
Evaluating Bernstein-Rabin-Winograd Polynomials

Sebati Ghosh and Palash Sarkar
Indian Statistical Institute

203, B.T.Road, Kolkata, India - 700108.
{sebati r,palash}@isical.ac.in

November 2, 2017

Abstract

We describe an algorithm which can efficiently evaluate Bernstein-Rabin-Winograd (BRW)
polynomials. The presently best known complexity of evaluating a BRW polynomial on m ≥ 3
field elements is bm/2c field multiplications. Typically, a field multiplication consists of a basic
multiplication followed by a reduction. The new algorithm requires bm/2c basic multiplications
and 1 + bm/4c reductions. Based on the new algorithm for evaluating BRW polynomials,
we propose two new hash functions BRW128 and BRW256 with digest sizes 128 bits and 256
bits respectively. The practicability of these hash functions is demonstrated by implementing
them using instructions available on modern Intel processors. Timing results obtained from the
implementations suggest that BRW based hashing compares favourably to the highly optimised
implementation by Gueron of Horner’s rule based hash function.
Keywords: almost universal hash function, BRW polynomials.

1 Introduction

In [1], Bernstein built upon a previous work due to Rabin and Winograd [7] to propose a family of
polynomials which has been called the BRW polynomials in [8]. The importance of such polynomials
for constructing almost universal hash functions with low collision and differential probabilities
has been discussed in [1]. Such hash functions have many applications in cryptography including
constructions of message authentication code (MAC), authenticated encryption and disk encryption
schemes among others.

A BRW polynomial is constructed from m ≥ 0 field elements. For a fixed value of m, hardware
implementation of BRW polynomials has been reported in [3]. Also, a recent work [2] reports
software implementations of BRW polynomials for m ≤ 31 over the fields GF (2128) and GF (2256).

The definition of BRW polynomials is recursive. A recursive implementation is possible, but,
will not be efficient. To the best of our knowledge, till date no algorithm has been proposed for
efficiently evaluating BRW polynomials where m can vary.

Our Contributions

In this work, we present an efficient non-recursive algorithm for evaluating BRW polynomials
constructed from m field elements without any restriction on m. The algorithm processes its input
in a left-to-right fashion and maintains a set of partial results computed from the elements that
have been processed. For a fixed t ≥ 2, the algorithm reads the next 2t elements and updates

1

the partial results. The subtlety of the algorithm is in the manner in which the partial results are
maintained and updated.

For m ≥ 3, Bernstein [1] showed that a BRW polynomial defined using m field elements can
be evaluated using bm/2c field multiplications. Typically, a field multiplication consists of a basic
multiplication followed by a reduction operation. We show that a BRW polynomial defined using
m ≥ 3 field elements can be evaluated using bm/2c basic multiplications and 1 + bm/4c reduction
operations. This is a significant reduction in the number of operations.

As a practical contribution, we propose two new hash functions, namely BRW128 and BRW256
which are based on BRW polynomials over the fields GF (2128) and GF (2256) respectively. These
hash functions have been implemented using the Intel intrinsics instruction set available on modern
Intel processors. Timing results for BRW128 compare favourably to those of a highly optimised
implementation by Gueron [5] of Horner’s rule based hash function.

2 Preliminaries

Throughout the paper, n is a positive integer and p is a prime.

Finite field: Let F = GF (pn) be the finite field of pn elements. The addition operation over F
will be denoted by +; for X,Y ∈ F, the product will be denoted as XY .

For X,Y ∈ F, let mult(X,Y) denote the operation used to compute the product XY . The
operation mult(X,Y) consists of two distinct steps. The first step consists of a basic or an unreduced
multiplication unreducedMult(X,Y) which returns a value Z and the second step consists of an
operation reduce(Z), i.e.,

mult(X,Y) = reduce(unreducedMult(X,Y)). (1)

Depending on the value of n, there are two scenarios.

1. Case n = 1. In this case, elements of F are represented by the integers 0, . . . , p − 1. Given
two integers X and Y in {0, . . . , p − 1}, the operation unreducedMult(X,Y) performs the
integer multiplication of the integers X and Y . The result Z is then at most (p− 1)2 and the
operation reduce(Z) returns the element W ∈ {0, . . . , p− 1} such that W ≡ Z mod p.

2. Case n > 1. In this case, using a fixed irreducible polynomial f(x) of degree n over GF (p),
the elements of F can be identified with the polynomials over GF (p) of degrees less than n.
Given two such polynomials X = X(x) and Y = Y (x), the operation unreducedMult(X,Y)
performs the polynomial multiplication of X(x) and Y (x) and returns the result Z = Z(x)
which is a polynomial of degree at most 2(n−1) over GF (p). The operation reduce(Z) returns
W = W (x) such that the degree of W (x) is less than n and W (x) ≡ Z(x) mod f(x).

BRW polynomials: For m ≥ 0, let BRW : F × Fm → F be the function defined below, where,
we write BRWτ (· · ·) to denote BRW(τ, · · ·).

• BRWτ () = 0;
• BRWτ (M1) = M1;
• BRWτ (M1,M2) = M1τ +M2;
• BRWτ (M1,M2,M3) = (τ +M1)(τ

2 +M2) +M3;
• BRWτ (M1,M2, . . . ,Mm) = BRWτ (M1, . . . ,Mk−1)(τ

k +Mk) + BRWτ (Mk+1, . . . ,Mm);
if k ∈ {4, 8, 16, 32, . . .} and k ≤ m < 2k.

2

BRWτ (M1,M2, . . . ,Mm) is a polynomial in τ whose coefficients are defined from M1, . . . ,Mm. We
consider the following problem:

Given τ,M1, . . . ,Mm ∈ F compute BRWτ (M1,M2, . . . ,Mm).

Informally, we will say that the evaluation of BRWτ (M1,M2, . . . ,Mm) is an m-block BRW compu-
tation.

The following facts about BRW polynomials have been proved in [1].

1. For m ≥ 3, BRWτ (M1, . . . ,Mm) can be computed using bm/2c field multiplications and
blgmc additional field squarings to compute τ2, τ4,

2. Let d(m) denote the degree of BRWτ (M1, . . . ,Mm). For m ≥ 3, d(m) = 2blgmc+1 − 1 and so
d(m) ≤ 2m − 1; the bound is achieved if and only if m = 2a; and d(m) = m if and only if
m = 2a − 1; for some integer a ≥ 2.

