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Abstract Storing the large-scale data on the cloud server side becomes nowa-
days an alternative for the data owner with the popularity and maturity of the
cloud computing technique, where the data owner can manage the data with
limited resources, and the user issues the query request to the cloud server
instead of the data owner. As the server is not completely trusted, it is nec-
essary for the user to perform results authentication to check whether or not
the returned results from the cloud server are correct. We investigate in this
paper how to perform efficient data update for the result authentication of
the outsourced univariate linear function query. We seek to outsource almost
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all the data and computing to the server, and as few data and computations
as possible are stored and performed on the data owner side, respectively. We
present a novel scheme to achieve the security goal, which is divided into two
parts. The first part is a verification algorithm for the outsourced computing
of line intersections, which enables the data owner to store most of the data on
the server side, and to execute less of the computing of the line intersections.
The second part is an authentication data structure Two Level Merkle B Tree
for the outsourced univariate linear function query, where the top level is used
to index the user input and authenticate the query results, and the bottom
level is used to index the query condition and authenticate the query results.
The authentication data structure enables the data owner to update the da-
ta efficiently, and to implement the query on the server side. The theoretic
analysis shows that our proposed scheme works with higher efficiency.

Keywords Cloud Computing · Function Query · Correctness Verification

1 Introduction

Function query is a kind of widely used query with simple form, which is often
performed on the large-scale data in the current era of the big data. Large
high-end resources are needed for massive computing and storage, which is
a great burden if the resources are employed completely by the data owner
himself. The cloud computing technique is designed to provide the user with
pay-as-you-go services, by which the data owner can manage the large-scale
data with the equipment with limited resources, such as a computer, even a
mobile terminal. Thus, the data owner can focus on the core business, and does
not need to pay high costs for configuring the high performance hardware.

As a result of the loss of direct physical control of the data, some serious
security issues arise with the adoption of the cloud service by the data owner,
such as data leakage, data privacy disclosure, incorrect results returned from
the server, and so on. The data security problem is one of the key problems
in the application and research field of the cloud computing. Only when the
security issues are properly solved can the data owner eliminate their concerns.
The data owner then would like to adopt the disclosure services of the cloud
computing, which will in turn promote the development and popularity of the
cloud computing.

Yang et al. proposed to outsource the function query on large-scale dataset
to the cloud server, and mainly aimed at the security issue of results authen-
tication [20]. As the results of function query are sorted by the calculation
results with the user input, then the calculation results appear in differen-
t order with different user input. Such traditional authentication techniques
as the Merkle Hash Tree [10] and the signature chain [11] are based on the
numerical order of the authenticated data, which cannot be applied directly
to authentication the results of function query. Thus, Yang et al. presented a
novel segment-sort strategy, where the range of the user input is segmented
into many intervals, the functions are sorted by the calculation results, and
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the signature mesh technique is applied for every interval. The data and the
signatures are stored together on the server side for user query request. The
server executes the query issued by the user, and returns the obtained query
results and the relative verification objects to the user. The user can verify the
correctness of the results with the verification objects. No matter the returned
results are fabricated or omitted can be detected by the user with public key.

However, in light of our observation, only the security issue of the result
verification of the outsourced function query is studied in [20], and the pro-
posed scheme has three limitations. The first is introduced by the adoption
of the digital signature in the signature mesh method. When the dataset is
updated, such as adding and/or deleting data, a large number of digital signa-
ture operations are performed by the data owner. The data owner is generally
equipped with limited resources and the digital signature itself is a computa-
tionally expensive operation, which leads to the inefficiency in the practical
running time. The second is that the dataset and the obtained signatures are
stored together on the data owner side although the query on the dataset is
delegated to the cloud server. The data owner must pay a certain price to
manage the dataset and the signatures locally as usual, which implies the out-
sourcing is not complete. The third is that the query execution on the server
side is not taken into consideration. The focus of [20] is the result authentica-
tion and no algorithm for the function query is given. The cloud server has to
select or design the corresponding algorithm to execute the user query.

