := ...

...

Je0|TPCS|K :=

Mapping Phase: (...)

JL1K = (JTPT
(1)
1 K,)

...

JL⌘K = (JTPT
(⌘)
1 K, . . .)

Selection Phase: ... returns (Jc⇤0K, . . . , Jc⇤⌘K) = ()

Output Phase: ... decrypt ... such that Pl learns c⇤l = TPT
(l)
i where TPT

(1)
i =

(4, 3), TPT
(2)
i = (3, 4), TPT

(3)
i = (1, 2), TPT

(4)
i = (2, 1), TPT

(5)
i = (0, 0).

Misc

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

q
(1,2)
A

q
(2,3)
B

q
(3,1)
C

1 2

34

8 No Author Given

Je01K := Je1K⇥h W ('1) = J0K
...

Je0iK := ...

...

Je0jK := ...

...

Je0|TPCS|K :=

Mapping Phase: (...)

JL1K = (JTPT
(1)
1 K,)

...

JL⌘K = (JTPT
(⌘)
1 K, . . .)

Selection Phase: ... returns (Jc⇤0K, . . . , Jc⇤⌘K) = ()

Output Phase: ... decrypt ... such that Pl learns c⇤l = TPT
(l)
i where TPT

(1)
i =

(4, 3), TPT
(2)
i = (3, 4), TPT

(3)
i = (1, 2), TPT

(4)
i = (2, 1), TPT

(5)
i = (0, 0).

Misc

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

q
(1,2)
A

q
(2,3)
B

q
(3,1)
C

1 2

34

Title Suppressed Due to Excessive Length 9

GTPC

GTPC
1

GTPC
2

GTPC
3

GTPC
4

GPTPC
1

GPTPC
2

GPTPC

GATPC

GAT

Title Suppressed Due to Excessive Length 9

GTPC

GTPC
1

GTPC
2

GTPC
3

GTPC
4

GPTPC
1

GPTPC
2

GPTPC

GATPC

GAT

Title Suppressed Due to Excessive Length 9

GTPC

GTPC
1

GTPC
2

GTPC
3

GTPC
4

GPTPC
1

GPTPC
2

GPTPC

GATPC

GAT

Title Suppressed Due to Excessive Length 9

GTPC

GTPC
1

GTPC
2

GTPC
3

GTPC
4

GPTPC
1

GPTPC
2

GPTPC

GATPC

GAT

Title Suppressed Due to Excessive Length 9

GTPC

GTPC
1

GTPC
2

GTPC
3

GTPC
4

GPTPC
1

GPTPC
2

GPTPC

GATPC

GAT

Title Suppressed Due to Excessive Length 9

GTPC

GTPC
1

GTPC
2

GTPC
3

GTPC
4

GPTPC
1

GPTPC
2

GPTPC

GATPC

GAT

Title Suppressed Due to Excessive Length 9

GTPC

GTPC
1

GTPC
2

GTPC
3

GTPC
4

GPTPC
1

GPTPC
2

GPTPC

GATPC

GAT

Title Suppressed Due to Excessive Length 9

GTPC

GTPC
1

GTPC
2

GTPC
3

GTPC
4

GPTPC
1

GPTPC
2

GPTPC

GATPC

GAT

Title Suppressed Due to Excessive Length 9

GTPC

GTPC
1

GTPC
2

GTPC
3

GTPC
4

GPTPC
1

GPTPC
2

GPTPC

GATPC

GAT

Privacy-Preserving Multi-Party Bartering Secure Against Active Adversaries 29

Misc

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

q
(1,2)
A

q
(2,3)
B

q
(3,1)
C

1 2

34

GC

GTPC

GTPC
1

GTPC
2

GTPC
3

GTPC
4

GPTPC
1

GPTPC
2

GPTPC

GATPC

⟶

maximize
welfare,
actual

quantity
selection

Fig. 1: Example for bartering terms and their relations.

to be assured that the trade cycles are disjoint (also referred to as simultaneously
executable). While a compatibility graph may contain multiple trade cycles of
which some may not be simultaneously executable (e.g., GC in Figure 1 contains
one 2-trade cycle and one 3-trade cycle but only one of them is executable at a
time because P1 is involved in both cycles), a potential trade constellation graph
corresponds to a subgraph of either one trade cycle or multiple simultaneously
executable trade cycles (e.g., GPTPC

1 and GPTPC
2 in Figure 1).

Definition 4. (Potential Trade Partner Constellation Graph.) For a given set of
quotes Q, a trade partner constellation graph GTPC is referred to as a potential
trade partner constellation graph GPTPC iff GTPC is a subgraph of GC, written
GTPC v GC.

We write GTPC := {GTPC
1 , . . . , GTPC

|GTPC|} for a set of trade partner constel-

lation graphs. For a given GTPC and GC, the set of potential trade partner
constellation graphs is denoted as GPTPC. According to Definition 4, it holds
that GPTPC ⊆ GTPC (cf. Figure 1).

Definition 5. (Welfare Function.) A welfare function W(·) : GTPC → N ∪ {0}
maps a trade partner constellation graph in GTPC to a welfare.

Privacy-Preserving Multi-Party Bartering Secure Against Active Adversaries 11

Definition 6. (Actual Trade Graph.) For a given set of quotes Q and a wel-
fare function W , an actual trade graph GAT corresponds to a potential trade
partner constellation graph GPTPC with maximum welfare drawn from GPTPC.

Additionally, each edge (v, v′) is associated with a weight q
(v,v′)

c
(v)
o

which specifies

the actual quantity at which the actual commodity c
(v)
o is to be send from Pv to

Pv′ . We write GAT ←maxW GPTPC for the process of determining GAT given
GPTPC, W , and Q.

For example, the welfare of a trade partner constellation graph GTPC =
(V,E) can be defined as the number of its edges W(GTPC) = |E| such that the
selected actual trade graph maximizes the number of parties that can engage in
the trade, i.e., exchange their commodities.

For matters of convenience, we define

N (v)
o (G) :=

{
u if (u, v) ∈ E
0 otherwise

and

N
(v)
d (G) :=

{
w if (v, w) ∈ E
0 otherwise

where G = (V,E) is a potential trade partner constellation graph or an actual

trade graph. N
(v)
o (G) (resp., N

(v)
d (G)) allows an easy access to the offerer (resp.,

demander) of Pv. Furthermore, we define

N
(v)
o,d (G) := (N (v)

o (G), N
(v)
d (G)).

N
(v)
o,d (G) = (0, 0) indicates that Pv is excluded from the underlying actual trade

(or potential trade partner constellation). In Figure 1, for example,

N
(2)
o,d (GPTPC

1) = (1, 3) while N
(4)
o,d (GPTPC

1) = (0, 0). In the following, we write

N
(v)
o , N

(v)
d , and N

(v)
o,d whenever the corresponding graph G is apparent from the

context.

4.2 Intuition

In the following, we provide an intuition for our novel bartering protocol which
is secure against malicious adversaries and allows the determining of an actual
trade considering a publicly-known set of trade partner constellations4 in com-
bination with a given set of parties and their private quotes while maximizing
a welfare function that the parties agreed upon prior to executing the protocol.

4 The trade partner constellation set may include all possible constellations for a fixed
set of parties—or for matters of efficiency may be restricted to a subset thereof, e.g.,
to only include trade cycles of a specific length or to only include constellations in
which specific parties get to trade (see the example in Figure 1).

12 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel

Upon the conclusion of the protocol, a party only learns its local view of the
determined actual trade (and what can be derived from it in combination with
its private input), i.e., its own trade partners and the actual commodities and
quantities to be traded with them.

In [21, 22], a bartering protocol is proposed which achieves the same objec-
tive but exhibits security only against semi-honest adversaries. The protocol
includes two main steps. First, based on the private quotes of the parties, the
set of potential trade partner constellations is determined as those trade partner
constellations from the given set of trade partner constellations which correspond
to a trade all parties would be satisfied with. Then, one potential trade partner
constellation is selected from amongst those who maximize the welfare function.
This constellation already includes the information as to which party will send
(resp., receive) which commodity to (resp., from) which other party as part of
the actual trade. In a second step, each party engages in a two-party protocol
with each one of its trade partners in order to determine the actual quantities
at which the commodities are to be exchanged.