3. The map from Fm to F[τ] given by (M1, . . . ,Mm) 7−→ BRWτ (M1, . . . ,Mm) is injective. Con-
sequently, for (M1, . . . ,Mm), (M ′1, . . . ,M

′
m) ∈ Fm, (M1, . . . ,Mm) 6= (M ′1, . . . ,M

′
m), and a

uniform random τ from F,

Pr[BRWτ (M1, . . . ,Mm) = BRWτ (M ′1, . . . ,M
′
m)] ≤ d(m)

#F
≤ 2m− 1

#F
. (2)

3 Algorithm

The definition of BRW polynomials is recursive. It is easy to write a recursive program which takes
as inputs τ and M1, . . . ,Mm, m ≥ 0 and produces as output BRWτ (M1, . . . ,Mm). The function
will make two calls to itself on inputs of smaller sizes leading to a binary recursion tree. Such a
recursive program, however, will have substantial overhead of stack maintenance and will not lead
to a fast implementation. Due to this reason, we do not consider a recursive implementation of
BRW.

Suppose m is a fixed integer. For m = 1, 2 or 3, the evaluation of BRWτ (M1, . . . ,Mm) is
given by a simple formula. For m = 4, 5, 6, 7 and 8, the definitions of BRWτ (M1, . . . ,Mm) are the
following:

BRWτ (M1, . . . ,M4) = BRWτ (M1,M2,M3)(τ
4 +M4);

BRWτ (M1, . . . ,M5) = BRWτ (M1,M2,M3)(τ
4 +M4) +M5;

BRWτ (M1, . . . ,M6) = BRWτ (M1,M2,M3)(τ
4 +M4) +M5τ +M6;

BRWτ (M1, . . . ,M7) = BRWτ (M1,M2,M3)(τ
4 +M4) + (τ +M5)(τ

2 +M6) +M7;
BRWτ (M1, . . . ,M8) = BRWτ (M1, . . . ,M7)(τ

8 +M8).

 (3)

Again, it is easy to write a sequence of field operations (additions and multiplications) to evaluate
BRWτ (M1, . . . ,Mm) in each of the above cases. Continuing, this process can be carried out for
any m. This process, however, is not general as separate code is required for each value of m.
In [2], implementations of this approach over GF (2128) and GF (2256) have been reported for m =
1, . . . , 31.

The goal is to obtain a non-recursive algorithm to evaluate BRWτ (M1, . . . ,Mm) which works
for any m. Suppose the input blocks are M1, . . . ,Mm. From a practical point of view as well as for
an efficient implementation, it is desirable to process the blocks in a left-to-right manner. A typical

3

left-to-right algorithm would maintain a partial result X obtained by processing blocks M1, . . . ,Mi

and would read the next block Mi+1 and update X. We discuss the difficulties faced when trying
to use this approach to design an algorithm to evaluate BRW.

Suppose that i blocks have been processed and i ≡ 0 mod 4 and the partial result computed so
far is X. If there are exactly i+ 1 blocks to be processed, then the final result is X+Mi+1; if there
are exactly i+ 2 blocks to be processed, then the final result is X +Mi+1τ +Mi+2; and if there are
exactly i+3 blocks to be processed, then the final result is X+(τ+Mi+1)(τ

2+Mi+2)+Mi+3. This
shows that reading only the next unprocessed block, i.e., one block look-ahead is not sufficient. So,
the question arises as to how many look-ahead blocks are needed?

There is another difficulty. Suppose, there are exactly i+ 4 blocks to be processed. Since i is a
multiple of 4, so is i+ 4. If i+ 4 is a power of two, then the final result is (X + (Mi+1 + τ)(Mi+2 +
τ2) + Mi+3)(Mi+4 + τ i+4). On the other hand, if i + 4 is not a power of two, then to obtain
the final result, (Mi+4 + τ i+4) is not to be multiplied with (X + (Mi+1 + τ)(Mi+2 + τ2) + Mi+3);
instead, it has to be multiplied with the result Y corresponding to the last (i+ 4− k) blocks where
k ∈ {4, 8, 16, 32, · · · } and k ≤ i + 4 < 2k. Since only X is kept as the partial result of processing
the blocks M1, . . . ,Mi, Y is not available. This indicates that more than one partial results have
to be maintained. The corresponding question is how many partial results need to be maintained
and how are these to be updated?

We develop a non-recursive algorithm to compute BRWτ (M1, . . . ,Mm) for any m ≥ 1. The
number of look-ahead blocks can be 2t for any t ≥ 2. Relevant partial results are stored in an array.
The subtlety of the algorithm arises from the maintenance and updation of the partial results. In
particular, we note that the number of partial results to be stored is not monotonic increasing with
m.

Evaluation of BRW polynomials requires field multiplications. As discussed in Section 2, a field
multiplication is a composition of an unreducedMult operation followed by a reduce operation. The
number of unreducedMult operations required in evaluating BRW is necessarily equal to the number
of field multiplications. On the other hand, it is possible to reduce the number of reduce operations.
To be able to do this, we define a modification of BRW polynomials where the final result is not
reduced.

• unreducedBRWτ () = 0;
• unreducedBRWτ (M1) = M1;
• unreducedBRWτ (M1,M2) = unreducedMult(M1, τ) +M2;
• unreducedBRWτ (M1,M2,M3) = unreducedMult((τ +M1), (τ

2 +M2)) +M3;
• unreducedBRWτ (M1,M2, . . . ,Mk)

= unreducedMult(reduce(unreducedBRWτ (M1, . . . ,Mk−1)), (τ
k +Mk)),

if k ∈ {4, 8, 16, 32, . . .};
• unreducedBRWτ (M1,M2, . . . ,Mm)

= unreducedBRWτ (M1, . . . ,Mk) + unreducedBRWτ (Mk+1, . . . ,Mm),
if k ∈ {4, 8, 16, 32, . . .} and k < m < 2k.

EvalBRW given in Algorithm 1 shows how to compute BRWτ (M1, . . . ,Mm) for any m ≥ 1. The
following parameters and data structures are used in the algorithm.

t: an integer ≥ 2 which is a parameter to the algorithm;
isDef[0, . . .]: a bit array;
res[0, . . .]: an array where partial results are stored;

keyPow[0, . . .]: the j-th location stores τ2
j
.

