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Abstract. Many modern actively secure multi-party computation protocols make use of a function-
and input-independent pre-processing phase. This pre-processing phase is tasked with producing some
form of correlated randomness and distributing it to the parties. Whilst the “online” phase of such
protocols is exceedingly fast, the bottleneck comes in the pre-processing phase. In this paper we examine
situations in which the computing parties in the online phase may want to outsource the pre-processing
phase to another set of parties, or to a sub-committee. We examine how this can be done, and also
describe situations where this may be a benefit.
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1 Introduction

Secure multi-party computation (MPC) is the idea of allowing multiple parties to compute on
their combined inputs in a “secure” manner. We use the word secure to mean that the interaction
provides no party with any information on the secret inputs of the other parties, bar what can
be learned from the output (a property called privacy or secrecy). In this paper we will focus on
protocols which can tolerate a majority of the parties being corrupted. In such a situation we
know there is no hope that the honest parties can always obtain the correct output, so we usually
require that either the honest parties obtain the correct result, or they abort (with overwhelming
probability in the security parameter, λ).

For a long time, MPC remained a theoretical exercise and implementations were impractical.
However, much work has recently been undertaken on developing practical MPC protocols in the
so-called pre-processing model. In this model, the protocol is split up into an offline (a.k.a. pre-
processing) phase and an online phase. In the offline phase, the parties execute a protocol which
emulates a trusted dealer who distributes “raw material” (pre-processed data) to parties; this data
is then used up in the online phase as the circuit is evaluated. The advantage of doing this is that the
pre-processing involves expensive public key operations which can be isolated to the pre-processing
phase. In addition, pre-processed data can be made independent of both the inputs and the circuit,
so it can be computed at any point prior to the evaluation of the circuit. The online phase is then
executed with (essentially) information theoretic primitives, and is thus very fast.

This protocol idea goes back to Beaver [Bea96]. It was first used in a practical (and implemented)
MPC system in the VIFF protocol [DGKN09], which was a protocol system built for the case of
honest majority MPC. Modern dishonest majority MPC protocols make use of information theoretic
MACs to achieve active security, an idea which stems from [RBO89] In the last five years, combining
the pre-processed triple idea of Beaver with these protocols has resulted in a step change in what
can be implemented efficiently by MPC protocols.

The first protocol in this area was BDOZ [BDOZ11], which demonstrated that if the number
of parties was constant and the parties had access to a functionality which would provide the pre-
processed data then the overhead of computing an arithmetic circuit over a large finite field securely
is only a constant factor times the work required to compute it in the clear. The SPDZ [DPSZ12]
protocol showed that the mere constant factor overhead encountered in the BDOZ protocol holds for
any number of parties. Further improvements were presented in [DKL+13] to the SPDZ protocol.
In the BDOZ and SPDZ protocols, the pre-processing is produced using forms of homomorphic
encryption, and so the protocols are more suited to MPC over a large finite field. In TinyOT
[NNOB12], similar results in the two-party case for Boolean circuits were given, where the pre-
processing was implemented using oblivious transfer (OT) extension. In [LOS14, BLN+15], the
TinyOT protocol was extended to the multi-party case, and the online phase was made consistent
(in terms of computational pattern) with that of the SPDZ protocol from [DKL+13]. Further
unification of these protocol families occured with the replacement of the homomorphic encryption
based pre-processing phase of SPDZ with an OT based pre-processing [KOS16], forming what is
known as the MASCOT protocol. To simplify exposition, since all of these protocols are essentially
the same at a high level, in this paper we shall refer to the collective as the “SPDZ family”.

As already remarked, the SPDZ family of protocols has an efficient online phase; indeed, the
online phase has a number of interesting properties:
– Computational Efficiency: Since the online phase is made up of information theoretic prim-

itives, the basic arithmetic operations are incredibly simple, requiring only a constant multi-
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plicative factor increase in the number of operations when compared to evaluating the function
in the clear. Before every output operation, the execution of a PRF is also required for MAC
checking, but for a large computation this is negligible when measuring performance.

– Communication Efficiency: The basic protocol requires interaction for each multiplication
operation1. This interaction need only be conducted over authenticated channels, rather than
private channels, and the communication required grows linearly in the number of players.

– Deterministic: Given the correlated randomness from the offline phase, the function to be
computed, and the parties’ inputs, the online phase is essentially deterministic. Only a small
amount of “random data” per party is needed to ensure that dishonest parties are detected in
the MAC checking protocol. Indeed this random data can be created in the offline phase and
then stored for later use.

The simplicity and efficiency of the online phase, however, comes with a penalty in the offline phase.
Using either method (i.e. the homomorphic encryption of SPDZ or the OT method of MASCOT)
to generate the pre-processed data, the offline phase requires expensive public key machinery, and
in practice is a couple of orders of magnitude slower than the online phase. In some instances,
while the online phase is computationally cheap enough to be executed by a relatively low powered
computing device, the same device would not be sufficiently powerful to perform the associated
offline phase efficiently. This can cause a problem when there are parties in a network with very
different computing power. Similarly the offline phase requires the transmission of a larger amount
of data per multiplication gate than the online phase. Again, this can be a problem in practice if
certain parties are on a slow part of the network.

The offline phase also requires each party to input a large amount of randomness, and it is
well known that one of the major challenges of running any cryptography in the real world is the
generation of randomness. Small hardware devices may not have the capability of producing random
values easily, as they usually have very limited access to good sources of entropy: for example,
devices such as mobile phones and tablets still have problems with good entropy sources. Moreover,
it does not suffice simply to be able to generate pseudo-random numbers: in many cryptographic
applications (including MPC) it is necessary that it be “high quality” randomness. This has led to
high-end applications requiring expensive dedicated hardware to generate entropy; however, such
dedicated hardware may not be available to all computers in a network. Thus, even in the case of
high-end servers executing the MPC protocol, it may easily not be the case that all have access to
a sufficient entropy source.

For these reasons, we propose a method of outsourcing the offline pre-processing for the SPDZ
family of protocols to a different set of parties. We will let Q denote the set of nq parties who are
to run the online phase; the set Q will outsource the computation of the pre-processing to a set of
parties R of size nr. This set R may be a strict subset of Q, or they could be a completely different
set all together, or even a mix of parties who will later be involved in computation and parties who
will not. The idea is that Q is unable to execute the pre-processing as an nq-party protocol, due
to some limitation of resources (computation, bandwidth, or randomness, for example), whereas
R is “more able” to execute the pre-processing as an nr-party protocol. Our protocol to perform
this outsourcing will also aim to minimise the communication needed to transfer the pre-processing
data from the set R to the set Q.

1 For simplicity of expression we assume the MPC functionality is evaluating an arithmetic circuit over a finite field.
This is purely for exposition: in practice the usual MPC tricks to remove the need for circuit based computation
will be used.
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Of course, for this to make sense it is important that the set Q trust the set R to perform this
task, and that the protocol respect this trust relationship. In particular, our protocol will assume
an adversary which can corrupt a majority of parties in Q and a majority of parties in R, but that
the adversary can neither corrupt all parties in R nor all parties in Q: indeed, in such a situation
we clearly would not even be expected to guarantee any security. In particular, this means that each
honest party in Q believes that there is at least one honest party in R, but they may not know
which one is honest.

The fact that the parties do not know which parties in the other network are honest has security
implications for the way pre-processing is passed from one network to the other. The näıve method
of sending on the pre-processed data (in the case of nr ≤ nq) would be to partition Q into nr
subsets, and then for each party in R to send their data to one set in the partition; it turns out
that this method is insecure (using our redistribution procedure), though it only requires minor
modification to make it secure. Our protocol creates a cover of Q, {Qi}i∈R, using |R| sets, not
necessarily disjoint, and associates each subset with a party in R; namely, party i ∈ R is assigned
the set Qi. The association merely defines the network of secure channels by which secret-shared
data amongst the parties in R is reshared amongst the parties in Q. Note that there is no assumption
of trust of parties in Q for parties in R they are associated to (i.e. with respect to the cover): the
only assumption of trust is that at least one party in each of R and Q is honest. Our protocol will
be secure if there is at least one pair (i, Qi) for which i ∈ R is an honest party in R and Qi contains
at least one honest party from Q. This raises (at least) three potential ways for the subsets to arise:

– If R ⊆ Q then for each i ∈ R, we can just ensure that Qi contains i. Then since R and Q each
contain an honest party, there must be at least one pair containing (the same) honest party.

– It may be the case that every party in Q trusts at least one party in R already. In this case,
our cover, {Qi}i∈R, can be produced by letting parties in Q elect which parties in R they want
to be associated with. Security will follow because in particular, at least one honest party in R
believes there is at least one honest party in Q.

