
Full accounting for verifiable outsourcing

Riad S. Wahby⋆
rsw@cs.stanford.edu

Ye Ji◦
yj682@nyu.edu

Andrew J. Blumberg†
blumberg@math.utexas.edu

abhi shelat‡
abhi@neu.edu

Justin Thaler△
justin.thaler@georgetown.edu

Michael Walfish◦
mwalfish@cs.nyu.edu

Thomas Wies◦
wies@cs.nyu.edu

⋆Stanford ◦NYU †UT Austin ‡Northeastern △Georgetown

September 5, 2017

Abstract. Systems for verifiable outsourcing incur costs for a prover, a verifier, and precomputation;
outsourcing makes sense when the combination of these costs is cheaper than not outsourcing. Yet, when
prior works impose quantitative thresholds to analyze whether outsourcing is justified, they generally
ignore prover costs. Verifiable ASICs (VA)—in which the prover is a custom chip—is the other way
around: its cost calculations ignore precomputation.

This paper describes a new VA system, called Giraffe; charges Giraffe for all three costs; and
identifies regimes where outsourcing is worthwhile. Giraffe’s base is an interactive proof geared to data-
parallel computation. Giraffe makes this protocol asymptotically optimal for the prover and improves
the verifier’s main bottleneck by almost 3×, both of which are of independent interest. Giraffe also
develops a design template that produces hardware designs automatically for a wide range of parameters,
introduces hardware primitives molded to the protocol’s data flows, and incorporates program analyses
that expand applicability. Giraffe wins even when outsourcing several tens of sub-computations, scales
to 500× larger computations than prior work, and can profitably outsource parts of programs that are
not worthwhile to outsource in full.

1 Introduction
In probabilistic proofs—Interactive Proofs (IPs) [12, 49, 50, 58, 76], arguments [30, 52, 54, 62],
SNARGs [48], SNARKs [26, 47], and PCPs [9, 10]—a prover efficiently convinces a verifier of a claim,
in such a way that the verifier is highly likely to reject a false claim. These protocols are foundational in
complexity theory and cryptography. There has also been substantial progress in implementations over
the last six years [14, 15, 17–19, 21, 22, 32, 34, 36, 37, 39, 40, 42, 45, 47, 56, 64, 66, 72–75, 77, 79, 81–
83, 87] (for a survey, see [84]), based on theoretical refinements and systems work.

A central application example is verifiable outsourcing. The verifier specifies a computation and
input; the prover returns the (purported) output and proves the claim that “the returned output equals
the computation applied to the input.” The essential property here is that the verifier’s probabilistic
checks are asymptotically less expensive than executing the computation; as a result, outsourcing can
be worthwhile for the verifier. This picture partially motivated the original theory [13, 46, 49, 62] and
has reappeared in tales of outsourcing to the cloud. But to validate these stories, one must consider
three kinds of costs:

• Prover overhead. Even in the best general-purpose probabilistic proof protocols, the prover has
enormous overhead in running the protocol versus simply executing the underlying computation: the
ratio between these is typically at least 107 [84, Fig. 5].

• Precomputation. Many of the implemented protocols require a setup phase, performed by the verifier
or a party that the verifier trusts. This phase is required for each computation and can be reused over

1

different input-output instances. Its costs are usually proportional to the time to run the computation.
(Precomputation can be asymptotically suppressed or even eliminated, but at vastly higher concrete
cost [17, 21, 22, 34]; see §10.)

• Verifier overhead. Separate from precomputation, there are inherent costs that the verifier incurs for
each input-output instance. These costs are at least linear in the input and output lengths.

More or less tacitly, “practical” work in this area has bundled in assumptions about the regimes in
which these costs are reasonable for the operator of the verifier.1 For example, one way to tame the
costs is not to charge the operator for precomputation. This is the approach taken in Pinocchio, which
focuses on per-instance verifier overhead [66, 67].2 This choice can be justified if there is a trusted third
party with extremely inexpensive cycles.

Another possibility is to target data-parallel computations, meaning identical sub-computations on
different inputs. Here, one can charge the operator of the verifier for the precomputation, which amortizes,
and then identify cross-over points where the verifier saves work from outsourcing [32, 37, 66, 73–
75, 81, 83, 87].

In both of these cases, prover overhead is measured but in some sense ignored (when considering
whether outsourcing is worthwhile). This would make sense if the prover’s cycles were vastly cheaper
than the verifier’s—the required ratio is approximately the prover’s overhead: 107×—or if the outsourced
computation could not be executed in any other way.

Recently, Zebra [82] used a different justification by observing that one can gain high-assurance
execution of custom chips (ASICs) by using trusted slow chips to verify the outputs of untrusted fast
chips. In this Verifiable ASICs (VA) domain (§2.3), one can charge the operator for both verifier and
prover and still identify regimes where their combination outperforms a baseline of executing the
functionality in a trusted slow chip. However, Zebra does not charge for precomputation—and worse,
introduces a preposterous assumption about daily delivery of hard drives to handle the problem.

The work of this paper is to create a system, Giraffe; to charge the operator for all three costs; and
to seek out regimes where this combined cost is superior to the baseline. Giraffe builds on Zebra and
likewise targets the VA setting. However, some of Giraffe’s results and techniques apply to verifiable
outsourcing more generally.

Giraffe has two high-level aspects. The first is a new probabilistic proof built on a protocol that we
call T13 [77, §7]. As with all work in this area, T13 requires computations to be expressed as arithmetic
circuits, or ACs (§2.1). T13 has three key advantages: (a) T13 is a variant of CMT [36, 49], which is
Zebra’s base, and thus promises amenability to hardware implementation; (b) in the VA context, T13
can in principle pay for precomputation and break even, because it is geared to the aforementioned
data-parallel model: precomputation is proportional to one sub-computation, and amortizes over N
sub-computations; and (c) T13 ought to permit breaking even for small N: CMT has low overhead
compared to alternatives [84]. From this starting point, Giraffe does the following (§3):

1A variant of this story, exploiting the zero knowledge property of some probabilistic proofs, such as SNARKs [26, 47],
includes applications where the proof can incorporate input hidden from the verifier [18, 39, 64, 66]. Here, one does not
obsess over the verifier’s overhead or total cost comparisons because the verifier cannot execute locally. Nevertheless,
identifying regimes where overhead is reasonable similarly requires some effort. We do not discuss in detail, but see §9 and
§10.
2Pinocchio certainly considers precomputation [66, §5.3], but its emphasized comparison is between native execution and
verifier overhead.

2

• Giraffe improves T13. Most significantly, Giraffe makes the prover asymptotically time-optimal: for
sufficiently large N , the prover’s work is now only a multiple (≈ 10×) of executing the AC (§3.1).
This can save an order of magnitude or more for any implementation of T13 in any context (for
example, vSQL [87]), and is of independent interest.

• Giraffe develops a design template that automatically instantiates physically realizable, efficient,
high-throughput ASIC designs for the prover and verifier. The basic challenge is that, consistent with
our search for applicable regimes, there are variables with wide ranges: small and large N , different
hardware substrates, etc. As a result, the optimal architectures are diverse. For example, large ACs
(large sub-computations and/or large N) must iteratively reuse the underlying hardware whereas
small ACs call for high parallelism. Giraffe responds with the RWSR: a new hardware structure that,
when applied to the data flows in T13, both runs efficiently in serial execution and parallelizes easily.

• Giraffe demonstrates algorithmic improvements that apply to all CMT-based systems [36, 77, 79, 81,
82, 87]. This includes reducing the verifier’s main bottleneck by ≈3× (§3.3), eliminating a log factor
from one of the verifier’s other computations by shifting additional work to the prover, and other
optimizations that result in constant-factor improvements (Appx. B.2).

The second aspect of Giraffe is motivated by our search for applicable regimes. In existing systems,
protocol overhead limits the maximum size of a computation that can be outsourced. Worse, outsourcing
really makes sense only if the computation is naturally expressed as an AC; otherwise, the asymptotic
savings do not apply until program sizes are well beyond the aforementioned maximum. While these
systems differ in the particulars, their restrictions are qualitatively similar—and there has been no
fundamental progress on the expressivity issue over the last six years. As a consequence, it seems
imperative to adapt to this situation. Two possible approaches are to handle these constraints by
outsourcing amenable pieces of a given computation and to apply program transformations to increase
the range of suitable computations. These ideas have of course appeared in the literature on compiling
cryptographic protocols [43, 45, 59, 86], but previous efforts in the context of verifiable outsourcing
have been very limited [37, 83].