The goal of this paper is to overcome the limitations mentioned above,
where as few data as possible are stored and as little computing as possible
is performed on the data owner side. The data owner can carry out efficient
update for the outsourced function query. The security problems then arise,
that is, how the data owner can authenticate the data update performed on
the cloud server side, and how the user can authenticate the query results
returned from the cloud server. We propose a novel scheme to resolve the
two problems, which is divided into two steps. In the first step, we use the
random check method to verify the correctness of the intersections computed
by the cloud server. In the second step, we then present an authentication data
structure for the query results authentication. The main contributions of this
paper are summarized as follows.

– We introduce the problem of executing efficient data update by the data
owner for the outsourced function query.

– We present a random check algorithm for the data owner to verify the
correctness the returned line intersections, by which only small amount of
data are stored on the data owner side.

– We introduce a novel authentication data structure, by which both the
query execution and the efficient data update are implemented on the server
side simultaneously.

– We give the performance analysis, which show the running efficiency of our
proposed scheme.
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The rest of the paper is organized as follows. We give the preliminaries in
Section 2, including the system model, the definition of the function query and
the authentication data structure. In Section 3, we present a novel authenti-
cation data structure Two Level Merkle B+ Tree for results verification of
the outsourced query function. We propose a scheme for efficient data update
of outsourced query function in Section 4. We give the performance analysis
in Section 5. We review the related works in Section 6. Finally, we give the
conclusions in Section 7.

2 Preliminaries

2.1 System model

The adopted framework in this paper consists of three parties, the data owner
(DO), the cloud server (CS) and the user, which is shown in Fig.1.

Fig. 1 System Model.

The CS possesses abundant resources for computing and data storage,
and performs the request issued by the DO and/or the user. The DO has a
large-scale dataset F for function query. But the DO is equipped with limited
resources and has no ability to manage the dataset properly. Then the DO
outsources F to the CS, and performs data update on the outsourced dataset
through the Internet. The user issues query on the outsourced dataset stored
on the CS side. We assume that the data owner and the user are both honest,
and the cloud server is semi-honest. The CS may return incorrect query results
to the user. Thus, the user should have the ability to check whether or not the
returned results are correct. We study the problem of results authentication
of outsourced function query with efficient data update.

2.2 Function Query

The function query falls into three types according to the number and the
degree of the involved variables, i.e., the univariate linear function, the multi-
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variate linear function and the multivariate high degree function. We mainly
study the univariate linear function in this paper, which has only a single vari-
able with degree as one. So the function query means just the univariate linear
function in the rest of the paper when there is no confusion.

We now explain how the function query works. Let

F = {fi = (ai, bi)| ai, bi ∈ R, i = 1, . . . , |F |} (1)

be a dataset, where the tuple (ai, bi) is the necessary parameters of the uni-
variate linear function, and |F | is the size of the dataset. Let x ∈ R be the
user input. With x and F , we here define a dataset

C = {ci = ai ∗ x+ bi|i = 1, . . . , |F |}, (2)

where ci is computed by the user input x and every tuple (ai, bi). The dataset
C is just given as a symbol here for easy understanding of the function query
definition, and not every element ci of C is to be computed in practice for the
purpose of improving the running efficiency when performing the function
query. Function query is divided into three classes according to the given
different query condition by the user, which are shown as follows.

– Top −K(x, k) returns the maximum k results from the dataset C, where
k is a positive integer.

– kNN(x, k, y0) returns the k nearest results with y0 from the dataset C,
where k is a positive integer and y0 ∈ R.

– Range(x, l, u) returns all the results that is between l and u from the
dataset C, where l, u ∈ R.

2.3 Authentication Data Structure

Li et al. proposed an authentication data structure, named MB Tree, to au-
thenticate the query results of the outsourced relational database [7]. MB Tree
is combined by B+ Tree and the kernel of Merkle Hash Tree(MT Tree) [10],
where an item is inserted into every entry of the B+ tree node to store the
hash value, which is shown in Fig.2, where ki is the key, pi is the pointer, and
hi is just the newly added hash value. If the node is a leaf node, the item pi
refers to a record ri, and the item hi is the hash of the referred record, i.e.,
hi = H(ri). If the node is a non-leaf node, the item pi refers to a child node,
and the item hi is the hash of the catenation of the referred child nodes. The
function H here is a one way hash function, which is usually adopted as MD5
or SHA. The hash value hi of every entry of every node is computed recursively
until the tree root is met. DO uses the secret key to sign the root of the MB
Tree with a digital signature scheme to get sig(root). The update of the MB
Tree obeys the rules of updating the B+ Tree. When a new record is inserted
into the MB Tree, a record is modified or deleted, the items key, pointer and
hash value in the corresponding leaf node are updated accordingly. Then the
related items in the parent node needs to be updated. The update proceeds
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recursively until the root of the MB tree is updated. DO signs the root of MB
Tree to get the current sig(root).