4

The interpretation of the two arrays isDef and res is as follows: isDef[j] = 1 if and only if res[j]
holds a valid partial result.

Algorithm 1 Evaluation of BRWτ (M1, . . . ,Mm), m ≥ 1.

1: function EvalBRW(τ,M1, . . . ,Mm)
2: keyPow[0]← τ ;
3: if m > 2 then
4: for j = 1 to blgmc do
5: keyPow[j]← keyPow[j − 1]2;
6: end for;
7: end if ;
8: isDef[0]← 0;
9: if m ≥ 2t then

10: for j = 1 to blgmc − t+ 1 do
11: isDef[j]← 0;
12: end for;
13: end if ;
14: for i = 1 to bm/2tc do
15: res[0]← unreducedBRWτ (M2t·i−(2t−1), . . . ,M2t·i−1);
16: j ← 1; tmp← res[0];
17: while (isDef[j] = 1) do
18: tmp← tmp + res[j];
19: j ← j + 1;
20: end while;
21: res[j]← unreducedMult(reduce(tmp),M2t·i + keyPow[j + t− 1]);
22: isDef[j]← 1;
23: for k = 0 to j − 1 do
24: isDef[k]← 0;
25: end for;
26: end for;
27: r = m mod 2t;
28: tmp← unreducedBRWτ (Mm−r+1, . . . ,Mm);
29: for j = 1 to blgmc − t+ 1 do
30: if isDef[j] = 1 then
31: tmp← tmp + res[j];
32: end if ;
33: end for;
34: return reduce(tmp);
35: end function.

The array isDef can be implemented using a b-bit unsigned integer: the initialisation in Steps 8
to 13 can be done simply as isDef ← 0; the value of the j-th position can be obtained as ((isDef �
j) and 1) (required in Steps 17 and 30); the value of the j-th bit can be set to 1 using isDef ←
(isDef or (1 � j)) (required in Step 22); the j least significant bits of isDef can be set to 0 using
isDef ← (isDef and (1b � j)) (required in Steps 23 to 25).

At Step 15, EvalBRW calls unreducedBRW on 2t − 1 blocks while at Step 28, EvalBRW calls
unreducedBRW on η blocks where 0 ≤ η < 2t. The algorithm assumes that there is a separate

5

subroutine which returns the evaluation of unreducedBRW on η blocks for 0 ≤ η < 2t. Since
t is a fixed parameter of the algorithm, the computation of unreducedBRW on η blocks can be
done by a fixed sequence of field operations without any loop or branch statement (essentially as
a straight line program). For η = 1, 2, 3, the definition of unreducedBRWτ (X1, . . . , Xη) is simple
and the code to directly evaluate the expression is also quite simple. If t = 2, then the code to
compute unreducedBRW on η blocks for η = 0, 1, 2 and 3 is sufficient. For t ≥ 3, similar code
for direct computation of unreducedBRW on η blocks can be worked out from the definition. For
GF (2n) with n = 128 or n = 256, such implementations have been reported in [2] for t = 5 and
correspondingly 1 ≤ η ≤ 31.

In EvalBRW, the number of blocks m is assumed to be known. The value of m is used to
determine the maximum value of the loop counter at Step 14, to compute the value of r at Step 27
and in the computation of unreducedBRW at Step 28. It is possible to modify the algorithm to work
in the case where the number of blocks is not known at the beginning. The idea is the following.
While the buffer is not empty, attempt to read the next 2t blocks from the buffer. If 2t blocks are
indeed retrieved, then these blocks are processed in the same manner as in EvalBRW; if less than 2t

blocks are retrieved, then these are the last blocks in the buffer and the “wrapping up” procedure
is executed in a manner also similar to that of EvalBRW. With this idea, it is straightforward to
write out the details of an algorithm which does not require to know the value of m at the outset.
Hence, we do not provide an explicit description of such an algorithm.

4 Correctness and Complexity

The material in this section is divided into three parts. In the first part, we prove some results
on the structure of unreducedBRW. These results are required in the proofs of correctness and
complexity of EvalBRW. The second part proves the correctness of EvalBRW while the third part
proves the complexity of EvalBRW.

4.1 Structural Properties of unreducedBRW

We start with the following simple result.

Lemma 1. For m ≥ 0, BRWτ (M1, . . . ,Mm) = reduce(unreducedBRWτ (M1, . . . ,Mm)).

Proof. From the definition of BRW, we have the following two observations.

1. For k ∈ {4, 8, 16, 32, . . .}, BRWτ (M1, . . . ,Mk) = BRWτ (M1, . . . ,Mk−1)(τ
k +Mk).

2. For k ∈ {4, 8, 16, 32, . . .} and k < m < 2k, BRWτ (M1, . . . ,Mm) = BRWτ (M1, . . . ,Mk) +
BRWτ (Mk+1, . . . ,Mm).

Using these two observations and (1), the result follows from the definition of unreducedBRW by
induction on m.

The next result is more complicated and forms the intuition behind the correctness of EvalBRW.

Lemma 2. Let t ≥ 2 be an integer. For any m ≥ 2t, write⌊m
2t

⌋
= 2k1 + 2k2 + · · ·+ 2ks , (4)

6

where k1, . . . , ks are integers such that k1 > k2 > · · · > ks ≥ 0. Let K0 = 0, K1 = 2t+k1,
K2 = 2t+k1 + 2t+k2 , . . . , Ks = 2t+k1 + · · ·+ 2t+ks. Then

unreducedBRWτ (M1, . . . ,Mm)

= unreducedBRWτ (MK0+1, . . . ,MK1) + unreducedBRWτ (MK1+1, . . . ,MK2)

+ · · ·+ unreducedBRWτ (MKs+1, . . . ,Mm). (5)

Proof. Let r = m mod 2t. For 1 ≤ i ≤ s, Ki − Ki−1 = 2t+ki and m − Ks = m − 2t(2k1 + 2k2 +
· · · + 2ks) = r. So, the first s terms on the right hand side of (5) consist of unreducedBRW on
2t+k1 , 2t+k2 , . . . , 2t+ks blocks respectively while the last term on the right hand side of (5) consists
of unreducedBRW on r blocks. If r = 0, then the last term is not present. As a result, the number
of terms on the right hand side of (5) equals s or s+ 1 according as 2t divides m or not.