We study techniques for each of these approaches, adapted to this setting (§4). Giraffe employs
slicing, which takes as input an abstract cost model and a program, automatically identifies amenable
subregions of the program, and generates glue code to sew the outsourced pieces into the rest of the
program. Slicing is a very general technique that can work with all probabilistic proof implementations.
Giraffe also uses squashing, which transforms sequential ACs into parallel ACs and adjusts the verifier
to link these computations; this is relevant to CMT and T13, which require parallel ACs.

Our implementation of Giraffe (§5) applies the above transformations to programs written in a subset
of C, producing one or more ACs. Giraffe’s design template uses these ACs, along with several physical
parameters (hardware substrates, chip area, etc.), and automatically generates concrete hardware designs
for the prover and verifier, built in SystemVerilog, that can be used for cycle-accurate simulation or
synthesized (i.e., compiled to a chip).

We evaluate using detailed simulation and modeling of these generated hardware designs. Accounting
for all costs (prover, precomputation, verifier), Giraffe saves compared to native execution across a
wide range of computation sizes and hardware substrates (§6.2). Giraffe breaks even on operating
costs for N≈30 parallel sub-computations; this value is essentially independent of the size of each
sub-computation (§6.1). Compared to prior work in the VA setting, Giraffe scales to 500× larger
computation sizes, holding all else constant (§8.1). A disadvantage of Giraffe is that its verifier is
costlier than Zebra’s, and thus Giraffe’s break-even point is higher than Zebra’s. This is not because

3

Zebra is fundamentally cheaper, but rather because it assumes away precomputation and thus does not
have to pay for it. Furthermore, Giraffe’s program analysis techniques expand applicability beyond
Zebra; our experiments demonstrate that slicing enables an image-matching application that neither
Zebra nor Giraffe could otherwise handle (§8.2).

Nevertheless, Giraffe has limitations (some of which reflect the research area itself (§9)). Breaking
even requires data-parallel computations (to amortize precomputation), requires that the computation be
naturally expressed as a layered AC, and requires a large gap between the hardware technologies used
for the verifier and prover (which holds in some concrete settings; see [82, §1]). Moreover, the absolute
cost of verifiability is still very high. Finally, the program transformation techniques have taken only a
small first step.

Despite these limitations, we think that Giraffe has a substantial claim to significance: it adopts the
most stringent cost regime in the verifiable outsourcing literature and (to our knowledge) is the only
system that can profitably outsource under this accounting.

Debts and contributions. Giraffe builds on the T13 protocol [77, §7] and an optimization [78] (§2.2).
It also generalizes a prior technique [1–3, 77, 82] (§3.2, “Algorithm”). Finally, Giraffe borrows from
Zebra [82], specifically: the setting (§2.3), how to evaluate in that setting (§2.3, §6.2), a high-level
design strategy (implicit in this paper), a design for a module within the prover (footnote 5), and the
application to Curve25519 (§8.1). Giraffe’s contributions are:
• Algorithmic refinements of the T13 interactive proof, yielding an asymptotically optimal prover (§3.1)

and a ≈3× reduction in the verifier’s main bottleneck (§3.3).
• Hardware design templates for prover and verifier chips (§3.2, “Computing in hardware”; §3.3). We

note that automatically generating a wide variety of optimized hardware designs is a significant
technical challenge; it is achieved here via the introduction of the RWSR (and other hardware
primitives), and the observation that RWSRs service a wide range of possible designs.

• Techniques for compiling from a subset of C to ACs while automatically optimizing for outsourcing
based on cost models (§4).

• An implemented pipeline that takes as input a program in a subset of C and physical parameters, and
produces hardware designs automatically (§5).

• Evaluation of the whole system (§6–§8) and a new application of verifiable outsourcing: image
matching using a pyramid (§8.2).

• The first explicit consideration of the stringent, tripartite cost regime, and—for all of Giraffe’s
limitations—being the first that can at least sometimes outsource profitably in that regime.

2 Background
2.1 Probabilistic proofs for verifiability

The description below is intended to give necessary terminology; it does not cover all variations in the
literature.

Systems for verifiable outsourcing enable the following. A verifier V specifies a computation Ψ
(often expressed in a high-level language) to a prover P. V determines input x; P returns y, which
is purportedly Ψ(x). A protocol betweenV and P allowsV to check whether y = Ψ(x) but without
executing Ψ. There are few (and sometimes no) assumptions about the scope of P’s misbehavior.

These systems typically have a front-end and a back-end. The interface between them is an
arithmetic circuit (AC). In an AC, the domain is a finite field F, usually Fp (the integers mod

4

a prime p); “gates” are field operations (add or multiply), and “wires” are field elements. The
front-end transforms Ψ from its original expression to an AC, denoted C; this step often uses a
compiler [19, 22, 31, 32, 37, 45, 66, 73, 75, 81, 83], though is sometimes done manually [18, 36, 77].
The back-end is a probabilistic proof protocol, targeting the assertion “y = C(x)”; this step incorporates
tools from complexity theory and sometimes cryptography.

2.2 Starting point for Giraffe’s back-end: T13

Giraffe’s back-end builds on a line of interactive proofs [12, 49, 50, 58, 76]: GKR [49], as refined
and implemented by CMT [36], Allspice [81], Thaler [77], and Zebra [82]. Our description below
sometimes borrows from [81, 82].

In these works, the AC C must be layered: the gates are partitioned, and there are wires only
between adjacent partitions (layers). Giraffe’s specific base is T13 [77, §7], with an optimization [78].
T13 requires data parallelism: C must have N identical sub-circuit copies, each with its own inputs
and outputs (x and y now denote the aggregate inputs and outputs). We call each copy a sub-AC. Each
sub-AC has d layers. For simplicity, we assume that every sub-AC layer has the same width, G (this
implies that |x | = |y | = N · G). The properties of T13 are given below; probabilities are over V’s
random choices (Appx. A justifies these properties, by proof and reference to the literature):

• Completeness. If y = C(x), and if P follows the protocol, then Pr{V accepts} = 1.
• Soundness. If y , C(x), then Pr{V accepts} < ϵ , where ϵ = (⌈log |y |⌉ + 6d log (G · N))/|F|. This

holds unconditionally (no assumptions about P). Typically, |F| is astronomical, making this error
probability tiny.

• Verifier’s running time.V requires precomputation that is proportional to executing one sub-AC:
O(d ·G). Then, to validate all inputs and outputs,V incurs cost O(d · log (N · G) + |x | + |y |) (which,
under our “same-size-layer assumption”, is O(d · log (N · G) + N · G)). Notice that the total cost to
verify C, O(d ·G+ d · log N +N ·G) , is less than the cost to execute C directly, which is O(d ·G · N).

• Prover’s running time. P’s running time is O(d · G · N · log G); we improve this later (§3.1).

Details. Within a layer of C, each gate is labeled with a pair (n, g) ∈ {0, 1}bN × {0, 1}bG , where
bN ≜ log N and bG ≜ log G. (We assume for simplicity that N and G are powers of 2.) We also view
labels numerically, as elements in {0, . . . , N − 1} × {0, . . . ,G − 1}. In either case, n (a gate label’s upper
bits) selects a sub-AC, and g (a gate label’s lower bits) indexes a gate within the sub-AC.

Each layer i has an evaluator function Vi : {0, 1}bN × {0, 1}bG → F that maps a gate’s label to the
output of that gate;3 implicitly, Vi depends on the input x. By convention, the layers are numbered in
reverse execution order. Thus, V0 refers to the output layer, and Vd refers to the inputs. For example,
V0(n, j1) is the correct j1th output in sub-AC n; likewise, Vd(n, j2) is the j2th input in sub-AC n.

Notice thatV wants to be convinced that y, the purported outputs, matches the correct outputs, as
given by V0. However,V cannot check this directly: evaluating V0 would require re-executing C. Instead,
P combines all V0(·) values into a digest. Then, the protocol reduces this digest to another digest, this
one (purportedly) corresponding to all of the values V1(·). The protocol proceeds in this fashion, layer
by layer, untilV is left with a purported digest of the input x, whichV can then check itself.