The approach of executing a multi-party protocol followed by a series of
two-party protocols is not viable in the context of malicious adversaries as it
is not possible to assure that parties provide consistent input for all protocols
they participate in. Instead, in order to provide security against malicious adver-
saries, it is necessary for all steps to be properly intertwined. Intuitively speak-

ing, the novel bartering protocol π
(W,D)
MB (detailed in Section 6) achieves this

as follows: First, given their private quotes, the parties jointly determine an en-
crypted adjacency matrix representing the compatibility graph. Then, the parties
jointly determine a corresponding encrypted matrix where an entry represents
the quantity at which one of the respective parties would send the corresponding
commodity to the other respective party based on the determined actual trade
graph. Specifically, a quantity of zero indicates that the respective edge is not
part of the actual trade graph, i.e., the party does not send anything to the other
party. In the following, we propose a new gate ρω∆RSI-D which allows the selection
of the quantities for a given arbitrary discrete probability distribution. At its
core, this new gate uses an intricate combination of the known element selection
and random bitwise value generation gates in order to implement the sampling
according to the prescribed distribution. In a third phase, the parties jointly
determine an encrypted indicator vector where the i− th entry of the vector in-
dicates whether the i− th trade partner constellation graph of the given publicly
known set of trade partner constellation graphs is a subgraph of the private com-
patibility graph (defined by their private inputs) in an oblivious fashion. For a
given trade partner constellation graph, this step can be implemented by having
the parties obliviously multiply together the respective entries of the adjacency
matrix—where a resulting encryption of zero corresponds to the fact that this
trade partner constellation graph is not a subgraph of the compatibility graph.5

Subsequently, all parties then jointly generate one encrypted vector for each

5 To simplify the intuition, we defer the use of the welfare function to prioritize certain
trade partner constellation graphs to Section 6.

Privacy-Preserving Multi-Party Bartering Secure Against Active Adversaries 13

party. The j-th entry of such a vector encodes the trade partners of this party
w.r.t. the j-th trade partner constellation graph as well as the corresponding
quantities as determined earlier. In a final step, the protocol selects an actual
trade graph uniformly at random from amongst those trade constellation graphs
that were previously determined to be a subgraph of the compatibility graph. In
the following, we devise a novel multi-party conditional random selection gate
(see Section 5.2) to enable this operation. At its core, this new gate ρi

∗

CRS carries
out a sequence of oblivious shuffles followed by bubble-sort like oblivious com-
parison and swap operations—upon input of the indicator vector as well as the
encrypted vectors that were determined for each party. Eventually, the output
of the conditional random selection gate is decrypted in such a fashion that each
party only learns its local view of the selected actual trade. In the Appendix,
we provide a detailed example which shows the specific workings of the novel
protocol.

5 Gates

In this section, we review existing gates which have been integrated into the CDN
framework (Section 5.1) and present new gates for privacy-preserving conditional
random selection (Section 5.2) and for securely sampling random numbers from
a private interval according to an arbitrary discrete distribution D (Section 5.3).
All these gates are used for the implementation of our novel bartering protocol.
In the following, we first provide the gate functionality G before presenting a gate
ρ implementing G. The broadcast and round complexities of the presented gates
are provided in Table 2. All protocols in this section provide security against
malicious adversaries.

5.1 Existing Gates

Definition 7. (GBR: Secure Computation of the Encrypted Binary Represen-
tation of a Paillier Ciphertext [15].) Let all parties Pv (v ∈ P) hold JxK.
Then, gate functionality GBR is given by ((Jx0K, . . . , JxmK)) ← GBR(JxK) where
xbin := (x0, . . . , xm) is the bit representation of x with 0 ≤ x < 2m.

Definition 8. (GGT: Secure Greater Than Comparison [8].) Let all parties Pv
(v ∈ P) hold JxbinK := (Jx0K, . . . , JxmK) and JybinK := (Jy0K, . . . , JymK) where
xbin with 0 ≤ x < 2m (resp., ybin) is the binary representation of x (resp., y).
Then, gate functionality GGT is given by (JoK) ← GGT((JxbinK, JybinK)), where
o = [x > y].

Given gate ρGT, it is straight-forward to derive the corresponding less than
(LT), less than or equal (LTE), and greater than or equal (GTE) variants as
well as a gate for private equality testing (EQ) (see, e.g., [19]).

Definition 9. (GRBVG: Random Bitwise Value Generation [10].) Let all par-
ties Pv (v ∈ P) hold a public value a such that 2la−1 < a ≤ 2la . Then,

14 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel

Gate Section Broadcast Complexity Round Complexity

ρMult 3.4 O(ιs) O(1)

ρUFI-Mult 5.1 O(nιs) O(n)

ρBR 5.1 O(ιs2) O(ι)

ρGT 5.1 O(ιs2) O(log(s))

ρRBVG 5.1 O(ιsla) O(ι)

ρES 5.1 O(nιs) O(n)

ρi
∗
CRS 5.2 O(nιs2 +mnιs) O(n(ι+ log(s)) +mn)

ρω∆RSI-D 5.3 O(ω∆ιs(|Rω∆ |+ log(|Rω∆ |))) O(ω∆(ι+ |Rω∆ |))

Table 2: Gate complexities.

gate functionality GRBVG is given by ((Jr0K, . . . , Jrla−1K)) ← GRBVG(a) where
rbin := (r0, . . . , rla−1) is the bit representation of r with r ←$ [0, a).

Definition 10. (GES: Element Selection [23].) Let N = p · q be the Paillier
modulus and let all parties Pv (v ∈P) hold encryptions Jy1K, . . . , JynK and JwK
with n < min(p, q) and w ∈ Nn ⊂ P. Then, gate functionality GES is given by
(JywK)← GES((Jy1K, . . . , JynK, JwK)).

In [15], Schoenmakers et al. devise a gate ρBR implementing GBR. Gates
implementing GGT and GRBVG have been proposed in [8] and [10], respectively.
We write ρintRBVG to refer to the variant of gate ρRBVG which provides output
JrK instead of (Jr0K, . . . , Jrla−1K) (cf. Definition 9). A gate implementing gate
functionality GES has been introduced recently in [23].

Analogously to [23], we define (Jx1 · x2 · · ·xnK)← ρUFI-Mult((Jx1K, . . . , JxnK))
(Unbound Fan In Multiplication) by subsequently executing gate ρMult n − 1
times (see Section 3.4).

5.2 Privacy-Preserving Conditional Random Selection

The primitive of privacy-preserving conditional random selection has first been
introduced in [20]. Given a private set of data records, CRS allows for the random
selection of one of the data records that satisfy a specified condition without
leaking any information on any data entry. Since the gates from [20] only provide
security in the semi-honest model, we can not use them in the context of this
paper. Consequently, we have to design a new gate implementing the primitive
of conditional random selection with security in the malicious model.

As in [20], our CRS gate operates on encrypted value vectors and an associ-
ated encrypted indicator vector. The entries of these vectors at a specific index
represent a data record; multiple data records constitute a data table. A binary
indicator vector can be used to indicate whether or not the data records satisfy
a specified condition. As discussed in [20], by using an integer valued indicator
vector, CRS allows for a prioritization of data records. Accordingly, an indicator

Privacy-Preserving Multi-Party Bartering Secure Against Active Adversaries 15

vector entry indicates whether the corresponding data record satisfies the spec-
ified condition (if greater than zero) and indicates its priority (the higher the
value, the higher the priority of the data record).