– If no prior trust relation is known then the cover must be defined either deterministically or
probabilistically. If deterministically, to satisfy the requirement above we must choose Qi = Q
for all i. This guarantees a pair (i, Qi) as described above, but results in an inefficient network
topology (since each party in R needs a secure channel to each party in Q). Alternatively,
we make a probabilistic assignment and derive bounds on nq and nr which ensure that the
assignment preserves security with overwhelming probability: see Section 4 for details.

The first case above is a reasonably likely scenario. Consider an (n, t)-threshold access structure,
in which any set of t+ 1 parties contains an honest party. In this case any set of t+ 1 parties can
form the network R and undertake the pre-processing. To pass the data on, these parties need to be
associated to the remaining n− t− 1 parties. Thus each party in R must send to (n− t− 1)/(t+ 1)
parties on average. For example, if n = 20 and t = 14, then any 15 parties perform the pre-processing
and each sends to all of the remaining 5 parties. For a multiplication performed in the production
of a single triple in MASCOT amongst 20 parties, assuming a full-threshold access structure, the
required communication is essentially 20 × 19 = 380 oblivious transfers (OTs). If we no longer
assume full-threshold and instead suppose that any set of 15 parties contains an honest party, we
need only 15 × 14 = 210 OTs plus 15 × 5 = 75 field elements to be sent per triple. In light of
the real-world applications of MPC in which full-threshold is sometimes too strong an assumption,
and the fact that the number of OTs required for a multiplication is O(n2), any reduction in the
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assumed fraction of corruptions t/n provides significant improvements in communication efficiency
via our protocol, since we require only O(t2) OTs plus O(t · (n− t)) field elements transmitted.

In the case where we use a probabilistic assignment, and where the parties generating the pre-
processing are not later involved in the computation, our protocol is less efficient. For example,
using our protocol and the probabilistic algorithm we describe later, if there are 5 parties in R of
which at most 2 are corrupt, and 50 parties in Q of which at most 25 are corrupt (and R and Q are
disjoint), each party in R need only send to 23 parties in Q for the cover to be statistically secure
(in the sense that the adversary cannot with with probability greater than 1− 2−80), instead of the
25 required for information-theoretic security.

Besides the ability of the protocol we describe to enable localising the generation of pre-processed
data, another potential application of the protocol is to increase the number of parties involved
in a given instance of the SPDZ protocol dynamically (i.e. during the online phase). For example,
suppose a set of parties already running an instance of the SPDZ protocol want to (efficiently and
securely) allow another set of parties to join them during a reactive computation. It may make more
sense to transform the already pre-processed data (or even just a few pre-processed values) via our
protocol to a form that is amenable for use by a larger number of parties, and then distribute it
to the parties who want to join in on the computation, instead of requiring that the parties halt
the computation and then engage in a new round of pre-processing. This would only make sense if
the parties joining the computation trusted at least one of the pre-existing parties, which is likely
to be the case in any reasonable application of this use-case. The set of parties already performing
the computation becomes the set R, and so we are in the first use-case above.

At its heart our technique can be described as follows. We let FP,APrep denote the SPDZ offline
functionality for a set of parties P of size n with set of corrupt parties A. Suppose now that we
have a set of parties indexed by the set [n] and (not necessarily disjoint) subsets R,Q ⊂ [n] so that
R ∪ Q = [n], and a subset A ⊂ R ∪ Q indexing corrupt parties. We then define a cover {Qi}i∈R
of Q such that there is at least one pair (i, Qi) for which i ∈ R is an honest party in R, and
Qi contains at least one honest party from Q. The cover provides a description of the required
network: each party in Qi must be connected by a secure channel to the associated party i in
R. Just as (i, Qi) associated a subset Qi ⊂ Q to a party i ∈ R, we also let Rj ⊂ R be the set
of parties in R associated to a party j ∈ Q. We then extend A to a set A ⊂ R ∪ Q by setting
A = A∪{j ∈ Q : Rj ⊂ A}. The set A contains all corrupt parties and additionally what we refer to
as effectively corrupt honest parties with respect to the online phase of the protocol. In brief, these
are parties whose pre-processed data is entirely determined by the adversary – while these parties
execute the online protocol honestly, the deterministic dependence on pre-processed data means
the adversary can decide what values these parties hold for their shares. Our protocol realises the

functionality FQ,Q∩APrep in the FR,R∩APrep -hybrid model.

The main idea of the protocol is conceptually quite simple, and is essentially a standard “re-
sharing” technique similar to [BOGW88]. The main novelty is in showing that this can be efficiently
applied to the SPDZ protocol, without the need for any expensive zero-knowledge proofs. In doing
this, the difficulty comes in proving that the protocol is actually secure in the UC framework, and
also in creating and analysing an (efficient) algorithm for assigning a cover to the network so that
the adversary can only win with negligible probability in the security parameter in the case where
we randomly assign the covers.
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Related work. There is a long line of works on scalable secure computation with a large number of
parties [DI06,HN06,DKMS14,BCP15] (to name a few), which use similar techniques to ours. These
works often divide the parties into random committees (or quorums) to distribute the workload
of the computation. Most of these papers target asymptotic efficiency, and strong models such as
adaptive security, asynchronicity and RAM computation. This gives interesting theoretical results,
but the practicality of these techniques has not been demonstrated. In contrast, our work focuses
on applying simple techniques to to modern, practical MPC protocols. Furthermore, we give a
concrete analysis and examples of parameters that can be used for different numbers of parties in
real-world settings, at a given security level.

2 Preliminaries

In this section, we describe the notation used in subsequent sections, formally define secure cover,
and give an overview of the SPDZ protocol, and the offline phase in particular.

General Concepts and Notation: Parties in the network are indexed by [n] = {1, ..., n}, where
n is the total number of parties. We consider the complete network of parties as the union of two
parts, which we call R and Q (so each is a subset of n and they are not necessarily disjoint).
To avoid confusion, we will index parties in R by the letter i, and parties in Q by the letter j.
We let nr (resp. nq) denote the number of parties in R (resp. Q). We let A ⊂ R ∪ Q denote the
indexing set of corrupt parties in the complete network, and A denote the superset of A which
possibly contains additional honest parties in Q, called effectively corrupt honest parties from the
introduction. We assume there is a complete network of authenticated channels amongst the parties
in R, and similarly amongst the parties in Q. We define a secure cover {Qi}i∈R of Q by R in the
following way:

Definition 1. Let [n] be the indexing set of a set of parties in a given network and suppose we are
also given subsets R,Q ⊂ [n] of sizes nr and nq respectively. Each party in the network is either
corrupt or honest. We call a set {Qi}i∈R of (non-empty but not necessarily disjoint) subsets of Q
a secure cover if the following hold:
– All parties in Qi are connected to player i ∈ R via a secure channel.
– The subsets cover Q, i.e. Q =

⋃
i∈RQi.

– There is at least one pair (i, Qi) where i ∈ R is an honest party in R, and Qi contains at least
one honest party from Q.

We will also let Rj denote the set of parties in R which are connected to party j ∈ Q. Note that
{Rj}j∈Q is necessarily a cover of R since Qi 6= ∅ for all i, so each i is in at least one Rj . We
will use λ to denote the security parameter, and we will say an event occurs with overwhelming
probability in the security parameter λ if it occurs with probability at least 1− 2λ. We denote by
Fq the finite field of order q, a (large) prime power. A function ν ∈ Z[x] is called negligible if for
every polynomial p ∈ Z[x], there exists a C ∈ Z such that ν(x) ≤ 1/p(x) for all x > C. We write
α ← Fq to mean that α is sampled uniformly at random from the field Fq. We denote by dae the
smallest integer b ∈ Z such that b ≥ a.

In Appendix A, we discuss the different network topologies of secure channels between our
parties in R and parties in Q. In particular, we explore the different ways by which to define the
cover {Qi}i∈R, taking into account, for example, the fact that the Qi’s are not necessarily all the
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same size. Section 4 then builds on these considerations by providing concrete methods of creating
the cover and analysing the resulting protocols. This involves, for example, examining how the
likelihood of the cover being secure changes (if we define it probabilistically) as we change the value
of ` if we require that all parties in R send to the same number ` of parties in Q.