Fig. 2 MB Tree node

DO sends the data and sig(root) to CS, which constructs or updates the
MB Tree for the data according to the rules mentioned above. It only differs in
that CS doesn’t sign the root of the MB Tree on the CS side. On the receipt of
the query request from the user, DO performs the query on the MB Tree to get
the query results R, and records the related data and the hash values, which
are called the Verification Objects (V O). R, V O and sig(root) are returned
together to the user. With R and V O, the user reconstructs the MB Tree to
get the root root′, and apply the digital signature technique with the public
key to check if root′ matches sig(root). If the result is yes, the results R are
deemed to be correct; otherwise, R are incorrect. Thus, the security goal of
result correctness verification can be achieved.

3 Two Level Merkle B+ Tree

In this section, we present a novel authentication data structure, named Two
Level Merkle B+ Tree (TLMB Tree), to achieve the goals of query execution
and query results authentication simultaneously, by which the amount of digi-
tal signature is reduced significantly, and the running efficiency of data update
is increased accordingly. We now mainly introduce the details of the TLMB
Tree.

3.1 Structure Details

The TLMB Tree is divided into two levels, i.e., the bottom level and the top
level. The bottom level is a set of MB Trees, denoted as MBB , which consists
of a lot of MB Trees. Then, we have MBB = {MBi|i = 1, . . . , |MBB |}, where
MBi is the ith MB Tree, and |MBB | is the size of the set MBB . The entry
value of every leaf node of MBi is the stored data and the hash value, whose
construction and data update are performed according to the rules of MB Tree
in 2.3. It only differs in that the data owner does not sign the root of MBi.
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The top level is also a MB Tree, denoted as MBT , whose entry value of every
leaf node is just the hash value of the root of the bottom level MB Tree. MBT

is then constructed by the rules of MB Tree. The root MBT is signed by the
data owner. We give a diagram in Fig.3, where the fan-out of the trees MBT

and MBi are all set to be 3.

Fig. 3 Two Level Merkle B+ Tree.

We utilize the TLMB Tree to execute the user query and verify the re-
sult correctness of the outsourced function query. We adopt the segment-sort
strategy by Yang et al. [20]. Every tuple (ai, bi) ∈ F is modeled as a line,
denoted as li, in the two-dimensional space. Then there exist also |F | lines for
the dataset F . The linear equation for li with the user input x is given as

li : yi = ai ∗ x+ bi. (3)

Suppose I be the set of the line intersections, where

I = {xi|i = 1, . . . , |I|}, (4)

where I is the size of the set I, and there exist k lines l1, . . . , lk, such that the
equations y1 = . . . = yk holds with k > 1 as a positive integer.

The domain of the query input x is divided into a lot of intervals according
to the intersections of the lines, i.e., (−∞, x1], . . . , (xi, xi+1], . . . , (xI ,+∞). The
lines are sorted according to yi in each interval. The interval (−∞, x1] can be
rewritten as (x0, x1] and (xI ,+∞) as (xI , xI+1) for symbol consistency, where
−∞ is replaced with x0 and +∞ with xI+1.

We construct a MB Tree for every interval in the bottom level, and a lot
of MB Trees are thus constructed. A single MB Tree is constructed in the top
level, where every entry in the leaf node refers to a MB Tree in the bottom
level. The TLMB Tree is null in the initial, and is constructed by updating
data repeatedly.