Instantiating the preceding sketch requires some machinery. A key element is the sum-check
protocol [58], which we will return to later (§3.1). For now, let P : Fm → F be an m-variate polynomial.

3This definition of Vi transposes the domain relative to [77, §7].

5

In a sum-check invocation, P interactively establishes forV a claim about the sum of the evaluations
of P over the Boolean hypercube {0, 1}m; the number of protocol rounds is m.

Another key element is extensions. Technically, an extension f̃ of a function f is a polynomial that
is defined over a domain that encloses the domain of f and equals f at all points where f is defined.
Informally, one can think of f̃ as encoding the function table of f . In this paper, extensions will always
be multilinear extensions: the polynomial has degree at most one in each of its variables. We notate
multilinear extensions with tildes.

Based on the earlier sketch, we are motivated to express Ṽi−1 in terms of Ṽi. To that end, we
define several predicates. The functions add(·) and mult(·) are wiring predicates; they have signatures
{0, 1}3bG → {0, 1}, and implicitly describe the structure of a sub-AC. addi(g, h0, h1) returns 1 iff (a)
within a sub-circuit, gate g at layer i − 1 is an add gate and (b) the left and right inputs of g are,
respectively, h0 and h1 at layer i. multi is defined analogously. Note that these predicates ignore the
“top bits” (the n component) because all sub-ACs are identical. We also define the equality predicate
eq : {0, 1}2bN → {0, 1} with eq(a, b) = 1 iff a equals b. Notice that these predicates admit extensions:
˜add, ˜mult : F3bG → F and ẽq : F2bN → F. (We give explicit expressions in Appx. A.)

We can now express Ṽi−1 in terms of a polynomial Pq,i:

Pq,i(r0, r1, r ′) ≜ ẽq(q′, r ′)
·
[˜addi(q, r0, r1) ·

(
Ṽi(r ′, r0) + Ṽi(r ′, r1)

)
+ ˜multi(q, r0, r1) · Ṽi(r ′, r0) · Ṽi(r ′, r1)

]
. (1)

Ṽi−1(q′, q) =
∑

h0,h1∈{0,1}bG

∑
n∈{0,1}bN

Pq,i(h0, h1, n). (2)

The signatures are Pq,i : F2bG+bN → F and Ṽi−1, Ṽi : FbN × FbG → F. Equation (2) follows from an
observation of [78] applied to a claim in [77, §7]. For intuition, notice that (i) Pq,i is being summed
only at points where its variables are 0-1, and (ii) at these points, if (q′, q) is a gate label (rather than an
arbitrary value in FbN × FbG), then the extensions of the predicates take on 0-1 values and in particular
eliminate all summands except the one that contains the inputs to the gate (q′, q).

An excerpt of the protocol appears in Figure 1; the remainder appears in Appendix A. It begins
with V wanting to be convinced that Ṽ0 (which is the extension of the correct C(x)) is the same
polynomial as Ṽy (which denotes the extension of the purported output y).V thus chooses a random
point in both polynomials’ domain, (q′0, q0), and wants to be convinced that Ṽ0(q′0, q0) = Ṽy(q′0, q0) ≜ a0.
Notice that (i) Ṽ0(q′0, q0) can be expressed as the sum over a Boolean hypercube of the polynomial
Pq0,1 (Equation (2)), and (ii) Pq0,1 itself is expressed in terms of Ṽ1 (Equation (1)). Using a sum-check
invocation, the protocol exploits these facts to reduce Ṽ0(q′0, q0) = a0 to a claim: Ṽ1(q′1, q1) = a1. This
continues layer by layer untilV obtains the claim: Ṽd(q′d, qd) = ad.V checks that assertion directly.

T13 incorporates one sum-check invocation—each of which is 2bG + bN rounds—for each
polynomial Pq0,1, . . . , Pqd−1,d.

2.3 Verifiable ASICs

Giraffe’s back-end works in the Verifiable ASICs (VA) setting [82]. Giraffe also borrows evaluation
metrics and some design elements from [82]; we summarize below.

Consider some principal (a government, fabless semiconductor company, etc.) that wants high-
assurance execution of a custom chip (known as an ASIC) [82, §1,§2.1]. The ASIC must be manufactured
at a trustworthy foundry, for example one that is onshore. However, for many principals, high-assurance

6

1: function Verify(ArithCircuit c, input x, output y)
2: (q′0, q0)

R←− Flog N × FlogG

3: a0 ← Ṽy(q′0, q0) // Ṽy is the multilin. ext. of the output y
4: SendToProver(q′0, q0)
5: d ← c.depth
6:
7: for i = 1, . . . , d do
8: // Reduce Ṽi−1(q′i−1, qi−1)

?
= ai−1 to Pq,i(r0, r1, r ′)

?
= e

9: (e, r ′, r0, r1) ← SumCheckV(i, ai−1)
10:
11: // Below, P describes a univariate polynomial H(t),
12: // of degree log G, claimed to be Ṽi (r ′, (r1 − r0) t + r0)
13: H ← Receive from P // see Figure 14, line 47
14: v0 ← H(0)
15: v1 ← H(1)
16:
17: // Reduce Pq,i(r0, r1, r ′)

?
= e to two questions:

18: // Ṽi(r ′, r0)
?
= v0 and Ṽi(r ′, r1)

?
= v1

19:
20: if e , ẽq(q′

i−1, r ′) ·
[˜addi(qi−1, r0, r1) · (v0 + v1)

21: + ˜multi(qi−1, r0, r1) · v0 · v1
]

then
22: return reject
23:
24: // Reduce the two v0, v1 questions to Ṽi(q′i, qi)

?
= ai

25: τi
R←− F

26: ai ← H(τi)
27: (q′i, qi) ← (r ′, (r1 − r0) · τi + r0)
28:
29: SendToProver(τi)
30:
31: // Ṽd(·) is the multilinear extension of the input x
32: if Ṽd(q′d, qd) = ad then
33: return accept
34: return reject

Figure 1—V’s side of T13 [77, §7], with an optimization [78]. V’s side of the sum-check protocol and P’s
work are described in Appendix A, Figures 11 and 14.

manufacture means an orders-of-magnitude sacrifice in price and performance, relative to an advanced
but untrusted foundry. This owes to the economics and scaling behavior of semiconductor technology.
In the VA setup, one manufactures a prover in a state-of-the-art but untrusted foundry (we refer to
the manufacturing process and hardware substrate as the untrusted technology node) and a verifier
in a trusted foundry (the trusted technology node). A trusted integrator combines the two ASICs.
This arrangement makes sense if their combined cost is cheaper than the native baseline: an ASIC
manufactured in the trusted technology node.

VA is instantiated in a system called Zebra, which implements an optimized variant of CMT [36,
78, 81]. Zebra is evaluated with two metrics [82, §2.3]. The first is energy (E , in joules/run), which
is a proxy for operating cost. Energy tracks asymptotic (serial) running time: it captures the number
of operations and the efficiency of their implementation. The second is area/throughput (A/T , in
mm2/(ops/sec)). Area is a proxy for manufacturing cost; normalizing by throughput reflects cost at a
given performance level.

7

Furthermore, Zebra is designed to respect two physical constraints. The first is a maximum area, to
reflect manufacturability (larger chips have more frequent defects and hence lower yields). The second
is a maximum power dissipation, to limit heat. The first constraint limits A (and thus the hardware
design space) and the second limits the product of energy and throughput, E · T .

Zebra’s prover architecture consists of a collection of pipelined sub-provers, each one doing the
execution and proving work for one layer of an AC [82, §3.1–3.2]. Within a sub-prover, there is dedicated
hardware for each AC gate in a layer. Zebra’s verifier is also organized into layers [82, §3.5]. Giraffe
incorporates this overall picture, including some integration details [82, §4]. However, Giraffe requires
a different architecture, as we explain next.

3 Protocol and hardware design
Three goals drive Giraffe’s hardware back-end:

G1: Scale to large N without sacrificing G. V’s precomputation scales with the size of one sub-AC
(§2.2); it needs to amortize this over multiple sub-AC copies, N . Further, we have an interest in handling
large computations (sub-ACs and ACs). This implies that Giraffe’s design must reuse underlying
hardware modules: for large N and sub-AC width G, requiring a number of modules proportional to
N · G is too costly. Zebra’s design is not suitable, since it requires logic proportional to the amount of
work in an AC layer [82, Fig. 5].