Our CRS gate makes use of a mix-net which allows multiple parties to shuf-
fle a list of (encrypted) elements such that no party knows the permutation
linking the input list and the output list. One simple approach to realize a
mix-net is to let the parties successively shuffle the target list. A single shuffle
operation on a list of ciphertexts Jl1K, . . . , JlnK encrypted with a semantically
secure homomorphic cryptosystem allowing for ciphertext re-randomization can
be realized by choosing a random permutation σ of {1, . . . , n} and computing
Rnd(Jlσ(1)K), . . . , Rnd(Jlσ(n)K). In the malicious model, a shuffle operation per-
formed by a single party has to include a zero-knowledge proof allowing other
parties to check the correctness. In the following, we assume the efficient proof
system of [9] allowing the implementing of a verifiable secret shuffling operation
for ciphertexts. In the following, we refer to the proof of correct shuffling as
POCS. The resulting mix-net (consisting of the staggered shuffling operations
together with the corresponding POCSs) ensures that if there is at least one
honest party choosing a random permutation, it is impossible to link any en-
crypted element of the input list to any encrypted element of the output list.
Furthermore, the proof system from [9] allows a party to prove that several lists
of ciphertexts have been shuffled with the same permutation.

Definition 11. (Gi∗CRS : Conditional Random Selection). Let Pv (∀v ∈P) hold
m vectors JLiK := (Jli,1K, . . . , Jli,nK) of length n where i ∈ Nm. Let JLi∗K (i∗ ∈
Nm) be an encrypted indicator vector and {JL1K, . . . , JLmK}\JLi∗K be value vec-
tors. Then, functionality Gi∗CRS is given by ((Jl∗1K, . . . , Jl∗mK)) ←
Gi∗CRS((JL1K, . . . , JLmK)) with l∗i := Rnd(Jli,j∗K) (∀i ∈ Nm) where j∗ ←$ {j ∈
Nn : li∗,j = max(li∗,1, . . . , li∗,n)}.

A gate ρi
∗

CRS implementing gate functionality Gi∗CRS is given by Gate 1. Suc-
cessively, all parties verifyably shuffle the entries of the encrypted input vectors.

Party P1 begins by shuffling JL(0)
i K := JLiK (∀i ∈ Nm) in a verifiable fashion

resulting in (JL(1)
1 K, . . . , JL(1)

m K) which P1 sends to the next party P2. Note that
a party shuffles each encrypted vector using the same permutation in order to
maintain the data records. At the end of Step 2 (Gate 1), after Pι verifiably shuf-

fled JL(ι−1)
i K (∀i ∈ Nm) each party holds (JL′1K, . . . , JL′mK) := (JL(ι)

1 K, . . . , JL(ι)
m K).

Note, that the successive shuffling is a necessary step in ρi
∗

CRS which decou-
ples the gate input from the gate output, i.e., it is neither possible for a single
party nor for any set of less than ι corrupted parties to link an encrypted data
record of the input to the encrypted output data record. The for-loop in Step 4
(Gate 1) operates on two adjacent entries l′i∗,j′−1 and l′i∗,j′ (∀j′ ∈ {2, . . . , n})
of the encrypted indicator vector JL′i∗K := (Jl′i∗,1K, . . . , Jl′i∗,nK) in each iteration.
First, the encrypted bit representations of both entries are computed (Steps 4.1
and 4.2) which constitute the input for gate ρGT for obliviously determining
JoK := J[l′i∗,j′−1 > l′i∗,j′]K. Ciphertext JoK is used in the inner for-loop (Step 4.4)
which iterates over all encrypted vectors JL′1K, . . . , JL′mK and obliviously swaps

16 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel

Gate 1. ρi
∗

CRS for conditional random selection (v ∈P).

Input: Pv holds m vectors (JL1K, . . . , JLmK)
Output: Pv outputs (Jl∗1K, . . . , Jl∗mK)

1 Set (JL(0)
1 K, . . . , JL(0)

m K) := (JL1K, . . . , JLmK)
2 For v from 1 to ι:

2.1 Pv verifiably shuffles JL(v−1)
1 K, . . . , JL(v−1)

m K with the same random permutation

resulting in JL(v)
1 K, . . . , JL(v)

m K and provides POCS

3 Set (JL′1K, . . . , JL′mK) := (JL(ι)
1 K, . . . , JL(ι)

m K)
4 For j′ from 2 to n:

4.1 (J(l′i∗,j′−1)binK)← ρBR(J(l′i∗,j′−1)K)
4.2 (J(l′i∗,j′)binK)← ρBR(J(l′i∗,j′)K)
4.3 (JoK)← ρGT((J(l′i∗,j′−1)binK, J(l′i∗,j′)binK))
4.4 For i from 1 to m:

4.4.1 JL′i[j′ − 1]K := ρMult((J1− oK, Jl′i,j′−1K)) +h ρMult((JoK, Jl′i,j′K))
4.4.2 JL′i[j′]K := ρMult((J1− oK, Jl′i,j′K)) +h ρMult((JoK, Jl′i,j′−1K))

5 Set (Jl∗1K, . . . , Jl∗mK) := (JL′1[n]K, . . . , JL′m[n]K)

entries Jl′i,j′−1K and Jl′i,j′K (∀i ∈ Nm) for the case that o = 1 (Steps 4.4.1
and 4.4.2). The purpose of the nested for-loop of Step 4 is to iterate over all data
records in a bubble-sort fashion in order to propagate a random data record with
the maximum indicator vector entry to the rightmost index of the data table,
i.e., in Step 5 (Gate 1), (JL′1[n]K, . . . , JL′m[n]K) contains the selected data record
which constitutes the output of the gate.

The broadcast and round complexities of gate ρi
∗

CRS are dominated by the
nested for-loop (Step 4). Gate ρBR is called 2(n − 1) times, gate ρGT is called
n− 1 times, and gate ρMult is called 4(n− 1)m times. Using the concrete imple-
mentations of ρBR, ρGT, and ρMult mentioned above, the broadcast complexity of
ρi
∗

CRS is in O(nιs2+mnιs) and the round complexity is in O(n(ι+ log(s))+mn).
Considering that a verifiable shuffle requires a zero knowledge proof allowing

each party to check whether the shuffling operation has been performed correctly,
each party deviating from the gate specification is detected. The correctness of
gate ρi

∗

CRS can be proven analogously to the CRS gates from [20].

Theorem 2. Let L
〈0〉
i , L

〈1〉
i , and JbK (b ∈ {0, 1}) with L

〈b〉
i := (l

〈b〉
i,1 , . . . , l

〈b〉
i,n)

be given to the simulator (∀i ∈ Nm). For input JL̃iK := (Jl̃i,1K, . . . , Jl̃i,nK) with

Jl̃i,jK := J(1−b)l〈0〉i,j +bl
〈1〉
i,j K (∀i ∈ Nm,∀j ∈ Nn), gate ρi

∗

CRS can be simulated such
that the simulated view is statistically indistinguishable from the real view.

Proof. W.l.o.g. assume that P1, . . . , Pt are corrupted. First, the successive verifi-
able shuffles (Step 2) have to be simulated which can be done similarly to [8]. The

simulator lets Pv for v from 1 to t subsequently verifiably shuffle (JL̃(v−1)
1 K, . . . ,

JL̃(v−1)
m K) and obtains updated lists JL̃(v)

1 K, . . . , JL̃(v)
m K. From the respective zero

knowledge proof, the simulator extracts the corresponding permutations which

Privacy-Preserving Multi-Party Bartering Secure Against Active Adversaries 17

link (JL̃1K, . . . , JL̃mK) and (JL̃(t)
1 K, . . . , JL̃(t)

m K). For the honest parties Pt+1, . . . , Pι,

the simulator chooses random permutations σ
〈0〉
v′ and σ

〈1〉
v′ (∀v′ ∈ {t+ 1, . . . , ι}).