In Appendix B, we give a brief overview of the Universally Composability (UC) framework,
which is the model in which we give the proof of our main theorem. The power of UC is well
demonstrated in the pre-processing model, since it allows the functionality to be split up into
separate independent parts and their corresponding individual protocols to be proved secure inde-
pendently, such that they remain secure even when run concurrently or sequentially. In this model,
we define some functionality FPrep for the pre-processing and a separate functionality FOnline for
the online phase. A protocol is designed for each, ΠPrep and ΠOnline, the protocol ΠPrep is shown
to implement FPrep securely, and finally ΠOnline is shown to implement FOnline securely in the
FPrep-hybrid model. This is particularly useful in our situation where we only want to change how
pre-processing is done since we only need to revamp the pre-processing, and can leave the online
phase unchanged, avoiding the need to reprove security.

SPDZ Overview: In general, computation will be done over a finite field F = Fq where q is a
(large) prime power. The protocol called MACCheck in the SPDZ paper [DPSZ12] requires that the
field be large enough to make MAC forgery unfeasible by pure guessing. In particular this means
that 1/q must be negligible in λ. For smaller finite fields, and in particular the important case of
binary circuits, adaptions to the MACCheck protocol can be made; see [LOS14], for example. For
this paper we will assume the simpler case of large q for ease of exposition. The SPDZ MPC protocol
allows parties to compute an arithmetic circuit on their combined secret input. More specifically,
for an arbitrary set of parties P and a subset set of corrupt parties A ⊂ P, the SPDZ protocol
implements the functionality FP,AMPC described in Figure 1, provided P \ A 6= ∅.

The Functionality FP,AMPC.

The superscript P denotes the set of parties involved in the protocol, and A ( P is the set of corrupt parties.

Initialise: On input (Initialise,F) from all parties in P, store F.
Input: On input (Input, i, id, x) from party i and (Input, i, id) from all other parties, with id a fresh identifier and
x ∈ F, store (id, x).
Add: On command (Add, id1, id2, id3) from all parties in P (where id1 and id2 are present in memory), retrieve
(id1, x) and (id2, y) and store (id3, x+ y).
Multiply: On command (Multiply, id1, id2, id3) from all parties in P (where id1 and id2 are present in memory),
retrieve (id1, x) and (id2, y) and store (id3, x · y).
Output: On input (Output, id) from all honest parties (where id is present in memory), retrieve (id, z), output
z to the adversary. If the adversary responds with OK then output the value z to all parties, otherwise output
Abort to all parties.

Figure 1. The Functionality FP,AMPC.

The main motivation for this paper is that the “standard” protocols which implement FP,AMPC

in the pre-processing model (for some set of parties P and corrupt parties A) require a lot of work
by the parties in P during pre-processing. Our goal is to implement FP,AMPC using a (possibly larger)
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set of parties in which some specified set of parties execute the expensive pre-processing part of the
protocol and only the parties in P who are interested in the computation itself execute the cheap
online part of the protocol. In our terminology, the parties in Q outsource the pre-processing to a
set of parties R (which possibly includes some parties in R) and then compute using the data.

We will elaborate a little here; in what follows we use the notation and functionalities of the
latest version of the SPDZ protocol, based on OT, called MASCOT [KOS16]. We will describe the
SPDZ offline functionality FP,APrep and online protocol ΠP,AOnline for an arbitrary set of parties P; at

the end of this section, we give the conversion protocol ΠR→Q,A
Prep . In the initialisation stage, the

parties sample (and keep private) random shares αi, one for each party, whose sum is taken to be
a global (secret) MAC key α, i.e. α =

∑
i∈P αi.

A value x ∈ Fq is secret shared among the parties in P by sampling (xi)i∈P ← F|P|q subject to

x =
∑

i∈P xi, with party i holding the value xi. In addition, we sample (γ(x)i)i∈P ← F|P|q subject
to
∑

i∈P γ(x)i = α · x and party i holding the share γ(x)i. Thus γ(x)i is a sharing of the MAC
γ(x) := α · x of x. We write the following to denote that x is a secret value, where party i ∈ P
holds xi and γ(x)i.

〈x〉 := ((xi)i∈P , (γ(x)i)i∈P))

Since this sharing scheme is linear, linear operations on secret values comes “for free”, in the sense
that adding secret values or multiplying them by a public constant requires no communication.
Crucially, since the MAC is linear, the same operations applied to the corresponding MAC shares
will result in MACs on the result of the said linear computation.

Unfortunately, multiplication of secret values requires a little more work, and is the reason data
must be generated offline. At its heart SPDZ uses Beaver’s method [Bea96] to multiply secret-
shared values, which we outline here. In the offline phase, a large number of multiplication triples
are generated, which are triples (〈a〉, 〈b〉, 〈c〉) such that c = a · b. Note that while other forms of pre-
processing can help in various computations, such as shared squares and shared bits, in this paper
we focus on the basic form of pre-processing and leave the interested reader to consult [DKL+13]
and [KSS13]. To multiply secret-shared elements 〈x〉 and 〈y〉 in the online phase, we take a triple
(〈a〉, 〈b〉, 〈c〉) and partially open 〈x〉 − 〈a〉 and 〈x〉 − 〈b〉 to obtain ε := 〈x〉 − 〈a〉 and δ := 〈y〉 − 〈b〉.
By “partially open 〈x〉 − 〈a〉”, we mean that each party i sends the value xi − ai to every other
party, but does not send the corresponding MAC share. Then

〈z〉 = 〈c〉+ ε · 〈b〉+ δ · 〈a〉+ ε · δ

is a correct secret sharing of z = x · y, and since the triple is never opened, no information about
x or y is revealed. A similar use of pre-processed data is used for the parties to enter their inputs
into the computation.

As remarked earlier our paper is focused on turning SPDZ preprocessing produced by one set
of parties into preprocessing for another set of parties. Thus we do not discuss the online phase in
detail in the main body. There is a minor tweak to the proof of security of the online phase, due
to our minor tweak to the preprocessing functionality in the next section. For the interested reader
we include the details in Appendix C.

SPDZ Preprocessing: To formalise things a little more, we now discuss the functionality FP,APrep,
given in Figure 2, which implements the necessary pre-processing. The superscripts denote param-
eters of the functionality, where P denotes the indexing set of parties involved in the computation,
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and A ⊂ P is a set of parties in P under the control of the adversary. As explained in the introduc-
tion, if we have a set of parties P and our cover produces effectively corrupt honest parties, which
are those nominally honest parties which receive reshares from only corrupt parties, the set A will
include these parties. If the parties generate the pre-processing themselves and do not make use of
our protocol, this set is exactly the set of corrupt parties; when the pre-processing is outsourced,
then we have to worry about (the possibility of) effectively corrupt parties.

The Offline Functionality FP,APrep for SPDZ.

The set A ⊂ P indexes the corrupt parties in P.

Initialise: On input (Initialise, q) from all players and the adversary, the functionality does the following:
1. The functionality samples α← Fq to be the global MAC key.
2. The functionality receives some error ∆α from the adversary and, for each corrupted player i ∈ A, a share

αi.
3. The functionality samples at random αi for each i /∈ A subject to

∑
i∈P αi = α+∆α.

4. The functionality sends αi to party i, for all i ∈ P.

Macro: Angle(x) The following will be run by the functionality at several points to create 〈·〉 representations:
1. The functionality accepts ({xi, γ(x)i}i∈A,∆x,∆γ) from the adversary.
2. The functionality samples at random {xi, γ(x)i}i/∈A subject to

∑
i∈P xi = x+∆x and

∑
i∈P γ(x)i = α·x+∆γ .

3. The functionality is left with ((xi)i∈P , (γ(x)i)i∈P).

Computation: On input (DataGen, DataType) from all players and the adversary, the functionality executes
the data generation procedures specified below.
– On input DataType = InputPrep and a party i ∈ P,

1. If i 6∈ A, the functionality samples r(i) ← Fq. Otherwise i ∈ A so the functionality accepts r(i) from the
adversary.

2. The functionality runs Angle(r(i)).

3. For each j ∈ P, the functionality sends party j the pair (r
(i)
j , γ(r(i))j).

4. Additionally, to party i, the functionality sends r(i).
Thus the parties obtain a sharing 〈r(i)〉 of a value r(i) known only to party i.

– On input DataType = Triple,
1. The functionality samples a, b ∈ Fp and computes c = a · b.
2. The functionality calls Angle(a), Angle(b) and Angle(c).
3. For each i ∈ P, the functionality sends ((ai, γ(a)i), (bi, γ(b)i), (ci, γ(c)i)) to party i.

Figure 2. The Offline Functionality FP,APrep for SPDZ.

The functionality is a little more general than the functionality presented in [KOS16] as we
allow the corrupt parties to introduce more errors: the standard SPDZ offline functionality only
allows errors to be introduced into the MAC shares and not the data shares, whereas this new
functionality allows errors on both. It is fairly intuitive that we will retain a security using this
functionality as opposed to the standard one, as an adversary winning having changed shared values
and MACs needs to have forged the same MAC equation as an adversary winning after just altering
MAC values. The extra ability of altering share values gives him no advantage, a fact which we will
prove shortly.