G2: Be efficient. In this context, good efficiency implies lower cross-over points on the metrics of
merit (§2.3). This in turn means custom hardware, which is expected in ASIC designs but, for us, is in
tension with the next goal.

G3: Produce designs automatically. Ideally, the goal is to produce a compiler that takes as input a
high-level description of the computation along with physical parameters (technology nodes, chip area,
etc.; §2.3) and produces synthesizable hardware (§5). This goes beyond convenience: a goal of this
work is to understand where, in terms of computations (G, N , etc.) and physical parameters (technology
nodes, chip area, etc.), an abstract algorithm (T13) applies. To do this, we need to be able to optimize
hardware for both the computations and the physical parameters, which poses a significant challenge: for
different computations and physical parameters, different hardware designs make sense. For example, if
N and G are small, iteratively reusing hardware might not consume all available chip area; one would
prefer to spend this area to gain parallelism and thus increase throughput.

Giraffe answers this challenge by developing a design template that takes as input a description
of the desired computation and a set of physical parameters, and produces as output an optimized
hardware design. The template’s “primitives” are custom hardware structures that enable efficient reuse
(serial execution) when there are few of them, but can be automatically parallelized. To use the design
template, the designer simply specifies its inputs; design generation is fully automatic.

In the rest of the section, we modify T13 to obtain an asymptotic improvement in P’s work (§3.1);
this contributes to Giraffe’s scalability, and is of independent interest. We also describe aspects of the
hardware design template for P (§3.2). Finally, we do the same forV, and also describe optimizations
that help offset the cost of precomputation (§3.3). Compared to prior work, these optimizations reduce
V’s primary cost by nearly 3× and eliminate a log factor from one ofV’s secondary costs; sinceV’s
costs dominate, these optimizations have a direct effect on end-to-end performance.

Notation. [a, b] denotes {a, a + 1, . . . , b}. For a vector u, u[ℓ] denotes the ℓth entry, indexed from
1; u[ℓ1..ℓ2] denotes the sub-vector between indices ℓ1 and ℓ2, inclusive. Arrays are accessed sim-

8

ilarly, but are indexed from 0. Vectors are indicated with lower-case letters, arrays with upper-
case. Define χ0, χ1 : F→ F as χ1(w) = w, χ0(w) = 1 − w. Similarly, if s ∈ {0, 1}γ and u ∈ Fγ,
χs(u) ≜

∏γ
ℓ=1 χs[ℓ](u[ℓ]). Notice that when u comprises 0-1 values, χs(u) returns 1 if u = s and 0

otherwise.

3.1 Making P time-optimal

This section describes an algorithmic refinement that, by restructuring the application of the sum-check
protocol, slashes P’s overhead. Specifically, P’s running time drops from O(d · N · G · log G) to
O(d · (N ·G +G · log G)). If N ≫ log G, P’s new running time is linear in the number of total gates in
the AC—that is, the prover has no asymptotic overhead! Prior work [77, §5] achieved time-optimality
in special cases (if the AC’s structure met an ad hoc and restrictive condition); the present refinement
applies in general, whenever there are repeated sub-ACs.

The O(log G) reduction translates to concrete double digit factors (Appx. D). For example, software
provers in this research area [36, 77, 79, 81, 87] typically run with G at least 218; thus, a software T13
prover’s running time improves by at least 18×. For a hardware prover, the A/T metric improves by
approximately log G, as computation is the main source of area cost (Appx. C, [82, Fig. 6 and 7]). The
gain is less pronounced for the E metric: storage and communication are large energy consumers but
are unaffected by the refinement (Appx. C).

Before describing the refinement, we give some background on sum-check protocols; for de-
tails, see [8, §8.3; 49, §2.5; 58; 76]. Consider a polynomial P in m variables and a claim that∑
(t1,...,tm)∈{0,1}m P(t1, . . . , tm) = L. In round j of the sum-check protocol, P must describe to V a

degree-α univariate polynomial Fj(t∗), where α depends on P and j:

Fj(t∗) =
∑

(tj+1,...,tm)∈{0,1}m− j
P(ρ1, . . . , ρj−1, t∗, tj+1, . . . , tm).

To discharge this obligation, P computes evaluations Fj(k), for α+1 different values of k. Then, at the
end of round j,V sends ρj , for use in the next round. Notice the abstract pattern: in every round j, P
computes α+1 sums over a Boolean hypercube of dimension m− j. The number of hypercube vertices
shrinks as j increases: variables that were previously summed become set, or bound, to a ρj .

Let us map this picture to our context. There is one sum-check run for each layer i ∈ [1, d]; P
is the per-layer polynomial Pq,i defined in Equation (1); m = 2bG + bN ; the ρj are aliases for the
components of r0, r1, r ′; likewise, the tj alias the components of h0, h1, n. Also, α is 2 or 3; this follows
from Equation (1), recalling that each multilinear extension (ẽq, ˜add, etc.) by definition has degree one
in its variables.

There are now two interrelated questions: In what order should the variables be bound? How does
P compute the α+1 sums per round? In T13, the order is h0, h1, n, as in Equation (2). This enables P to
compute the needed sums in time O(N · G · log G) per-layer [77, §7]. P’s total running time is thus
O(d · N · G · log G).

Giraffe’s refinement changes the order in which variables are bound, and exploits that order to
simplify P’s work. Giraffe’s order is n, h0, h1. From here on, we write Pq,i(h0, h1, n) as P∗q,i(n, h0, h1);
Pq,i ≡ P∗q,i except for argument order. Below, we describe the structure of P’s per-round obligations,
fixing a layer i. This serves as background for the hardware design (§3.2) and as a sketch of the argument
for the claimed running time. A proof, theorem statement, and pseudocode are in Appendix B.

The rounds decompose into two phases. Phase 1 is rounds j ∈ [1, bN]. Observe that in this phase,
P’s sums seemingly have the form: Fj(k) =

∑
n[j+1..bN]

∑
h0,h1 P∗q,i(r ′[1.. j−1], k, n[j+1..bN], h0, h1),

9

where the outer sum is over all n[j+1..bN] ∈ {0, 1}bN−j . However, many (h0, h1) combinations cause
P∗q,i(. . . , h0, h1) to evaluate to 0.4 As a result, there is a more convenient form for the inner sum. Define
Sall,i ⊆ {0, 1}3bG as all layer-(i−1) gates with their layer-i neighbors, and OPg as “+” if g is an addition
gate and “·” if g is a multiplication gate. Then Fj(k) can be written as:

Fj(k) =
∑

n[j+1..bN]

∑
(g,gL,gR)∈Sall, i

termP1j,n,k · termP2g

· OPg(termLj,n,gL,k, termRj,n,gR,k), (3)

where termP1 depends on j, n, k; termP2 depends on g, and so forth; these also depend on values of
ρ from prior rounds and prior layers. Section 3.2 makes some of these terms explicit (Appx. B fully
specifies).

Phase 2 is the remaining 2bG rounds. Here, there is only a single sum, over increasingly bound compo-
nents of h0, h1. As with phase 1, it is convenient to express the sum “gatewise”. Specifically, for rounds j ∈
[bN + 1, bN + 2bG], one can write Fj(k) =

∑
(g,gL,gR)∈Sall, i termPj,g,k ·OPg(termLj,gL,k, termRj,gR,k).

In both phases, P can compute each sum over Sall,i with O(G) work. Thus, per-layer, the running
time for phase 1 is O(G · N/2)+O(G · N/4)+ · · ·+O(G) = O(G · N), and for phase 2 it is O(G · log G),
yielding the earlier claim of O(d · (N · G + G · log G)).

3.2 Design of P
Consider P’s obligations in layer i, summarized at the end of the previous section. Notice that P’s
phase-2 obligations are independent of N . This is a consequence of Section 3.1; there is no such
independence in the original variable order [77, §7]. In the current variable order, the bulk of P’s work
occurs in phase 1, and so our description below focuses on phase 1.5

Within phase 1, the heaviest work item is computing termL, termR in each round. The rest of this
section describes the obligation, the algorithm by which P discharges it, and the hardware design
that computes the algorithm. P’s other obligations (computing termP1j,n,k , etc.) and algorithms for
discharging them are described in Appendix B.

