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In [1], Peikert proposed efficient and practical lattice-based protocols for key
transport, encryption and authenticated key exchange. One of the main tech-
nical innovations of [1] is a reconciliation technique that allows two parties who
”approximately agree” on a secret value to reach exact agreement, a setting
common to essentially all lattice-based encryption schemes. In [1], this reconcil-
iation technique was described for reaching agreement on a single bit. Peikert’s
reconciliation technique has been extended in [2], allowing for agreement on
more than one bit. In both cases, only one reconciliation bit is required to reach
exact agreement. As symmetric keys typically require many bits, say 128 or
more, the parties compute multiple secret values, and reach exact agreement on
each of those values individually.

In this paper, we propose a reconciliation method that sends more than one
reconciliation bit. In this way, the parties can agree on the same number of bits
as with Peikert’s method with less stringent conditions on ”how approximate”
the approximate agreement must be. Allowing for less stringent conditions on
the approximate agreement improves security of the system. Alternatively, with
virtually the same approximation requirements (i.e., with virtually the same
security guarantees), an instance of our method allows the two parties to agree
on one a secret value that is one bit longer than with the method from [2].
We numerically illustrate the advantages of our method with the impact to the
recommended schemes in [2].

Technical description

We use the following notation. If x, v are integers, with v ≥ 2, then 〈x〉v is the
integer satisfying

0 ≤ 〈x〉v ≤ v − 1 and 〈x〉v ≡ x mod v.

Moreover, for any real number y, we denote with byc the result of round y
downwards to the closest integer.

We consider the situation that parties A and B have computed two numbers
a and b. Because of the way that a and b are have been computed, they ap-
proximately agree. This approximate agreement is expressed in terms of system
constants q,B and δ, known to A and B, where δ and B are positive integers,
and q is an integer multiple of 2B+δ+1, as follows: a and b both are integers in
the interval [0, q) and satisfy

a ≡ b+ e (mod q) (1)

where
|e| ≤ q

2B+1
− q

2B+δ+1
. (2)
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We will describe how the two parties can arrive a common B-bits secret s by
having one party, say party A, transmit δ bits of reconciliation data to party B.
We introduce one more integer system parameter c; its relevance will become
clear later. We write

〈a+c〉q = s
q

2B
+h

q

2B+δ
+v with 0 ≤ h q

2B+δ
+v ≤ q

2B
−1 and 0 ≤ v ≤ q

2B+δ
−1.

(3)
In particular,

s = b〈a+ c〉q
(q/2B)

c and h = b
〈〈a+ c〉q〉q/2B

q/2B+δ
c. (4)

In the special case that q = 2m, the secret value s corresponds to the B most
significant bits of the binary expansion of 〈a+ c〉2m , h corresponds to the next
δ bits, and v corresponds to the m−B − δ least significant bits.
By considering (1) modulo q

2B
, we find that

b+ c− h q

2B+δ
≡ v − e (mod

q

2B
). (5)

As 0 ≤ v ≤ q
2B+δ − 1 and as (2) is satisfied, we have that

0 ≤ v − e− q

2B+δ+1
+

q

2B+1
≤ q

2B
− 1. (6)

Combining (5) and (6) we conclude that

v − e− q

2B+δ+1
+

q

2B+1
= 〈b+ c− h q

2B+δ
− q

2B+δ+1
+

q

2B+1
〉q/2B . (7)

By combining (1) and (3), we infer that

s
q

2B
≡ b+ c− h q

2B+δ
− (v − e) (mod q), (8)

and so

s ≡
b+ c− h q

2B+δ − (v − e)
q/2B

(mod 2B) (9)

Combining (9) and (7), and the fact that s ∈ [0, 2B), we infer that

s = 〈b
b+ c− h q

2B+δ − q
2B+δ+1 + q

2B+1

q/2B
c〉2B . (10)

By simplifying (10), we infer that B can compute s as

s = 〈b b+ c

q/2B
− h

2δ
− 1

2δ+1
+

1

2
c〉2B . (11)

Equations (10) and (11) show that s can be computed from b, h and the systems
parameters q,B and δ. So if party A sends h to B, then party B can retrieve
s, which can be used a common secret. As (3) implies that 0 ≤ h q

2B+δ <
q
2B

, it

follows that 0 ≤ h < 2δ, so h can be represented with δ bits.
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We note that if c = 0, Equation (4) states that the secret s equals the
quotient of a and (q/2B), rounded downwards to the closest integer. With the
choice c = q/2B+1, the secret s equals the quotient of a and q/2B , rounded to the
closest integer (modulo 2B) (and rounded upwards in case of a tie, that is, if a is
of the form k q

2B
+ q

2B+1 for some integer k). With the choice c = q/(2B+1)− 1,
the secret s equals the quotient of a and q/2B , rounded to the closest integer
modulo 2B , with rounding downwards in case of a tie. Obtaining the secret s
as the closest integer to a/qB+1 is done in previous work [1], [2].

