
Threshold Fully Homomorphic Encryption

Aayush Jain∗ Peter M. R. Rasmussen∗ Amit Sahai∗

March 20, 2017

Abstract

We formally define and give the first construction of (leveled) threshold fully homo-
morphic encryption for any access structure induced by a monotone boolean formula
and in particular for the threshold access structure. Our construction is based on the
learning with errors assumption and can be instantiated with any existing homomor-
phic encryption scheme that satisfies fairly general conditions, such as Gentry, Sahai,
Waters (CRYPTO 2013) and Brakerski, Gentry, Vaikuntanathan (ITCS 2012).

From threshold homomorphic encryption, we construct function secret sharing and
distributed pseudorandom functions for the aforementioned access structures. No such
constructions were known prior to this work.

1 Introduction

The last few years have seen exciting developments that have changed the landscape of cryp-
tography. Starting with the first breakthrough construction by [Gen09], Fully Homomorphic
Encryption (FHE) has given rise to very surprising applications in the cryptographic world
such as round efficient MPC [MW16, AJL+12, GLS15] and delegation for P [KRR14]. An
FHE scheme allows arbitrary computations on encrypted data to be carried out without
decryption. Not only has FHE helped realize many great primities, the techniques involved
have themselves proven to be very useful. In particular, the techniques developed in a series
of works on homomorphic encryption [Gen09, BV11, BGV12, GSW13, LTV12] helped to
construct a multi-linear maps candidate [GGH13a], which allowed for the construction of
the first candidate indistinguishability obfuscator [GGH+13b].
∗UCLA and Center for Encrypted Functionalities. {aayushjain, rasmussen, sahai}@cs.ucla.edu.

Research supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF
grants 1619348, 1228984, 1136174, and 1065276, a Xerox Faculty Research Award, a Google Faculty Re-
search Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This material is
based upon work supported by the Defense Advanced Research Projects Agency through the ARL under
Contract W911NF-15-C-0205. The views expressed are those of the author and do not reflect the official
policy or position of the Department of Defense, the National Science Foundation, or the U.S. Government.

1

In this work we study a natural question of constructing a “distributed” variant of FHE.
More specifically, we consider a situation with multiple parties that each have a share of a
secret key corresponding to an FHE public key. We wish to construct schemes that satisfy
this with as general an access structure as possible.

We present a lighthearted example to illustrate this paradigm and the importance of
flexible access structures. Say that the UN general assembly has collected data from all over
the globe on occurrences of penguins. The data is stored as FHE encryptions in a database
with each member state having a share of the secret key. In order to decrypt the result of
a computation on the data, all member states must combine their key shares. Now, a team
of researchers have analyzed the data in relation with the effort to save the penguins of the
world. They need every country to supply their secret key share to decrypt and reveal the
results. However, the country of Baroque vehemently denies the existence of penguins and
refuses to provide its key towards the cause, thus blocking the endeavor. In such a situation
the assembly must of course reconsider their data access policy. It is not fair nor practical
that a single state or party can block a decryption and further, there is the issue of a key
share being corrupted or lost.

Thus, it would be much better if more democratic and general access policies were
possible. In the case of the UN general assembly, a majority access structure would be very
practical for instance. More intricate access structures can be necessary as well. Suppose
that a council on penguin welfare has been assembled. Then we might like an access
structure that divides the power to decrypt between the general assembly and the council
such that for instance the following groups can decrypt:

• Two members of the council and majority of the general assembly.

• A majority of the council.

• A two-thirds majority of the general assembly.

While the above example is rather innocent, one can imagine many real world situations
in which intricate access structures such as those described would be necessary. In this
work, we thus consider a very general question and try to achieve as broad a class of access
structures as possible. Following the secret sharing literature, we ask the following of our
scheme for some access structure A.

1. A dealer generates an FHE public key pk and secret key shares sk1, . . . , skn that are
distributed among n parties.

2. Given a ciphertext ct for a message µ and a secret key share ski a party can compute
a partial decryption pi.

3. Given partial decryptions {pi}i∈S for a set of parties S satisfying A, the message µ
can be recovered.

2

4. We require that any adversary that corrupts a subset of the parties S 6∈ A should not
learn anything about the encrypted message even after seeing partial decryptions of
other ciphertexts by the honest parties.1

We call a scheme satisfying these criteria a threshold homomorphic encryption (TFHE)
scheme. Similar settings have been considered before, see for example [MW16, AJL+12,
GLS15]. These works capture a somewhat different scenario. In [AJL+12, GLS15] there
is a protocol for computing a joint public key and a distributed decryption. The work of
[MW16] removed the bottleneck of having to run a protocol to generate a joint public key.
However, both these works fail to capture our example as they have in common that all n
parties must participate to decrypt the ciphertext.

In this paper, we consider a slightly different but equally natural question: can one
instead induce a more general access structure A on the set of parties? Towards this goal,
we achieve the following results.

Theorem 1. Assuming LWE, there exists a threshold fully homomorphic encryption scheme
for access structures induced by any monotone boolean formula.

We combine this result with the work of [Val84], which constructs monotone boolean
formulas for majority and t-threshold circuits, to get.

Corollary 1. Assuming LWE, there exists a threshold fully homomorphic encryption scheme
for the majority and t-out-of-n access structures for any t.

Our techniques can also be applied elsewhere. For example, they can be used to con-
struct threshold FHE for the access structure given by undirected s-t connectivity graphs
which is compatible with the notion of evolving access structures [KNY16]. Moreover, we
study some applications such as:

1.0.1 Function Secret Sharing [BGI15, BGI16, DHRW16].

The notion of function secret sharing was recently introduced in [BGI15]. In function
secret sharing, a dealer secret shares a function f into parts f1, . . . , fn. It is required that
{fi(x)}i∈[n] forms an additive secret sharing of f(x). As pointed out in [BGI15], function
secret sharing has a long list of applications such as homomorphic secret sharing, distributed
point function, and multi-server PIR with secure keyword search. We generalize this notion
to arbitrary access structures. From a TFHE scheme for a class of access structures S, we
give a construction of function secret sharing for S.

1.0.2 Distributed PRF [BLMR13, Nie02, NPR99, NR04, MS95].

A distributed PRF is an algorithm that allows a PRF key k to be secret shared among
a set of parties. Each party can output an additive share of the PRF computation for

1There are some technical nuances to this definition which we defer to a later section.

3

any input x. These shares can then be combined to learn PRF(k, x). Very importantly,
evaluating the PRF can done without reconstructing the key in any single location. There
has been a huge body of work in this area. Up until [BLMR13] all previous constructions
either required multiple rounds of interaction or random oracle or interaction amongst key
servers. The work of [BLMR13] gave a very clean and efficient construction from LWE using
a key homomorphic PRF. Their construction has just one round and there is no interaction
amongst parties. We give an alternate route to building such one round distributed PRFs:
using threshold FHE. Using this approach, we are able to support more general access
structures such as monotone boolean formulas.

We believe that our techniques may either directly apply or with some work lead to var-
ious other interesting notions for these access structures such as distributed point functions
and homomorphic secret sharing.

2 Technical Overview

The goal of this paper is to construct a threshold homomorphic encryption scheme for all
polynomial sized circuits and natural monotone access structures (such as t-out-of-n access
structures and other access structures induced by monotone boolean formulas, undirected
s-t graphs, and monotone span programs). Care has to be taken while defining such a
primitive. Roughly speaking the requirement is twofold: First, we require semantic security
to hold even when secret key shares are leaked for some unqualified set not satisfying the
access structure. Second, there exists a simulator that statistically simulates the entire view
of an adversary who possesses some unqualified set of secret shares in an adaptive game of
requesting and receiving partial decryptions of ciphertexts.

2.0.1 Overall Approach.

Let FHE be a homomorphic encryption scheme with the following properties, which are
satisfied by multiple FHE schemes such as [GSW13, BV11, BGV12].

1. For a prime p, the secret key sk is a vector sk ∈ Znq .

2. The decryption function consists of two procedures Decode = (Decode0,Decode1).

Decode0(sk, ct): takes as input a secret key sk and a ciphertext ct and computes a
function linear in sk to output µ dq/2e + e where e ∈ [−B,B] is an error term
for some B << q and µ ∈ {0, 1} is the message of the ciphertext ct.

Decode1: Properly rounds the output of Decode0 to recover µ.

Since Decode0 is linear in the key sk, the following idea is not too far fetched. Simply
secret share sk with a linear secret sharing scheme Π for some access structure A on a set

4

of parties P = {P1, . . . , PN} into sk1, . . . , skN .2 For any set S ⊆ P with S ∈ A, it is then
the case that there are coefficients {ci}i∈S such that

sk =
∑
i∈S

ciski

and then by linearity of Decode0, it follows that∑
i∈S

ciDecode0(ski, ct) = µ
⌈q

2

⌉
+ e.

Thus, by secret sharing the secret key of the FHE scheme, the outputs of decoding with
the secret key shares become a secret sharing of the decryption of the ciphertext. However,
reconstructing the secret reveals the noise of the FHE scheme, which ultimately allows for
reconstruction of the secret key sk after seeing just a few decryptions. To avoid this, it is
necessary for the partial decryption p′i = Decode0(ski, ct) to have “smudging” noise added
to it before being published as the share of party Pi. is the partial decryption

pi = p′i + esm (1)

where esm is sampled from a distribution with variance much greater than e in order
to statistically hide the noise e. This technique is called noise flooding and is used in
several papers related to LWE. In the following we will describe how the above general
approach leads to a rather intricate and surprising construction of TFHE for a large class
of access structures. We start by presenting some more straightforward approaches that
would intuitively work, but all run into obstacles.

2.0.2 Attempt 1: The Naive approach.

Given the above fairly intuitive outline of a construction for TFHE from an FHE scheme,
one would think that constructing TFHE for a linear access structure should be trivial.
However, this is far from the case. Let us consider the t-out-of-n access structure which is
also the access structure for Shamir secret sharing [].

As an example, instantiating the above construction with Shamir secret sharing for
the t-out-of-n access structure runs into the following problem. For t < N the recovery
coefficient ci of the secret key shares can be very large, and in that case attempting to recover
µ from the partial decryptions {pi}i∈[t] with recovery coefficients {ci}i∈[t] might satisfy that
sk =

∑
i∈S ciski, but when attempting to recover µ, the smudging error overflows and ruins

the correctness of the scheme as∑
i∈[t]

cipi =
∑
i∈[t]

cip
′
i +
∑
i∈[t]

cie
sm
i (2)

2See section 3.3 for an introduction to the terminology of secret sharing.

5

where
∑

i∈[t] cie
sm
i can be arbitrarily large depending on the ci. Actually, the scheme

already works if t = n as then each reconstruction coefficient is 1, but in the general case
the approach fails as we observe that the reconstruction coefficients need to be small.

2.0.3 Attempt 2: Trying Small Coefficients.

To avoid the problem encountered above, one could try to use a linear secret sharing scheme
with small reconstruction coefficients. Consider a Shamir style secret sharing scheme for
t-out-of-n with reconstruction coefficients smaller than some constant c = (N !)2 (which for
instance is described in [BLMR13] in the context of constructing distributed PRFs from
noisy key-homomorphic PRFs). Then generating partial decryptions as in (1) will preserve
correctness of the scheme since now in equation (2) we have

∣∣∣∑i∈[t] cie
sm
i

∣∣∣ ≤ tcBsm where
Bsm is the bound on the noise esm and the ci are small.