The proof of (5) is by induction on s ≥ 1.
Base step: For s = 1, bm/2tc = 2k1 and K1 = 2t+k1 . So, 2t+k1 ≤ m < 2t+k1 + 2t ≤ 2t+k1+1 and
we can write

unreducedBRWτ (M1, . . . ,Mm)

= unreducedBRWτ (M1, . . . ,M2t+k1) + unreducedBRWτ (M2t+k1+1, . . . ,Mm)

= unreducedBRWτ (MK0+1, . . . ,MK1) + unreducedBRWτ (MK1+1, . . . ,Mm).

This proves the base case.
Induction step: Fix s > 1 and suppose that (5) holds for all m ≥ 2t such that bm/2tc is the sum
of s− 1 powers of two.

Now consider m such that bm/2tc = 2k1 + · · ·+ 2ks with k1 > k2 > · · · > ks ≥ 0. Since s > 1,
m > 2t+k1 = K1. From k1 > k2 > · · · > ks ≥ 0, it follows that ki ≤ k1 − i + 1 for i ≥ 2; and
k1 ≥ s− 1. So,

m = 2t(2k1 + 2k2 + · · ·+ 2ks) + r

< 2t+k1 + 2t+k2 + 2t+k3 + · · ·+ 2t+ks + 2t (as r = m mod 2t)

≤ 2t+k1 + 2t+k1−1 + 2t+k1−2 + · · ·+ 2t+k1−(s−1) + 2t

= 2t+k1 + 2t+k1−s+1(2s−2 + 2s−3 + · · ·+ 21 + 1) + 2t

= 2t+k1 + 2t+k1−s+1(2s−1 − 1) + 2t

≤ 2t+k1 + 2t+k1 − 2t + 2t (as k1 − s+ 1 ≥ 0)

= 2t+k1+1.

So, we have K1 = 2t+k1 < m < 2t+k1+1 = 2K1. Since t ≥ 2 and m ≥ 2t ≥ 4, it follows from the
definition of unreducedBRW that

unreducedBRWτ (M1,M2, . . . ,Mm)

= unreducedBRWτ (M1, . . . ,MK1) + unreducedBRWτ (MK1+1, . . . ,Mm). (6)

Let m′ = m−K1 = 2t+k2 + · · ·+ 2t+ks + r and note that (MK1+1, . . . ,Mm) consists of m′ blocks.
Also, bm′/2tc = 2k2 + · · · + 2ks , i.e., bm′/2tc can be written as sum of s − 1 powers of two. Since
s > 1, we have s− 1 ≥ 1 which implies that m′ ≥ 2t. So, we can apply the induction hypothesis to
unreducedBRWτ (MK1+1, . . . ,Mm) to obtain

unreducedBRWτ (MK1+1, . . . ,Mm)

= unreducedBRWτ (MK1+1, . . . ,MK2) + · · ·+ unreducedBRWτ (MKs+1, . . . ,Mm). (7)

Combining (7) with (6) gives the desired result.

7

The next result determines the number of unreducedMult and reduce operations required in the
evaluation of unreducedBRW. These counts are independent of EvalBRW and are obtained from
the recursive definition of unreducedBRW.

Lemma 3. For m ≥ 1, evaluating unreducedBRWτ (M1, . . . ,Mm) requires bm/2c unreducedMult
operations and bm/4c reduce operations. Additionally, for m > 2, blgmc squarings are required to
compute the relevant powers of τ .

Proof. From the definition of unreducedBRW, the statement is clearly true for m = 1, 2, 3.
For m ≥ 4, the proof follows by induction on m.
If m = 2`, then from the definition of unreducedBRW the number of unreducedMult (resp.

reduce) operations is 1 + b(2` − 1)/2c = 2`−1 (resp. 1 + b(2` − 1)/4c = 2`−2).
If m is not a power of two, then m can be written as m = 2` + m1 with m1 < 2`. In this

case, from the definition of unreducedBRW the number of unreducedMult (resp. reduce) operations
is 2`−1 + bm1/2c = bm/2c (resp. 2`−2 + bm1/4c = bm/4c).

4.2 Correctness of EvalBRW

For the correctness proof of EvalBRW some preliminary results are required.

Lemma 4. For m > 2, Steps 3 to 7 of EvalBRW ensure that keyPow[j] = τ2
j

for j = 1, . . . , blgmc.

Lemma 5. Let t ≥ 2 and m ≥ 2t. Let the loop counter i ∈ {1, . . . , imax}, with imax = bm/2tc, in
Step 14 of EvalBRW be written as

i = 2ki,1 + 2ki,2 + · · ·+ 2ki,si (8)

where ki,1 > ki,2 > · · · > ki,si ≥ 0. Let Ki,0 = 0, Ki,1 = 2t+ki,1 ,Ki,2 = 2t+ki,1 + 2t+ki,2 , . . . ,Ki,si =
2t+ki,1 + · · ·+ 2t+ki,si . After i iterations of the loop given by Steps 14 to 26, the following properties
hold. For l ∈ {1, . . . , si},

isDef[j] =

{
1 if j = 1 + ki,l;
0 otherwise.

res[1 + ki,l] = unreducedBRWτ (MKi,l−1+1, . . . ,MKi,l).

Proof. The proof is by induction on i ≥ 1.
Base step: For i = 1, si = 1, ki,1 = 0 and Ki,1 = 2t. The entries of the array isDef are set to 0
before Step 14. So, the while loop given by Steps 17 to 20 is not executed and in Step 22, j has
the value it was assigned in Step 16 which is 1. As a result, isDef[1] = isDef[1 + ki,1] is set to 1 in
Step 22 and all other entries of isDef remain 0.

In Step 15, res[0] is set to unreducedBRWτ (M1, · · · ,M2t−1) and in Step 16, tmp is set to res[0]. In
Step 21, the value of j is 1 and res[1] = res[1+ki,1] is set to the value unreducedMult(reduce(tmp),M2t+
keyPow[t]). The correctness of this value is seen from the following simple computation.

unreducedMult(reduce(tmp),M2t + keyPow[t])

= unreducedMult(reduce(res[0]),M2t + τ2
t
) (from Lemma 4)

= unreducedMult(reduce(unreducedBRWτ (M1, . . . ,M2t−1)),M2t + τ2
t
)

= unreducedBRWτ (M1, . . . ,M2t) (from the definition of unreducedBRW)

= unreducedBRWτ (MKi,0+1, . . . ,MKi,1).