We again note that in case that q = 2m, the common secret s consists of the
B most significant bits of a+c; the helper data h consists of the subsequent δ bits
of a+c. As a consequence, if a is uniformly distributed, then the common secret
s given the helper data h is uniformly distributed as well. That is, an adversary
cannot obtain information on the common secret s from the observation of the
helper data h.

Relation with previous work

For δ = 1 and q = 2m, and obtaining the secret s as the integer closest to the
quotient of a and 2m−B (that is, taking c = 2m−B−1), our method reduces to
the extension of Peikert’s scheme from [2]: one reconciliation bit is sent, and
the parties agree on an B-bits secret whenever1 |e| ≤ 2m−B−2. If q = 2m and
δ = m−B−1, the parties agree on an B-bits secret whenever |e| ≤ 2m−B−1−1.
In the latter case, Peikert’s method would only guarantee agreement on an B−1-
bits secret. By increasing the number of reconciliation bits, the parties thus can
agree on a secret value that is one bit longer.

Numerical examples

In [2], the authors describe a quantum-secure key exchange method. One party
sends to another party a small seed and an n × n matrix with elements from
Zq. In response, an m×n matrix and a binary n×m matrix with reconciliation
bits are sent. The parties both construct an n ×m matrix; from each entry of
said matrix, B common bits are extracted. The total number of extracted bits
(termed key length in the tables below) thus equals n ·m · B, while the total
number of transmitted bits equals

n(n+m)dlog2(q)e+m · n.

Table 1 is a condensed version of the proposed instantiations in [2, Table 2].
According to [2, Claim 3.2], in case that one reconciliation bit is sent, it is

guaranteed that the parties agree on a common B-bits secret if their numbers
differ less than 2m−B−2 (where m is such that q = 2m). The results from the
previous section show that under the same condition, the two parties can agree

1The condition from [2, Claim 3.2] is in fact a little stronger: it requires that |e| < 2m−B−2
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Scheme n q B n m key length = B · n ·m Bandwidth
Challenge 352 211 1 8 8 64 7.57 KB
Classical 592 212 2 8 8 128 14.22 KB

Recommended 752 215 4 8 8 256 22.57 KB
Paranoid 864 215 4 8 8 256 25.93 KB

Table 1: Parameter choices from Frodo

on a B+ 1 bits secret if δ = m−B− 2 reconciliation bits are sent. The amount
of reconciliation data thus equals log2(q)−B− 2 bits per matrix entry, and the
total required bandwidth equals

log2(q)n(n+m) +m · n · (log2(q)−B − 2).

As the amount of bits that is agreed on is one larger than in [2], we can reduce
n and/or m and thus reduce overall bandwidth usage. We obtain the results
in Table 2. The final column is the ratio of the required bandwidth with the
proposed reconciliation scheme and that of the equivalent Frodo system.

Scheme n q B n m key length = B · n ·m Bandwidth Bandwidth ratio
Challenge 352 211 2 6 6 72 5.84 KB 0.76
Classical 592 212 3 7 7 147 12.48 KB 0.88

Recommended 752 215 5 7 8 280 21.22 KB 0.94
Paranoid 864 215 5 7 8 280 24.37 KB 0.94

Table 2: Improvement by our reconciliation scheme

We attempted to have n ≈ m to have symmetry in the protocol. If symmetry
is a strict requirement, we cannot gain anything with the ”Recommended” and
”Paranoid” scheme, as 5× 7× 7 is smaller than the required key size (256).

Additional remarks

After publication of the first version of this manuscript, Léo Ducas pointed out
that Ding [3]2 had described an approximate key agreement scheme, combined
with (single-bit) reconciliation, prior to [1]. For a comparison of Ding’s and
Peikert’s method, we refer to [4, p.2].
An even earlier example of sending reconciliation data to obtain exact key agree-
ment can be found in [5, Sec 3.3]. The scheme from [5] has been broken by
Albrecht et al in [6].

2Later and revised versions list Xie and Xie and Lin as co-authors
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