3.2 Data Update

We mainly introduce the data update of TLMB Tree, including the data adding
and deleting, and the data modifying can be achieved by deleting first and
adding then, which will not be discussed here.
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3.2.1 Data Adding

A tuple is modeled as a line for the outsourced function query, then we call
a tuple also as a line in the rest of the paper when there is no confusion. As
a line may intersect with some other lines, there happen two cases when a
new tuple (ak, bk) (or a line lk) is added into the dataset F , where k > 0
be a positive integer. One is that lk intersects with some lines of F at new
intersection points, and the other is that lk intersects with the other lines of
F at some existing intersection points.

In the first case, many new intersection points are generated, into which lk
is inserted. Let xj be a newly generated intersection point, MBi+1 be the MB
Tree constructed for the interval (xi, xi+1], which is an existing interval that
covers xj . The interval (xi, xi+1] is then divided into two intervals (xi, xj ] and
(xj , xi+1] by xj . A MB tree is constructed for each of the new intervals, which
can be implemented by inserting lj into MBi+1 respectively. In the second
case, lk is inserted into the existing intervals, that is, lk is inserted into some
of the existing MB Trees in the bottom level MBB according to the rules
mentioned in 2.3, respectively.

In the above two cases, the root of every MB Tree in MBB is new when
adding a new tuple, whether the MB tree is updated or newly generated. This
means that the value of every leaf node of MBT in the top level is newly
generated, and many newly generated leaf nodes are inserted into the tree.
Thus, MBT is re-constructed completely. Finally, the data owner signs the
root of MBT with digital signature, and gets sig(root).

3.2.2 Data Deleting

When a tuple is deleted from the dataset, some intervals are be merged because
some intersection points are to be deleted. Let (ak, bk) (or lk) be the tuple (or
line) to be deleted. Suppose xj be a intersection point that lk intersects with
other line. Then the intervals (xj−1, xj ] and (xj , xj+1] are merged into a single
interval (xj−1, xj+1]. One of the two MB Trees MBj and MBj+1 needs to be
deleted. We assume thatMBj+1 is deleted andMBj is retained, and (ak, bk) is
deleted from MBj . Then, MBT is re-constructed. The data owner accordingly
signs the root of MBT with a digital signature scheme, and gets the current
sig(root).

3.3 Query

On receiving the query request issued by the user, the CS executes the query
to get the query results R, and extracts the associated verification objects V O.
The query process is divided into to two steps.

First, CS executes the query on MBT with the user input x. An interval
(xj−1, xj ] is found that (xj−1, xj ] covers x, that is, xj−1 ≤ x ≤ xj , where j is
a positive integer. This also indicates that the MB Tree MBj is the target in
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the bottom level. The interval is just the query results of the top level, then
RT = (xj−1, xj ], and the verification objects V OT are also extracted.

Second, CS executes the query on MBj with the query condition. The user
may provide different query condition according to different query type. The
MB Trees in the bottom level are indexed by the value of ci ∈ C. CS finds the
results RB and extracts the verification objects V OB in the bottom.

Thus, the final results R = RT ∪RB and verification objects V O = V OT ∪
V OB are obtained. R, V O and sig(root) are then returned to the user. The
execution of the query is just the same as that of B+ Tree, which will not
be introduced here. We mainly introduce the extraction of the verification
objects, which is shown in Fig.4.

Fig. 4 Verification Object of TLMB.

Suppose that the query results lie in the second entry of the first child
node of the second MB Tree of MBB, which is marked dark. Then, the entries
marked gray are the verification objects.

Upon receiving R and V O, the user re-constructs the authentication tree,
which is shown in Fig.5. The root root′ of the MB Tree in the top Level is
obtained in the end. The user utilizes the digital signature technique to check
whether root′ matches sig(root). If root′ matches sig(root), then the result is
correct; otherwise, reject it.

Fig. 5 Restruction of TLMB.
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4 Dynamic Authentication

In this section, we propose a scheme for efficient update of outsourced func-
tion query. We mainly introduce how to use the TLMB Tree for the results
authentication. We adopt the signature mesh method [20] as the benchmark
method.