However, now there is a problem with simulation. Let A be the access structure of our
t-out-of-n scheme supporting small recovery coefficients and let S 6∈ A be a subset of parties.
We will assume S to be of maximal size such that adding any new party to S would make it
a valid share set. Now, given the secret key shares {ski}i∈S and the fact that the ciphertext
ct decrypts to µ it should be possible to statistically simulate the partial decryptions of all
the other parties. To do so, first generate {p′i = Decode0(ski, ct)}i∈S . Then for some party
Pk 6∈ S, the only relation that is know regarding the value p′k = Decode0(skk, ct) is that for
some valid subset S′ ⊆ S ∪ {Pk} (which must contain Pk) and small recovery coefficients
{ci}i∈S′ , ∑

i∈S′
p′i = µ

⌈q
2

⌉
+ e.

In order to simulate the partial decryption pk = p′k +esm, one would need to derive p′k from
this expression by computing

p′k = c−1k

(
µ
⌈q

2

⌉
+ e−

∑
i∈S′

p′i

)
.

However, knowing only an invalid set of secret key shares, the simulator doesn’t know the
noise e. Thus, the closest approximation of the value p′k must be

p̃k = c−1k

(
µ
⌈q

2

⌉
−
∑
i∈S′

p′i

)
,

which differs from the real value p′k by
∣∣c−1k e

∣∣, which can be large since while ck is small,
no such guarantees exists for c−1k . This shows that for simulation security to hold, we
would want the reconstruction coefficients to both be small and have small inverses. We
can ensure this if the reconstruction is additive.

6

2.0.4 Attempt 3: Splitting Shares.

A natural approach to solving the problem of the above attempts is to have each party
output multiple partial shares such that there always is a share set with recovery coefficients
in {0, 1}. We will demonstrate this technique and an attack on it in the following

Consider again as above the Shamir secret sharing scheme for t-out-of-n secret sharing
the secret key sk of the FHE scheme into shares sk1, . . . , skN such that party Pi receives
the share ski. Let q be the prime modulus of the FHE scheme. To partially decrypt, first
compute p′i = FHE.Decode0(ski, ct). Instead of outputting p′i + ei where ei

$←− [−Bsm, Bsm]

as the partial decryption, we instead sample eji
$←− [−Bsm, Bsm] for every 0 ≤ j ≤ log(q)

and output
{pji = 2jp′i + eji}

blog(q)c
j=0 .

Now, reconstruction can be done using recovery coefficients ci ∈ {0, 1}. To see this, say
that in the original Shamir secret sharing scheme, the coefficients of recovery were ci, i ∈ [t].
Then finding ci,j ∈ {0, 1} such that ci =

∑blog(q)c
j=0 2jci,j , we can recover the plaintext of the

ciphertext ct as

t∑
i=1

blog(q)c∑
j=0

ci,jp
j
i = µ

⌈q
2

⌉
+ e+

t∑
i=1

dlog(q)e∑
j=0

eji .

Having such a scheme, however, does not help us for two reasons. First, recovering and
simulating the partial decryptions given an invalid share set runs into the same problems as
before. It is not clear how one would simulate partial decryptions since given µ and partial
keys {ski}i∈[t]\{k} since the equation would be

ckp
′
k =

blog(q)c∑
j=0

2jck,jp
′
k = µ

⌈q
2

⌉
−

∑
i∈[t]\{k}

blog(q)c∑
j=0

2jci,jp
′
i.

Second, splitting the shares in this manner not only makes simulation difficult, but
also leads to direct attacks. In fact, it can be shown that letting each eji be drawn from
the interval [−Bsm, Bsm] where Bsm < q/2 allows for complete recovery of p′i given {p

j
i =

2jp′i + ei,j}blog(q)cj=0 .

2.0.5 Solution: TFHE for a Special Access Structure.

Let us step back for a moment and observe the restrictions we have derived, what it would
take for a secret sharing scheme to be compatible with our construction. The properties
are as follows.

1. The secret sharing is a linear secret sharing scheme over some prime field Zq which
is compatible with the FHE scheme.

7

2. A recovery coefficients ci of the scheme can be chosen from {0, 1} such that both ci
and c−1i are small.

3. The share of each party and the partial decryptions are both single elements of Zq.

We emphasize that this property fails for most commonly used secret sharing schemes such
as Shamir secret sharing (as shown above). In our paper, we define {0, 1}-LSSS to be the
class of access structures that allow for a secret sharing scheme satisfying these properties
(see Section 3.3.1 for details). The most important attribute of {0, 1}-LSSS is that it lets
the simulation security proof that previously failed go through.b

More specifically, applying the construction of our overall approach to a secret sharing
scheme Π for an access structure A ∈ {0, 1}-LSSS will yield a TFHE scheme. In this TFHE
scheme correctness holds because of the small recovery coefficients as demonstrated above.
Further, simulation security will now go through as follows. Say that a simulator holds
secret keys shares {ski}i∈S for an invalid share set S 6∈ A of parties, which is maximal in
the sense that adding any new party to S would yield a valid share set. Given a ciphertext
ct, knowledge of the decryption µ of ct, and again computing {p′i = Decode0(ski, ct)}i∈S ,
the simulator can now statistically simulate the partial decryption of any other party Pk.
Since the set S∪{Pk} is valid and the recovery coefficients of the scheme Π belong to {0, 1}
there exists a set S′ ⊆ S ∪{Pk} (which will contain Pk) such that

∑
i∈S′ ski = sk and thus,

p′k = µ
⌈q

2

⌉
+ e−

∑
i∈S′\{k}

p′i.

Not knowing e, the simulator can only compute p̃i = µ
⌈ q
2

⌉
−
∑

i∈S′\{k} p
′
i, which will only

differ from p′k by |e|, which is small. Thus, adding the “smudging” noise, p′k + esm and
p̃k + esm are statistically close.

Thus, we manage to construct TFHE for the {0, 1}-LSSS class of access structures.

2.0.6 Extending Solution: Monotone Formulas and Majority.

While having TFHE for some access structure is good, the class {0, 1}-LSSS seems a strange
one. Two obvious access structures which are contained in {0, 1}-LSSS are undirected s-
t-connectivity and n-out-of-n, but other than those, it is not obvious which other useful
access structures are.

However, it turns out that the class is in fact fairly large. We show that in fact the
access structures defined by the monotone boolean formulas with input fan-out 1 (special
monotone boolean circuits) belong to {0, 1}-LSSS through a folklore algorithm. Said algo-
rithm converts a special monotone boolean formula into an LSSS share matrix as follows.
Consider a special monotone formula C as a binary tree T whose nodes are either AND or
OR gates. Now, label the nodes of T with vectors v ∈ Z∗q recursively:

1. Label the root node r by vr = (1) (the vector consisting of a single index of value 1).

8

2. For every node s labeled with the vector vs label its children r and l (padding all
constructed labels with 0s after each operation to make all labels of equal length):

(a) If s is an OR gate, label r and l by vr = vl = vs.

(b) If s is an AND gate, label r by vr = (vs || 1) and l by vl = (0, . . . , 0,−1) (of the
same length as vr).

The matrix with rows corresponding to the labels of the leafs of T is now an LSSS share
matrix for the access structure induced by C.

We prove that this construction yields a secret sharing scheme where the reconstruction
coefficients can always be chosen in {0, 1} by considering minimal valid share sets, i.e. valid
share sets of parties such that removing any party renders the set invalid, and by induction
on the depth of the C.

Now, it would be natural to extend a construction of TFHE for special monotone boolean
formulas to one for regular monotone boolean formulas. First, note that the above algorithm
while yielding an LSSS share matrix would not yield a share matrix for {0, 1}-LSSS if given
a regular monotone boolean formula, since each party would need to hold multiple shares if
the inputs had input fan-out greater than one, contradicting the definition of {0, 1}-LSSS.
Further, it does not seem possible to merge multiple shares into a single field element.
Thus, we employ a different strategy. Consider a monotone boolean C : {0, 1}N → {0, 1}
with multiple input fan-out. Assuming without loss of generality that every input of C has
fan-out `, generate a new special monotone boolean formula C ′ : {0, 1}`N → {0, 1}. The
formula C ′ is derived from C by letting every fan-out of an input gate of C be its own input
in C ′. Then C ′ is a special monotone boolean formula, and we can describe the access
structure it induces with a {0, 1}-LSSS scheme.

While the behavior of C ′ is possibly very different from that of C, the circuit C can
clearly still be evaluated from C ′ by setting all the input wires of C ′ that previously were a
single input of C to the same value. Thus, if in the access structure induced by C we have
parties {Q1, . . . , Q`N} corresponding to the inputs of C ′ then letting them collude, such
that for instance party P1 of a new access structure corresponds to the parties {Q1, . . . , Q`},
we can create the access structure induced by C. It follows that if we can allow collusion
between parties in {0, 1}-LSSS and still have security of the TFHE scheme then we can
realize TFHE for the access structure induced by C.

To prove that collusion between parties of a TFHE scheme for {0, 1}-LSSS does not
violate security, we generalize our simulation. Say that parties P1, . . . , PN each hold shares
{ski1, . . . , ski`} instead of just a single share for shares {skij}j∈[`],i∈[N] generated from a
{0, 1}-LSSS scheme for parties Q1, . . . , Q`N . Now, given shares for a maximal invalid share
set of parties {Pi}i∈S we can we can no longer guarantee that the parties of the underlying
{0, 1}-LSSS scheme,

⋃
i∈S{skij}j∈[`], form a maximal invalid share set. To solve this problem,

the simulator simply simulates a maximal invalid share set of secret key shares containing
the shares of

⋃
i∈S{skij}j∈[`]. These shares are possible to simulate through the properties

9

of secret sharing in general. Now, since as shown above, the simulator can statistically
simulate each individual partial decryption of the underlying {0, 1}-LSSS scheme, we can
show that in fact the simulator can statistically simulate the partial decryption {pij}j∈[`] of
party Pi.

In this manner, we achieve TFHE for the access structure of monotone boolean formu-
las. Now, a result by [Val84] shows a construction for construction of the majority access
structure from monotone boolean formulas. Using this we now easily achieve TFHE even
for the t-out-of-n access structure.

2.0.7 Applications.

We consider the following two applications of a threshold FHE:

- Function Secret Sharing: Given any levelled TFHE for access structure class S we
construct function secret sharing scheme for all circuits and the same access structure
class S. Some connection of threshold FHE to function secret sharing was already
observed in [BGI15, DHRW16, AJN+16]. The construction is very simple: Each
function share consists of a TFHE encryption ct of f along with a key ski (and a
PRF key Ki to compute random computations deterministically). Evaluation on any
input x consists of just computing TFHE.PartDec(ski, ctx) where ctx is the ciphertext
encrypting f(x) computed using ct.

- Distributed PRF: Given any levelled TFHE for access structure class S and a PRF
g we construct distributed PRF for the same access structure class. The construction
is basically the same as the function secret sharing scheme defined above except that
now we encrypt the PRF key. However, the proof is more subtle and deviates from
the proof for the scheme above. The details can be found in Section 8.2. We note
that in a similar manner we can also construct a distributed point function.

3 Preliminaries

Notation 1. For any set X, we denote by P(X) the powerset of X.

Throughout this work, we will denote the security parameter by λ. For any Y,Z ∈
{0, 1}n we say that Y ⊆ Z if it happens that for each i ∈ [n] such that Yi = 1, Zi = 1

3.1 Homomorphic Encryption

The construction in this paper is based on a traditional, generic homomorphic encryption
scheme satisfying a few additional properties. As observed by [MW16], these properties
can be found for the schemes [GSW13]. Other schemes such as [BV11, BGV12] can also be
adapted to satisfy these properties.