Algorithm for computing termL,termR Fixing a layer i, in round j, termL and termR are:

termLj,n,gL,k ≜ Ṽi (r ′[1.. j − 1], k, n[j+1..bN], gL)
termRj,n,gR,k ≜ Ṽi (r ′[1.. j − 1], k, n[j+1..bN], gR) (4)

Notice that for each k, Equation (4) refers to G · N/2j values of Ṽ(·).
Figure 2 depicts an algorithm, EvalTermLR, that computes these values in time O(G · N/2j) for

round j, by adapting a prior technique [77, §5.4; 82, §3.3] (see also [1–3]). EvalTermLR is oriented
around a recurrence. Let h be a bottom-bit gate label at layer i. Then for all σ ∈ {0, 1}bN−j , the
following holds (derived in Appx. B.1):

Ṽi (r ′[1.. j], σ, h)=(1 − r ′[j]) · Ṽi (r ′[1.. j−1], 0, σ, h)
+ r ′[j] · Ṽi (r ′[1.. j−1], 1, σ, h) . (5)

4In particular, if there is no gate at layer i − 1 whose left and right inputs are h0 and h1, then P∗q,i(. . . , h0, h1) = 0. This is a
consequence of Equation (1) in Section 2.2, and Appendix A, Equations (8) and (9).
5P’s phase-2 obligations are almost isomorphic to those of the Zebra prover, so Giraffe implements phase 2 with a design
similar to Zebra’s.

10

1: // initialize W : array of G arrays of N values
2: for h = 0, . . . ,G − 1 and σ = 0, . . . , N − 1 do
3: W[h][σ] ← Vi(σ, h)
4:
5: function EvalTermLR(Array-of-arrays W)
6: for j = 1, . . . , bN do
7: look up all termL, termR in W (see text)
8:
9: r ′[j] ← Receive fromV // see Figure 15, line 19

10:
11: for h = 0, . . . ,G − 1 do
12: Collapse(W[h], N/2j−1, r ′[j])
13:
14: function Collapse(Array A, size len, r ∈ F)
15: for σ = 0, . . . , len/2 − 1 do
16: A[σ] ← (1 − r) · A[2σ] + r · A[2σ + 1]

Figure 2—EvalTermLR: a dynamic programming algorithm for computing termL, termR for all rounds j.
EvalTermLR adapts a prior technique [77, §5.4; 82, §3.3] [1–3].

EvalTermLR relies on a two-dimensional array W , and maintains the following invariant, justified
shortly: at the beginning of every round j, W[h][σ] stores Ṽi(r ′[1.. j − 1], σ, h), for h ∈ [0, G−1] and
σ ∈ [0, N/2j−1−1].

Given this invariant, P obtains all of the termL, termR values from W (in line 7), as follows. We
focus on termL. Write n[j+1..bN] as nj+1. Then, for k = {0, 1}, termLj,n,gL,k is W[gL][k+2 ·nj+1]; this
follows from Equation (4) plus the invariant. Meanwhile, for k = −1, termLj,n,gL,−1 = 2 · termLj,n,gL,0+

(−1) · termLj,n,gL,1. This follows from Equations (4) and (5); k = 2 is similar. termR is the same, except
gR replaces gL . The total time cost is O(G · N/2j) in round j: Collapse performs (N/2j−1)/2 iterations,
and there are G calls to Collapse.

The invariant holds for j = 1 because Ṽi(r ′[1.. j − 1], σ, h) = Ṽi(σ, h) = Vi(σ, h), which initializes
W[h][σ] (line 3); the latter equality holds because functions equal their extensions when evaluated on
bit vectors. Now, at the end of j, line 16 applies Equation (5) to all σ ∈ [0, N/2j−1], thereby setting
W[h][σ] to Ṽi(r[1.. j], σ, h). This is the required invariant at the start of round j + 1.

Computing EvalTermLR in hardware. To produce a design template for P consistent with Giraffe’s
goals, we must answer three questions. First, what breakdown of P’s work makes sense: which portions
are parallelized, and what hardware is iteratively reused in a round (G1)? Second, for iterative parts of
the computation, how does P load operands and store results (G2)? Finally, how can this design be
adapted to a range of computations and physical parameters (G3)?

A convenient top-level breakdown is already implied by the prior formulation of W : since Collapse
operates on each W[h] array independently, it is natural to parallelize work across these arrays. Giraffe
allocates separate storage structures and logic implementing Collapse for each W[h] array (and, of
course, reuses this hardware from round to round for each array). We therefore focus on the design of
one of these modules.

To answer the second question, we first consider two straw men. The first is to imitate a software
design: instantiate one module for field arithmetic and a RAM to store the W[h] array, then iterate
through the σ loop sequentially, loading needed values, computing over them, and storing the results.
In practice, however, ASIC designers often prefer to avoid building RAM circuits. This is because
generality has a price (e.g., address decoding imposes overheads in area and energy), RAM often creates
a throughput bottleneck, and RAM is a frequent cause of manufacturability and reliability issues. (Of

11

RWSR specification
• Power-of-two storage locations, K

• Only locations 0 and 1 can be read

• The only write operation is
s←. It is specified below. Informally, it updates one location, and causes all the “even” locations

to behave like a distinct shift register (location 6 shifts to 4, etc.), and likewise with all of the “odd” locations.

1: operator RWSR[a] s← v is
2: // Note that all updates happen simultaneously
3: RWSR[a] ← v

4: for ℓ < K, ℓ , a do
5: RWSR[ℓ] ← RWSR[ℓ + 2]
6:
7: function RWSRCollapse(RWSR R, size len, r ∈ F)
8: for σ = 0, . . . , len/2 − 1 do
9: R[len − 2 − σ] s← (1 − r) · R[0] + r · R[1]

Figure 3—Specification of a new hardware primitive, RWSR, used to implement Collapse (Fig. 2) in hardware.

course, RAMs are a dominant cost in many modern ASICs, but that doesn’t mean that designers prefer
RAM: often there is simply no alternative. For example, an unpredictable memory access pattern often
necessitates RAM.)

The second straw man is essentially the opposite: instantiate a bank of registers to hold values
in W[h], along with two field multipliers and one adder per pair of adjacent registers, then create a
wiring pattern such that the adder for registers 2σ and 2σ + 1 connects to the input of register σ. This
arrangement computes the entire σ loop in parallel. This is similar to prior work [82, §3.3], but in
Giraffe O(NG) multipliers is extremely expensive when N and G are large. It is also inflexible: in this
design, the number of multipliers is fixed after selecting N and G.

Giraffe’s solution is a hybrid of these approaches; we first explain a serial version, then describe
how to parallelize. Giraffe instantiates two multipliers and one adder that together compute one step of
the σ loop. The remaining challenge is to get operands to the multipliers and store the result from the
adder. Giraffe does so using a custom hardware structure that is tailored to the access pattern of the
W[h] arrays: for each W[h], read two values, write one value, read two values, and so on. Giraffe uses
RWSRs, (“random-write shift registers”), one for each W[h]. Figure 3 specifies the RWSR and shows its
use for Collapse.

Compared to the first straw man, Giraffe’s design has several advantages. First, an RWSR only
allows two locations to be read; compared to a general-purpose RAM, this eliminates the need for most
logic to handle read operations. Second, Giraffe’s RWSR need not be “random-write”: its

s← operator
(Fig. 3, line 1) can be specialized to the address sequence of the RWSRCollapse algorithm (Fig. 3, line 9),
making its write logic far simpler than a RAM’s, too. This means that an RWSR can be implemented
in almost the same way as a standard shift register, and at comparable cost. Alternatively, an RWSR
can be implemented like a RAM, using the same data storage circuits but dramatically simplified
addressing logic. The latter approach might reduce energy consumption compared to implementing like
a standard shift register, and it would still cost less than using a general-purpose RAM; but it would
potentially re-introduce the above-mentioned manufacturaility and reliability concerns associated with
RAM circuits.

The remaining question is how this design can be efficiently and automatically parallelized. Notice
that the loop over σ is serialized (because RWSRs allow only one write at a time); but what if the
designer allocates enough chip area to accommodate four multipliers for W[h] instead of two? In other

12

words, how can Giraffe’s design template automatically improve RWSRCollapse’s throughput by using
more chip area?