In [KOS16] the following theorem is (implicitly) proved, where FOT and FRand are functionalities
implementing OT and shared randomness for the parties.
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Theorem 1. There is a protocol ΠP,APrep that securely implements FP,APrep against static, active ad-
versaries in the FOT,FRand-hybrid model, where P is the complete set of parties and A the set of
corrupt parties in P.

We do not give the definition of the ΠP,APrep protocol here as it is identical to MASCOT when based
on OT, or identical to the original SPDZ pre-processing when based on homomorphic encryption
(in spite of the slight difference in functionalities). Note that the paper [KOS16] proves the above
theorem by giving a number of different protocols which, when combined, securely implement the
required functionality FP,APrep.

3 Feeding One Protocol From Another

In this section we give our main result on feeding pre-processed data from the parties in R to the
parties in Q, assuming a set of corruptions in the latter which includes effectively corrupt honest

parties. In notation, we are instantiating an instance of FQ,Q∩APrep from an instance of FR,R∩APrep via

the protocol ΠR→Q,A
Prep . Note that R ∩A = R ∩A. We assume we have a secure cover {Qi}i∈R of Q.

Method of Redistributing Data: Recall the parties in R will be performing the offline phase
on behalf of the parties in Q. The parties in Q will share data in the standard manner (see Section
2), and the same will happen for parties in R. To avoid confusion, a data item x ∈ F secret shared
amongst partes in Q will be denoted by 〈x〉Q, whilst the same data item shared amongst parties
in R will be denoted by 〈x〉R, where implicitly we are assuming the same MAC key α is shared
amongst the parties in R and the parties in Q.

When parties in Q want to evaluate a circuit amongst themselves, they follow the online protocol
in Figure 7 and whenever they require a pre-processed data-item, they will ask R to provide one2.
Thus we simply require a methodology to translate 〈x〉R sharings into 〈x〉Q sharings. Recall a shared
value in the network R is denoted by

〈x〉R = ((xi)i∈R, (γ(x)i)i∈R)

The principal idea of the protocol is, for each i ∈ R, to take the value xi held by i and sample a
set {xji}j∈Qi subject to xi =

∑
j∈Qi x

j
i and define xj ←

∑
i∈Rj x

j
i so that∑

i∈R
xi =

∑
i∈R

∑
j∈Qi

xji =
∑
j∈Q

∑
i∈Rj

xji =
∑
j∈Q

xj

which holds because, by definition,

{(i, j) : i ∈ R, j ∈ Qi} = {(i, j) : j ∈ Q, i ∈ Rj}.

If we do the same for the MAC shares, and at initialisation also share the global MAC key α in the
same way, we obtain the same secret value x under the same global MAC key but shared instead
amongst the parties in Q, which we denote by

〈x〉Q = ((xj)j∈Q, (γ(x)j)j∈Q).

2 Of course, Q could ask R for these to be obtained all in one go in a form of outsourced pre-processing.
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It is hopefully now clear how to define a feeding protocol to send shares from the R parties to the Q
parties. We do this by providing a protocol ΠR→Q

Prep which assumes the existence of the functionality

FR,R∩APrep .
It is important to note that honest parties use incoming shares in an entirely deterministic

manner; as such, observe that if some party j ∈ Q is honest but it receives shares from only corrupt
parties in R, the adversary has complete control over what this party’s share will look like. For this
reason, we consider them as “effectively” corrupt, contained in the extended adversary set A. This
is why in the online protocol, run by the parties in Q, we need to consider the set of adversaries as
being Q ∩A.

The Protocol: The idea of the protocol is to convert the pre-processing generated by the parties
in R to pre-processing that can be used by the parties in Q. Our goal, then, is to show that if

the set of parties R ∪ Q is provided with the functionality FR,R∩APrep and the parties engage in the

protocol ΠR→Q
Prep to send their pre-processing to the parties in Q, then this “looks the same” to the

parties in Q as a functionality FQ,Q∩APrep . The protocol is given in Figure 3.

Main theorem: Before we give the statement of the theorem, we briefly give some intuition as to
why our construction gives us the desired security. Recall that we are given a cover {Qi}i∈R of Q,
indexed by parties in R, so that each party in R is associated to the set Qi 6= ∅ of parties in Q. We
defined a cover to be secure if there is at least one pair (i, Qi) where i is honest and Qi contains at
least one honest party. If a cover is not secure, it means that for every i, we have that i is corrupt,
or i is honest but Qi contains no honest parties. In this case, given a secret value v, for each i ∈ R
the adversary either has share vi (when i ∈ R is corrupt), or all “reshares”, {vji }j∈Qi (when i ∈ R
is honest but all j ∈ Qi are corrupt); using these shares and reshares, the adversary can construct
v and hence he breaks secrecy: thus a secure cover is necessary. Conversely, if the cover is secure
then at “worst”, the adversary obtains all reshares but one; then since all reshares were sampled
uniformly at random so that they summed to individual shares, and these shares were sampled so
that they summed to the secret, this set of shares is indistinguishable from a uniformly randomly
sampled set. Our main theorem (for which the proof is in Appendix D) is as follows.

Theorem 2. The construction ΠR→Q,A
Prep securely implements the functionality FQ,Q∩APrep in the pres-

ence of static, active adversaries in the FR,R∩APrep -hybrid model assuming a secure cover of Q is
given.

4 Creating a Secure Cover

In the introduction, we assumed three potential use-cases. We now consider how to assign a cover
securely for each scenario.
1. R ⊆ Q. In this case, for each i we define Qi to be any subset of Q containing i and ensure that

their union covers.
2. Each party in Q knows a subset of parties in R in which it believes there is an honest party.

The cover is created respecting this knowledge.
3. There is no prior trust relationship.
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Protocol ΠR→Q,A
Prep

Parties in R have ideal access to an instance of FR,R∩APrep .

Initialise: On input (Initialise, q) from all parties in Q,

1. The parties in R execute FR,R∩APrep .Initialise:
(a) The functionality samples some α← Fq.
(b) From each corrupt party i ∈ R ∩A, the functionality receives an error ∆α,i and share αi.
(c) The functionality samples {αi}i∈R\A uniformly subject to the constraint that

∑
i∈R αi = α +∑

i∈R∩A∆α,i.
(d) For each i ∈ R, the functionality sends αi to party i.
Thus the parties in R obtain a sharing 〈α〉R of the global MAC key.

2. The parties run FeedValue(α) below to share the global MAC key amongst the parties in Q.

(Note that the Macro Angle(x) of FR,R∩APrep is merely an internal procedure of the functionality and is not called
by parties in the protocol.)

Macro: FeedValue(v) On input an element v ∈ Fq shared amongst the parties as v =
∑
i∈R vi with party i ∈ R

holding vi,
1. For each i ∈ R, party i samples {vji }j∈Qi subject to

∑
j∈Qi

vji = vi.

2. For each i ∈ R, for each j ∈ Qi, party i sends vji to party j.
3. For each j ∈ Q, party j sets vj =

∑
i∈Rj

vji .

Computation: On input (DataGen, DataType) from all players in Q,
– On input DataType = InputPrep and a value j ∈ Q,

1. For each i ∈ Rj ,
(a) The parties call FR,R∩APrep .Computation(DataGen, InputPrep) with input i:

i. If i 6∈ R∩A, the functionality will sample some r(i) ← F, and otherwise will accept r(i) as input
from the corrupt party.

ii. In the execution of Angle, the corrupt parties k ∈ R ∩ A each give the functionality some r
(i)
k

and γ(r(i))k and errors ∆r(i),k and ∆γ(r(i)),k. The functionality samples {r(i)k , γ(r
(i)
k : k ∈ R\A}

such that
∑
k∈R r

(i)
k = r(i) +

∑
k∈R\A∆r(i),k and

∑
k∈R γ(r(i))k = α · r(i) +

∑
k∈R\A∆γ(r(i)),k.

iii. For each k ∈ R, the functionality sends party k the pair (r
(i)
k , γ(r(i))k).

iv. Additionally, the functionality sends r(i) to party i.
This provides the parties with 〈r(i)〉R and party i with r(i).

(b) The parties then run FeedValue(r(i)) and FeedValue(γ(r(i))) to get 〈r(i)〉Q.
(c) Party i sends r(i) to party j.

2. Party j computes r(j) ←
∑
i∈Rj

r(i).