10

Definition 1 (FHE). A fully homomorphic encryption (FHE) scheme is a tuple of PPT
algorithms

FHE = (Setup,Encrypt,Eval,Decode)

satisfying the following specifications:

• (pk, sk) ← Setup(1λ, 1d): The setup algorithm takes as input the security parameter
and a depth bound d and outputs a key pair (pk, sk).

• ct ← Encrypt(pk, µ): The encrypt algorithm takes as input a bit µ ∈ {0, 1} and the
public key pk. It outputs ct.

• ĉt ← Eval(C, ct1, .., ctk): The deterministic evaluate algorithm takes as input a tuple
of ciphertexts ct1, .., ctk and a circuit C ∈ Cλ of depth less than or equal d and outputs
an evaluated ciphertext ĉt.

• µ∗ ← Decode(sk, ct): The deterministic decryption algorithm takes as input a cipher-
text and a secret key and outputs µ∗ ∈ {0, 1,⊥}.

We ask that the algorithms satisfy the following:

Correctness of Evaluation Let (pk, sk) = Setup(1λ, 1d), cti = Encrypt(pk, µi) for 1 ≤
i ≤ k and µi ∈ {0, 1}, ctk+1 = Eval(C, ct1, . . . , ctk) for C ∈ Cλ. With all but negligible
probability in λ over the coins of Setup, Encrypt, and,

Decode(sk, cti) =

{
C(µ1, . . . , µk), i = k + 1

µi Otherwise.

Compactness of Ciphertexts There exists a polynomial, poly, such that |ct| ≤ poly(λ, d)
for any ciphertext ct generated from the algorithms of FHE (possibly after evaluation).

Semantic Security of Encryption Any PPT adversary A has only negligible advantage
as a function of λ over the coins of all the algorithms in the following game:

1. The adversary is given as input the security parameter 1λ and a circuit depth 1d.

2. Run Setup(1λ, 1d)→ (pk, sk). The adversary is given pk.

3. The adversary receives Encrypt(pk, b)→ ct for a random b ∈ {0, 1}.
4. The adversary outputs b′ and wins if b = b′.

Having defined generic FHE, we ask further in our case that the FHE scheme satisfies
the following.

1. On input the 1λ and 1d the setup algorithm outputs (pk, sk) where the public key
contains a prime q and the secret key sk is a vector sk ∈ Zmq for some m = poly(λ, d).

11

2. The decryption algorithm consists of two functions Decode = (Decode0,Decode1).

p← Decode0(sk, ct) takes as input the ciphertext encrypting µ ∈ {0, 1} and secret
key vector and outputs p ∈ Zq, where p = µ dq/2e + e for e ∈ [−B,B] and
B = B(λ, d, q).

µ← Decode1(p) takes as input p and computes the appropriate rounding function to
recover µ ∈ {0, 1}.

3. Decode0 is a linear operation over Zq in the secret key.

3.2 Statistical Distance

This section establishes results related to statistical closeness of distributions. Looking
ahead these will be used in the security proof of our TFHE construction. Some of the
proofs and related material has been placed in the appendix.

Definition 2 (Statistical Distance). Let E be a finite set, Ω a probability space, and
X,Y : Ω → E random variables. We define the statistical distance between X and Y
to be the function ∆ defined by

∆(X,Y) =
1

2

∑
e∈E

∣∣∣∣Pr
X

(X = e)− Pr
Y

(Y = e)

∣∣∣∣ .
Lemma 1. Let E be a finite set and Ω a probability space. The function ∆ is a metric on
the set of random variables Z : Ω→ E.

Proof. Consider the variables X,Y : Ω → E to be finite dimensional vectors indexed by
the elements of E and with each index e having the value PrX(X = e) and PrY (Y =
e), respectively. Then ∆ is simply the norm induced by scaling the `1 norm on an |E|-
dimensional space by 1

2 . The conclusion follows.

Definition 3 (Conditioned Statistical Distance). Let E be a finite set and Ω a probability
space. Let random variables A1, . . . , An : Ω→ E and X,Y : Ω→ E be given. We define the
statistical distance of X and Y conditioned on the variables A1, . . . , An to be

∆{Ai}i∈[n]
(X,Y) = max

(a1,...,an)∈En

1

2

∑
e∈E

∣∣∣∣Pr
X

(
X = e | (Ai)i∈[n] = (ai)i∈[n]

)
−Pr

Y

(
Y = e | (Ai)i∈[n] = (ai)i∈[n]

)∣∣∣∣ .
Before moving on, we need the following lemma.

12

Lemma 2. Let E be a finite set, Ω a probability space, and {Xb
i }i∈[n],b∈{0,1} : Ω→ E random

variables such that for every i ∈ [n], every (e1, . . . , ei) ∈ Ei, and every (b1, . . . , bi−1), (b
′
1, . . . , b

′
i−1) ∈

{0, 1}i−1,

Pr
(
X0
i = ei | Xb1

1 = e1, . . . , X
bi−1

i−1 = ei−1

)
= Pr

(
X0
i = ei | X

b′1
1 = e1, . . . , X

b′i−1

i−1 = ei−1

)
,

Pr
(
X1
i = ei | Xb1

1 = e1, . . . , X
bi−1

i−1 = ei−1

)
= Pr

(
X1
i = ei | X

b′1
1 = e1, . . . , X

b′i−1

i−1 = ei−1

)
.

Then the joint distributions (X0
1 , . . . , X

0
n) and (X1

1 , . . . , X
1
n) satisfy

∆((X0
1 , . . . , X

0
n), (X1

1 , . . . , X
1
n)) ≤

n∑
i=1

∆{X0
j }j<i

(X0
i , X

1
i).

Proof. Define the vector Zi = (X0
1 , . . . , X

0
i , X

1
i+1, . . . , X

1
n) for each 0 ≤ i ≤ n. We will

now show that for 1 ≤ i ≤ n, ∆(Zi−1, Zn) ≤ ∆{X0
j ,X

1
j }j<i

(X0
i , X

1
i)(X0

i , X
1
i). From this

the result will follow by the triangle inequality since ∆ is a metric on the set of random
variables Ω→ En by Lemma 1 and Z0 = (X1

1 , . . . , X
1
n) and Zn = (X0

1 , . . . , X
0
n). Now,

∆(Zi−1, Zn) =
1

2

∑
(e1,...,en)∈En

|Pr (Zi−1 = (e1, . . . , en))− Pr (Zi = (e1, . . . , en))| ,

and using e[a:b] = (ea, ea+1, . . . , eb) we can define

A(e[1,i−1]) = Pr
(
(X0

1 , . . . , X
0
i−1) = e[1,i−1]

)
B0(e[1,i]) = Pr

(
X0
i = ei | (X0

1 , . . . , X
0
i−1) = e[1,i−1]

)
B1(e[1,i]) = Pr

(
X1
i = ei | (X0

1 , . . . , X
0
i−1) = e[1,i−1]

)
C(e[1,n]) = Pr

(
(X1

i+1, . . . , X
1
n) = e[i+1,n] | (X0

1 , . . . , X
0
i−1, X

1
i) = e[1,i]

)
= Pr

(
(X1

i+1, . . . , X
1
n) = e[i+1,n] | (X0

1 , . . . , X
0
i−1, X

0
i) = e[1,i]

)
where the last equality follows from the assumption of the Lemma. With this notation, we
can write

Pr
(
Zi−1 = e[1,n]

)
= A(e[1,i−1])B1(e[1,i])C(e[1,n])

Pr
(
Zi = e[1,n]

)
= A(e[1,i−1])B0(e[1,i])C(e[1,n])

13

and get

∆(Zi−1, Zn) =
1

2

∑
~e∈En

∣∣A(e[1,i−1])B1(e[1,i])C(e[1,n])−A(e[1,i−1])B0(e[1,i])C(e[1,n])
∣∣

=
1

2

∑
~e[1,i−1]∈Ei−1

A(e[1,i−1])
∑
~ei∈E

∣∣B1(e[1,i])−B0(e[1,i])
∣∣ ∑
e[i+1,n]∈En−i

C(e[1,n])

=
∑

~e[1,i−1]∈Ei−1

A(e[1,i−1])
1

2

∑
~ei∈E

∣∣B1(e[1,i])−B0(e[1,i])
∣∣

≤ ∆{X0
j ,X

1
j }j<i

(X0
i , X

1
i)

∑
~e[1,i−1]∈Ei−1

A(e[1,i−1])

= ∆{X0
j ,X

1
j }j<i

(X0
i , X

1
i).

since C(e[1,n]) is dependent on e[i+1,n] and conditioned on e[1,i], and similarly B0(e[1,i]) and
B1(e[1,i]) are dependent on ei and conditioned on e[1,i−1].

The above lemma is simply a more general form of the following result, which describes
a rather general occurrence in cryptography, which is usually dealt with by a series of
hybrids in the security proof, but which we in this presentation instead will state and prove
formally in order to make the proof of security more concise.

Proposition 1. Let E be a finite set, Ω a probability space, and let {Xb
s}s∈S,b∈{0,1} be a

family of random variables Xb
s : Ω→ E indexed by an element s ∈ S and a state b ∈ {0, 1}.

Further, assume that for every s ∈ S we have ∆(X0
s , X

1
s) ≤ δ. Now, for a stateful PPT

algorithm A, define the following experiment:

ExptA,b,m :

• The algorithm A issues m queries. Each query is an element si ∈ S and after
each query, A receives in return xi ← Xb

si sampled independently of the other
samples.

• The output of the experiment is (s1, x1), . . . , (sm, xm).

Then ∆(ExptA,0,m,ExptA,1,m) ≤ mδ.

Proof. Define a new random variable Y b
i : Ω→ S×E which is sampled as follows. On the ith

query, the adversary outputs a seed based on the previous queries, si ← A((s1, x1), . . . , (si−1, xi−1)).
Then xi ← Xb

si is sampled independently of the other samplings. It is clear that the fol-
lowing distributions are equal

ExptA,b,m = (Y b
1 , . . . , Y

b
m).

14

We make two observations. First, the algorithm A does not see which distribution each
xi is sampled from and the value xi ← Xb

si is always sampled independently of the other
samplings, thus, changing b between 0 and 1 from query to query is irrelevant to the
outcome of si as long as the sampled values are the same. I.e. we have for every i ∈ [n],
every ((s1, x1), . . . , (si, xi)) ∈ (S × E)i, and every (b1, . . . , bi−1), (b

′
1, . . . , b

′
i−1) ∈ {0, 1}i−1

that

Pr
(
Y 0
i = (si, xi) | {Y b1

j }j<i = {(sj , xj)}j<i
)

= Pr
(
Y 0
i = (si, xi) | {Y

b′1
j }j<i = {(sj , xj)}j<i

)
,

Pr
(
Y 1
i = (si, xi) | {Y b1

j }j<i = {(sj , xj)}j<i
)

= Pr
(
Y 1
i = (si, xi) | {Y

b′1
j }j<i = {(sj , xj)}j<i

)
.

Second, ∆{Y 0
j }j<i

(Y 0
i , Y

1
i) ≤ δ since the distribution of the first component is the same for

the two distributions as the algorithm A only gets to know the outcome of the previous
queries and the second parameter, sampled from Xb

si independently of the other samplings,
has statistical distance less than δ.

The result now follows from Lemma 2.

Another useful lemma is the following, which demonstrates a technique to “smudge” or
hide the presence of error (e1 in the lemma) by adding a much larger error. While no values
are specifically given in the statement of the lemma, B1 is meant to be negligible compared
to B2 such that the statistical distance between the two distributions is negligible.