Up to this point, the simulator thus holds permutations σ1, . . . , σt (for the cor-

rupted parties) and permutations (σ
〈0〉
t+1, σ

〈1〉
t+1), . . . , (σ

〈0〉
ι , σ

〈1〉
ι) (for the honest

parties). What remains to be done is to simulate the zero knowledge proofs for

the last ι − t verifiable shufflings. Let L
(v′)〈b〉
i := σ

〈b〉
v′ (L

(v′−1)〈b〉
i) (∀b, i, v′ : b ∈

{0, 1}, i ∈ Nm, v′ ∈ {t + 1, ι}), let Jl̃(v
′)

i,j K := J(1 − b)l(v
′)〈0〉

i,j + bl
(v′)〈1〉
i,j K, and let

JL̃(v′)
i K := (Jl̃(v

′)
i,1 K, . . . , Jl̃(v

′)
i,n K). For v′ from t+1 to ι, the simulator calls the simula-

tor for the zero knowledge proof of the shuffle on inputs (JL̃(v′−1)
1 K, . . . , JL̃(v′−1)

m K)
and (JL̃(v′)

1 K, . . . , JL̃(v′)
m K).

The remaining proof is straight-forward. Next, the simulator sets (JL̃′1K, . . . ,
JL̃′mK) := (JL̃(ι)

1 K, . . . , JL̃(ι)
m K). In order to simulate Step 4.1, the simulator of

ρBR is called on input l
′〈0〉
i∗,j′−1, l

′〈1〉
i∗,j′−1, and JbK. The output ρBR is computed as

J(l̃′i∗,j′−1)binK := J(1 − b)(l′〈0〉i∗,j′−1)bin + b(l
′〈1〉
i∗,j′−1)binK. Step 4.2 can be simulated

analogously. The call of gate ρGT can be simulated by calling the corresponding

simulator on inputs (l
′〈0〉
i∗,j′−1)bin, (l

′〈1〉
i∗,j′−1)bin, (l

′〈0〉
i∗,j′)bin, (l

′〈1〉
i∗,j′)bin, and JbK. The

corresponding output is computed as JõK := J(1 − b)o〈0〉 + bo〈1〉K where o〈b〉 :=

[l
′〈b〉
i∗,j′−1 > l

′〈b〉
i∗,j′]. Furthermore, the four calls of the multiplication gate ρMult in

Step 4.4.1 and Step 4.4.2 have to be simulated. The first call of ρMult on input
(J1 − oK, Jl′i,j′−1K) can be simulated by providing the corresponding simulator

with input (J1K −h JõK, Jl̃′i,j′−1K) and output J(1 − b)(1 − o〈0〉)l′〈0〉i,j′−1 + b(1 −
o〈1〉)l′〈1〉i,j′−1K. The remaining calls of ρMult can be simulated analogously. After

updating Jl′〈b〉i,j′−1K := J(1 − o〈b〉) · l′〈b〉i,j′−1 + o〈b〉 · l′〈b〉i,j′ K (b ∈ {0, 1}), JL̃i[j′ − 1]K
is computed as J(1 − b)l′〈0〉i,j′−1 + bl

′〈1〉
i,j′−1K. JL̃i[j′]K can be computed analogously.

Finally, the simulator sets Jl̃∗i K := Jl̃′i,nK (∀i ∈ Nm).

5.3 Secure Random Sampling

Next, we devise a novel gate which allows the random sampling of values from
a private positive integer interval I = [λ, µ] with interval width ∆ := µ− λ that
are distributed according to a (arbitrary) given discrete probability distribution
D defined by a probability mass function fD,I(l;∆) = Pr(x = I[l+ 1]) (l ∈ N0

∆)
where I[l+ 1] refers to the (l+ 1)-st smallest element in I w.r.t. ≤. Note that D
describes the distribution of the elements in I relatively to the interval bounds
of I. In our bartering protocol this gate is used to enable the selection of the
quantities of the commodities to be traded. Definition 12 captures the desired
functionality.

Definition 12. (Gω∆RSI-D: Random Sampling from a Private Interval According
to Discrete Distribution D) Let all parties Pv (v ∈P) hold the encrypted interval
bounds JλK, JµK of an unknown integer interval [λ, µ] with 0 ≤ |[λ, µ]| ≤ ω∆.

18 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel

Gate 2. ρω∆RSI-D for randomly sampling from a private interval according to
distribution D (v ∈P).

Input: Pv holds JλK, JµK, ω∆, JR0K, . . . , JRω∆K
Output: Pv outputs JeK

1 J∆K := JµK−h JλK
2 For i from 0 to ω∆:

2.1 (JxiK)← ρintRBVG(|Ri|)
2.2 (JyiK)← ρES((Jri,0K, . . . , Jri,|Ri|−1K, JxiK))

3 (Je∆K)← ρES((Jy0K, . . . , Jyω∆K, J∆K))
4 JeK := Je∆K +h JλK

Then, functionality Gω∆RSI-D is given by (JeK) ← Gω∆RSI-D((JλK, JµK)), where JeK is
such that e←D [λ, µ] and D, ω∆ are publicly known.

Gate ρω∆RSI-D implementing Gω∆RSI-D is presented in Gate 2. The problem of
computing JeK with e ←D [λ, µ] is reduced to the problem of computing an
element e∆ ←D [0, ∆] with ∆ := µ − λ. Then, JeK is obtained by computing
Je∆K +h JλK. The key idea is to generate ω∆ + 1 encrypted lists JR0K, . . . , JRω∆K
with

JRiK := (Jri,0K, Jri,1K . . . , Jri,|Ri|−1K)
= (J0K, j0. . ., J0K, J1K, j1. . ., J1K, . . . , JiK, ji. . ., JiK),

where i ∈ N0
ω∆ and jl, |Ri| (l ∈ N0

i) s.t. jl/|Ri| = fD(l; i). For each of these
encrypted lists the parties obliviously select a single entry by calling (JxiK) ←
ρintRBVG(|Ri|). A subsequent call of ρES on input (Jri,0K, . . . , Jri,|Ri|−1K, JxiK) al-
lows the parties to obliviously obtain the encrypted xi-th entry of Ri. The re-
sulting ciphertexts Jy0K, . . . , Jyω∆K are such that yi ←$ Ri and thus yi ←D [0, i].
Next, the parties jointly call gate ρES on input (Jy0K, . . . , Jyω∆K, J∆K) and obtain
Je∆K where e∆ ←D [0, ∆]. Finally, each party locally computes JeK := J∆K+h JλK
which constitutes the output of the gate.

Assuming that for a given gate the lists R0, . . . ,Rω∆ are fixed, JR0K, . . . ,
JRω∆K can be considered to be publicly known pre-computed gate input. In the
following, we provide an example for gate ρω∆RSI-D with private input interval [3, 5]
where D is instantiated with the binomial distribution B.

Example 1. Let I = [λ, µ] = [3, 5] and let ω∆ = 4. Furthermore, let D be
instantiated with the binomial distribution (with success probability 0.5) given
by the probability mass function

fB,I(l;∆) = Pr[x = I[l + 1]] =

(
∆

l

)
0.5l(1− 0, 5)∆−l

with l ∈ N0
∆. Then, R0, . . . ,R4 with |Ri| = 2i (i ∈ N0

4) are as specified in
Table 3. After determining J∆K := J2K, in Step 2 of Gate 2, Jy0K, . . . , Jy4K are

Privacy-Preserving Multi-Party Bartering Secure Against Active Adversaries 19

i f(l; i) (∀l ∈ [0, i]) Ri
0 Pr[x=0] = 1 R0 = (0)

1 Pr[x=0] = Pr[x=1] = 1/2 R1 = (0, 1)

2 Pr[x=0] = Pr[x=2] = 1/4;Pr[x=1] = 1/2 R2 = (0, 1, 1, 2)

3 Pr[x=0] = Pr[x=3] = 1/8;Pr[x=1] = Pr[x=2] = 3/8 R3 = (0, 1, 1, 1, 2, 2, 2, 3)

4
Pr[x=0] = Pr[x=4] = 1/16;Pr[x=1] = Pr[x=3] = 1/4; R4 = (0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,

Pr[x=2] = 3/8 3, 3, 4)

Table 3: Construction of Ri for D := B and ω∆ = 4 (i ∈ N0
ω∆

).

jointly computed where yi ←B [0, i]. The probabilities for yi = l (l ∈ N0
i) are

given in Table 3. In Step 3, the parties obliviously compute Je∆K with e∆ := y∆.
Consequently, after locally computing JeK := J∆K+h JλK, it holds that Pr[e=3] =
Pr[e=5] = 1/4 and Pr[e=4] = 1/2.