3. The parties in Q then fix 〈r(j)〉Q ←
∑
i∈Rj
〈r(i)〉Q.

Thus all parties in Q obtain a sharing 〈r(j)〉Q of a value r(j) known only to party j ∈ Q.
– On input DataType = Triple by parties in Q,

1. The parties call FR,R∩APrep .Computation(DataGen,Triple) to obtain a triple (〈a〉R, 〈b〉R, 〈c〉R).
2. The parties in R now run FeedValue on a, b and c and their MACs.

Figure 3. Protocol ΠR→Q,A
Prep

In this last scenario we have two choices: either to set each covering subset Qi equal to the whole
set Q, or to assign the players randomly to subsets of Q whose union is the whole. In this section
we provide an algorithm creating a cover and analyse the security it provides.
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Recall that, when creating the secure cover, is necessary to ensure that at least one honest party
in Q receives a share from at least one honest party in R with overwhelming probability in the
security parameter λ. If this is not true, the adversary is able to reconstruct the share.

Let tr and tq be the number of corrupt parties in R and Q respectively. We set εr = tr/nr
and εq = tq/nq to be the associated ratios. To help with the analysis, and for efficiency and
load-balancing reasons, we will assume that each party in R sends to the same number of parties
` ≥ dnq/nre in Q. Note, any assignment of sets to parties in R which covers Q where ` = tq + 1
is automatically secure, since every party in R necessarily sends to at least one honest party in Q.
We will see how small ` can be to provide statistical security for a given security parameter.

To assign a cover randomly in such a situation we use the algorithm in Figure 4. The high-level
idea of the algorithm is the following:

1. For each party in Q, we assign a random party in R, until each party in R has dnq/nre parties
in Q assigned to it (or, equivalently, until the sets of parties in Q assigned to parties in R forms
a disjoint cover). For ease of exposition, we assume nr|nq.

2. For each party in R, we assign random parties in Q until each party in R has ` total parties
which it sends to.

Note that in practice, the parties may want to run this algorithm using a trusted source of random-
ness (such as a blockchain or lottery), or execute a coin-tossing protocol to generate the necessary
randomness.

Algorithm for randomly assigning elements of a cover of Q to parties in R.

For ease of notation, we label parties in R as ik for k ∈ [nr] and parties in Q as jl for l ∈ [nq]; then the output
array M is a binary nr × nq matrix with a 1 in the (k, l)th position if and only if ik in R sends to jl in Q.
Inputs: nr, nq, n = nr + nq, `, and sets R,Q ⊂ [n] whose disjoint union is [n].

Outputs: Matrix M ∈ Fnr×nq

2 .
Method: (Note that ` is a constant, whereas l is an index.)
1. Set M [1..nr, 1..nq]← {{0, 0, . . . , 0}, . . . , {0, 0, . . . , 0}}
2. Set NoOfOnes[1..nr]← {0, . . . , 0}
3. For l ∈ [nq],

– Do
• k ← FRand([nr])

– Until NoOfOnes[k] < dnq/nre and M [k, l] = 0
– M [k, l]← 1, NoOfOnes[k]← NoOfOnes[k] + 1

4. For k ∈ [nr],
(a) While NoOfOnes[k] < `,

– Do
• l← FRand([nq])

– Until M [k, l] = 0
– M [k, l]← 1, NoOfOnes[k]← NoOfOnes[k] + 1

5. Output matrix M .

Figure 4. Algorithm for randomly assigning elements of a cover of Q to parties in R.

The algorithm allows different parties in Q to receive from different numbers of parties in R,
whilst parties in R always send to the same number of parties in Q. Over Z, each row of the matrix
we generate, M , sums to `, whilst the array NoOfOnes records how many parties in Q the ithk party
in R sends to. Step 3 assigns all parties in Q to a party in R: this is the part of the algorithm which
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ensures we have a cover. In fact, this is done in such a way that each party in R sends to the same
number of parties in Q, namely dnq/nre. The reason for doing this is that it lends itself better to
analysis of relevant probabilities below. Step 4 assign parties in Q to parties in R at random until
each party in R is assigned ` parties in Q.

In the worst case, there is only one honest party in each of R and Q. Since we ensure that each
party in R is assigned the same number of parties, the probability we obtain a secure cover is given
by:

1−Pr[Every good party in R is assigned only dishonest parties in Step 3]

· Pr[Every good party in R is assigned only dishonest parties in Step 4]

When performing Step 3, the probability that the first good party in R is assigned only dishonest
parties is the number of ways of choosing dnq/nre parties from the tq corrupt parties divided by
the number of ways of choosing dnq/nre parties from all nq parties:( tq

dnq/nre
)( nq

dnq/nre
)

Thus the first dnq/nre corrupt parties in Q have been assigned. Then the probability that the
next honest party in R is also assigned only corrupt parties from the remaining tq−dnq/nre corrupt
parties, out of the nq − dnq/nre remaining parties in Q, is:(tq−dnq/nre

dnq/nre
)

(nq−dnq/nre
dnq/nre

) .
This continues until all the nr − tr − 1 honest parties in R have been assigned parties in Q.

Each party in R has been assigned dnq/nre parties in Q so that each party in Q has been assigned
to exactly one party in R. In Step 4 of the algorithm, each party in R is randomly assigned parties
in Q until all parties in R have ` parties assigned to them; they are thus each assigned `−dnq/nre
more parties in Q. For a given party in R, this is the number of ways of choosing ` − dnq/nre
dishonest parties from the remaining nq−dnq/nre parties in Q such that they too are all dishonest
– i.e. they are from the tq − dnq/nre remaining dishonest parties:(tq−dnq/nre

`−dnq/nre
)

(nq−dnq/nre
`−dnq/nre

)
The choice of parties in Q is with replacement since the algorithm is oblivious to the choice of other
parties in Step 4 (since Step 3 ensured the cover).

Then the probability that we obtain a secure cover is given by:

1−

 ( tq
dnq/nre

)
·
(tq−dnq/nre
dnq/nre

)
· · · · ·

(tq−(nr−tr−1)dnq/nre
dnq/nre

)
( nq
dnq/nre

)
·
(nq−dnq/nre
dnq/nre

)
· · · · ·

(nq−(nr−tr−1)dnq/nre
dnq/nre

)
 ·

 (tq−dnq/nre`−dnq/nre
)

(nq−dnq/nre
`−dnq/nre

)
nr−tr

After some simplification we find that this is equal to

1− tq! · (nq − (nr − tr)dnq/nre)!
nq! · (tq − (nr − tr)dnq/nre)!

·

 (tq−dnq/nre`−dnq/nre
)

(nq−dnq/nre
`−dnq/nre

)
nr−tr

(1)
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To see what happens in the extreme case where all but one party is corrupt in each of R and Q,
we set tq = nq − 1 and tr = nr − 1. Then the probability that we obtain a secure cover is given by

1− (nq − 1)! · (nq − dnq/nre)!
(nq)! · (nq − 1− dnq/nre)!

·

((nq−1)−dnq/nre
`−dnq/nre

)
(nq−dnq/nre
`−dnq/nre

) = 1− nq − dnq/nre
nq

· nq − `
nq − dnq/nre

=
`

nq
.

When ` is equal to nq, i.e. each party in R sends to every party in Q, we obtain a secure cover. For
any other choice of ` with this high proportion of corruptions, we do not obtain a sufficiently high
probability of obtaining a secure cover. Thus our protocol will not be secure for any size of R.

When ` is at least tq+1, then every party in R necessarily sends to at least one honest party. For
small numbers of parties, the parties in R must send to all parties in Q because chance of the cover
being insecure is too great. However, as we increase the total number of parties, the probability
that the cover is not secure decreases. For example, if there are 5 parties in R of which at most 2
are corrupt, and 50 parties in Q of which at most 25 are corrupt, each party in R must be assigned
` = 23 parties in Q to ensure at least one honest party in R sends to one honest party in Q with
probability at least 1 − 2−80, instead of the 25 parties we would require to guarantee the cover is
secure.

For the data in Table 1, we fix the number of parties in R at 5, fix the number of allowable
corruptions to be at most 3, and compute the lower bound on the size of Q (i.e. on nq) to guarantee
that the adversary cannot win even where ` is fixed as the smallest number of connections necessary
to make {Qi}i∈R to cover Q, and vary the number of corruptions we allow in Q. In other words,
` need be no larger to provide 80-bit security than it need be for enabling the partition to be an
exact cover (i.e. each party in Q sent to by at most one party in R).

nr tr tq/nq Min. nq for λ = 80 and ` = dnq/nre
5 3 1/2 336
5 3 1/3 201
5 3 1/4 148
5 3 1/5 125

Table 1. We fix nr = 5, tr = 3 and vary the fraction of corruptions in Q; the last column in the table is the least nq
such that the cover is secure even if each party in R only sends to ` = dnq/nre parties.