4.1 The Benchmark Method

The benchmark method is to apply the signature mesh method in [20] directly.
All the function data and the signatures are stored on the data owner side and
on the server side, respectively. When a new function is added, the intersections
of the newly added function with the existing functions are computed on the
data owner side, and some new intervals will be added. The data owner then
signs the newly added function and its successor. The newly added function
and signatures are sent to the server. The server computes the intersections of
the newly added function with the existing functions, and some new intervals
will be added, which is the same as that on the data owner side. Then, the
signatures are stored on the corresponding position of the signature mesh.

4.2 Our Proposed Method

Our goal is to store as few data as possible and perform as little computing
as possible on the data owner side locally. The data and the computing are
outsourced to the cloud server as much as possible. Because the most data
are stored on the server side, the data owner needs to authenticate the update
result when performing data update.

We now give the details of adding a new tuple. The update process can be
divided into two steps. In the first step, DO requests to add a new function,
CS computes the intersections, and the newly generated intersections and the
related authentication data are returned to DO. In the second step, DO verifies
the newly generated intersections. If the verification result is OK, then DO
updates the authentication data structure, and release the new authentication
data.

The update process is a five-tuple (KeyGen, Insert, Compute, Verify,
Update). Owing to the usage of digital signature in our proposed authenti-
cation data structure, then generation of the keys is done by the algorithm
KeyGen. The first step consists of two algorithms of Insert and Compute.
The second step consists of two algorithms of Verify andUpdate. The details
are given as follows.

KeyGen. DO generates the secret key key, a key pair (pk, sk) for digital
signature, where sk is the secret key for signing and pk is the pubic key for
the signature verification.
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Insert. Let (ak, bk) be the tuple to be added. The DO sends the request
Insert(k, ak, bk) to the CS, which runs the algorithm, where k is the number
of the tuple.

We propose to store the whole dataset on the cloud server side to reduce
the burden of data storage on the data owner side. When adding the tuple
(ak, bk), the CS computes the intersection points of lk with each line lj ∈ F
to get a set Is. Because the set Is is used to update the TLMB, we then need
to verify the correctness Is. We adopt the random check method to verify the
correctness of Is, that is, the whole dataset F is stored on CS, and a part of
F is chosen randomly to store the copy locally on the DO side. We adopt the
following equation to determine if the tuple is stored locally

H(k|key) mod m == 0, (5)

where, H here denotes a one-way hash function, key is a secret key holden
by the DO. If the equation holds, then the copy of the kth tuple is stored
locally. The variable m is a positive integer, which decides the portion of the
copy stored locally. The larger the value of m is chosen, the less data are
stored locally. Suppose that the stored dataset copy locally on the DO side is
Fl = {fl,j = (j, kj , akj , bkj )|j = 1, . . . , |Fl|}, where |Fl| is the size of Fl.

Compute. On the receipt of Insert(k, ak, bk) from DO, the CS computes
the intersection points of lk and the existing tuples. The CS then updates
the authentication data structure and extracts the corresponding verification
objects.

Let the dataset stored on the cloud server side be Fs = {fj = (j, aj , bj)|j =
1, . . . , |Fs|}, where |Fs| is the size of Fs. The cloud server computes the inter-
section points of the tuple (k, ak, bk) and each tuple fj ∈ Fs, and then a inter-
section set is obtained, denoted as Is = {(j, xk,j)|xk,j = (bj−bk)/(ak−aj), j =
1, . . . , |Is|}, where xk,j is the intersection point of the tuple fj stored on CS
and the newly added tuple fk, where |Is| is the size of Is. Note that |Is| = |Fs|
because fk intersects with fj ∈ F (i = 1, . . . , |F |).

Adding a new tuple leads to two aspects of impact. On the one hand, a new
tuple is inserted into the existing intervals, where new entries will be insert-
ed into the authentication data structure. On the other hand, new intervals
are added because new intersections are generated, where new authentica-
tion data structures will be constructed. The newly added intervals are split
from the existing intervals, thus, the construction of new authentication data
structures can be done by inserting entries into existing authentication da-
ta structures. Therefore, the two cases can be done by inserting entries into
existing authentication data structures. When the server inserts new entries
into the authentication data structures, the involved nodes that need to be
updated are recorded and the verification object set is obtained, denoted as
V O = {(xj , voj)|, j = 0, 1, . . . , n(n + 1)/2}, where voj is the verification ob-
jects of inserting new tuple fj into the authentication data structure of the
interval (xj , xj+1), n(n+ 1)/2 is the interval count in the worst case. Finally,
the cloud server sends the intersection set Is and the verification object set
V O back to the data owner.
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Verify. The data owner computes the intersections of tuple fi and each tu-
ple in Fl, denoted as Il. If Il ⊆ Is, then Is can be considered correct; otherwise,
reject it.