To demonstrate the approach, we refer to the pseudocode of Figure 2. First, split each W[h] array
into two arrays, W1[h] and W2[h]. In place of the Collapse invocation (line 12), run two parallel
invocations on W1[h] and W2[h], each of half the length. Notice that each array has increasing “empty”
space as the rounds go on. In round j, the “live values” are the first N/2j elements in each of W1[h]
and W2[h]; regard W[h] as their concatenation.

To see why this gives the correct result, notice that each Collapse invocation combines neighboring
values of its input array. We can thus regard the values of W[h] as the leaves of a binary tree, and
Collapse as reducing the height of the tree by one, combining leaves into their parents. In this view,
W1[h] and W2[h] represent the left and right subtrees corresponding to W[h]. As a result, in round
j = bN , W1[h] and W2[h] each have one value; to obtain the final value of the Collapse operation,
compute (1 − r) ·W1[h][0] + r ·W2[h][0].

To implement this picture in hardware, Giraffe instantiates two RWSRs, each of half the size. For
even more parallelism, observe that each RWSR corresponds to a subtree of the full computation, and
thus its work can be recursively split into two even smaller RWSRs, each handling a correspondingly
smaller subtree. Because of this structure, different choices of parallelism do not require the designer to
do any additional design work (§5).

3.3 Scaling and optimizingV
In this section, we explain how V meets the starting design goals of scalability, efficiency, and
automation. We do so by walking through three main costs forV, and how Giraffe handles them. Some
of the optimizations apply to any CMT-based back-end [36, 77, 79, 81, 82, 87].

Multilinear extensions of I/O V’s principal bottleneck is computing the multilinear extension of its
input x and output y (Figure 1, lines 3 and 32). Recall (§2.2) that |x | = |y | = N · G;V’s computation
has at least this cost. When N and G are large, this is expensive and must be broken into parallel and
serial portions. We show below that this work has a similar form to P’s (termL, termR; §3.2).

Consider the input x and Ṽd (y and Ṽy are similar).V must compute Ṽd(q′d, qd). Forσ ∈ [0, N ·G−1],
Ṽd(σ) = Vd(σ), the σth component of the input (§2.2). For σ ∈ {0, 1}bN+bG−ℓ , we have

Ṽd (r[1..ℓ], σ) = (1 − r[ℓ]) · Ṽd (r[1..ℓ−1], 0, σ)
+ r[ℓ] · Ṽd (r[1..ℓ−1], 1, σ) . (6)

This form is very close to Equation (5) (its derivation is similar to Appx. B.1). It follows thatV can
use P’s EvalTermLR to evaluate Ṽd(q′d, qd): V initializes an array A, setting A[σ] to the σth input
value, for σ ∈ [0, N · G − 1] (cf. line 3, Fig. 2).V then invokes the algorithm MultiCollapse shown in
Figure 4 on A, setting r to (q′

d
, qd). In total, MultiCollapse costs 2 · N · G − 2 multiplications. To see

how, notice that the initial size of A is N ·G, so the first Collapse invocation costs N ·G multiplications;
in each successive invocation, the cost is reduced by half. Summing gives the claimed cost.

MultiCollapse also applies to related systems, improving their constant factors; this is significant
because in practice computing the multilinear extensions of x and y dominatesV’s costs. Allspice’s
approach to this computation has leading constant 4 [81, §5.1]. Zebra [82] reduces the constant to 3 using
a hand-tuned hardware structure; this does not meet Giraffe’s goal of producing designs automatically.
MultiCollapse reduces this constant to 2. We now show how to reduce the constant to 1, leavingV with
a 4
√

N · G additive overhead. For the smallest problem sizes on which Giraffe breaks even (§6–8) this
additive overhead is less than 25%; on large computations it is negligible.

13

1: // MultiCollapse costs 2 |A| − 2 multiplications; see text
2: function MultiCollapse(Array A, r ∈ Flog |A |)
3: loglen← log |A|
4: for j = 1, . . . , loglen do
5: Collapse(A, 2loglen+1−j, r[j]) // see Figure 2, line 14
6: return A[0]
7:
8: function DotPMultiCollapse(Array A, r ∈ Flog |A |)
9: loglen← log |A|

10:
11: // B is computed using the algorithm of Fig. 13, Appx. A;
12: // this costs 2 · 2btot/2 − 2 = 2

√
N · G − 2 multiplications.

13: B← χγ(r[1..btot/2]) , γ ∈ {0, 1}btot/2

14:
15: // compute 2btot/2 dot products of length 2btot/2;
16: // this costs N · G multiplications
17: for j = 0, . . . , 2btot/2 − 1 do
18: A′[j] ← ⟨B, A[j · 2btot/2..(j+1) · 2btot/2]⟩ // dot product
19:
20: // MultiCollapse on A′ costs 2 · 2btot/2 − 2 multiplications
21: return MultiCollapse(A′, 2btot/2, r[btot/2 + 1..btot])

Figure 4—MultiCollapse and DotPMultiCollapse evaluate the multilinear extensions of x and y with lower
overhead than prior work.

Notice that MultiCollapse describes a binary computation tree of depth btot = bN + bG whose
leaves are the inputs and whose root is the result Ṽd(q′d, qd). Each node in this tree corresponds to a
single step of Collapse, namely two multiplications and one addition (Fig. 2, line 16). The btot/2 layers of
the computation tree closest to the leaves comprise 2btot/2 =

√
N · G subtrees, each of which computes

the dot product between 2btot/2 input values and an array B[γ] = χγ(r[1..btot/2]) , γ ∈ {0, 1}btot/2. This can
be seen by expanding the recurrence of Equation (6) for btot/2 steps.

The key observation is that MultiCollapse repeatedly recomputes the values of the array B when
computing these dot products. This means that each subtree costs 2 · 2btot/2 − 2 multiplications, whereas
the dot product costs just 2btot/2 multiplications once B has been computed. DotPMultiCollapse (Fig. 4)
improves on MultiCollapse’s running time by precomputing B once and amortizing that cost over all
2btot/2 subtrees. To see that two algorithms are equivalent, notice that the btot/2 layers of the MultiCollapse
computation tree closest to the leaves (which correspond to the first btot/2 Collapse invocations)
compute the same 2btot/2 dot products that DotPMultiCollapse stores in A′ (for the reasons described
above), and that the two algorithms proceed identically thereafter. But DotPMultiCollapse costs just
N · G + 4 · 2btot/2 − 4 = N · G + 4

√
N · G − 4 multiplications in total (see comments in Fig. 4).6

DotPMultiCollapse’s hardware design uses primitives from other parts ofV and P. MultiCollapse
reuses the same design that P uses for EvalTermLR. The hardware for computing the array B
shares its design with V’s precomputation hardware (“Precomputation,” below; Appx. B.2). The
dot product computations are independent of one another and thus easily parallelized using separate
multiply-and-accumulate units, which are standard.

6We note that DotPMultiCollapse is a streaming algorithm that uses auxiliary space (for A′ and B) totalling 2 · 2btot/2. With
slight modification, the MultiCollapse algorithm can also be made streaming, in which case it uses log (N · G) auxiliary
space [80]. The latter modification also applies to the MultiCollapse invocation inside DotPMultiCollapse, which improves
DotPMultiCollapse’s space cost to 2btot/2 + btot/2.

14

Polynomial evaluation. The protocol requiresV to evaluate polynomials (specified by P) at randomly
chosen points (specified by V). This occurs after the sum-check invocation (Fig. 1, line 26) and in
each round of the sum-check protocol (Appx. B; Figure 11, line 21). Our description here focuses on
the former: the degree-bG polynomial H, evaluated at τ. Giraffe applies the same technique to the
latter, namely computing F(rj), but those polynomials are degree-2 or 3, and thus the savings are less
pronounced.

In the baseline approach [36, 77, 81, 82] to computing H(τ), P sends evaluations (meaning
H(0), . . . ,H(bG)), and V uses Lagrange interpolation. (Lagrange interpolation expresses H(τ) as∑bG

j=0 H(j) · fj(τ); the { fj(·)} are basis polynomials.) But interpolation costs O(b2
G) [55] for each

polynomial (one per layer), making it O(d log 2G) overall. Prior work [81, 82] cut this to O(d log G), by
precomputing { fj(τ)}, and not charging for that.