Lemma 3 (Smudging Lemma [MW16]). Let B1, B2 ∈ N. For any e1 ∈ [−B1, B1] let E1

and E2 be independent random variables uniformly distributed on [−B2, B2] and define the
two stochastic variables X1 = E1 + e1 and X2 = E2. Then ∆(E1, E2) < B1/B2.

Proof. Noting that X1 and X2 can only take values on [e1 − B2, e1 + B2] and [−B2, B2],
respectively, we get the statistical distance

∆(X1, X2) =
1

2

∑
k∈Z

∣∣∣∣Pr
X1

(X1 = k)− Pr
X2

(X2 = k)

∣∣∣∣ = |e1/B2| < B1/B2. (3)

Notation 2 (Smudging noise). In the following we will denote by χsmB the uniform distri-
bution on the interval [−B,B].

3.3 Secret Sharing

Throughout this paper we will use secret sharing terminology and techniques. This section
provides an introduction to the basic terms, notation, and concepts that will be needed
later.

15

3.3.1 Secret Sharing Basics.

We assume that the reader if familiar with the notion of a information theoretic secret shar-
ing scheme and in particular the shamir secret sharing scheme. We now describe concepts
about access structures and specific secret sharing schemes that we consider in this paper.
We adapt some definitions from [LW11].

Definition 4 (Monotone Access Structure). Let P = {P1, . . . , PN} be a set of parties. A
collection A ⊆ P(P) is monotone if whenever we have sets B,C satisfying B ∈ A and
B ⊆ C ⊆ P then C ∈ A. A monotone access structure on P is a monotone collection
A ⊆ P(P) \ ∅. The sets in A are called the valid sets and the sets in P(P) \ A are called
the invalid sets.

For ease of notation, we will generally identify a party with its index. Further, since
this presentation will only consider monotone access structures, the terms monotone access
structure and simply access structure will be used interchangeably throughout the text.

Notation 3. Let P = {P1, . . . , PN} be a set of parties and let S be a subset of P . We
denote by XS the vector XS = (x1, . . . , xN) where xi = 1 if Pi ∈ S and xi = 0 otherwise.

Definition 5 (Efficient Access Structure). Let P = {P1, . . . , PN} be a set of parties and
A ⊆ P(P) a monotone access structure on P . We say that A is efficient if there exists a
polynomial size circuit fA : {0, 1}N → {0, 1} such that for all S ⊆ P , fA(XS) = 1 if and
only if S ∈ A.

Definition 6 (Class of Monotone Access Structures). Let P = {P1, . . . , PN} be a set of
parties. A class of monotone access structures is a collection S = {A1, . . . ,At} ⊆ P(P(P))
of monotone access structures on P .

Being interested in secret sharing, we will only consider efficient access structures in
this work.

One of the most canonical classes of access structures is the t-out-of-n class.

Definition 7 (t-out-of-n secret sharing). Let P = {P1, . . . , PN} be a set of parties. An
access structure A is a t-out-of-n access structure if for every S ⊆ P , S ∈ A if and only if
|S| ≥ t.

A more general form of secret sharing is linear secret sharing.

Definition 8 (Linear Secret Sharing Scheme (LSSS)). Let P = {P1, . . . , PN} be a set of
parties. The class of access structures LSSS (or LSSSN to emphasize the number of parties)
consists of all access structure A such that there exists a secret sharing scheme Π satisfying:

1. For a prime p, the share of each party Pi is a vector ~wi ∈ Zni
p for some ni ∈ N.

16

2. There exists a matrix M ∈ Z`×np , ` =
∑N

i=1 ni called the share matrix for Π with
size polynomial in the number of parties and such that for a secret s, the shares are
generated as follows. Values r2, . . . , rn ∈ Zp are chosen at random and the vector
~v = M · (s, r2, . . . , rn)T is generated. Now, denote by Ti ⊆ [`], 1 ≤ i ≤ N a partition
of [`] such that Ti has size |Ti| = ni and is associated with party Pi. The share of Pi
is the vector ~wi = (vi)i∈Ti .

3. For any set S ⊆ P , S ∈ A if and only if

(1, 0, . . . , 0) ∈ span({M [i]}i∈⋃j∈S Tj
)

over Zp where M [i] denotes the ith row of M .

We denote by LSSSN the class of linear secret sharing schemes on N parties.

Note that keeping with the notation of the LSSS definition above, any set of parties
S ⊆ P such that S ∈ A can recover the secret by finding coefficients {ci}i∈⋃j∈S Tj

satisfying∑
i∈

⋃
j∈S Tj

ciM [i] = (1, 0, . . . , 0).

Given such coefficients, the secret can be recovered simply by computing

s =
∑

i∈
⋃

j∈S Tj

civi.

Since such coefficients can be found in time polynomial in the size ofM using linear algebra,
LSSS is a class of efficient access structures [Bei96]. Further, LSSS has the property that it
information theoretically hides the value s, i.e. For any secrets s0and s1, it holds that the
distributions of shares {~wi}i∈S for a set S 6∈ A, are identical.

In our application of linear secret sharing, we will always be sharing a vector over Zp,
~s ∈ Znp instead of just a single element of Zp. Simply linearly secret sharing each entry of
the vector ~s using fresh randomness for each entry yields shares ~s1, . . . , ~s` ∈ Znp . It is easy
to see that the secret ~s ∈ Znq can now be reconstructed as a linear combination of the shares
~si using the same coefficients as for a single field element. Further, information theoretical
hiding is maintained.

3.3.2 {0, 1}-LSSS and {0, 1}-LSSSD.

For the purposes of this paper, we will need a more restricted class of access structures. The
access structures of this class can be realized as LSSS schemes such that each party only has
one share and such that it always is possible to only use recovery coefficients ci ∈ {0, 1}.

17

Definition 9 ({0, 1}-Linear Single Share Scheme ({0, 1}-LSSS)). Let P = {P1, . . . , PN}
be a set of parties. The set {0, 1}-LSSSN ⊆ LSSSN is the collection of access structures
A ∈ LSSSN such that there exists an efficient linear secret sharing scheme Π for A satisfying
the following:

1. For a prime p, the share of each party Pi consists of a single element wi ∈ Zp.

2. Let s be a secret and let wi ∈ Zp be the share of party Pi for each i. For every valid
set S ∈ A, there exist a subset S′ ⊆ S such that s =

∑
i∈S′ wi.

In our application, we will need {0, 1}-LSSS schemes that work over a certain prime q
corresponding to the modulus of an FHE scheme. The constructions of later sections will
be designed in a way that allows for the access structure to work over any modulus, but
for now we will denote by {0, 1}-LSSSq the set of access structures contained in {0, 1}-LSSS
that can be realized as secret sharing schemes by a share matrix over Zq.

That every access structure A ∈ {0, 1}-LSSS is efficient follows directly from the effi-
ciency of the LSSS class. However, it is not obvious that the set S′ of the above definition
can be found efficiently given any S ⊆ P . To see that this is indeed the case, we first
establish a lemma.

Definition 10 (Maximal Invalid Share Set). Let P = {P1, . . . , PN} be a set of parties and
A be a monotone access structure on P . A set S ⊆ P is a maximal invalid share set if
S 6∈ A but for every p ∈ P \ S, S ∪ {p} ∈ A.

Definition 11 (Minimal Valid Share Set). Let P = {P1, . . . , PN} be a set of parties and A
be a monotone access structure on P . A set S ⊆ P is a minimal valid share set if S ∈ A
and for every S′ (S, S′ 6∈ A.

Although the following lemma is trivial to show it will turn out to be a useful observation
both for the efficiency of reconstruction of {0, 1}-LSSS and for our construction.

Lemma 4. Let P = {P1, . . . , PN} be a set of parties, A ∈ {0, 1}-LSSS, and Π be a linear
secret sharing scheme as specified in the definition of {0, 1}-LSSS. Let s be a secret, let
wi ∈ Zp be the share of party Pi for each i, and let S ⊆ P be a minimal valid share set of
A. Then s =

∑
i∈S wi.

Finally, the following lemma shows that given a linear secret sharing scheme Pi for
A ∈ {0, 1}-LSSS, we can find recovery coefficients efficiently. However, it is worth noting
that this does not mean that deciding whether an access structure belongs to {0, 1}-LSSS
is feasible. In our applications we will instead specifically construct secret sharing schemes
that belong to {0, 1}-LSSS.

Lemma 5. Finding recovery coefficients ci ∈ {0, 1} in a linear secret sharing scheme Π for
an access structure A ∈ {0, 1}-LSSS can be done efficiently.

18

Proof. Let P = {P1, . . . , PN} be a set of parties, let A ∈ {0, 1}-LSSS be an access structure
on P , and let M be a share matrix for A of polynomial size as specified in Definition 9. By
Lemma 4, A is efficient if for every S ⊆ P such that S ∈ A we can find a minimal valid share
set S′ ⊆ S in polynomial time in the size of the share matrix M and the number of parties
N . This can be done as follows. Enumerate the elements of S as S = {Pa1 , Pa2 , . . . , Pak}
and set S0 = S. We will without loss of generality assume that row i is associated with Pi
and recursively define

Si =

{
Si, if (1, 0, . . . , 0) 6∈ span({M [j]}j∈Si\{Pai}),

Si \ {Pai}, if (1, 0, . . . , 0) ∈ span({M [j]}j∈Si\{Pai}),

for 1 ≤ i ≤ k. It is easy to see that Sk is a minimal valid share set contained in S and that
the above procedure runs in polynomial time in the size of the share matrix.

In applications, we will need the following access structure, which removes the constraint
on the number of shares per party, but retains the overall property of the shares.

Definition 12 (Derived {0, 1}-LSSS ({0, 1}-LSSSD)). Let P = {P1, . . . , PN} be a set of
parties. We denote by {0, 1}-LSSSDN the class of access structures A ∈ LSSSN such that
there exists an ` ∈ N polynomial in N and an access structure B ∈ {0, 1}-LSSS`n for
parties P ′ = {P ′1, . . . , P ′N`} such that we can associate the party Pi ∈ P with the parties
P ′`(i−1), P

′
`(i−1)+1, . . . , P

′
`i ∈ P ′ as follows. For every S ⊆ [N], S ∈ A if and only if the set

S′ of parties of P ′ associated with a party in S, S′ ∈ B. More precisely, for every S ⊆ [N],⋃
i∈S
{Pi} ∈ A if and only if

⋃
i∈S
{P ′`(i−1), P

′
`(i−1)+1, . . . , P

′
`i} ∈ B. (4)

In other words, a {0, 1}-LSSSD scheme is a secret sharing scheme where the shares
satisfy a {0, 1}-LSSS scheme, but each party receives multiple shares.

4 Definition of Threshold Fully Homomorphic Encryption

In this section we present the definition of threshold fully homomorphic encryption for any
class of access structures.

Definition 13 (TFHE). Let P = {P1, . . . , PN} be a set of parties and let S be a class of
efficient access structures on P . A threshold fully homomorphic encryption scheme for S is
tuple of PPT algorithms

TFHE = (Setup,Encrypt,Eval,PartDec,FinDec)

satisfying the following specifications:

19

(pk, sk1, . . . , skN)← Setup(1λ, 1d,A): Takes as input a security parameter λ, a circuit depth
d, and an access structure A on P . Outputs a public key pk, and secret key shares
sk1, . . . , skN . We shall assume that all the following algorithms also takes as input
the public key.

c← Encrypt(pk, µ): Takes as input a public key pk and a single bit plaintext µ ∈ {0, 1}.
Outputs a ciphertext ct.