Update. If the intersections Is is considered correct, then the data owner
further updates the authentication data structure and signs the root. The data
owner inserts the newly added tuple into each authentication data structure
in each interval one by one, and then constructs a new authentication data
structure for the roots of the authentication data structure in the bottom level.
Finally, the root is signed by the data owner.

In the new authentication data structure, the amount of hash is increased,
and the amount of signature is decreased significantly to only one time, i.e.,
the signature of the root.

5 Performance Analysis

We give the performance analysis of the two methods in this section, i.e., the
benchmark method in [20] and our proposed method. We first discuss the
performance of adding a new tuple.

Suppose there exist already n− 1 tuples. When a new tuple fn = (an, bn)
is added, fn will intersect with each of the n − 1 tuples, and at most n − 1
intersections and intervals will be added. Thus, when there are n − 1 tuples,
there are n(n−1)/2 intersections and 1+n(n−1)/2 intervals. The 1+n(n−1)/2
intervals can be grouped into two classes, the newly added and the existing.
The tuple fn(x) will be inserted into the existing intervals. The newly added
intervals are split from the existing intervals, and the tuple fn(x) will also be
inserted into the newly added intervals. Then, the tuple fn(x) will be inserted
into each of the 1 + n(n− 1)/2 intervals.

Therefore, when utilizing the signature chain technique, the signature chain
in each interval will be updated. Specifically, the signatures of the newly added
tuple and its predecessor must be updated. Two times of signature are per-
formed in each interval, and 2 + n(n − 1) times of signature are needed in
total.

We then analyze the performance of our proposed scheme. The data owner
computes the intersections of the newly added tuple and the tuples stored
locally, and then performs update on the authentication data structure TLMB.
The data owner inserts the newly added tuple into each MB Tree in the bottom
level, the related nodes in each layer will be updated, and 2 ∗ (1 + ⌈logkn⌉)
hashes are involved for each MB Tree at most. There are n(n+1)/2 MB Trees,
then (1+ ⌈logkn⌉)∗n(n+1) hashes are involved in total. There are n(n+1)/2
leaf nodes for the MB Tree in the top level, whose height is 1+⌈logkn(n+ 1)/2⌉
with k as the fan-out of the non-leaf node. 1 + k2 + . . . + k⌈logkn⌉ = (1 −
k⌈logkn⌉)/(1− k) hashes are involved for constructing the MB Tree in the top
level. 1 signature is needed on the root in the end.

The theoretic comparisons of the two methods are shown in Table 1.
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Table 1 Comparisons

Algorithm running times in [20] running times of our method

Hash 0
(1+ ⌈logkn⌉) ∗n(n+1)

+(1−k⌈logkn⌉)/(1−k)
Signature 2 + n(n− 1) 1

The difference cannot be seen easily by the above table. We now give
a specific example. Let n = 1, 000, 000. Then the method in [20] executes
the signature operation 2 + n(n − 1) = 999, 999, 000, 002 times. Our method
executes the hash operation (1 + ⌈logkn⌉) ∗ n(n + 1) + (1 − k⌈logkn⌉)/(1 −
k) = 7, 000, 007, 111, 111 times for k = 10, and 4, 000, 004, 010, 101 times for
k = 100.

As can be seen that, the data owner executes more hash than digital sig-
nature. However, in our computer with an Intel Core i5 CPU running at 2.50
GHz with 4GB RAM, the wasted time of computing hash for a string is 0.024
milliseconds, and 4.83 milliseconds of signing the same string. The wasted
time of digital signature is about 200 times as much as that of hash, and
7, 000, 007, 111, 111/999, 999, 000, 002 = 7.000014 and 4, 000, 004, 010, 101/999, 999, 000, 002 =
4.00000801. Therefore, the computing of hash is higher if considering the run-
ning time. The performance of deleting a tuple is similar as that of adding a
new tuple, which will not be discussed here.