Giraffe observes that the protocol works the same if P describes H in terms of its coefficients; this
is because coefficients and evaluations are informationally equivalent. Thus, in Giraffe, P recovers the
coefficients by interpolating the evaluations of H, incurring cost O(d log 2G).V uses the coefficients
to evaluate H(τ) via Horner’s rule [55]. The cost toV is now O(bG) per layer, or O(d log G) in total,
without relying on precomputation.

Summarizing, V shifts its burden to P, and in return saves a factor log G. This refinement is
sensible if the same operation at P is substantially cheaper (by at least a log G factor) than atV. This
easily holds in the VA context. But it also holds in other contexts in which one would use a CMT-based
back-end: if cycles at P were not substantially cheaper than atV, the latter would not be outsourcing to
the former in the first place.

Precomputation. V must compute P∗q,i(r ′, r0, r1,), given claimed Ṽi(r ′, r0) and Ṽi(r ′, r1): Figure 1,
lines 20–21. The main costs are computing ˜addi(q, r0, r1), ˜multi(q, r0, r1), and ẽq(q′, r ′). This costs O(G)
per layer [81], and hence O(d ·G) overall. (Appx. A describes the approach; Appx. B.2 briefly discusses
the hardware design.) This is the “precomputation” in our context, and what was not charged in prior
work in the VA setting [82, §4]. We note that this is not precomputation per se—it’s done alongside the
rest of the protocol—but we retain the vocabulary because of the cost profile: the work is proportional
to executing one sub-AC, is input-independent, and is incurred once per sum-check invocation, thereby
amortizing over all N sub-ACs.

4 Front-end design
Giraffe’s front-end compiles a C program into one or more pieces, each of which can be outsourced
using the back-end machinery. The front-end incorporates two program transformation techniques that
broaden the scope of computations amenable to outsourcing:
• Slicing breaks up computations that are too large to be outsourced as a whole or contain parts that

cannot be profitably outsourced.
• Squashing rearranges repeated, serial computations like loops to produce data-parallel computations.
While squashing makes some sequential computations amenable to execution in Giraffe’s data-parallel
setting (§2.2, §3.1), slicing does not yield data-parallel ACs; thus, outsourcing a sliced computation
requires executing multiple copies of the computation in parallel.

Slicing. One approach to handling large outsourced computations is to break the computation into
smaller pieces and then to either outsource each piece or to execute it locally at the verifier.

This approach works as follows: a compiler breaks an input program into slices and decides, for
each slice, whether to outsource or to execute locally (we describe this process below). The compiler

15

converts each slice to be outsourced into an AC whose inputs are the program state prior to executing
the slice and whose outputs are the program state after execution. To execute a sliced computation, the
verifier runs glue code that passes inputs and outputs between slices, executes non-outsourced slices,
and orchestrates the back-end machinery. We call this glue code the computation’s manifest.

Giraffe’s slicing algorithm takes one parameter, a cost model for the target back-end. The algorithm’s
input is a C program with the following restrictions (commonly imposed by the most efficient front-
ends [37, 66, 83, 84]): loop bounds are statically computable, no recursive functions, and no function
pointers.

The algorithm first inlines all function calls. It then considers candidate slices comprising consecutive
subsequences of top-level program statements. The algorithm transforms each candidate into an AC
and uses the back-end cost model to determine the cost to outsource. Then, using a greedy heuristic, the
algorithm chooses for outsourcing a set of non-overlapping slices, aiming to maximize savings. Finally,
the algorithm handles parts of the program not in any of the outsourced slices: it adds atomic statements
(e.g., assignments) to the manifest for local execution, and recursively invokes itself on non-atomic
statements (e.g., the branches of if-else statements) to identify more outsourcing opportunities.

Giraffe assumes that the same back-end is used for all sliced subcomputations, but this approach
generalizes to considering multiple back-ends simultaneously [45, 81].

Squashing. Giraffe’s second technique, squashing, turns a deep but narrow computation (for example,
a loop) into a data-parallel one by laying identical chunks of the computation (e.g., iterations of a loop)
side by side.7 The result is a squashed AC. The intermediate values at the output of each chunk in the
original computation become additional inputs and outputs of the squashed AC. P communicates these
toV, which uses them to construct the input and output vectors for the squashed AC. This technique
also generalizes to the case of code “between” the chunks.

Giraffe’s squashing transformation takes C code as input and applies a simple heuristic: the analysis
assumes that chunks start and end at loop boundaries and comprise one or more loop iterations.8
Consider a loop with I dependent iterations of a computation F, where F corresponds to an AC of
depth d and uniform width G. The squasher chooses N such that each chunk contains I/N unrolled
iterations, and generates a sub-AC of width G and depth d ′ = I · d/N , subject to a supplied cost model.

Putting it together. Giraffe’s front-end compiles C programs by combining slicing and squashing.
In particular, Giraffe’s front-end applies the slicing algorithm as described above except that, when
estimating the cost of candidate slices, the front-end also tries to apply the squashing transformation. If
a candidate slice can be squashed, the slicer uses the squashed version of the slice instead.

5 Implementation
Front-end. The front-end produces an executable manifest in Python plus a high-level AC description
for each outsourced slice (these are similar to the one used by Allspice [81] and Zebra). Outsourced
slices in the manifest are executed using the simulation framework (below). The front-end comprises
about 6100 lines of Scala and 300 lines of miscellaneous glue.

Back-end. Giraffe’s back-end has two components. The first is a compiler that takes high-level AC
descriptions from the front-end along with technology node specifications, chooses P’s and V’s

7For some back-ends the chunks need not be identical. All CMT-derived back-ends [36, 81, 82] (including T13) have lower
costs when working over shallow and wide ACs (vs. narrow but deep ones), so squashing is useful even outside T13’s
data-parallel regime.
8This heuristic suffices in many cases because loops naturally express repeated subcomputations; more sophisticated analyses
exist, e.g., automatic parallelization [28, 29, 33].

16

hardware parallelism (§3.2; Fig. 16, Appx. C) to optimize throughput and chip area (§6.2), and
automatically produces P and V designs in fully synthesizable SystemVerilog, The second is a
cycle-accurate simulation framework built on Icarus Verilog [85]. The back-end comprises 14 600 lines
of SystemVerilog, 6800 lines of C/C++, 3300 lines of Python, and 600 lines of miscellaneous glue. The
SystemVerilog and C/C++ borrow primitives from Zebra [4].

6 Back-end evaluation
We evaluate Giraffe’s back-end by answering:

1. When does Giraffe beat “native” (§2.3)?
2. What is the largest computation Giraffe supports?
3. How does Giraffe’s performance vary with computation and physical parameters?

In Appx. D we also measure the effect of Giraffe’s protocol improvements (§3.1). In sum, they reduce
P’s cost by a log G factor.

Throughout the evaluation we assume that Giraffe is applied to computations most efficiently
expressed as a sequence of field operations; we discuss this applicability limitation in Section 9.

6.1 Cross-over and scaling

Method. We consider a generic computation in the form of an arithmetic circuit C with depth d,
sub-AC width G, number of parallel copies N , and fraction of multipliers δ. The baseline is direct
evaluation of C on the same technology node asV. To measure the energy cost for the baseline, we
sum the total cost of field operations plus the energy associated with receiving inputs and transmitting
outputs of the computation.

For Giraffe’s energy costs, we use a combination of simulation and modeling. The simulations are
cycle-accurate Verilog simulations of Giraffe’s execution. From these simulations we extract a model
for energy costs, parameterized by technology node9 (a simplified model is given in Fig. 16, Appx. C),
and we spot check with additional simulations to check this model. Practical considerations demand this
approach: simulating Giraffe over a broad range of parameters would be prohibitively time consuming.

We account for all costs for both V and P: protocol execution, V-P communication, storage,
random number generation, and the cost to receive inputs and transmit outputs. We simplify the
accounting of the protocol execution’s energy cost by counting just the energy consumed by field
operations. This approximation neglects the energy consumed by control logic and miscellaneous
circuitry associated with protocol execution. As in prior work [82, §7.2], we expect these costs to
be negligible; confirming this is future work. Computations in this section are over Fp, p = 261 − 1.
Costs for trusted and untrusted technology nodes (arithmetic, communication, storage, random number
generation, and I/O circuits) are from prior work [82, Figs. 6–7].