Due to the construction of R0, . . . ,Rω∆ and under the assumption that 0 ≤
µ − λ ≤ ω∆, it holds that gate output JeK is selected as e ←D [λ, µ]. The
broadcast complexity of ρω∆RSI-D is in O(ω∆ιs(|Rω∆ |+log(|Rω∆ |))) and the round
complexity is in O(ω∆(ι+ |Rω∆ |)).
Theorem 3. Let ω∆, R0, . . . ,Rω∆ , λ〈0〉, λ〈1〉, µ〈0〉, µ〈1〉, and JbK be given to
the simulator. For input Jλ̃K := J(1 − b)λ〈0〉 + bλ〈1〉K and Jµ̃K := J(1 − b)µ〈0〉 +
bµ〈1〉K, gate ρω∆RSI-D can be simulated such that the simulated view is statistically
indistinguishable from the real view.

Proof. First, the simulator computes J∆̃K := J(1− b)∆〈0〉 + b∆〈1〉K with ∆〈0〉 :=
µ〈0〉 − λ〈0〉 and ∆〈1〉 := µ〈1〉 − λ〈1〉. The ω∆ + 1 calls of ρintRBVG and ρES can

be simulated by calling the simulator of ρintRBVG on input JbK, |Ri|, x〈0〉i , x
〈1〉
i

where x
〈0〉
i , x

〈1〉
i ←$ [0, |Ri|) and by calling the simulator of ρES on input JbK,

x
〈0〉
i , x

〈1〉
i , Ri = (ri,0, ri,1, . . . , ri,|Ri|−1). The output of ρES is set to JỹiK :=

J(1− b)y〈0〉i + by
〈1〉
i K where y

〈0〉
i := r

i,x
〈0〉
i

and y
〈1〉
i := r

i,x
〈1〉
i

. Step 3 of Gate 2 can

be simulated by calling the simulator of ρES on inputs JbK, ∆〈0〉, ∆〈1〉, y〈0〉i , y
〈1〉
i

(∀i ∈ N0
ω∆). The output of ρES is computed as Jẽ∆K := J(1 − b)y〈0〉

∆〈0〉
+ by

〈1〉

∆〈1〉
K.

Finally, the simulator computes JẽK := J(1 − b)(y〈0〉
∆〈0〉

+ λ〈0〉) + b(y
〈1〉

∆〈1〉
+ λ〈1〉)K.

Since the simulated values are consistent with those of a real gate execution, the
simulated view and the real view are statistically indistinguishable.

6 Multi-Party Bartering Protocol

In the following, we introduce our novel privacy-preserving multi-party bartering
protocol.

Definition 13. (F (W,D)
MB : Multi-Party Bartering.) Let party Pv hold its private

input q(v) (∀v ∈P). Furthermore, let GTPC be a publicly known arbitrary non-
empty set of trade partner constellations graphs for ι parties, let D be a publicly

20 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel

known arbitrary discrete distribution, and let W(·) : GTPC → N ∪ {0} be a

publicly known arbitrary welfare function. Then, functionality F (W,D)
MB is defined

as

(o1, . . . , oι) if GPTPC 6= ∅
(0) otherwise

}
← F (W,D)

MB (q(1), . . . ,q(ι),GTPC)

with

ov := (N
(v)
o,d (GAT), q

(N(v)
o ,v)

c
(N

(v)
o)

o

, q
(v,N

(v)
d)

c
(v)
o

),

GAT ←maxW GPTPC v GTPC, and

q
(v,N

(v)
d)

c
(v)
o

←D Q(v)
o ∩Q

(N
(v)
d)

d .

In an ideal world where a trusted third party exists, functionality F (W,D)
MB

can be computed as follows: Each party Pv (v ∈ P) sends its private input
q(v) to the trusted third party which additionally is given the public set of trade
partner constellation graphs GTPC, the public welfare functionW , and the public
discrete distribution D. With the knowledge of Q = {q(1), . . . ,q(ι)}, the trusted
third party then locally computes GPTPC ⊆ GTPC. In case that GPTPC 6= ∅,
the trusted third party selects a random potential trade partner constellation

graph GPTPC = (V,E) with maximum welfare, selects q
(v,w)

c
(v)
o

←D Q
(v)
o ∩ Q(w)

d

for each pair of edges (u, v), (v, w) ∈ E, and sends (N
(v)
o,d (GAT), q

(u,v)

c
(u)
o

, q
(v,w)

c
(v)
o

) to

party Pv. Otherwise, the trusted third party returns 0 to all parties.

In the real world, where no trusted party exists, protocol π
(W,D)
MB (see Pro-

tocol 1) is executed in order to compute functionality F (W,D)
MB . Following the

intuition provided in Section 4, π
(W,D)
MB can be split up into the following phases:

Input Phase: Pv (∀v ∈ P) holds private input q(v) = ((c
(v)
o , q

(v)
o), (c

(v)
d , q

(v)
d)).

π
(W,D)
MB is composed of gates expecting encrypted integer inputs as well as of gates

expecting encrypted binary inputs. In order to reduce the calls of the expensive
ρBR gate, we require that all parties commit their private input as encrypted

integers Jq(v)K := ((Jc(v)o K, Jq(v)o K), (Jc(v)d K, Jq(v)d K)) as well as encrypted bit decom-

positions Jq(v)
binK := ((J(c(v)o)binK, J(q(v)o)binK), (J(c(v)d)binK, J(q(v)d)binK)). Thus, it is

not sufficient that all parties just mutually prove plaintext knowledge of their
committed input. Instead, Pv has to also prove the consistency of its committed
input to guarantee the correctness of the protocol output. More precisely, Pv has
to perform the following proofs which can be accomplished as described in [23]:

1.) Pv has to prove that it knows the plaintexts of Jc(v)o K, Jc(v)d K, Jq(v)o K, Jq(v)d K.
2.) Pv has to prove that each J(c(v)o)binK, J(c(v)d)binK, J(q(v)o)binK, J(q(v)d)binK is a

tuple of encrypted bits.

Privacy-Preserving Multi-Party Bartering Secure Against Active Adversaries 21

Protocol 1. π
(W,D)
MB for obliviously selecting an actual trade.

Input: Pv holds private input q(v) (v ∈P)

Output: Pv outputs ov :=

(N
(v)
o,d (GAT), q

(N
(v)
o ,v)

c
(N

(v)
o)

o

, q
(v,N

(v)
d

)

c
(v)
o

) if GPTPC 6= ∅

0 otherwise
1 Input Phase

1.1 ((Jq(1)K, Jq(1)
binK, . . . , Jq(ι)K, Jq(ι)

binK))← InputPhase(q(1), ...,q(ι))
2 Construction Phase

2.1 For each Pv (v ∈P):
2.1.1 For each Pv′ (v′ ∈P\{v}):

2.1.1.1 (Jb1K)← ρEQ((J(c(v)o)binK, J(c(v′)d)binK))
2.1.1.2 (Jb2K)← ρGTE((J(q(v)o)binK, J(q(v′)

d
)binK))

2.1.1.3 (Jav,v′K)← ρMult((Jb1K, Jb2K))
3 Negotiation Phase

3.1 For each Pv (v ∈P):
3.1.1 For each Pv′ (v′ ∈P\{v}):

3.1.1.1 (Jq′(v)o K)← ρMult((Jq(v)o K, Jav,v′K)), (Jq′(v′)
d

K)← ρMult((Jq(v
′)

d
K, Jav,v′K))

3.1.1.2 Ja′v,v′K := (Jq(v,v′)
c
(v)
o

K)← ρω∆RSI-D((Jq′(v′)
d

K, Jq′(v)o K))
3.1.2 Ja′v,0K, Ja′0,vK := J0K

4 Evaluation Phase
4.1 For each GTPC

j = (V,E) ∈ GTPC with (vi, v
′
i) ∈ E and j ∈ N|GTPC|, i ∈ N|E|:

4.1.1 (JejK)← ρUFI-Mult((Jav1,v′1K, . . . , Jav|E|,v′|E|K))
4.2 Each party sets JLK := (Je1K, . . . , Je|GTPC|K)

5 Prioritization Phase
5.1 Each party locally computes

JL0K := (Je1K×hW(GTPC
1), . . . , Je|GTPC|K×hW(GTPC

|GTPC|))
6 Mapping Phase

6.1 All parties jointly generate JL1K, . . . , JLιK where

JL1K := (JN (1)
o,d (GTPC

1)K ||h Ja′
N

(1)
o ,1

K ||h Ja′
1,N

(1)
d

K,

. . . , JN (1)
o,d (GTPC

|GTPC|)K ||h Ja′
N

(1)
o ,1

K ||h Ja′
1,N

(1)
d

K)
...