8

Inductive step: Suppose that the lemma holds for i = 2ki,1 + 2ki,2 + · · ·+ 2ki,si ≥ 1. We have to
show that it holds for i+ 1. Note that

i+ 1 = 2ki,1 + 2ki,2 + · · ·+ 2ki,si + 1

= 2ki+1,1 + 2ki+1,2 + · · ·+ 2ki+1,si+1 .

Below we derive the expressions for ki+1,1, . . . , ki+1,si+1 in terms of ki,1, . . . , ki,si .
By the induction hypothesis, after i iterations, for l = 1, . . . , si, isDef[j] = 1 if and only if

j = 1 + ki,l and res[1 + ki,l] = unreducedBRWτ (MKi,l−1+1, . . . ,MKi,l).
There are two cases.

Case i is even: In this case ki,si > 0 and so si+1 = si + 1, ki+1,1 = ki,1, . . . , ki+1,si = ki,si and
ki+1,si+1 = 0 resulting in Ki+1,l = Ki,l for l = 1, . . . , si and Ki+1,si+1 = Ki,si + 2t.

Since ki,si > 0, at the end of the i-th iteration, isDef[1] = 0 and so in the (i+1)-st iteration, the
while loop in Steps 17 to 20 is not executed. As a result, in Step 22, isDef[1] = isDef[1+ki+1,si+1] is
set to 1. No other value of isDef is changed. So, the stated conditions on isDef after i+ 1 iterations
hold.

By a similar reasoning, at the end of the (i + 1)st iteration, res[1] = res[1 + ki+1,si+1] gets set
to unreducedBRWτ (MKi+1,si

+1, . . . ,MKi+1,si+1
). No other value of res changes and so the stated

conditions on res after i+ 1 iterations hold.
Case i is odd: In this case ki,si = 0. Let β ∈ {1, . . . , si} be the minimum value such that
ki,β = si − β. Since ki,β > ki,β+1 > · · · > ki,si , it follows that for l = β, . . . , si − 1, ki,l = si − l.
Further, if β > 1, then ki,β−1 > ki,β + 1 = si − β + 1. So,

i = 2ki,1 + · · ·+ 2ki,β−1 + 2si−β+1 − 1 and i+ 1 = 2ki,1 + · · ·+ 2ki,β−1 + 2si−β+1.

Consequently, si+1 = β and ki+1,l = ki,l for l = 1, . . . , β − 1 and ki+1,β = si − β + 1.
From the induction hypothesis, after the ith iteration, isDef[1 + ki,l] = 1 for l = 1, . . . , si and

0 elsewhere. This in particular means that isDef[1] = isDef[2] = · · · = isDef[1 + si − β] = 1
and isDef[2 + si − β] = 0 after the ith iteration. So, during the (i + 1)st iteration, at the end
of the while loop given by Steps 17 to 20, the value of j is 2 + si − β. This results in setting
isDef[1 + ki+1,β] = isDef[2 + si− β] = 1. The for loop given by Steps 23 to 25 results in setting the
values of isDef[0], . . . , isDef[1+si−β] to 0. No other value of isDef is changed. As a result, at the end
of the (i+1)st iteration, isDef[1+ki+1,l] = isDef[1+ki,l] = 1 for l = 1, . . . , β−1; isDef[1+ki+1,β] = 1
and all other positions of isDef contain 0. This shows that the stated conditions on isDef after i+ 1
iterations hold.

From the values of ki+1,1 to ki+1,β, it follows thatKi+1,0 = Ki,0 = 0,Ki+1,1 = Ki,1, . . . ,Ki+1,β−1 =
Ki,β−1 and Ki+1,β = Ki+1,β−1 + 2si−β+t+1. As a result, for l = 1, . . . , β − 1,

res[1 + ki+1,l] = res[1 + ki,l]

= unreducedBRWτ (MKi,l−1+1, . . . ,MKi,l)

= unreducedBRWτ (MKi+1,l−1+1, . . . ,MKi+1,l
).

So, we only need to argue that res[1+ki+1,β] contains unreducedBRWτ (MKi+1,β−1+1, . . . ,MKi+1,si+1
)

which is an application of unreducedBRW on 2si−β+t+1 blocks.
Since the total number of blocks processed up to and including the ith iteration is i ·2t, we have

Ki,si = i · 2t and similarly, Ki+1,si+1 = (i+ 1)2t. After Step 15, in (i+ 1)st iteration,

res[0] = unreducedBRWτ (M2t·i+1, . . . ,M2t(i+1)−1)

= unreducedBRWτ (MKi,si+1, . . . ,MKi+1,si+1
−1).

9

Note that

Ki,β = Ki,β−1 + 2t+ki,β = Ki,β−1 + 2t+si−β

Ki,β+1 = Ki,β + 2t+ki,β+1 = Ki,β + 2t+si−β−1

· · · · · · ·
Ki,si = Ki,si−1 + 2t+ki,si = Ki,si−1 + 2t.

From the induction hypothesis, at the end of the ith step

res[1 + si − β] = res[1 + ki,β] = unreducedBRWτ (MKi,β−1+1, . . . ,MKi,β)

res[1 + si − β − 1] = res[1 + ki,β+1] = unreducedBRWτ (MKi,β+1, . . . ,MKi,β+1
)

· · · · · · ·
res[1 + si − si] = res[1 + ki,si] = unreducedBRWτ (MKi,si−1+1, . . . ,MKi,si

).

In the (i + 1)st iteration, at the end of the while loop given by Steps 17 to 20, the variable tmp
contains the sum res[0]+· · ·+res[1+si−β]; in Step 21, reduce(tmp) is multiplied (without reduction)

to (M2t(i+1) + τ2
1+si−β+t) and the value is assigned to res[2 + si − β]. We have

res[0] + res[1] + · · ·+ res[1 + si − β]

= unreducedBRWτ (MKi,si+1, . . . ,MKi+1,si+1
−1)

+unreducedBRWτ (MKi,si−1+1, . . . ,MKi,si
)

+ · · ·+ unreducedBRWτ (MKi,β−1+1, . . . ,MKi,β)

= unreducedBRWτ (MKi,β−1+1, . . . ,MKi+1,si+1
−1) (from Lemma 2).