We stress that while the idea of completely outsourcing the pre-processing to an independent
set of parties often does not result in an efficient protocol, the best use-case of our protocol is when
R ⊂ Q; i.e., if there is some subset of parties trusted by all other parties in the network which can
do all of the pre-processing and then distribute it to the other parties.
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A Communication between subnetworks

Here we discuss the topology of the network of secure channels between the subnetworks R and
Q. Recall that Q has been partitioned into sets {Qi}i∈R and party i ∈ R assigned the set Qi, and
each Qi is assumed to be of size `. The topology depends primarily on the choice for the size ` of
each set Qi. We assume Qi is the same size for all i, and note that obviously ` is lower-bounded by
dnq/nre (so that ` · nr ≥ nq), since {Qi}i∈R together need to cover Q.

i1

i2

i3

i4

...

inr

j1

j2

j3

j4

j5

j6

...

jnq

Fig. 5. Complete bipartite graph

A.1 Complete

A näıve approach to connecting the two graphs with bilateral secure channels would be to form the
complete bipartite graph between them (so ` = nq). This topology requires nr ·nq secure connections
and is shown in Figure 5. If there is at least one honest party in each of R and Q then an adversary
controlling any number of other parties still can never recover the MAC key. Unfortunately, there
is a big communication overhead. Additionally, each party in R must compute nq reshares for their
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share. If we assume the adversary is able to corrupt at most some t of the n total parties, we can
clearly improve efficiency by instead requiring each party in R to send to t+ 1 parties in Q, since
then it is guaranteed each party, and in particular at least one honest party, sends to an honest
party in Q.

A.2 Load-balanced

To aim for a load-balanced solution, we could instead ask each party i ∈ R to reshare its share into
` = k · dnq/nre shares for some integer k ≥ 1, and sending these to some set Qi of ` parties in Q.
If we have a secure cover, then the intuition is that there exist shares held by only honest players
which are independent of all shares held by the adversary and are necessary for reconstructing the
secret. This is discussed in more detail in the proof of our main theorem (see Appendix D). Figure 6
shows an example of our load-balanced topology for when nq ≈ 2nr and k = 1. Note that it is not
necessarily the case that each party in Q receive the same number of shares, even though we require
each party in R to reshare to the same number of parties in Q.

i1

i2

i3

i4

...

inr

j1

j2

j3

j4

j5

j6

...

jnq

Fig. 6. Load-balanced topology

B UC Model Overview

In this section, we give a brief overview of the UC framework, the model in which we proof our
main theorem. Readers familiar with the model can skip this section.

Our proof is in the Universal Composability (UC) framework introduced by Canetti [Can00,
Can01]. The model was introduced to enable protocols to be “composed”, meaning that multiple
different protocols (or multiple instances of the same protocol) can be run simultaneously such
that the overall system is still “secure”. There are some protocols which can offer no security if we
permit multiple simulataneous executions. This framework works well in the pre-processing model
in MPC, as we split the circuit evaluation into two phases, the offline phase and the online phase;
the overall protocol is the composition of these phases.

In this model, we compare executions in an ideal world with executions in the real world. In
the real world, there is a set of honest parties who communicate in a protocol with a real-world
adversary A. In the ideal world, there is a set of honest parties and an ideal-world adversary called
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the simulator S, but now these entities interact not with each other, but some trusted third party
called a functionality F , which takes inputs from all parties, computes on these data, and provides
the output to all parties including the simulator.

The protocol between all parties in the real world somehow needs to resemble the interaction
the parties have with the functionality in the ideal world. More formally, the real-world view of
an environment, which provides inputs to all parties, sees all internal actions of the real-world
adversary, and sees the outputs of all parties, needs to be indistinguishable from the ideal-world
view.

To achieve this in “practice”, the adversary engages in the protocol with the simulator, which
extracts the adversary’s inputs and forwards them on to the functionality, which then interacts
with honest parties. If the protocol is designed correctly, the indistinguishability of the two views of
the environment guarantees that the real-world adversary has no more power than the ideal-world
adversary. In the design of the functionality, we limit the power of the adversary according to our
security model: for example, if we want to allow the adversary to cause the interaction to abort
without output, we design the functionality to allow it to accept an abort flag from the adversary
and to halt when it receives it. The reason we make the functionality “weaker” than it could be (i.e.
why we allow the adversary to have any control in the interaction at all) is because it may be proven
that no protocol exists which can stop an adversary doing some particular malicious behaviour.
Since the simulator does not have any control over the honest parties and yet is supposed to simulate
an execution of the protocol with the real-world adversary, the simulator has to do what it can to
provide a view (i.e. messages from the alleged honest parties to the corrupt parties) close to what
honest parties would actually send. In practice, this means it internally does what each honest
party would do in the protocol and passes this on to the adversary.

The environment models any behaviour of the system in which the protocol is run. Proving the
indistinguishability of the views shows there is no efficient attack strategy for breaking the protocol
by running other protocols alongside it. If the environment cannot distinguish between the real-
and ideal-world executions, the protocol is therefore secure even when run alongside any number
of other protocols (as long as those are also proven secure in this model), or even arbitrarily many
instances of the same protocol.

C SPDZ Online Protocol

The SPDZ online protocol is given in Figure 7 which itself uses the subprocedure MACCheck
presented in Figure 8, which itself makes use of a commitment functionality given in Figure 9. It
has been shown that UC commitment schemes in the plain model cannot exist, though they do
exist in the common reference string model (in which one assumes the existence of common string
known to all parties) [CF01], or, alternatively, the random oracle model (e.g. [HMQ04]).

The MAC check passes if the MAC is correct for the corresponding share. Importantly, the
check fails if the MAC is incorrect for the shared value, which occurs if the MAC or the value it
authenticates (or both) is incorrect. Proofs can be found in [KOS16, App. B] and [DPSZ12, App.
D3]. It is precisely because MACCheck detects errors in either the MAC value or share value or both
that we can use an offline phase which introduces errors into the share values themselves, and not
restrict ourselves to an offline phase in which only errors on MACs are allowed (as in the original
SPDZ papers). For clarity, we show this more explicitly in the proof of the next theorem:

18



The SPDZ Online Protocol ΠP,AOnline.

The set P is the complete set of parties, and the set A ⊂ P the set of corrupt parties in P.

Initialise: The parties call FP,APrep for the handles of enough multiplication triples (〈a〉, 〈b〉, 〈c〉) and enough input

mask values (ri, 〈ri〉) as are needed for the function being evaluated. If FP,APrep aborts then the parties output ⊥
and abort.
Input: To share an input xi, party i ∈ P takes an available unused input mask value (ri, 〈ri〉) and does the
following:
1. Broadcast ε← xi − ri.
2. The parties compute 〈xi〉 ← 〈ri〉+ ε.
Add: On input (〈x〉, 〈y〉), locally compute 〈x+ y〉 ← 〈x〉+ 〈y〉.
Multiply: On input (〈x〉, 〈y〉), the parties do the following:
1. Take one multiplication triple (〈a〉, 〈b〉, 〈c〉), compute 〈ε〉 ← 〈x〉 − 〈a〉 and 〈ρ〉 ← 〈y〉 − 〈b〉 and partially open

these shares to obtain ε and ρ respectively.
Partially opening a sharing 〈x〉 consists of each party i ∈ P sending its share xi to every other party j ∈ P
and computing the sum of all of these shares, including the party’s own. The values of γ(x)i are kept secret.

2. Set 〈z〉 ← 〈c〉+ ε · 〈b〉+ ρ · 〈a〉+ ε · ρ.
Output: To output a share 〈y〉, do the following:
1. Check all partially opened values since the last MACCheck in the following manner.

(a) The parties have some id’s id1, . . . , idk for some k, and corresponding partially opened values x1, . . . , xk.
(b) The players agree on a random vector r← FRand(Fkq ).

(c) Party i in P computes z ←
∑k
j=1 rj · xj and γ(z)i ←

∑k
j=1 rj · γ(xj)i where γ(xj)i denotes the MAC

share held by party i ∈ P on xj .
(d) The parties now run MACCheck on z, with party i inputting z and γ(z)i.

2. If the check fails, output ⊥ and abort.
3. Open the value by each party i ∈ P sending yi to all other parties j ∈ P to compute y ←

∑
j∈P yi, and then

run MACCheck once more, so party i ∈ P inputs y and γ(y)i, to verify 〈y〉. If this check fails, output ⊥ and
abort; otherwise, accept y as a valid output.