ĉt← Eval(C, ct1, . . . , ctk): Takes as input a boolean circuit C : {0, 1}k → {0, 1} ∈ Cλ of
depth ≤ d and ciphertexts ct1, . . . , ctk encrypted under the same public key. Outputs
an evaluation ciphertext ĉt.

pi ← PartDec(ct, ski): Takes as input a ciphertext ct and a secret key share ski. Outputs a
partial decryption pi related to the party Pi.

µ̂← FinDec(B): Takes as input a set B = {pi}i∈S for some S ⊆ {P1, . . . , PN} where we
recall that we identify a party Pi with its index i. Deterministically outputs a plaintext
µ̂ ∈ {0, 1,⊥}.

We ask of TFHE that for parameters (pk, sk1, . . . , skN) ← Setup(1λ, 1d,A), any plaintexts
µ1, . . . , µk ∈ {0, 1}, any subset S ⊆ {P1, . . . , PN}, and any boolean circuit C : {0, 1}k →
{0, 1} ∈ Cλ of depth ≤ d the following is satisfied.

Correctness of Encryption. Let ct = Encrypt(pk, µ1) and B = {PartDec(ct, ski)}i∈S.
With all but negligible probability in λ over the coins of Setup, Encrypt, and PartDec,

FinDec(B) =

{
µ1, S ∈ A
⊥ S 6∈ A.

Correctness of Evaluation. Let cti = Encrypt(pk, µi) for 1 ≤ i ≤ k, ĉt = Eval(C, ct1, . . . , ctk),
and B = {PartDec(ĉt, ski)}i∈S. With all but negligible probability in λ over the coins
of Setup, Encrypt, and PartDec,

FinDec(B) =

{
C(µ1, . . . , µk), S ∈ A
⊥ S 6∈ A.

Compactness of Ciphertexts. There exists a polynomial, poly, such that |ct| ≤ poly(λ, d,N)
for any ciphertext ct generated from the algorithms of TFHE.

Semantic Security of Encryption. Any PPT adversary A has only negligible advantage
as a function of λ over the coins of all the algorithms in the following game:

1. On input the security parameter 1λ and a circuit depth 1d, the adversary A
outputs A ∈ S.

20

2. Run Setup(1λ, 1d,A)→ (pk, sk1, .., skN). The adversary is given pk.
3. The adversary outputs a set S ⊆ {P1, . . . , PN} such that S 6∈ A.
4. The adversary receives {ski}i∈S along with Encrypt(pk, b) → ct for a random

b ∈ {0, 1}.
5. The adversary outputs b′ and wins if b = b′.

Simulation Security. There exists a stateful PPT algorithm Sim such that for any PPT
adversary A, we have that the experiments ExptA,Real(1λ, 1d) and ExptA,Sim(1λ, 1d) as
defined below are statistically close as a function of λ over the coins of Setup, Encrypt,
Eval, PartDec, Sim, and A. The experiments are defined as follows:

ExptA,Real(1
λ, 1d):

1. On input the security parameter 1λ and a circuit depth 1d, the adversary A
outputs A ∈ S.

2. Run Setup(1λ, 1d, C,N)→ (pk, sk1, .., skN). The adversary is given pk.
3. The adversary outputs a set S ⊆ {P1, . . . , PN} such that S 6∈ A together with

plaintexts µ1, . . . , µk ∈ {0, 1}. The adversary is handed over {ski}i∈S
4. For each µi, the adversary is given Encrypt(pk, µi)→ cti.
5. The adversary issues polynomially many queries of the form (Si ⊆ {P1, . . . , PN}, Ci)

for circuits Ci : {0, 1}k → {0, 1} ∈ Cλ. After each query the adversary re-
ceives for each l ∈ Si the value

PartDec(Eval(Ci, ct1, . . . , ctk), skl)→ pl.

6. In the end, A outputs out. The output of the experiment is out.
ExptA,Sim(1λ, 1d):

1. On input the security parameter 1λ and a circuit depth 1d, the adversary A
outputs A ∈ S.

2. Run Setup(1λ, 1d, C,N)→ (pk, sk′1, .., sk
′
N). The adversary is given pk.

3. The adversary outputs a set S ⊆ {P1, . . . , PN} such that S 6∈ A together with
plaintexts µ1, . . . , µk ∈ {0, 1}. The Simulator Sim takes as input pk,A, S
and outputs {ski}i∈S and the state state. The adversary is handed over
{ski}i∈S.

4. For each µi, the adversary is given Encrypt(pk, µi)→ cti.
5. The adversary issues polynomially many queries of the form (Si ⊆ {P1, . . . , PN}, Ci)

for circuits Ci : {0, 1}k → {0, 1} ∈ Cλ. After each query, the simulator Sim
computes

Sim(C, {ctl}kl=1, Ci(µ1, .., µk), Si, state)→ {pl}l∈Si

and sends {pl}l∈Si
to A.

21

6. In the end, A outputs out. The output of the experiment is out.

Together the semantic security and simulation security definitions above imply the fol-
lowing natural indistinguishability based definition.

Definition 14 (IND-secure TFHE). Let TFHE = (Setup,Encrypt,Eval,PartDec,FinDec) be
a threshold fully homomorphic encryption scheme for S, satisfying correctness and compact-
ness requirement as described above. We say that TFHE is IND-secure if the advantage of
any PPT adversary in the following security game is negligible in the security parameter.

1. On input the security parameter 1λ and a circuit depth 1d the adversary A outputs an
access structure A ∈ S.

2. Run Setup(1λ, 1d,A)→ (pk, sk1, .., skN). The adversary is given pk.

3. The adversary outputs a set S ⊆ {P1, . . . , PN} such that S 6∈ A and S is a maximal
invalid set.

4. The adversary receives {ski}i∈S.

5. A now outputs two message vectors (µ01, .., µ
0
k) and (µ11, .., µ

1
k). The adversary is now

given Encrypt(pk, µbi)→ cti for every i ∈ [k] and a random b ∈ {0, 1}.

6. The adversary issues polynomially many queries of the form of circuits Ci : {0, 1}k →
{0, 1} ∈ Cλ such that Ci(µ01, .., µ

0
k) = Ci(µ

1
1, .., µ

1
k). After each query the adversary

receives the value
PartDec(Eval(Ci, ct1, . . . , ctk), skl)→ pl

for each l ∈ [N].

7. The adversary outputs b′ and wins if b = b′.

Remark: We note that semantic security along with simulation security implies IND
based security almost directly. This is because any scheme that satisfies semantic and
simulation security also satisfies IND security. This can be shown by invoking the TFHE
simulator in the IND game. The simulator uses Ci(µ01, .., µ0k) = Ci(µ

1
1, .., µ

1
k) to perform

simulations. Then, invoke semantic security to encrypt µ01, .., µ0k. At this point the game is
independent of b.

5 TFHE for {0, 1}-LSSSD
In this section we present a construction of threshold homomorphic encryption for the
{0, 1}-LSSSD class of access structures. We proceed by first establishing a Proposition.

Proposition 2. Any TFHE for {0, 1}-LSSS allows for TFHE for {0, 1}-LSSSD.

22

Proof. Let P = {P1, . . . , PN} be a set of parties and A ∈ {0, 1}-LSSSD. Then by definition
there exists ` and an access structure B ∈ {0, 1}-LSSS on parties P ′ = {P ′1, . . . , P ′`n} such
that the party Pi ∈ P is associated with parties {P ′`(i−1)+1, . . . , P

′
`} ⊆ P ′ as in Definition

12. Then a TFHE scheme, TFHEB, for B will extend to a TFHE scheme, TFHEA, for A as
follows. Each party Pi ∈ P in TFHEA acts as all the parties P ′`(i−1)+1, . . . , P

′
` in TFHEB

simultaneously, receiving ` secret keys and outputting ` partial decryptions when queried.
All the security properties of TFHEB will carry over to the derived TFHEA as follows.

First, correctness of encryption and evaluation and compactness of ciphertexts follow im-
mediately. Second, semantic security follows since the only difference between the semantic
security games of TFHEA and TFHEB is that in step 3 of the semantic security game of
TFHEB the adversary can request any subset S ⊆ P ′ with S 6∈ B, while in the semantic
security game for TFHEA, he can only ask for subsets S′ ⊆ P which are equivalent to the
subsets

S
′
=
⋃
i∈S′
{P ′`(i−1)+1, . . . , P

′
`i} ⊆ P ′

with S
′ 6∈ B. Finally, simulation security follows in exactly the same was as semantic

security, since any subset of secret key shares the adversary can ask for in the simulation
security game of TFHEA, the adversary can also request in the simulation security game of
TFHEB.

Thus, for our purposes it suffices to construct TFHE for {0, 1}-LSSS. The next sections
will go over such a construction and its analysis.

5.1 Construction

We describe TFHE for the class of access structures {0, 1}-LSSS.

Construction 1 ({0,1}-LSSS TFHE). Let P = {P1, . . . , PN} be parties and FHE be a
scheme satisfying all the properties of section 3.1. Then define the following algorithms

TFHE = (Setup,Encrypt,Eval,PartDec,FinDec)

as follows:

(pk, sk1, . . . , skN)← Setup(1λ, 1d,A): Run FHE.Setup(1λ, 1d)→ (pk, sk), let the noise χ of
the FHE scheme be B-bounded, and let Zq be the field of our FHE scheme. Now, secret
share the vector sk ∈ Znq into secret shares sk1, . . . , skN according to the scheme Π3.
Output the public key pk and secret keys (sk1, . . . , skN).

3Note that here we assume that in fact A ∈ {0, 1}-LSSSq. While we do not generally know how to ensure
this, it will not be an issue for our later applications to monotone boolean formulas. See Section 6 and in
particular Section 6.3 for details.

23

ct← Encrypt(pk, µ): Encrypt the bit µ ∈ {0, 1} using pk according to the FHE scheme
FHE.Encrypt(pk, µ)→ ct. Output the ciphertext ct.

ĉt← Eval(C, ct1, . . . , ctk): Evaluate the circuit C on ciphertexts ct1, . . . , ctk by running FHE.Eval(C, ct1, . . . , ctk)→
ĉt. Output the evaluated ciphertext ĉt.

pi ← PartDec(ct, ski): Decrypt the ciphertext ct according to the FHE scheme under secret
key ski to acquire FHE.Decode0(ct, ski) → p′i and sample esm $← χsmBsm

. Output pi =
p′i + esm.

µ← FinDec({pi}i∈S): If S 6∈ A output ⊥. Otherwise compute a minimal valid set for A,
S′ ⊆ S and compute FHE.Decode1(

∑
i∈S′ pi)→ µ. Output the plaintext µ.

5.2 Analysis

The following sections constitute the analysis of our {0, 1}-LSSS scheme. Throughout, we
let λ be the security parameter, d a circuit depth, and A a {0, 1}-LSSSN scheme on the
set of parties P = {P1, . . . , PN}. We run the setup procedure Setup(1λ, 1d,A) to produce
public key pk and secret key shares sk1, . . . , skN of the secret key sk of the FHE scheme.

Correctness of Encryption Let a set S be given, let ct = Encrypt(pk, µ) for some bit
µ ∈ {0, 1}, and let B = {pi = PartDec(ct, ski)}i∈S where we denote by esmi the value
drawn from χsm while computing PartDec(ct, ski). If S 6∈ A then FinDec(B) = ⊥
directly by the definition of FinDec. On the other hand, if S ∈ A, FinDec computes
the minimal valid set S′ ⊆ S for A, which by Lemma 4 satisfies∑

i∈S′
ski = sk.