So, at the end of (i+ 1)st iteration,

res[1 + ki+1,β] = res[2 + si − β]

= unreducedMult(reduce(res[0] + · · ·+ res[1 + si − β]),M2t(i+1) + τ2
1+si−β+t)

= unreducedMult(reduce(unreducedBRWτ (MKi,β−1+1, . . . ,MKi+1,si+1
−1)),

MKi+1,si+1
+ τ2

1+si−β+t)

(a)
= unreducedBRWτ (MKi,β−1+1, . . . ,MKi+1,si+1

)

= unreducedBRWτ (MKi+1,β−1+1, . . . ,MKi+1,β
).

The equality in Step (a) above follows from the definition of unreducedBRW.
This completes the induction step and the proof.

Next we prove the correctness of EvalBRW.

Theorem 1. For any t ≥ 2 and any m ≥ 1, EvalBRW(τ,M1, . . . ,Mm) correctly computes BRWτ (M1, · · · ,Mm).

Proof. In Step 34, EvalBRW returns reduce(tmp). From Lemma 1, it follows that it is sufficient to
show that tmp in Step 34 is equal to unreducedBRWτ (M1, · · · ,Mm).

If m < 2t, then the for loop from Step 14 to 26 is not executed. In Step 28, tmp gets assigned
to unreducedBRWτ (M1, . . . ,Mm) which remains unchanged till Step 34. This proves the result for
m < 2t.

10

So, suppose m ≥ 2t and as in Lemma 2, let bm/2tc be written as bm/2tc = 2k1 + · · ·+ 2ks and
K0 = 0, K1 = 2t+k1 , K2 = 2t+k1 + 2t+k2 , . . . , Ks = 2t+k1 + · · · + 2t+ks . Let r = m mod 2t so that
m = 2t(2k1 + · · ·+ 2ks) + r implying Ks = m− r. From Lemma 2, we can write

unreducedBRWτ (M1, . . . ,Mm)

= unreducedBRWτ (MK0+1, . . . ,MK1) + · · ·+ unreducedBRWτ (MKs−1+1, . . . ,MKs)

+unreducedBRWτ (MKs+1, . . . ,Mm)

= unreducedBRWτ (MK0+1, . . . ,MK1) + · · ·+ unreducedBRWτ (MKs−1+1, . . . ,MKs)

+unreducedBRWτ (Mm−r+1, . . . ,Mm). (9)

The loop counter i of the for loop in Step 14 runs from 1 to imax = bm/2tc. Applying Lemma 5
to imax, we obtain that after imax iterations, for l ∈ {1, . . . , s},

isDef[j] =

{
1 if j = 1 + kl;
0 otherwise.

res[1 + kl] = unreducedBRWτ (MKl−1+1, . . . ,MKl).

Fromm = 2t(2k1+· · ·+2ks)+r and 0 ≤ r < 2t, we have 2t(2k1+· · ·+2ks) ≤ m < 2t(2k1+· · ·+2ks+1).
Since k1 > k2 > · · · > ks, we obtain 2t+k1 ≤ m < 2t+k1+1 and so k1 = blgmc − t. As a result, we
get that the maximum positions of isDef and res that are accessed by the algorithm are both equal
to 1 + blgmc − t. This justifies the upper bound on the loop counter of the for loops in Steps 10
and 29.

In Step 28, tmp is initialised to unreducedBRWτ (Mm−r+1, . . . ,Mm). For j = 1, . . . , 1+blgmc−t,
the for loop in Steps 29 to 33 adds res[j] to tmp if and only if isDef[j] = 1. As a result, after this
for loop

tmp = unreducedBRWτ (MK0+1, . . . ,MK1) + · · ·+ unreducedBRWτ (MKs−1+1, . . . ,MKs)

+unreducedBRWτ (Mm−r+1, . . . ,Mm).

From (9), we have that in Step 34, tmp = unreducedBRWτ (M1, . . . ,Mm) as desired.

4.3 Complexity of EvalBRW

The space complexity of EvalBRW is determined by the maximum sizes of the arrays res, isDef and
keyPow (plus a constant number of variables). The sizes of these arrays are determined in the proof
of Theorem 1 and we record these in the following result.

Proposition 1. Let t ≥ 2. For correctly computing BRWτ (M1, . . . ,Mm), it is sufficient for the
arrays isDef and res to have length blgmc − t + 2. Further, for m > 2, keyPow stores 1 + blgmc
elements of F.

Proof. The proof of Theorem 1 shows that the maximum positions of isDef and res that are accessed
are both equal to blgmc− t+ 1. Since both the arrays start from position 0, the length is blgmc−
t+ 2.

We now consider the time complexity of EvalBRW(τ,M1, . . . ,Mm). For this, we separately
count the number of unreducedMult and reduce operations that are required.

11

Theorem 2. For m ≥ 2, EvalBRW(τ,M1, . . . ,Mm) requires bm/2c unreducedMult operations and
1 + bm/4c reduce operations. Additionally, for m > 2, blgmc squarings are required to compute the
relevant powers of τ .

Proof. The final output returned by EvalBRW(τ,M1, . . . ,Mm) at Step 34 is reduce(tmp). So, it is
sufficient to show that computing tmp up to Step 34 requires bm/2c unreducedMult operations and
bm/4c reduce operations.

The call to unreducedBRW in Step 15 is on 2t − 1 blocks while the call to unreducedBRW in
Step 28 is on r blocks. From Lemma 3, we have that for any fixed t ≥ 2, a straight line code
to compute unreducedBRWτ in Step 15 requires 2t−1 − 1 unreducedMult operations and 2t−2 − 1
reduce operations. Similarly, the call to unreducedBRWτ in Step 28 requires br/2c unreducedMult
operations and br/4c reduce operations.

Let imax = bm/2tc. The counter of the for loop in Step 14 runs up to imax. Then m = imax·2t+r,
where r = m mod 2t is computed in Step 27. Since t ≥ 2, we have (m − r)/2 = imax · 2t−1 and
(m− r)/4 = imax · 2t−2 to be both integers.