Figure 7. The SPDZ Online Protocol ΠP,AOnline.

The MACCheck Protocol from SPDZ/MASCOT.

On input an opened value s, a MAC share γ(s)i and a MAC key share αi from each party i and a session id sid,
each party i does the following:
1. Compute σi ← γ(s)i− s ·αi and call FCommit.Commit(σi, i, sid) to commit to this, and receive the handle τi.
2. When commitments are output by all parties call FCommit.Open(i, sid, τi) to open the commitments.
3. If

∑n
i=1 σi 6= 0, output ⊥ and abort; otherwise, continue.

Figure 8. The MACCheck Protocol from SPDZ/MASCOT.

Commitment Functionality FCommit.

Commit: On input Commit(v, i, sid) by party i, where v is the value to committed, sample a handle τv and send
(i, sid, τv) to all parties.
Open: On input Open(i, sid, τv) by party i, output (v, i, sid, τv) to all parties. If some party Pi is corrupt and
the adversary inputs (Abort, i, sid, τv), the functionality outputs (⊥, i, sid, τv) to all parties.

Figure 9. Commitment Functionality FCommit.

Theorem 3. The protocol ΠP,AOnline securely implements the functionality FP,AMPC in the FP,APrep, FCommit,
FRand-hybrid model.
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Proof. The proof is identical to that in [DPSZ12], except that the pre-processing may now introduce
errors into the share values as well as the MAC values. To prove the theorem, we must show that
no environment can distinguish between an adversary interacting as in the protocol ΠP,APrep and a

simulator interacting with the functionality FP,APrep. Thus the proof runs exactly as in [DPSZ12, App.
D3], except that when we run the MACCheck protocol, the error can now be on the value in the
share or the MAC. However, the security game presented in [DPSZ12] already allowed the adversary
to introduce errors on the shares, so the original protocol already offers the stronger guarantee that
no error can occur on either the MAC or the value of the share it authenticated (or both). Note
that if the adversary can alter the share and the MAC and have MACCheck pass, then in particular
this is equivalent to tweaking some share ai by t to obtain a′i ← ai + t and then choosing the
correct tweak τ on the MAC share, γ(a′)i ← γ(ai) + τ so that the check passes. However, this
means the adversary has successfully guessed α = τ/t, the global MAC key, which it can only do
successfully with probability 1/q. (Since q is expontial in the security parameter λ, this probability
is negligible.) ut

D Proof of Theorem 2

Proof. The proof is presented via a simulator (see Figure 10 and Figure 11) whose task is to

overlay the functionality FQ,Q∩APrep so that no environment can distinguish whether the adversary is

interacting as in ΠR→Q,A
Prep , or with the simulator and FQ,Q∩APrep . Figure 12 shows an outline of what

each entity does during the simulation. Since we are in the FR,R∩APrep -hybrid model, the simulator
must reply to all calls the adversary makes to this functionality.

To do this we must show that the view of the environment in each case is the same. The view of
the environment consists of the joint distribution of: the inputs and outputs of all parties (honest
and corrupt), the adversary’s internal state, and all messages the adversary sent and received.

SFeedValue: Since it is used at several points throughout the functionality, we start by showing

that the view of the environment when the adversary interacts in the protocol ΠR→Q,A
Prep with the

simulator is indistinguishable from its view when the adversary interacts with FQ,Q∩APrep . By the time
the macro FeedValue is called, the simulator has a set {vi}i∈R and the simulator and adversary
have agreed on an error ∆R

v . With each share, the simulator behaves differently depending on the
secure cover:

1. If a party i in R is honest, the simulator simply reshares the share vi held for that party by
sampling a set {v̂ji }j∈Qi such that vi =

∑
j∈Qi v̂

j
i and sets ∆v,i ← 0.

2. If a party i inR is corrupt, then the simulator receives a (possibly empty) set of shares {ṽji }j∈Qi\A
from the adversary. Then:

(a) If the party in R sends only to honest parties, the simulator computes ∆v,i ←
(∑

j∈Qi ṽ
j
i

)
−

vi.
(b) If the party in R sends to at least one corrupt party, the simulator samples the remaining

shares {v̄ji }j∈Qi∩A so that
∑

j∈Qi\A ṽ
j
i +

∑
j∈Qi∩A v̄

j
i = vi, and sets ∆v,i ← 0.

The simulator sets ∆Reshare
v ←

∑
i∈R∆v,i. Thus the only time the simulator considers that the

adversary has contributed an error is when all shares of a corrupt party are sent to honest parties.
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Simulator SQ,Q∩APrep

The simulator begins by first setting the set of corrupt parties to be the corrupt parties in R with the corrupt
parties in Q, augmented to include all parties in Q which receive from only corrupt parties in R.

Initialise: The simulator receives a message (Initialise, q) from the adversary and forwards the message to the

functionality FQ,Q∩APrep . Then the simulator does the following:

1. The simulator simulates FR,R∩APrep .Initialise with the same input (Initialise, q):
– For each corrupt party i ∈ R, the simulator receives an error ∆α,i and share αi. The simulator sets
∆R
α ←

∑
i∈R∩A∆α,i.

– The simulator sends (αi)i∈R∩A back to the adversary.
2. The simulator receives the call FeedValue(α) from the adversary, and so the simulator samples a set {αi : i ∈

R \ A} ← F and they perform the subroutine SFeedValue. This gives the simulator a set of shares {αj}j∈Q
and an error ∆Q

α . The simulator sends {αj : j ∈ Q∩A} along with the error ∆Q
α to the functionality FQ,Q∩APrep .

Macro: SFeedValue On input a secret-shared value v (which could be a shared value or its shared MAC, or the
global MAC key):
1. The simulator retrieves the shares vi for all i ∈ R and also the error given by the adversary, ∆R

v .
2. For each i ∈ R, the simulator does the following:

(a) If i is honest, the simulator samples {v̂ji }j∈Qi subject to
∑
j∈Qi

v̂ji = vi and sends {v̂ji }j∈Qi∩A to the
adversary. The simulator sets ∆v,i ← 0.

(b) If i is corrupt and only sends to honest parties, the simulator receives a set {ṽji }j∈Qi and determines

the error introduced by the adversary by setting ∆v,i ←
(∑

j∈Qi
ṽji

)
− vi.

(c) If i is corrupt and sends to at least one corrupt party, the simulator receives a (possibly empty) set
{ṽji }j∈Qi\A of reshares of the corrupt party to honest parties. The simulator samples reshares {v̄ji }j∈Qi∩A

subject to
∑
j∈Qi∩A v̄

j
i +

∑
j∈Qi\A ṽ

j
i = vi, and sets ∆v,i ← 0.

3. Now for each j ∈ Q ∩ A, the simulator computes vj =
∑
i∈Rj∩A v̄

j
i +

∑
i∈Rj\A v̂

j
i and for each j ∈ Q \ A,

the simulator computes vj =
∑
i∈Rj∩A ṽ

j
i +

∑
i∈Rj\A v̂

j
i . The simulator also computes the new error ∆Q

v ←
∆R
v +

∑
i∈R∆v,i.

Figure 10. Simulator SQ,Q∩APrep

The intuition is that if a corrupt party in Q, who receives from at least one corrupt party in R,
introduces an error and sends it to the functionality, this is equivalent to the corrupt sender in R
sending a different reshare to the corrupt party in Q. This means that no error is “committed” to
unless the adversary sends all reshares of a given share to the honest parties. For each j ∈ Q ∩ A,
the simulator fixes ŵj ←

∑
i∈Rj\A v̂

j
i +

∑
i∈Rj∩A v̄

j
i . Note that since the simulator did not receive

the reshares of corrupt parties in R to corrupt parties in Q, this ŵj is defined using v̄ji ’s not ṽji ’s.
This is where the simulation SFeedValue ends.

We will now see formally why the computed error and shares which are sent to FQ,Q∩APrep produce
shares for honest parties which are consistent with what the environment expects to see:

– During the call to FQ,Q∩APrep .Angle, the simulator computes the error ∆Q
v ← ∆R

v + ∆Reshare
v and

sends it along with the set {ŵj : j ∈ Q ∩A} to the functionality.
– The functionality will sample w ← F and a set {wj}j∈Q\A so that

∑
j∈Q∩A ŵ

j +
∑

j∈Q\Aw
j =

w +∆Q
v . The functionality will send these shares to honest parties.