JLιK := (JN (ι)
o,d(G

TPC
1)K ||h Ja′

N
(ι)
o ,ι

K ||h Ja′
ι,N

(ι)
d

K,

. . . , JN (ι)
o,d(G

TPC
|GTPC|)K ||h Ja′

N
(ι)
o ,ι

K ||h Ja′
ι,N

(ι)
d

K)
7 Selection Phase

7.1 ((Jl∗0K, Jl∗1K, . . . , Jl∗ι K))← ρi
∗=0
CRS((JL0K, JL1K, . . . , JLιK))

7.2 (J(l∗0)binK)← ρBR(Jl∗0K)
7.3 (JbK)← ρEQ((J(l∗0)binK, J0binK))
7.4 For v from 1 to ι:

7.4.1 (JovK)← ρMult((J1− bK, Jl∗vK))
8 Output Phase

8.1 (o1, . . . , oι)← OutputPhase((Jo1K, . . . , JoιK))

22 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel

3.) Pv has to prove that J(c(v)o)binK, J(c(v)d)binK, J(q(v)o)binK, J(q(v)d)binK are in fact

the encrypted bit decompositions of Jc(v)o K, Jc(v)d K, Jq(v)o K, Jq(v)d K, respectively.

Construction Phase: Based on their quotes, all parties jointly construct the en-
crypted adjacency matrix JAK := (Jav,v′K)ι×ι of compatibility graph GC with

av,v′ := [(c
(v)
o = c

(v′)
d) ∧ (q

(v)
o ≥ q

(v′)
d)] for v, v′ ∈P, and v 6= v′. The ciphertext

J[(c(v)o = c
(v′)
d) ∧ (q

(v)
o ≥ q

(v′)
d)]K is computed in three steps (see Steps 2.1.1.1 -

2.1.1.3, Protocol 1).

Negotiation Phase: All parties jointly compute a second encrypted matrix JA′K :=

(Ja′v,v′K)ι×ι where a′v,v′ (v 6= v′) corresponds to the quantity of commodity c
(v)
o

which Pv has to send to Pv′ provided that (v, v′) is an edge in the selected
actual trade graph GAT. In order to determine a matrix entry Ja′v,v′K, the par-

ties jointly execute gate ρω∆RSI-D on inputs q
′(v)
o and q

′(v′)
d which are computed as

ρMult(Jq(v)o K, Jav,v′K) and ρMult(Jq(v
′)

d K, Jav,v′K), respectively, in Step 3.1.1.1. The
two joint calls of the multiplication gate are necessary in order to prevent that

gate ρω∆RSI-D is called on invalid input which occurs if q
(v)
o < q

(v′)
d . In this case,

q
′(v)
o = q

(v′)
d = 0 and ρω∆RSI-D returns a fresh encryption of zero. Note that due to

the fact that it is necessary to hide the edges of GC, ρω∆RSI-D has to be executed
for each pair of parties. In order to cover the case where for a trade partner

constellation graph GTPC there are some parties Pv with N
(v)
o,d (GTPC) = (0, 0),

the parties jointly generate dummy encryptions of zero (see Step 3.1.2) which
can be used as a placeholder in the mapping phase. Eventually, these placehold-
ers indicate that for a party without any trading partners there is nothing to
exchange. Using gate ρω∆RSI-D to determine the quantities of commodities that are
to be exchanged w.r.t. the selected actual trade provides for a flexible solution
for negotiation since the parties can jointly agree on D before the protocol is
executed. For example, by setting D to the binomial distribution, the proba-
bility of selecting imbalanced quantities (i.e., a party makes a good deal at the
expense of another party) can be reduced which can occur in the bartering pro-
tocols from [6, 21] where the quantities are selected uniformly at random from
the corresponding overlap intervals (for details see [23]).

Evaluation Phase: For each GTPC
j = (V,E) ∈ GTPC (j ∈ NGTPC), the par-

ties obliviously check whether or not GTPC
j v GC by calling ρUFI-Mult on input

(Jav1,v′1K, . . . , Jav|E|,v′|E|K) with (vi, v
′
i) ∈ E and i ∈ N|E|. Note that Jav1,v′1K, . . . ,

Jav|E|,v′|E|K are taken from the jointly computed adjacency matrix JAK of GC. At

the end of the evaluation phase, each party holds vector JLK := (Je1K, . . . , Je|GTPC|K)
where

ej =

{
1 if GTPC

j v GC

0 otherwise
.

Privacy-Preserving Multi-Party Bartering Secure Against Active Adversaries 23

The trade partner constellation graphs GTPC
j with ej = 1 constitute the set of

potential trade partner constellation graphs GPTPC.

Prioritization Phase: FunctionW(·) : GTPC → N∪{0} maps each trade partner
constellation graph to its welfare. Each party locally computes JejK×hW(GTPC

j)

(∀j ∈ N|GTPC|) resulting in an encrypted vector JL0K := (Je1 ·W(GTPC
1)K, . . . ,

Je|GTPC| ·W(GTPC
|GTPC|)K). The prioritization phase ensures that in the selection

phase, the potential trade partner constellation graph with the maximum wel-
fare is selected for computing the actual trade graph (see below). Note that a
corrupted party deviating from the prescribed computation of JL0K is detected in
the selection phase because the encrypted vector will differ from the encrypted
vectors computed by other parties.

Mapping Phase: For each party Pv, an encrypted vector

JLvK = (JN (v)
o,d (GTPC

1)K ||h Ja′
N

(v)
o ,v

K ||h Ja′
v,N

(v)
d

K, . . . ,

JN (v)
o,d (GTPC

|GTPC|)K ||h Ja′
N

(v)
o ,v

K ||h Ja′
v,N

(v)
d

K) (∀v ∈P)

is jointly computed. The j-th entry of a vector Lv contains the trade partners

N
(v)
o (GTPC

j) and N
(v)
d (GTPC

j) of Pv as well as the quantities to be received and

sent in case that GTPC
j is selected as actual trade graph by protocol π

(W,D)
MB . The

purpose of the mapping phase is to determine the parties’ local views for each
trade partner constellation graph.6

Selection Phase: To this point, each GTPC
j is associated with an encrypted vec-

tor (Jlj,0K, Jlj,1K, . . . , Jlj,ιK) where l0,j = 0 if GTPC
j 6v GC and l0,j = W(GTPC

j)

otherwise. Furthermore, lv,j = (N
(v)
o,d (GTPC

j), a′
N

(v)
o ,v

, a′
v,N

(v)
d

) contains Pv’s local

view of GTPC
j (∀v ∈ P). The parties now jointly call ρi

∗=0
CRS (see Section 5.2)

on the common input (JL0K, . . . , JLιK). In case that GPTPC 6= ∅ (there exists at
least one j ∈ NGTPC such that l0,j 6= 0), ρi

∗=0
CRS is used to obliviously determine

a random actual trade grade GAT which maximizes the welfare function. The
first entry of the encrypted output Jl∗0K of ρi

∗=0
CRS corresponds to the encrypted

welfare of GAT. The remaining encrypted entries Jl∗1K, . . . , Jl∗ι K correspond to
the parties’ local views w.r.t. GAT. Otherwise (i.e., GPTPC = ∅), ρi∗=0

CRS is used
to select GTPC ←$ GTPC and l∗0 = 0. The remaining steps of the selection
phase deal with latter case where GPTPC = ∅. First, the parties obliviously
check whether or not l∗0 = 0 by jointly calling (JbK) ← ρEQ((J(l∗0)binK, J0binK))
(Step 7.3, Protocol 1). Subsequently, the local view Jl∗vK of each party Pv is
multiplied with the encrypted result JbK of the equality check by jointly calling
(JovK) ← ρMult((J1 − bK, Jl∗vK)) such that all values l∗v are obliviously zeroed out

6 Note that in order to perform the homomorphic concatenation operation, it has to
be assured that no ’wrapping’ occurs in P (see Section 3.2). For the given context,
however, this issue does not constitute a practical limitation.