First consider the number of unreducedMult operations required for computing tmp at Step 34.
Each iteration of the for loop given by Steps 14 to 26 makes one call to unreducedBRW on 2t − 1
blocks and one unreducedMult operation. The call to unreducedBRW operations requires 2t−1 − 1
unreducedMult operations. So, the number of unreducedMult operations required during the entire
for loop given by Steps 14 to 26 is imax(1+2t−1−1). Additionally, br/2c unreducedMult operations
are required by the call to unreducedBRW in Step 28. As a result, the total number of unreducedMult
operations required to compute tmp required at Step 34 is

imax · 2t−1 + br/2c = (m− r)/2 + br/2c = bm/2c.

Since (m− r)/2 is an integer, m and r are either both even or both odd. If both are even, then the
last equality is immediate while if they are both odd, then writing (m−r)/2 = (m−1)/2−(r−1)/2
shows the last equality.

For the number of reduce operations required for computing tmp at Step 34, a reasoning similar
to above shows that the required number is

imax · 2t−2 + br/4c = (m− r)/4 + br/4c = bm/4c.

In this case, for the last equality, we have to use the fact that (m− r)/4 is an integer implies that
m ≡ r mod 4 so that if m mod 4 = a = r mod 4, then (m− r)/4 + br/4c = (m− a)/4− (r− a)/4 +
(r − a)/4 = (m− a)/4 = bm/4c.

The role of the parameter t: Note that from Theorem 2, the number of operations required
by EvalBRW does not depend on t. The parameter t determines the number of blocks in the
unreducedBRW call at Step 15. As mentioned earlier, it is assumed that there is a subroutine for
this computation and the subroutine performs this computation as a straight line code without any
loop. In other words, the value of t determines the extent of loop unrolling. To some extent, using
a greater amount of loop unrolling leads to improved efficiency as indicated by the results of our
implementations.

5 Design of Hash Function

We propose a hash function based on BRW polynomials. For convenience of the description, we
define the following terminology.

12

len(X): For a binary string X, its length will be denoted as len(X).

binn(i): For an integer i with 0 ≤ i < 2n, binn(i) denotes the n-bit binary representation of i.

padn(X): For a binary string X and n > 0, if X is the empty string, then padn(X) will denote
the string 0n; while if X is non-empty, then padn(X) will denote X||0i, where i ≥ 0 is the
minimum integer such that n divides len(X||0i).

formatn(X): For a positive integer n and a non-empty binary string X whose length is a multiple
of n, formatn(X) denotes (X1, X2, . . . , Xm) where X = X1||X2|| · · · ||Xm, m = len(X)/n,
len(Xi) = n for 1 ≤ i ≤ m. In other words, formatn(X) divides the string X into m n-bit
blocks X1, . . . , Xm.

The hash function that we define uses BRW computation over GF (2n). Using a fixed irreducible
polynomial over GF (2) of degree n, it is possible to identify the elements of GF (2n) with the
elements of {0, 1}n. In the following, we will implicitly assume this identification.

For a positive integer n, let

D =
2n−1⋃
i=0

{0, 1}i. (10)

We define the hash function BRWn in the following manner.

BRWn : {0, 1}n ×D → {0, 1}n. (11)

The computation of BRWn is shown in Algorithm 2.

Algorithm 2 Computation of BRW based hash function.

1: function BRWn(τ,X)
2: (X1, . . . , Xm)← formatn(padn(X));
3: Y ← EvalBRW(τ,X1, . . . , Xm);
4: Z ← τ(τY ⊕ binn(len(X)));
5: return Z;
6: end function.

We will write BRWnτ (·) to denote BRWn(τ, ·).
The following result shows that the differential probability of BRWn is small.

Proposition 2. Let X,X ′ ∈ D, X 6= X ′ and α ∈ GF (2n). Then for a uniform random τ ∈
GF (2n),

Pr[BRWnτ (X)⊕ BRWnτ (X ′) = α] ≤ 2 max(m,m′) + 1

2n
(12)

where m (resp. m′) is the number of blocks in the output of formatn(padn(X)) (resp. formatn(padn(X ′))).

Proof. Let (X1, . . . , Xm) = formatn(padn(X)), Y = EvalBRW(τ,X1, . . . , Xm) and BRWnτ (X) =
Z = τ(τY⊕binn(len(X))). Similarly, let (X ′1, . . . , X

′
m′) = formatn(padn(X ′)), Y ′ = EvalBRW(τ,X ′1, . . . , X

′
m′)

and BRWnτ (X ′) = Z ′ = τ(τY ′ ⊕ binn(len(X ′))).

13

Y (resp. Y ′) is a polynomial in τ of degree d(m) (resp. d(m′)). Consequently, Z (resp. Z ′) is a
polynomial in τ of degree d(m) + 2 (resp. d(m′) + 2). Assume without loss of generality m ≥ m′,
so that max(m,m′) = m.

Suppose that X and X ′ are of different lengths. Then the coefficients of τ in Z and Z ′ are
different. Consequently Z ⊕ Z ′ ⊕ α is a non-zero polynomial of degree d(m) + 2.

So, suppose that X and X ′ have the same length. Then m = m′. Since X 6= X ′, it follows
that (X1, . . . , Xm) 6= (X ′1, . . . , X

′
m). By the injectivity of BRW (see Section 2), it follows that the

polynomials Y and Y ′ are distinct. Consequently, Z ⊕ Z ′ ⊕ α is a non-zero polynomial of degree
at most d(m) + 2.

In both cases, we have Z ⊕ Z ′ ⊕ α to be a non-zero polynomial of degree at most d(m) + 2.
The probability that a uniform random τ from GF (2n) is a root of this polynomial is at most
(d(m) + 2)/2n ≤ (2m + 1)/2n. The last inequality follows from the fact that d(m) ≤ 2m − 1 (see
Section 2).

6 Implementation

We report implementations of BRW128 and BRW256. These require the implementations of
EvalBRW over GF (2n) in the two cases of n = 128 and n = 256. GF (2128) was represented
using the irreducible polynomial σ(x) = x128⊕x7⊕x2⊕x⊕ 1 and GF (2256) was represented using
the irreducible polynomial σ(x) = x256 ⊕ x10 ⊕ x5 ⊕ x2 ⊕ 1.