Thus, by the linearity of FHE.Decode0 we have

FinDec(B) = FHE.Decode1

(∑
i∈S′

pi

)

= FHE.Decode1

(∑
i∈S′

FHE.Decode0(ct, ski) + esmi

)

= FHE.Decode1

(
FHE.Decode0(ct,

∑
i∈S′

ski) +
∑
i∈S′

esmi

)

= FHE.Decode1

(
µ
⌈q

2

⌉
+ e+

∑
i∈S′

esmi

)

24

where e is the error incurred by the FHE.Decode0 algorithm. As long as

Ê =

∣∣∣∣∣∣e+
∑
j∈J

esmudge,j

∣∣∣∣∣∣ < q/4

we have FHE.Decode1
(
µ
⌈ q
2

⌉
+ e+

∑
i∈S′ e

sm
i

)
= µ. Assuming B + NBsm < q/4,

E < q/4 with all but negligible probability in the security parameter over the coins
of the algorithms and the conclusion follows.

Correctness of Evaluation Follows from the correctness of evaluation of the FHE scheme
and the correctness of encryption shown above.

Compactness of Ciphertexts Follows from the compactness of ciphertexts of the FHE
scheme.

5.2.1 Semantic Security.

In the semantic security game, the adversary is given secret key shares {ski}i∈S for a set
S 6∈ A. By the properties of {0, 1}-LSSS, the value sk is information theoretically hidden
given {ski}i∈S , so any advantage the adversary would have in the semantic security game
the adversary would have in the semantic security game of our FHE scheme.

5.2.2 Simulation Security.

We define our simulator Sim as follows with the two subroutines Setup and Query. Intuitively
the simulator gets a set S /∈ A and computes a maximal set S′ /∈ A containing S. It secret
shares 0 according to A to simulate partial decryption keys for this set S′. Next, these keys
are used to simulate any secret key queries. This can be done due to information theoretic
security of the secret sharing scheme. The partial decryption queries are simulated by also
using the ciphertext and the decrypted value in addition to the secret keys by the equation
(5).

({sk′i}i∈S , state)← Sim.Setup(pk, S,A) Given the public key pk, an invalid share set S, and
an access structure A, constructs a maximal invalid share set S′ such that S ⊆ S′ 6∈ A.
Create secret key shares {sk′i}i∈S′ of the zero-vector ~0. Output ({sk′i}i∈S , state =
({sk′i}i∈S′ , S′)).

{p̂i}i∈T ← Sim.Query(C, {cti}ki=1, µ, T, state0) Given the circuit C, ciphertexts {cti}ki=1, the
evaluation µ, requested share set T , and initial state state0 = ({sk′i}i∈S′ , S′), first
compute p̃i = FHE.Decode0(Eval(C, ct1, . . . , ctk), sk

′
i) for every i ∈ S′.

25

Second, for every i ∈ T \S′ let T ′i ⊆ S′∪{i} be a minimal valid set (which will contain
i) and compute

p̃i = µ
⌈q

2

⌉
−

∑
j∈T ′i\{i}

p̃j . (5)

Finally, for every i ∈ T sample esmi
$← χsmBsm

and compute p̂i = p̃i + esmi . Output
{p̂i}i∈T .

Theorem 2. With the above simulator Sim, the outputs of the two experiments ExptA,Real(1λ, 1d)
and ExptA,Sim(1λ, 1d) are statistically close.

Proof. We go through a series of hybrid experiments starting with hybrid0, which is the real
experiment, and ending with hybrid2, which is the simulated experiment.

5.2.3 hybrid0:

1. On input the security parameter 1λ and a circuit depth 1d, the adversary A outputs
A ∈ S.

2. Run Setup(1λ, 1d, C,N)→ (pk, sk1, .., skN). The adversary is given pk.

3. The adversary outputs a set S ⊆ {P1, . . . , PN} such that S 6∈ A together with plain-
texts µ1, . . . , µk ∈ {0, 1}. The adversary is handed over {ski}i∈S

4. For each µi, the adversary is given Encrypt(pk, µi)→ cti.

5. The adversary issues polynomially many queries of the form (Si ⊆ {P1, . . . , PN}, Ci)
for circuits Ci : {0, 1}k → {0, 1} ∈ Cλ. After each query the adversary receives for
each l ∈ Si the value

PartDec(Eval(Ci, ct1, . . . , ctk), skl)→ pl.

6. In the end, A outputs out. The output of the experiment is out.

5.2.4 hybrid1:

This hybrid is the same as hybrid0 except for the following steps.

3. The adversary outputs a set S ⊆ {P1, . . . , PN} such that S 6∈ A together with plain-
texts µ1, . . . , µk ∈ {0, 1}. The simulator is given the public key, S, and A and com-
putes

Sim.Setup(pk, S,A) = ({sk′i}i∈S , state = ({sk′i}i∈S′ , S′)).

Replacing the simulated secret key shares with the real secret key shares, the adversary
is handed over {ski}i∈S and we set state = ({ski}i∈S′ , S′)).

26

5 The adversary issues polynomially many queries of the form (Si ⊆ {P1, . . . , PN}, Ci)
for circuits Ci : {0, 1}k → {0, 1} ∈ Cλ. After each query, the simulator Sim computes

Sim.Query(C, {ctl}kl=1, Ci(µ1, .., µk), Si, state)→ {pl}l∈Si

and sends {pl}l∈Si
to A.

5.2.5 hybrid2:

3 The adversary outputs a set S ⊆ {P1, . . . , PN} such that S 6∈ A together with plain-
texts µ1, . . . , µk ∈ {0, 1}. The simulator is given the public key, S, and A and com-
putes

Sim.Setup(pk, S,A) = ({sk′i}i∈S , state = ({sk′i}i∈S′ , S′)).

The adversary is handed over {sk′i}i∈S and we initialize Sim with state state =
{sk′i}i∈S′ , S′).

We see that hybrid0 = ExptA,Real(1
λ, 1d) and hybrid2 = ExptA,Sim(1λ, 1d) and thus, the

result follows by Lemmas 6 and 7.

Lemma 6. Assuming B/Bsm < negl(λ) for some negligible function negl, the statistical
distance between the outputs of experiments hybrid0 and hybrid1 is negligible in the security
parameter, λ.

Proof. The only change in the view of the adversary A from hybrid0 to hybrid1 is that
the partial decryptions pl are generated by Sim.Query using a maximal invalid share set
of the secret key shares rather than by the real PartDec with access to the real secret key
shares. Let us consider the statistical difference between the two cases. Suppose that the
adversary makes m queries and in round i ∈ [m], the adversary queries the circuit Ci such
that Ci(µ1, . . . , µk) = µi and requests the set of partial decryptions Si ⊆ {P1, . . . , PN}.

For l ∈ S′, the values p′i,l and p̃i,l of PartDec of hybrid0 and Sim.Query of hybrid1,
respectively, are both equal to p′i,l = p̃i,l = FHE.Decode0(Eval(Ci, ct1, . . . , ctk), skl) since
Sim is given the real secret key shares skl for l ∈ S′.

Now, for l ∈ Si\S′, PartDec of hybrid0 generates p′i,l = FHE.Decode0(Eval(Ci, ct1, . . . , ctk), skl).
By the properties of {0, 1}-LSSS schemes, there exists a minimal valid share set Ti,l ⊆ S′∪{l}
which contains l and such that ∑

j∈Ti,l

skj = sk.

27

Thus, ∑
j∈Ti,l

p′i,j =
∑
j∈Ti,l

FHE.Decode0(Eval(Ci, ct1, . . . , ctk), skj)

= FHE.Decode0(Eval(Ci, ct1, . . . , ctk), sk)

= µ
⌈q

2

⌉
+ ei

for some noise ei ∈ [−B,B] according to the FHE scheme. Rearranging, this yields that in
hybrid0, we have

p′i,l = µ
⌈q

2

⌉
+ ei −

∑
j∈Ti,l\{l}

p′i,j .

In hybrid1, the simulator Sim instead computes p̃i,l = µ
⌈ q
2

⌉
−
∑

j∈Ti,l\{l} p̃i,j , which must

satisfy p′i,l − p̃i,l = ei since p′i,j = p̃i,j for j ∈ S′. In hybridb, the value esmi,l,b
$← χsmBsm

is
sampled and the the adversary receives the value

hybrid0 : pi,l = p′i,l + esmi,l,0

hybrid1 : pi,l = p̃i,l + esmi,j,1.

Since each esmi,j,b is sampled independently and for each i and l, p′i,l− p̃i,l ∈ [−B,B], it follows
directly from Lemma 3 and Proposition 1 that the statistical distance between the joint
distribution of queries by the adversary and partial decryptions sent back to the adversary
in hybrid0 and hybrid1 is ≤ mNB/Bsm < mNnegl(λ). Thus, the statistical distance between
the outputs the adversary supplies at the end of each hybrid must be negligible in λ.

Lemma 7. The outputs of experiments hybrid1 and hybrid2 have the same distribution.

Proof. The only difference between the two experiments lies in whether the simulator Sim is
initialized with state state0 = ({ski}i∈S′ , S′) or state0 = ({sk′i}i∈S′ , S′). Since any secret is
information theoretically hidden by any LSSS scheme, the distributions of a secret sharing
of the secret key sk and the secret sharing of the zero-vector ~0 are identical as long as the
generated shares form an invalid share set. Thus, the distribution of state0 is identical in
the two cases and the conclusion follows.

5.3 Instantiation

For the security proof to go through we require that B/Bsm < negl(λ). For correctness to
hold, we require that B+NBsm < q/4. This can be achieved by setting B/Bsm < λ− log2 λ

and Bsm < q/8N . Such an FHE scheme can be instantiated using known constructions
satisfying the properties described in Section 3.1 assuming a variant of Learning with Er-
rors (LWE) assumption. This is as hard as approximating the shortest vector with sub-
exponential approximation factors.

28

6 Construction for t-out-of n Structures

In this section we describe how to construct TFHE for t-out-of-n from the TFHE for
{0, 1}-LSSS constructed in Section 5. Essentially, this is done by showing that the class of
access structures t-out-of-n is contained in {0, 1}-LSSSD and that finding a {0, 1}-LSSSD
share matrix for each such access structure A ∈ t-out-of-n can be done efficiently. This is
done in four steps.

1. We describe a monotone boolean formula with multiple input fan-out computing
majority (the dN/2e-out-of-N access structure). This uses the work of [Val84, Gol14]
and is described in Section 6.1.

2. Given this boolean formula, we describe a {0, 1}-LSSS matrixM for a related boolean
formula with single input fan-out. This uses the ‘folklore’ algorithm to go from for-
mulas to LSSS matrices and is described in Section 6.2.

3. Using step 2, we construct a TFHE scheme for monotone boolean formulas. From
this, we construct TFHE for the majority access structure and the t-out-of-n access
structure. This is described in Section 6.3.

6.1 From Majority to Special Monotone Formula

A monotone boolean formula C : {0, 1}N → {0, 1} is a boolean circuit with the following
properties.

• There is a single output.

• Every gate is either an AND or an OR gate with fan-in 2 and fan-out 1.

• The input wires can have multiple fan-out.

We define a special monotone boolean formula to be a monotone formula where every input
has fan-out 1.

First, note that such a boolean formula C : {0, 1}N → {0, 1} defines an access structure
in the following way. Let P = {P1, . . . , PN} be parties and define the access structure A such
that for any S ⊆ P , S ∈ A if and only if C(XS) = 1 where XS = (X1, . . . , XN) ∈ {0, 1}N
satisfies that Xi = 1 if and only if Pi ∈ S as described in Notation 3.