24 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel

for the case that no actual trade graph exists (Step 7.4, Protocol 1).

Output Phase: All parties jointly decrypt (Jo1K, . . . , JoιK) such that only Pv learns
ov (∀v ∈ P). From ov a party either learns its local view of the selected GAT

(for the case that GPTPC 6= ∅) or otherwise that there does not exist a GAT for
the current set of parties in combination with their private input quotes and the
given set of trade partner constellation graphs GTPC.

Let O(ρ) refer to the (broadcast, round) complexity of gate ρ. The broadcast

and round complexities of π
(W,D)
MB are dominated by the computations performed

in the construction phase, in the negotiation phase, in the evaluation phase, and
in the selection phase. The corresponding complexities are in O(ι2(O(ρEQ) +
O(ρGTE)+O(ρMult))), O(ι2(O(ρMult)+O(ρω∆RSI-D))), O(|GTPC|O(ρUFI-Mult)), and

O(O(ρi
∗=0
CRS) + ιO(ρMult)).

In the following, we show the correctness of π
(W,D)
MB , i.e., that π

(W,D)
MB always

computes the correct output (if at least one party is honest), provided that
the protocol is not prematurely aborted. In order to prove the correctness of the
protocol, we have to show that (i) it suffices that each party performs proofs 1.) -

3.) as specified for the input phase and that (ii) π
(W,D)
MB in fact computes a random

actual trade graph which maximizes the welfare function based on the parties’
input quotes and the publicly known set of trade partner constellation graphs iff
the set of potential trade partner constellation graphs is not empty. In [23], (i)
has already been proven for the two-party case and can be proven analogously
for the multi-party case. Thus, in the following, we focus on showing (ii).

In case that GPTPC = ∅, the result of the evaluation phase is a vector JLK :=
(Je1K, . . . , Je|GTPC|K) with e1 = ... = e|GTPC| = 0 since there exists no GTPC

j ∈
GTPC with GTPC

j v GC. Furthermore, the prioritization phase does not change

any value ej and thus JL0K := JLK (j ∈ N|GTPC|). This implies that gate ρi
∗=0
CRS

returns an encrypted vector (Jl∗0K, Jl∗1K, . . . , Jl∗ι K) with l∗0 = 0 in the selection
phase and in the output phase each party Pv learns its output value ov = 0
which indicates that there exists no actual trade.

In case that GPTPC 6= ∅, the result of the evaluation phase is a vector JLK
such that L has Hamming weight H(L) = |GPTPC|. The prioritization phase
determines the encrypted vector JL0K := (Jl0,1K, . . . , Jl0,|GTPC|K) where Jl0,jK is

associated withGTPC
j and l0,j =W(GTPC

j) ifGTPC
j v GC and l0,j = 0 otherwise.

According to the definition of Gi∗CRS , gate ρi
∗=0
CRS returns an encrypted vector

(Jl∗0K, Jl∗1K, . . . , Jl∗ι K) := (Jl0,j∗K, Jl1,j∗K, . . . , Jlι,j∗K) where j∗ ←$ {j ∈ N|GTPC| :

GTPC
j = max(W(GTPC

1), . . . ,W(GTPC
|GTPC|))}. Since in Step 7.3 (Protocol 1) b = 0,

JovK := Jl∗vK for all v ∈P. At the end of the output phase, each party Pv learns
its local view of the selected actual trade.

The security of protocol π
(W,D)
MB directly follows from Theorem 1 (Section 3.4).

Corollary 1. Protocol π
(W,D)
MB securely computes functionality F (W,D)

MB in the
malicious model.

Privacy-Preserving Multi-Party Bartering Secure Against Active Adversaries 25

7 Future Work

Going forward, we plan to apply our privacy-preserving bartering protocol in the
context of organ donation (e.g., for kidney donor exchanges) in order to address
the privacy and transparency challenges that the field is currently facing.

References

1. BarterQuest. http://www.barterquest.com.
2. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.

Journal of Cryptology, 13(1):143–202, 2000.
3. R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty Computation from Thresh-

old Homomorphic Encryption. Technical report, 2000.
4. R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty Computation from Thresh-

old Homomorphic Encryption. In Advances in Cryptology - EUROCRYPT 2001:
International Conference on the Theory and Application of Cryptographic Tech-
niques, pages 280 – 300. Springer Berlin Heidelberg, 2001.

5. M. Dahl, C. Ning, and T. Toft. On Secure Two-Party Integer Division. In Financial
Cryptography and Data Security: 16th International Conference, FC 2012, pages
164–178. Springer Berlin Heidelberg, 2012.

6. F. Förg, D. Mayer, S. Wetzel, S. Wüller, and U. Meyer. A Secure Two-Party Bar-
tering Protocol Using Privacy-Preserving Interval Operations. In Twelfth Annual
International Conference on Privacy, Security and Trust, pages 57–66, 2014.

7. P.-A. Fouque, G. Poupard, and J. Stern. Sharing Decryption in the Context of
Voting or Lotteries. In Financial Cryptography: 4th International Conference, FC
2000, pages 90–104. Springer Berlin Heidelberg, 2001.

8. J. Garay, B. Schoenmakers, and J. Villegas. Practical and Secure Solutions for
Integer Comparison. In Public Key Cryptography - PKC 2007: 10th International
Conference on Practice and Theory in Public-Key Cryptography, pages 330–342.
Springer Berlin Heidelberg, 2007.

9. J. Groth. A Verifiable Secret Shuffe of Homomorphic Encryptions. In Public Key
Cryptography - PKC 2003: 6th International Workshop on Practice and Theory in
Public Key Cryptography, pages 145–160. Springer Berlin Heidelberg, 2002.

10. J. Guajardo, B. Mennink, and B. Schoenmakers. Modulo Reduction for Paillier
Encryptions and Application to Secure Statistical Analysis. In Financial Cryptog-
raphy and Data Security: 14th International Conference, FC 2010, pages 375–382.
Springer Berlin Heidelberg, 2010.

11. V. Katasonov. Moneyless Business: Barter Transactions Increase World-
wide, 2016. http://www.strategic-culture.org/news/2016/02/21/moneyless-

business-barter-transactions-increase-worldwide.html.
12. N. López, M. Núñez, I. Rodrguez, and F. Rubio. A Multi-agent System for e-

Barter Including Transaction and Shipping Costs. In Proceedings of the 2003 ACM
Symposium on Applied Computing, pages 587–594. ACM, 2003.

13. A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder. Bitcoin and
Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University
Press, 2016.

14. P. Paillier. Public-key Cryptosystems Based on Composite Degree Residuosity
Classes. In Advances in Cryptology - EUROCRYPT ’99: International Confer-
ence on the Theory and Application of Cryptographic Techniques, pages 223–238.
Springer Berlin Heidelberg, 1999.

26 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel

15. B. Schoenmakers and P. Tuyls. Efficient Binary Conversion for Paillier Encrypted
Values. In Advances in Cryptology - EUROCRYPT 2006: 24th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
pages 522–537. Springer Berlin Heidelberg, 2006.

16. A. Shamir. How to Share a Secret. Communications of the ACM, 22(11):612–613,
1979.

17. TradeYa. http://www.tradeya.com/.
18. U-Exchange. http://www.u-exchange.com.
19. S. Wüller, D. Mayer, F. Förg, S. Schüppen, B. Assadsolimani, U. Meyer, and

S. Wetzel. Designing Privacy-Preserving Interval Operations Based on Homomor-
phic Encryption and Secret Sharing Techniques. Journal of Computer Security,
25(1):59–81, 2017.