Our target platform for the implementation was the Intel Skylake processor, which supports
the Intel Intrinsics instruction set. The instruction of particular interest for our implementation
was pclmulqdq, which takes as input two polynomials over GF (2) of degrees at most 63 each and
returns their product which is a polynomial over GF (2) of degree at most 126. The two input
polynomials fit into 64-bit words while the output polynomial fits into a 128-bit word.

A field multiplication in GF (2n) consists of a unreducedMult followed by a reduce operation.

1. For each unreducedMult over GF (2128), we need to compute the polynomial multiplication of
two polynomials of degrees at most 127 each. Using the schoolbook method this requires 4
pclmulqdq instructions while using Karatsuba’s algorithm it requires 3 pclmulqdq instruc-
tions and some additional XOR instructions. It has been reported in [5] that on the Skylake
processor, the schoolbook method is faster and so we have used this method.

2. For each unreducedMult over GF (2256), we need to compute the polynomial multiplication
of two polymomials of degrees at most 255 each. For this, the schoolbook and Karatsuba’s
methods require 16 and 9 pclmulqdq instructions respectively. In this case, Karatsuba’s
method gives better performance [2] and so we have used this method.

For the reduce operation over GF (2128), following the procedure described in [4] the reduction
modulo σ(x) = x128⊕x7⊕x2⊕x⊕ 1 can be done using 2 pclmulqdq instructions along with some
XORs and shifts. An extension of this procedure [2] for GF (2256) shows that the reduction modulo
σ(x) = x256⊕x10⊕x5⊕x2⊕1 requires 4 pclmulqdq instructions along with some XORs and shifts.

EvalBRW has the parameter t. For the implementation, we have considered t = 2, 3, 4 and
5. This requires implementation of unreducedBRW as a straight line program for m blocks with
1 ≤ m ≤ 31. Implementations of BRW for 1 to 31 blocks have been reported in [2]. Here we
use these implementations with the modification that the final reduction is not applied so that
unreducedBRW is computed instead of BRW.

14

Table 1: Timing results for BRW128 and POLYVAL.
512 1024 4096 8192 16384 30000

t = 2 0.819 0.611 0.425 0.388 0.368 0.356

t = 3 0.826 0.623 0.444 0.407 0.389 0.379

t = 4 0.787 0.583 0.401 0.364 0.344 0.336

t = 5 0.776 0.552 0.348 0.309 0.287 0.278

POLYVAL 0.786 0.549 0.376 0.347 0.333 0.328

Table 2: Timing results for BRW256.
512 1024 4096 8192 16384 30000

t = 2 1.162 0.909 0.675 0.628 0.603 0.587

t = 3 1.118 0.864 0.629 0.581 0.559 0.539

t = 4 1.099 0.841 0.607 0.558 0.533 0.519

t = 5 1.095 0.862 0.619 0.569 0.544 0.529

The code for our implementations of BRW128 and BRW256 is publicly available1.

6.1 Timings

The timing measurements were taken on a single core of a machine with Intel Core i7-6500U Skylake
@ 2.5GHz. The operating system was 64-bit Ubuntu-14.04-LTS and the C codes were complied
using GCC version 4.8.4. For measuring time, we followed the strategy of [6].

The corresponding timing results that were obtained are shown in Tables 1 and 2. The column
headers of the first row provide the message size in bytes. From the second row onwards, the rows
are for different values of t. The entries in these rows are in cycles per byte.

For n = 128, we provide the timings of POLYVAL [5] for the purpose of comparison. The code
for POLYVAL is essentially a highly optimised implementation of Horner’s rule based polynomial
hash. In particular, it performs a single reduction for every eight polynomial multiplications and
the ordering of the instructions seems to have been done very carefully so as to minimise the cycle
counts.

In contrast, we would like to clarify that we do not claim to have provided the best possible
implementations of BRW128 and BRW256. We have considered the possible algorithmic improve-
ments and the corresponding implementation in Intel intrinsics. For concrete speed-ups one also
needs to consider details of instruction level pipelining issues and also possibly carry out an imple-
mentation in assembly. Since the main goal of our implementation was to show the practicability
of Algorithm EvalBRW, we have not tried to aggresively optimise the code. Future implementation
efforts may attempt such work.

7 Conclusion

In this work we have described an efficient non-recursive algorithm to evaluate BRW polynomials
which works for any number of blocks. This algorithm has been used to define two concrete hash

1https://github.com/sebatighosh/BRW

15

functions. Implementations of the hash functions using instructions available on modern Intel
processors show promising timing results making the hash functions worthy candidates for actual
deployment.

Acknowledgement

We acknowledge with thanks several helpful discussions with Debrup Chakraborty.

References

[1] Daniel J. Bernstein. Polynomial evaluation and message authentication, 2007. http://cr.yp.
to/papers.html#pema.

[2] Debrup Chakraborty, Sebati Ghosh, and Palash Sarkar. A fast single-key two-level universal
hash function. IACR Trans. Symmetric Cryptol., 2017(1):106–128, 2017.

[3] Debrup Chakraborty, Cuauhtemoc Mancillas-López, Francisco Rodŕıguez-Henŕıquez, and
Palash Sarkar. Efficient hardware implementations of BRW polynomials and tweakable en-
ciphering schemes. IEEE Trans. Computers, 62(2):279–294, 2013.

[4] Shay Gueron and Michael E. Kounavis. Efficient implementation of the Galois Counter Mode
using a carry-less multiplier and a fast reduction algorithm. Inf. Process. Lett., 110(14-15):549–
553, 2010.

[5] Shay Gueron, Adam Langley, and Yehuda Lindell. AES-GCM-SIV: specification and analysis.
IACR Cryptology ePrint Archive, 2017:168, 2017.

[6] Ted Krovetz and Phillip Rogaway. The software performance of authenticated-encryption
modes. In Antoine Joux, editor, Fast Software Encryption - 18th International Workshop,
FSE 2011, Lyngby, Denmark, February 13-16, 2011, Revised Selected Papers, volume 6733 of
Lecture Notes in Computer Science, pages 306–327. Springer, 2011.

[7] Michael O. Rabin and Shmuel Winograd. Fast evaluation of polynomials by rational preparation.
Communications on Pure and Applied Mathematics, 25:433–458, 1972.

[8] Palash Sarkar. Efficient tweakable enciphering schemes from (block-wise) universal hash func-
tions. IEEE Trans. Information Theory, 55(10):4749–4760, 2009.

16