Second, from [Val84] there exists a monotone boolean formula for majority. I.e. for
every N ∈ N there exists a monotone boolean formula Cmaj : {0, 1}N → {0, 1} such that
for X ∈ {0, 1}N , C(X) = 1 if and only if ≥

⌈
N
2

⌉
bits of X are 1. The size of this formula is

bounded by N` for some ` = poly(N). We would like to construct a {0, 1}-LSSSD scheme
from Cmaj , but since it is not obvious how to directly do this, we instead let our construction
go through a special monotone boolean formula.

29

Assume without loss of generality that every input of the monotone boolean formula
has fan-out ` for an ` polynomial in N . Now, define the special monotone boolean for-
mula C ′maj : {0, 1}`N → {0, 1} as the circuit where every fan-out of an input gate of
Cmaj is its own input in C ′maj . More precisely, C ′maj is the circuit that can be used
to compute majority of X ∈ {0, 1}N in the following way. Given the input tuple X =
(X1, .., XN) ∈ {0, 1}N for which the majority is to be computed, we first construct a tuple
X ′ = (X1, .., X1, X2....., XN , .., XN) (i.e. each Xi appears ` times). We then compute and
output C ′maj(X

′) = Cmaj(X).

6.2 Constructing {0, 1}-LSSS Matrices from Special Monotone Formulas

In this section we describe a construction that given a special monotone boolean formula
C : {0, 1}N → {0, 1} inducing the access structure A yields an LSSS share matrix M re-
alizing the access structure A. To generate the share matrix M , we rely on a “folklore”
algorithm as it is described in [LW11]. We claim that the share matrixM generated by this
algorithm satisfies the properties of {0, 1}-LSSS. More specifically, we claim that for shares
generated by M and for every valid share set, the secret can be recovered with coefficients
in {0, 1}.

We now describe the algorithm formally and prove the claim. Consider the special
monotone boolean formula C : {0, 1}N → {0, 1} as a binary tree where the interior nodes
are either AND and OR gates and the leaf nodes correspond to inputs. Recall that (1, .., 0)
is the target vector for the LSSS scheme. Now, the algorithm is specified in Figure 1.

Theorem 3. The algorithm described in Figure 1 takes as input a special monotone formula
C : {0, 1}N → {0, 1} and outputs a matrix M ∈ {0, 1}-LSSS.

Proof. It is easy to see that the algorithm outputs an LSSSN share matrix M realizing
the access structure A induced by C. Let the set of parties of A be P = {P1, . . . , PN}.
We will now show that the share matrix M actually satisfies the properties of {0, 1}-LSSS
completing the proof.

Note that any secret sharing using the matrix M gives a single element wi ∈ Zp to each
party Pi. So all that must be shown is that for any secret s shared into parts s1, . . . , sN
and any S ⊆ P such that C(XS) = 1 (recalling again Notation 3) or equivalently S ∈ A
there exists an S′ ⊆ S such that S′ ∈ A and s =

∑
i∈S′ si. Viewing C as a binary tree T

as in the above algorithm, let va be the vector of the label of node a in T and identify the
party Pi with the node corresponding to its input in C. We will denote by vPi the vector
of this node, which one can recall is the same vector as the row of the share matrix M that
generates the secret share for Pi. We will now show by induction on the height of T that
for a minimal valid share set S ⊆ P ,

∑
i∈S vPi = vr, where r is the root of T . From this

the conclusion follows as the root is labelled by (1, 0, . . . , 0) in the algorithm and that is
our target vector.

30

“Folklore” Algorithm

Input: A special monotone boolean formula C : {0, 1}n → {0, 1}.
Output: An LSSS share matrix M for the access structure induced by C.

1. Label the root node of the tree with the vector (1) (a vector of length
one).

2. Initialize a counter count = 1. Start labelling each node m of the tree
starting from the top going down.

3. For every non-leaf node m of the tree:

(a) If m is an OR gate, label its children the same as m.

(b) If m is an AND gate labeled with the vector v, pad v with 0′s at
the end (if necessary) to make it of length count. Denote the new
vector by v′. Then label one of its children with the vector (v′, 1)
and the other with the vector (0, . . . , 0,−1) of length count + 1.
Then increase count by one.

4. Once the entire tree is labelled, the vectors labelling the leaf nodes form
the rows of the LSSS share matrix M . If these vectors have different
lengths, the shorter ones are padded with 0s at the end to arrive at
vectors of the same length.

Figure 1: Algorithm to convert a formula to LSSS matrix

First, this certainly holds when T has height 1 and 2, i.e. the cases where C is simply
an input or the case when C consists of two inputs and a gate.

Second, suppose that the statement holds for every T of height strictly less than h ≥ 2
and let C be a simple monotone boolean formula such that its binary tree representation T
has height h. Denote the root of T by r and let s and t be the children of r. Further, denote
by Cs and Ct the circuits induced by the subtree of T with root s and t, respectively, let
As and At be the access structures induced by Cs and Ct, respectively, and assume without
loss of generality that the leafs of Cs and Ct correspond to parties Ps = {P1, . . . , Pk} and
Pt = {Pk+1, . . . , PN}, respectively. Now, we have two cases. If r is an AND gate then for
any minimal valid share set S ⊆ P for A, we must have that S ∩Ps and S ∩Pt are minimal
valid share sets for As and At, respectively, simply by minimality of S. Thus, since by the
algorithm vr = vs + vt, it follows by the induction hypothesis that∑

i∈S
vi =

∑
i∈S∩Ps

vi +
∑

i∈S∩Pt

vi = vr.

If instead r is an OR gate then for any minimal valid share set S ⊆ P we must have, again
by minimality of S, that either S ∩ Ps is a minimal valid share set for As and S ∩ Pt = ∅

31

or vice versa. Since vr = vs = vt by the algorithm, it follows that
∑

i∈S vi = vr. Thus, the
statement holds for C, and the induction is complete.

6.3 Achieving Majority

First, building on Theorem 3 let us state an easy lemma.

Lemma 8. The LSSS share matrix M generated from the algorithm of Figure 1 is a
{0, 1}-LSSSq share matrix for any prime q.

Proof. This follows easily by inspection since the entries of M lie in {−1, 0, 1} and the
recovery coefficients of M (when viewed as a {0, 1}-LSSS share matrix) lie in {0, 1}.

Second, an obvious corollary of Lemma 8, Theorem 3, and Proposition 2 is the following
theorem.

Theorem 4. Given a TFHE for {0, 1}-LSSSq for some prime q, there exists a TFHE scheme
for the class of monotone boolean formulas.

Proof. Let C : {0, 1}N → {0, 1} be a monotone boolean formula and assume without loss of
generality that every input of C has fan-out `, polynomial in N . Then let C ′ : {0, 1}`N →
{0, 1} be the circuit derived from C by letting every fan-out of an input gate of C be its
own input in C ′, just like for Cmaj and C ′maj . By Theorem 3 there is a {0, 1}-LSSS share
matrix M for the access structure induced by C ′ and by allowing collusion between the
parties corresponding to the inputs of C ′ that originally came from the same input gate of
C, we get TFHE for the access structure induced by C by Proposition 2.

Finally, we can construct TFHE for majority as a corollary from Cmaj .

Corollary 2. Assuming TFHE for {0, 1}-LSSSq for some prime q we have TFHE for the
majority access structure.

In [Val84] it is also described how to construct a monotone boolean formula for any
threshold t given a monotone boolean formula for majority, Cmaj .

Corollary 3. Assuming TFHE for {0, 1}-LSSSq for some prime q we have TFHE for the
t-out-of-n access structure for any t.

7 Function Secret Sharing from TFHE

In this section we give our construction for (leveled) FSS for any access structure class S
from a TFHE construction for the same access structure class. The syntax and security
notion is a natural generalization of the definition given in [BGI15] to arbitrary access
structure.

32

7.1 Definition

The study of functional secret sharing was first initiated in [BGI15, BGI16]. In their
definition, reconstruction is simply an addition of partial evaluations in a fixed group. We
study a relaxed variant where the complexity of the reconstruction function is allowed to
depend on the depth of the function (but is independent of the size of the circuit). The
definition below is a natural generalization of the definition in [BGI15] to arbitrary access
structures.

Definition 15 (FSS). Let P = {P1, . . . , PN} be a set of parties, let S be a class of efficient
access structure on P, and let C = {Cλ}λ∈N be a family of circuit classes. A function secret
sharing scheme for S and C is a tuple of PPT algorithms.

FSS = (Gen,Eval,Decode)

satisfying the following specifications:

(k1, .., kN)← Gen(1λ, f,A): Takes as input a security parameter λ, a circuit f : {0, 1}k →
{0, 1} ∈ Cλ, and an access structure A ∈ S. Outputs function shares k1, . . . , kN .

pi ← Eval(ki, x): Takes as input a function share ki and an input x ∈ {0, 1}k. Determinis-
tically outputs a partial evaluation pi.

µ̂← Decode(B): Takes as input a set B = {pi}i∈S for some S ⊆ {P1, . . . , PN} where
we recall that we identify a party Pi with its index i. Deterministically outputs an
evaluation µ̂ ∈ {0, 1,⊥}.

We ask of FSS that for any circuit f : {0, 1}k → {0, 1} ∈ Cλ, parameters (k1, .., kN) ←
Gen(1λ, f,A), any subset S ⊆ {P1, . . . , PN}, and any x ∈ {0, 1}k the following is satisfied.

Correctness of Evaluation. Let B = {pi = Eval(ki, x)}i∈S. With all but negligible prob-
ability in λ over the coins of Gen,

Decode(B) =

{
f(x), S ∈ A
⊥ S 6∈ A.

Compactness of Evaluation. There exists a polynomial, poly, such that |pi| ≤ poly(λ, d)
for any evaluation pi generated from the Eval algorithm of FSS, where d is the depth
of the circuit f .4

4Note that in function secret sharing as proposed in [BGI15], the reconstruction function computes an
addition of the partial evaluations, which are of a fixed size. Here we allow the size of the shares and the
running time of the reconstruction to grow with the depth, but not the size, of the evaluated circuit.

33

Security. Any PPT adversary A has only negligible advantage as a function of λ over the
coins of all the algorithms in the following game:

1. On input the security parameter 1λ, the adversary A outputs A ∈ S along with
the functions (f0, f1) of same depth d and size s.

2. Sample a random bit b ∈ {0, 1}. Run Gen(1λ, fb,A)→ (k1, .., kN).
3. The adversary A outputs a set S ⊆ P such that S /∈ A and S is a maximal

invalid set.
4. The adversary receives {ki}i∈S.
5. The adversary A issues polynomially many queries. A query is an input xj

satisfying f0(xj) = f1(xj). After each query the adversary receives the value

Eval(kl, xj)→ pl

for each l ∈ [N].
6. The adversary A outputs b′ and wins if b = b′.

7.2 Construction

Let TFHE be a threshold fully homomorphic encryption scheme for a class of access struc-
tures, S. In this section we construct FSS for S from TFHE.

Construction 2 (FSS). Let P = {P1, . . . , PN} be parties and S a class of access structures
on P . Further, let TFHE be a threshold fully homomorphic encryption scheme for S, let
len(λ) be the bit-length of the randomness used by TFHE.PartDec, and let a publicly known
pseudorandom function g : {0, 1}λ×{0, 1}∗ → {0, 1}len(λ) be given. Then define the following
algorithms

FSS = (Gen,Eval,Decode)

as follows:

(k1, .., kN)← Gen(1λ, f,A): Given the circuit f : {0, 1}k → {0, 1} of size s, let U be the
universal circuit accepting a circuit of size s and with k input bits. Let d be the depth
of the universal circuit required to run f . Run TFHE(1λ, 1d,A)→ (pk, sk1, . . . , skN).
For each party Pi, compute ki = (TFHE.Encrypt(pk, f), ski, ri) for some independently
random seed ri where the encryption is performed bitwise. Output {ki}Ni=1.

pi ← Eval(ki, x): Parse ki as ki = (ctf , ski, ri). Determine the universal circuit Ux which
evaluates a circuit on x. Run TFHE.Eval(Ux, ctf)→ ĉteval. Output

TFHE.PartDec(cteval; g(ri, x))→ pi,

where g(ri, x) is the randomness used by TFHE.PartDec.