20. S. Wüller, U. Meyer, F. Förg, and S. Wetzel. Privacy-Preserving Conditional Ran-
dom Selection (Extended Version). In Thirteenth Annual Conference on Privacy,
Security and Trust, pages 44–53, 2015.

21. S. Wüller, U. Meyer, and S. Wetzel. Towards Privacy-Preserving Multi-Party
Bartering. Technical Report AIB-2016-10, RWTH Aachen, 2016.

22. S. Wüller, U. Meyer, and S. Wetzel. Towards Privacy-Preserving Multi-Party
Bartering. In Financial Cryptography and Data Security: FC 2017 International
Workshops. Springer Berlin Heidelberg, 2017. To appear.

23. S. Wüller, W. Pessin, U. Meyer, and S. Wetzel. Privacy-Preserving Two-Party
Bartering Secure Against Active Adversaries. In Fourteenth Annual Conference
on Privacy, Security and Trust, pages 229–238, 2016.

Appendix

In the following, we build on the bartering example from Section 4.1 in order
to illustrate the functioning of our bartering protocol. The example considers
four parties Pv (v ∈ {1, . . . , 4} = P) with private inputs q(v), where A, B, C ∈ C
and q(1) = ((A, 10), (C, 5)), q(2) = ((B, 4), (A, 6)), q(3) = ((C, 10), (B, 3)), and
q(4) = ((C, 8), (A, 4)). The corresponding compatibility graph GC is depicted in
Figure 1. Let W(GTPC = (V,E)) = |E| and let D be the uniform distribution.
The example considers a public set of trade partner constellation graphs with
only four elements GTPC := {GTPC

1 , GTPC
2 , GTPC

3 , GTPC
4 }, where V = {1, 2, 3, 4}

and

GTPC
1 := (V, {(1, 2), (2, 3), (3, 4), (4, 1)}),

GTPC
2 := (V, {(1, 2), (2, 4), (4, 1)}),

GTPC
3 := (V, {(1, 2), (2, 3), (3, 1)}),

GTPC
4 := (V, {(1, 4), (4, 1)}).

For the given private inputs and the public set of trade partner constellation
graphs, the goal of our privacy-preserving bartering protocol is to obliviously
compute an actual trade graph which maximizes the welfare function.

In the input phase of protocol π
(W,D)
MB , each party distributes its encrypted

private input and proves plaintext knowledge as well as input consistency (see

Privacy-Preserving Multi-Party Bartering Secure Against Active Adversaries 27

Section 6). During the construction phase, all parties jointly establish the en-
crypted adjacency matrix JAK of GC:

JAK =

− J1K J0K J1K
J0K − J1K J0K
J1K J0K − J0K
J1K J0K J0K −

In the negotiation phase, the parties jointly compute a second encrypted matrix

JA′K. For each pair (Pv, Pv′) (v, v′ ∈P, v 6= v′), JA′K contains the quantity q
(v,v′)

c
(v)
o

of commodity c
(v)
o which Pv has to send to Pv′ in case that (v, v′) corresponds

to an edge in the actual trade graph GAT determined by the protocol. In case

that there exists an edge (v, v′) in GC, i.e., av,v′ = 1, Ja′v,v′K := Jq(v,v
′)

c
(v)
o

K is

computed by calling gate ρω∆RSI-D on inputs Jq′(v
′)

d K and Jq′(v)o K with q
′(v′)
d = q

(v′)
d

and q
′(v)
o = q

(v)
o . Otherwise, i.e., av,v′ = 0, ρω∆RSI-D is called on inputs Jq′(v

′)
d K and

Jq′(v)o K with q
′(v′)
d = q

′(v)
o = 0. Note that on inputs J0K, J0K, gate ρω∆RSI-D returns a

fresh encryption of 0. For our example let

JA′K =

− J6K J0K J7K
J0K − J4K J0K
J8K J0K − J0K
J8K J0K J0K −

where a′1,2 ←$ [6, 10], a′1,4 ←$ [4, 10], a′2,3 ←$ [3, 4], a′3,1 ←$ [5, 10], a′4,1 ←$ [5, 8]
assuming that D corresponds to the uniform distribution.

In the evaluation phase, the parties obliviously check whether or not GTPC
j v

GC for each trade partner constellation graph GTPC
j ∈ GTPC by jointly multi-

plying the entries of JAK which correspond to an edge in GTPC
j . Since only GTPC

3

and GTPC
4 are subgraphs of GC, the encrypted vector JLK is determined as

JLK := (Je1K, Je2K, Je3K, Je4K) = (J0K, J0K, J1K, J1K).

Subsequently, each party locally multiplies each entry in JLK with the welfare
of the corresponding trade partner constellation graph using the homomorphic
scalar multiplication operation. For our example, we assume that the welfare of
a trade partner constellation graph equals the number of corresponding edges
as motivated in Section 4.1. At the end of the prioritization phase, each party
holds the encrypted vector

JL0K := (J0K×h 4, J0K×h 3, J1K×h 3, J1K×h 2) = (J0K, J0K, J3K, J2K).

During the mapping phase, all parties jointly generate four encrypted vectors
JLvK (one vector for each party) where the j-th entry of vector JLvK contains

the trade partners N
(v)
o,d (GTPC

j) of Pv as well as the quantities to be sent and

28 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel

received for the underlying trade: (q
(N(v)

o ,v)

c
(N

(v)
o)

o

, q
(v,N

(v)
d)

c
(v)
o

). Note that for the case that

N
(v)
o,d (GTPC

j) = (0, 0), it holds that both of these quantities are equal to zero.

JL1K:=(J(4, 2), 8, 6K, J(4, 2), 8, 6K, J(3, 2), 8, 6K, J(4, 4), 8, 7K)
JL2K:=(J(1, 3), 6, 4K, J(1, 4), 6, 0K, J(1, 3), 6, 4K, J(0, 0), 0, 0K)
JL3K:=(J(2, 4), 4, 0K, J(0, 0), 0, 0K, J(2, 1), 4, 8K, J(0, 0), 0, 0K)
JL4K:=(J(3, 1), 0, 8K, J(2, 1), 0, 8K, J(0, 0), 0, 0K, J(1, 1), 7, 8K)

The main step of the selection phase is the call of gate ρi
∗=0
CRS on the joint input

(JL0K, JL1K, . . . , JL4K). Considering the table consisting of row vectors JL0K, . . . ,
JL4K

GTPC
1 GTPC

2 GTPC
3 GTPC

4

JL0K Jl0,1K Jl0,2K Jl0,3K Jl0,4K
JL1K Jl1,1K Jl1,2K Jl1,3K Jl1,4K
JL2K Jl2,1K Jl2,2K Jl2,3K Jl2,4K
JL3K Jl3,1K Jl3,2K Jl3,3K Jl3,4K
JL4K Jl4,1K Jl4,2K Jl4,3K Jl4,4K

where the j-th column is associated withGTPC
j , gate ρi

∗=0
CRS returns the column

with maxj∈N|GTPC|
(l0,j) (for the case that the maximum is not unique, the output

is chosen uniformly at random from those columns with a maximum indicator
entry). For our example we have that gate ρi

∗=0
CRS returns (Jl∗0K, Jl∗1K, . . . , Jl∗4K) :=

(J3K, J(3, 2), 8, 6K, J(1, 3), 6, 4K, J(2, 1), 4, 8K, J(0, 0), 0, 0K) which corresponds to the
third column of the table. Since l∗0 6= 0, in Step 7.3 of Protocol 1 JbK corresponds
to an encryption of zero, and thus JovK := Jl∗vK.

In the output phase, all parties jointly decrypt (Jo1K, Jo2K, Jo3K, Jo4K) such
that Pv learns its local view ov of the actual trade (v ∈ P). In the example,
e.g., party P1 learns that it is to receive 8 units of its demanded commodity C

from P3 and that it has to send 6 units of its offered commodity A to P2.