We then discuss the data amount stored on the data owner side. The copy
of all the tuples are stored locally on the data owner side, i.e. n tuples, in the
benchmark method, whereas n/m tuples are stored on the data owner side in
our proposed method.

6 Related Works

The related works of result correctness verification in the research field of
secure outsourcing can be grouped into two categories, i.e., query result cor-
rectness verification and computing result correctness verification.

The first category is the query result correctness verification of outsourced
database.

Devanbu et al. first proposed to utilize Merkle Hash Tree(MHT) to verify
the correctness of query result of outsourced database [3]. MHT is a binary
tree, where the hash value is stored in the nodes, and root is signed by the data
owner using digital signature. Li et al. combined MHT and B+ Tree to present
another authentication tree Merkle B+ Tree to verify the correctness of query
result of outsourced database, which works with higher efficiency [7]. Li et
al. further presented another authentication tree for correctness verification of
outsourced aggregate query [8]. As far as the spatial query is concerned, Yang
et al. introduces Merkle R Tree (MR Tree) for correctness verification of KNN
query on outsourced spatial data [21].

Xian et al. combined Chinese remainder theorem and B+ Tree to propose
an authentication with mask MABTree, which reduces both the computation-
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al overhead in the integrity check process and the verification time of the
query results [18]. Wen et al. proposed an authentication data structure Min-
Max Hash tree for results correctness verification of outsourced append-only
database [17]. Pang et al. introduced the signature chain technique for the
correctness verification of outsourced database query [11]. The adjacent three
tuples are signed, which forms a signature chain. The adversary cannot tamper
with and/or miss the query results, by which the soundness and completeness
are achieved simultaneously.

Xie et al. pointed that the authentication data structure method and the
signature chain method need to modify the back-end database management
system, and and proposed to insert fake tuples secretly by the data owner,
which is transparent to the server [19]. No modification needs to be done on
the server side, and the server performs normal query. The user checks whether
or not the fake tuples that should be included in the result really exist, if yes,
the query result is correct. Wang et al. proposed the dual encryption method
[16]. The data owner selects port of the data randomly, and encrypted the
selected data and the original data with different keys, which are both stored
on the server side. The server performs query on the two datasets respectively.
The user can determine the correctness of the result by the relationship of the
two datasets.

The second category is the result correctness verification of outsourced
computing.

Fiore et al. adopted the discrete logarithm and bilinear map to present the
schemes for publicly verifiable matrix multiplication, which enables the third
party to verify the correctness of the computing result with public data [4].
Many other works follow the framework [9],[6],[13]. Li et al proposed efficient
pseudorandom functions [9], and Sheng et al. proposed the matrix digest tech-
nique to reduce the verification-related computing from O(n2) to O(n) [13].
Hohenberger et al. proposed the outsourcing of the modular exponentiation,
and apply it for encryption [5]. The dual server method is adopted to verify
the correctness of the computing result. The request is sent to two different
servers, and the result correctness can be judged by the relationship of the
return results. Many other works follow the framework for outsourced modu-
lar exponentiation [1],[12]. Chevalier et al. proposed a verification scheme for
outsourced modular exponentiation with a single server [2].

Wang et al. proposed a secure scheme for outsourced linear programming,
and the dual programming is used to verifying the correctness of the computing
result [14]. Wang et al. proposed a secure scheme for outsourced linear system
of equations, and adopt the iterative computing method [15].

7 Conclusions

In this paper, we propose a new scheme for outsourced univariate linear func-
tion query that support efficient data update, where as much data storage
and computing as possible are delegated to the cloud server. We utilize the
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random check method for correctness verification of line intersections, which
enables the data owner to store small amount of data locally. We propose a
novel authentication data structure TLMB Tree for query result verification
of outsourced function query, which works efficiently for data update owing
to the usage of hash function. The efficiency can be shown by the theoretic
analysis, and the amount of data and computing is reduced significantly. In
the future work, we plan to propose a more secure algorithm for intersection
verification of outsourced linear function query.
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