– If the adversary were to follow the protocol, it would compute w̃j ←
∑

i∈Rj\A v̂
j
i +

∑
i∈Rj∩A ṽ

j
i

for each j ∈ Q ∩A.
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Simulator SQ,Q∩APrep cont’d

Computation: On input (DataGen, DataType) from the adversary, the simulator executes the data generation
procedures as follows:
– On input DataType = InputPrep and a value j ∈ Q from the adversary,

1. For each i ∈ Rj ,
(a) The adversary calls FR,R∩APrep .Computation(DataGen, InputPrep) with input i so the simulator does

the following:
i. If i ∈ R ∩A, the adversary sends the simulator a value r(i).

ii. In the execution of FR,R∩APrep .Angle, the adversary sends

(r
(i)
k , γ(r(i))k)k∈R∩A and errors (∆r(i),k,∆γ(r(i)),k)k∈R∩A

to the simulator. The simulator sets

∆R
r(i) ←

∑
k∈R∩A

∆r(i),k and ∆R
γ(r(i)) ←

∑
k∈R∩A

∆γ(r(i)),k

iii. The simulator sends (r
(i)
k , γ(r(i))k)k∈R∩A back to the adversary.

iv. If i ∈ R ∩A, the simulator sends r(i) to the adversary.
(b) The simulator receives the calls FeedValue(r(i)) and FeedValue(γ(r(i))) from the adversary, so the

simulator samples a set {r(i)k , γ(r(i))k : k ∈ R \A} ← F and they perform the subroutine SFeedValue
on each. This gives the simulator a set of shares {r(i),k, γ(r(i))k : k ∈ Q} and errors ∆Q

r(i)
and

∆Q

γ(r(i))
.

(c) If i ∈ R \ A and j ∈ Q ∩ A, the simulator sends r(i) to the adversary. If i ∈ R ∩ A and j ∈ Q \ A,
the simulator waits for the adversary to send r̃(i) and modifies the error on r(i) by setting ∆Q

r(i)
←

∆Q

r(i)
+ r(i) − r̃(i)

2. The simulator computes r(j) ←
∑
i∈Rj\A r

(i) +
∑
i∈Rj∩A r̃

(i) and then sends the signal (DataGen,Input)

to the functionality FQ,Q∩APrep . The functionality awaits input from the simulator:

• If j ∈ Q ∩A the simulator sends r(j) to the functionality FQ,Q∩APrep .

• The simulator sends the set {r(i),k, γ(r(i))k : k ∈ Q ∩ A} to the functionality FQ,Q∩APrep along with

the errors ∆Q

r(i)
and ∆Q

γ(r(i))
.

– On input DataType = Triples,

1. The simulator responds to the adversary’s request to execute FR,R∩APrep .Computation(DataGen,Triple)
by doing the following:

(a) In the execution of FR,R∩APrep .Angle, the adversary sends {ai, γ(a)i, bi, γ(b)i, ci, γ(c)i : i ∈ R ∩A} and
errors ∆a, ∆γ(a), ∆b, ∆γ(b), ∆c and ∆γ(a) to the simulator.

(b) The simulator executes the procedure honestly so that it obtains a set {ai, γ(a)i, bi, γ(b)i, ci, γ(c)i :
i ∈ R} and sends the set {ai, γ(a)i, bi, γ(b)i, ci, γ(c)i : i ∈ R ∩A} back to the adversary.

2. The simulator now runs SFeedValue on a, b and c and their MACs with the adversary. This gives the
simulator a set of shares {aj , γ(a)j , bj , γ(b)j , cj , γ(c)j : j ∈ Q} and errors ∆Q

a , ∆Q
γ(a), ∆

Q
b , ∆Q

γ(b), ∆
Q
c and

∆Q
γ(a).

3. The simulator sends input (DataGen,Triple) to the functionality FQ,Q∩APrep and then sends it the set

{aj , γ(a)j , bj , γ(b)j , cj , γ(c)j : j ∈ Q ∩A} and the errors above.

Figure 11. Simulator SQ,Q∩APrep cont’d

Putting this together, we obtain∑
j∈Q∩A

w̃j +
∑
j∈Q\A

wj =
∑

j∈Q∩A

w̃j + w +∆Q
v −

∑
j∈Q∩A

ŵj

=
∑

j∈Q∩A

 ∑
i∈Rj\A

v̂ji +
∑

i∈Rj∩A

ṽji

+ w +∆R
v +∆Reshare

v −
∑

j∈Q∩A

 ∑
i∈Rj\A

v̂ji +
∑

i∈Rj∩A

v̄ji


=

∑
j∈Q∩A

∑
i∈Rj∩A

ṽji −
∑

j∈Q∩A

∑
i∈Rj∩A

v̄ji + w +∆R
v +∆Reshare

v

=
∑

i∈R∩A

∑
j∈Qi∩A

ṽji −
∑

i∈R∩A

∑
j∈Qi∩A

v̄ji + w +∆R
v +∆Reshare

v

=
∑

i∈R∩A

∑
j∈Qi∩A

ṽji −
∑

i∈R∩A:
Qi∩A 6=∅

∑
j∈Qi∩A

v̄ji + w +∆R
v +∆Reshare

v

=
∑

i∈R∩A

∑
j∈Qi∩A

ṽji −
∑

i∈R∩A:
Qi∩A 6=∅

vi − ∑
j∈Qi\A

ṽji

+ w +∆R
v +

∑
i∈R∩A:
Qi∩A=∅

 ∑
j∈Qi\A

ṽji

− vi


=
∑

i∈R∩A

∑
j∈Qi∩A

ṽji −
∑

i∈R∩A:
Qi∩A 6=∅

vi +
∑

i∈R∩A:
Qi∩A 6=∅

∑
j∈Qi\A

ṽji + w +∆R
v +

∑
i∈R∩A:
Qi∩A=∅

 ∑
j∈Qi\A

ṽji

− vi


=
∑

i∈R∩A

∑
j∈Qi∩A

ṽji −
∑

i∈R∩A

vi +
∑

i∈R∩A

∑
j∈Qi\A

ṽji + w +∆R
v

=
∑

i∈R∩A

ṽi −
∑

i∈R∩A

vi + w +∆R
v .
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This shows that the shares sampled by the functionality for honest parties during this procedure,
namely the set {wj}j∈Q\A, sum with the shares the adversary computes (or would compute) to
differ from the secret by precisely the error the adversary introduced on the shares when resharing
(the first two summands above) added to the error introduced by the adversary on generating the
original secret (the last summand above). For uniformly sampled values in the protocol like r(i),
the actual error will not be observed by the environment since the secret is chosen uniformly at
random; however, during triple generation, it is necessary that these errors be consistent in Q as in
R, since the environment can reconstruct the secrets (from the adversary’s shares and the shares
honest parties output at the end) and check if the product deviates in accordance with the errors
introduced.

The fact that the cover is secure also means that during any execution of FR,R∩APrep .Angle, it
suffices for the simulator to sample uniformly at random any honest parties’ shares which are to
be reshared. This is because the security of the cover ensures the adversary never sees all reshares
of all shares (and thus cannot discover the secret). Since the environment is also oblivious to the
internal state of honest parties, its lack of the one reshare from honest to honest denies it the ability
to reconstruct the “intermediate” secrets which are merely simulated and are therefore different

(with high probability) from the final secrets sampled by the functionality FQ,Q∩APrep .

Initialise: First, the adversary sends the simulator a set of shares and errors for the global MAC
key, and the simulator sends the shares back. Then, to “transfer” the global MAC key from R to
Q, the simulator samples {αi : i ∈ R \ A} and then the simulator and adversary run SFeedValue.
As noted above, the security of the cover means the environment cannot reconstruct the global
MAC key shared amongst the parties in R; importantly, this means the environment cannot see

that the (implicit) simulated MAC key differs from the MAC key sampled by FR,R∩APrep (with high

probability). Note that it is necessary that the simulator defer its call to the functionality FQ,Q∩APrep

until after the call to SFeedValue because the adversary may introduce errors during resharing in

addition to those which it specified during the call to FR,R∩APrep .

Computation: During this procedure, the simulator acts exactly as FR,R∩APrep would whenever the
adversary sends commands for this functionality, so the simulation runs exactly as in the real
world. The only other communication is when the simulator and adversary engage in SFeedValue,
for which we have already shown that the simulator provides a view for the environment that is
indistinguishable between the ideal and real worlds. It was noted above that while for some secrets
the error actually need not be the same for Q as for R because they are supposed to be uniformly
random elements anyway, when producing triples the errors must be consistent between the two
networks since the randomness is correlated. However, this is not a problem since the simulator
can explicitly compute and “carry through” errors from parties in R to parties in Q, so the errors
on triples are consistent in each network: even though the values for a, b and c are not known to
the simulator, the environment will observe the same errors on each in the simulation as in the real
world.
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