µ̂← Decode(B): Output TFHE.FinDec(B)→ µ̂.

34

7.3 Analysis

In the following we analyze our FSS scheme. Most of the requirements are almost automat-
ically satisfied by the properties of the TFHE scheme.

Correctness of Evaluation Follows immediately from the correctness of evaluation of
the TFHE scheme.

Compactness of the evaluation Follows immediately from the compactness of the TFHE
scheme and the compactness of the universal circuit.

Security In our construction, the security game of FSS is almost equivalent to the IND-
security game of the TFHE scheme. The only difference is that the randomness of
TFHE.PartDec is generated by PRF, but by the security of PRF this means that the
two games are indistinguishable and security follows.

8 Distributed Pseudorandom Functions

The syntax and security notion of a DPRF scheme for any access structure class S is a natural
generalization of the definition given in [BLMR13] (which was proposed for threshold access
structures).

8.1 Defintion

In this section, we define distributed PRFs for a class of access structures S. We consider
DPRF with one bit output. Both the definition and the construction can be generalized for
multi-bit outputs. We adapt definitions suitably from [BLMR13].

Definition 16. Let P = {P1, . . . , PN} be a set of parties, let S be a class of efficient access
structure on P, and let C = {Cλ}λ∈N be a family of circuit classes. A distributed PRF
scheme DPRF for S is a tuple of PPT algorithms.

(k, k1, .., kN)← Gen(1λ,A): Takes as input a security parameter λ, and an access structure
A ∈ S. Outputs shares k1, . . . , kN and a key k.

pi ← Eval(ki, x): Takes as input a function share ki and an input x ∈ {0, 1}λ. Determinis-
tically outputs a partial evaluation pi.

v ← Decode(B): Takes as input a set B = {pi}i∈S for some S ⊆ {P1, . . . , PN} where
we recall that we identify a party Pi with its index i. Deterministically outputs an
evaluation v ∈ {0, 1, } ∪ ⊥.

We ask of DPRF that for any (k, k1, .., kN)← Gen(1λ,A), any subset S ⊆ {P1, . . . , PN},
and any x ∈ {0, 1}λ the following is satisfied. Here, g denotes a publicly known pseudoran-
dom function.

35

Correctness of Evaluation. Let B = {pi = Eval(ki, x)}i∈S. With all but negligible prob-
ability in λ over the coins of Gen,

Decode(B) =

{
g(k, x), S ∈ A
⊥ S 6∈ A.

Security. Any PPT adversary A has only negligible advantage as a function of λ over the
coins of all the algorithms in the following game:

1. On input the security parameter 1λ, the adversary A outputs A ∈ S and a set
S /∈ A.

2. Run Gen(1λ,A)→ (k, k1, .., kN).
3. The adversary A receives {ki}i∈S.
4. The adversary A issues polynomially many distinct queries of the form xj ∈
{0, 1}λ for j ∈ [q]. The adversary receives {Eval(ki, xj)}i∈[N]\S.

5. Finally adversary outputs x∗, S∗ which is not equal to any of the queries above.
S∗ ∪ S /∈ A.

6. The challenger samples b $←− {0, 1}. If b = 0, set v = g(k, x∗) otherwise sample
v

$←− {0, 1}. Adversary is given {Eval(ki, x∗)}i∈S∗\S along with v.
7. The adversary A continues to issue polynomially many distinct queries of the

form xj 6= x∗ for j ∈ [q]. The adversary receives {Eval(ki, xj)}i∈[N]\S.
8. The adversary A outputs b′ ∈ {0, 1} and wins if b′ = b.

The advantage of any adversary is defined as | Pr[b′ = b]− 1/2 |

Remark. We also define selective security where the adversary is not allowed to ask
for the set S∗. Any selectively secure scheme can be converted to an adaptively secure
scheme assuming subexponential hardness assumptions by using complexity leveraging (by
guessing S∗).

8.2 Construction

Theorem 5. Assuming a secure TFHE scheme for a class of access structures S and poly-
nomial sized circuits, there exists a selectively secure DPRF scheme for S.

We now present our construction below for PRF with one-bit output. The construction
can be generalised for multi-bit output.

Construction 3 (DPRF). Let P = {P1, . . . , PN} be parties and S a class of access struc-
tures on P . Further, let TFHE be a threshold fully homomorphic encryption scheme for S.
Then define the following algorithms:

DPRF = (Gen,Eval,Decode)

36

as follows:

(k, k1, .., kN)← Gen(1λ,A): Let g denote a pseudo-random function g : {0, 1}λ×{0, 1}λ →
{0, 1}. Let glen denote the PRF with output of len bits. Let d denote the depth of this
function g() represented as a circuit. Sample k $←− {0, 1}λ. Run TFHE(1λ, 1d,A) →
(pk, sk1, . . . , skN). For each party Pi, compute ki = TFHE.Encrypt(pk, k), ski, ri) for
ri

$←− {0, 1}λ where the encryption is performed bitwise. Output (k, k1, .., kN).

pi ← Eval(ki, x): Parse ki as ki = (ct, ski, ri). Run ctx ← TFHE.Eval(g(·, x), ct). Then
compute and output pi ← TFHE.PartDec(ski, ctx; glen(ri, x)). Here len is the length
of the randomness required by the algorithm PartDec.

v ← Decode(B): Takes as input a set B = {pi}i∈S for some S ⊆ {P1, . . . , PN} where we
recall that we identify a party Pi with its index i. Run and output v = TFHE.FinDec(B)

Correctness follows from the correctness of the TFHE scheme. The proof of security for
our construction of a distributed PRF is as follows.

8.2.1 Security Proof.

We now describe hybrids where the first hybrid (hybrid0) corresponds to the distributed
PRF security game with b = 0 and the last hybrid is independent of the prf key k (with
advantage 0 in this hybrid). Then we show why each hybrid is indistinguishable.

• hybrid0 : This hybrid corresponds to the selective distributed PRF security game with
b = 0.

• hybrid1 : This hybrid is the same as the previous hybrid except that while responding
to the queries of the adversary, for all parties Pi, i ∈ [N] \ S, for every query x (in-
cluding the challenge) partial decryption is computed using true randomness instead
of glen(ri, x).

The two hybrids described above are indistinguishable due to the security of the
PRF glen.

• hybrid2 : This hybrid is the same as the previous hybrid except that the queries of
the adversary are simulated using the simulator of the TFHE scheme. For every x,
set vx = g(k, x) and use this to simulate the TFHE partial decryptions computed to
respond to the queries.

The two hybrids described above are indistinguishable due to simulation security
of TFHE.

37

• hybrid3 : This hybrid is the same as the previous hybrid except that ct is generated
as an encryption of 0λ.

The two hybrids described above are indistinguishable due to semantic security of
TFHE.

• hybrid4 : This hybrid is the same as the previous hybrid except that the for the chal-
lenge input x∗, v $←− {0, 1} is given out.

The two hybrids described above are indistinguishable due to security of the PRF
g

• hybrid5 : This hybrid is the same as the previous hybrid except that ct is generated
as an encryption of the key k.

The two hybrids described above are indistinguishable due to semantic security of
TFHE.

• hybrid6 : This hybrid is the same as the previous hybrid except that the queries of
the adversary are computed using partial decryption algorithm of the TFHE scheme
with glen(ri, x) as the randomness to compute partial decryption for every party i and
input x. This corresponds to the security game with b = 1

The two hybrids described above are indistinguishable due to security of the PRF
glen

References

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low commu-
nication, computation and interaction via threshold FHE. In EUROCRYPT,
pages 483–501, 2012.

[AJN+16] Prabhanjan Ananth, Aayush Jain, Moni Naor, Amit Sahai, and Eylon Yogev.
Universal constructions and robust combiners for indistinguishability obfusca-
tion and witness encryption. In CRYPTO, pages 491–520, 2016.

[Bei96] Amos Beimel. Phd thesis. Israel Institute of Technology, Technion, Haifa,
Israel,, 1996.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In EURO-
CRYPT, 2015.

38

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for
secure computation under DDH. In CRYPTO, pages 509–539, 2016.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In ITCS, pages 309–325,
2012.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghu-
nathan. Key homomorphic prfs and their applications. In CRYPTO, pages
410–428, 2013.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic en-
cryption from (standard) LWE. In FOCS, pages 97–106, 2011.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky
encryption and its applications. In CRYPTO, pages 93–122, 2016.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
pages 169–178, 2009.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps
from ideal lattices. In EUROCRYPT, pages 1–17, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. Candidate indistinguishability obfuscation and functional en-
cryption for all circuits. In FOCS, 2013.

[GLS15] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with
fairness and guarantee of output delivery. In CRYPTO, pages 63–82, 2015.

[Gol14] Oded Goldreich. Valiant’s polynomial-size monotone formula for majority.
2014.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In CRYPTO, 2013.

[KNY16] Ilan Komargodski, Moni Naor, and Eylon Yogev. How to share a secret, in-
finitely. In TCC, pages 485–514, 2016.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate com-
putations: the power of no-signaling proofs. In STOC, pages 485–494, 2014.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly mul-
tiparty computation on the cloud via multikey fully homomorphic encryption.
In STOC, 2012.

39

[LW11] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption.
In EUROCRYPT, 2011.

[MS95] Silvio Micali and Ray Sidney. A simple method for generating and sharing
pseudo-random functions, with applications to clipper-like escrow systems. In
CRYPTO, pages 185–196, 1995.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round MPC from LWE via multi-
key FHE. In EUROCRYPT. 2016.

[Nie02] Jesper Buus Nielsen. A threshold pseudorandom function construction and its
applications. In CRYPTO, pages 401–416, 2002.

[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random
functions and kdcs. In EUROCRYPT, pages 327–346, 1999.

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient
pseudo-random functions. J. ACM, 51(2):231–262, 2004.

[Val84] Leslie G. Valiant. Short monotone formulae for the majority function. J.
Algorithms, 1984.

40

	Introduction
	Function Secret Sharing BGI15,BGI16,DHR+16.
	Distributed PRF BLM+13,N02,NPR99,NR04,MS95.

	Technical Overview
	Overall Approach.
	Attempt 1: The Naive approach.
	Attempt 2: Trying Small Coefficients.
	Attempt 3: Splitting Shares.
	Solution: TFHE for a Special Access Structure.
	Extending Solution: Monotone Formulas and Majority.
	Applications.

	Preliminaries
	Homomorphic Encryption
	Statistical Distance
	Secret Sharing
	Secret Sharing Basics.
	{0, 1}-LSSS and {0, 1}-LSSSD.

	Definition of Threshold Fully Homomorphic Encryption
	TFHE for {0, 1}-LSSSD
	Construction
	Analysis
	Semantic Security.
	Simulation Security.
	hybrid0:
	hybrid1:
	hybrid2:

	Instantiation

	Construction for t-out-of n Structures
	From Majority to Special Monotone Formula
	Constructing {0, 1}-LSSS Matrices from Special Monotone Formulas
	Achieving Majority

	Function Secret Sharing from TFHE
	Definition
	Construction
	Analysis

	Distributed Pseudorandom Functions
	Defintion
	Construction
	Security Proof.