Results. Figure 5 compares Giraffe with the baseline. Giraffe’s total cost is dominated by V; P’s
cost is at most a few percent of the total. For small N , V’s precomputation (§3.3) dominates. As N
increases,V’s multilinear extension evaluation (§3.3) dominates.

The cross-over point for savings versus native in Figure 5 is roughly 30 copies. This value is
relatively insensitive to G because both precomputation cost and per-sub-AC savings are proportional
to G, and they offset. Varying G and otherwise fixing the parameters as in Figure 5, we find crossover
N ranges from an extreme of ≈40 at G = 8 to ≈20 for any G > 210.

9Speaking generally, energy and area costs grow with the cube and square of a technology node’s critical dimension,
respectively [68]. As in prior work [82], we use standard CMOS scaling models when estimating performance versus
technology node [51].

17

0 2 4 6 8 10 12 14 16
log2 N , number of sub-AC copies

10−6

10−5

10−4

10−3

10−2

0.1

1

10

100

T
ot

al
en

er
gy

co
st

,
Jo

ul
es

(l
ow

er
is

b
et

te
r)

Native

Giraffe, total

Giraffe, P

Giraffe, precomp

Figure 5—Evaluation of Giraffe’s back-end. We compare Giraffe’s costs to the native baseline, varying N . Giraffe
beats native for N ≈ 30. Fixed AC parameters are: depth d = 20; width of sub-AC G = 28; fraction of multipliers
δ = 0.5; trusted technology = 350 nm; untrusted technology = 7 nm; maximum chip area Amax = 200 mm2;
maximum power dissipation Pmax = 150 W. Per-gate energy costs for trusted and untrusted nodes are the same as
in prior work [82, Figs. 6–7]. In Section 6.2 we consider manufacturing costs; there, Giraffe is less competitive
with native.

For the concrete costs we consider here, Giraffe can handle about 216 parallel executions of a sub-AC
with G = 28, d = 20, or about 80 million gates total. It can also handle sub-ACs as large as ≈1.5 million
gates. For a given hardware substrate, the maximum N · G product is nearly fixed. P’s costs increase
with d (Fig. 16, Appx. C), so maximum size shrinks as d increases. On A/T (§2.3), Giraffe is not as
competitive with the baseline (§6.2).

6.2 Parameter variation

We now explore Giraffe’s performance compared to the native baseline on generic arithmetic circuits
characterized by d, G, N , and δ, and on different technology nodes.

Method. In addition to energy, we now consider manufacturing cost for a given performance level.
Our metric is As/T [82]. T is throughput. As = AV + AP/s, a weighted sum ofV’s and P’s chip area;
s accounts for the difference between untrusted and trusted manufacturing costs. We do not know the
exact value of s, as this depends on the specifics of the technology nodes being used; thus, we evaluate
manufacturing cost over a range of values, s ∈ {1/3, 1, 3, 10}, consistent with prior work [82].

We use the same simulations and detailed cost modeling as in Section 6.1 to compute costs for
Giraffe. As a proxy for chip area dedicated to protocol execution, we use the area occupied by field
adder and multiplier circuits. This neglects area dedicated to control logic and miscellaneous circuitry
associated with protocol execution, but as in prior work [82, §7.2] we expect these costs to be negligible;
confirming this is future work.

For throughput, we use cycle-accurate Verilog simulations to measure the delay of each stage of
the execution and proving pipeline (Appx. C). End-to-end throughput is given by the inverse of the
maximum delay in any stage of the computation. Concrete costs are the same as in Section 6.1. For each
experiment we vary one parameter and fix the others; fixed parameters are d = 20, G = 28, N = 210,
δ = 0.5, trusted technology node = 350 nm, and untrusted technology node = 7 nm.

For the native baseline, we optimize A/T given Amax subject to the arithmetic circuit’s layering
constraints.

Optimizing As/T in Giraffe. We optimize Giraffe’s As/T by controlling the amount of hardware
parallelism (Appx. C). First, we fixV’s area equal to native baseline, which is no more than Amax. We
also limit P’s area to no more than Amax and fix nP,pl = d. Then we optimize nV,io and nV,sc based on
available area and relative delay of sum-check computations and multilinear extensions of inputs and

18

8 10 12 14 16 18 20 22 24 26 28 30 32
d , depth of subcircuit

0.1

0.3

1

3

10

P
er

fo
rm

an
ce

re
la

ti
ve

to
na

ti
ve

ba
se

lin
e

(h
ig

he
r

is
b

et
te

r)

E

As/T, s=10

As/T, s=3

As/T, s=1

As/T, s=1/3

(a) Performance vs. d.

4 5 6 7 8 9 10 11 12
log2 G , width of subcircuit

0.1

0.3

1

3

10

P
er

fo
rm

an
ce

re
la

ti
ve

to
na

ti
ve

ba
se

lin
e

(h
ig

he
r

is
b

et
te

r)

E

As/T, s=10

As/T, s=3

As/T, s=1

As/T, s=1/3

(b) Performance vs. G.

4 5 6 7 8 9 10 11 12 13 14
log2 N , number of copies of subcircuit

0.1

0.3

1

3

10

P
er

fo
rm

an
ce

re
la

ti
ve

to
na

ti
ve

ba
se

lin
e

(h
ig

he
r

is
b

et
te

r)

E

As/T, s=10

As/T, s=3

As/T, s=1

As/T, s=1/3

(c) Performance vs. N .

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
δ, fraction of multipliers in arithmetic circuit

0.1

0.3

1

3

10

P
er

fo
rm

an
ce

re
la

ti
ve

to
na

ti
ve

ba
se

lin
e

(h
ig

he
r

is
b

et
te

r)

E

As/T, s=10

As/T, s=3

As/T, s=1

As/T, s=1/3

(d) Performance vs. δ.

130 180 250 350 500
trusted technology node, nm

0.1

0.3

1

3

10

P
er

fo
rm

an
ce

re
la

ti
ve

to
na

ti
ve

ba
se

lin
e

(h
ig

he
r

is
b

et
te

r)

E

As/T, s=10

As/T, s=3

As/T, s=1

As/T, s=1/3

(e) Performance vs. trusted technology
node.

7 14 22 32 45
untrusted technology node, nm

0.1

0.3

1

3

10

P
er

fo
rm

an
ce

re
la

ti
ve

to
na

ti
ve

ba
se

lin
e

(h
ig

he
r

is
b

et
te

r)

E

As/T, s=10

As/T, s=3

As/T, s=1

As/T, s=1/3

(f) Performance vs. untrusted technology
node.

Figure 6—Giraffe’s overall performance (V and P costs) compared to native baseline on E and As/T metrics
(§6.2), varying AC parameters and technology nodes. In each case, we vary one parameter and fix the rest. Fixed
parameters are: depth of C, d = 20; width of subcircuit G = 28; number of sub-AC copies N = 210; fraction of
multipliers δ = 0.5; trusted technology node = 350 nm; untrusted technology node = 7 nm; maximum chip area
Amax = 200 mm2; maximum power dissipation Pmax = 150 W.

outputs. Finally, given V’s optimal delay value, we search for settings of nP,ea, nP,Ṽ, and nP,sc that
optimize As/T .

Results. Figure 6 summarizes results. Giraffe’s operating cost (i.e., energy consumption) beats the
baseline’s over a wide range of AC parameters and hardware substrates.

As in Section 6.1, energy cost is dominated by V. Savings increase with d (Fig. 6a) because
V’s per-layer work is much less than the native baseline’s. Similarly, as δ increases (Fig. 6d), the
native baseline’s costs increase butV’s do not.V’s savings are insensitive to G (Fig. 6b): the cost of
multilinear extensions of I/O scales with G, balancing the increased savings in per-layer work.

Manufacturing costs are often dominated by P. As G increases (Fig. 6b), P’s area also increases
(§3.2). As N increases (Fig. 6c), P’s storage costs increase (Fig. 16, Appx. C). In these cases, even
if Giraffe’s operating costs are better than the native baseline’s, its manufacturing costs at a given
performance level may be worse.

Finally, as the gap between the trusted and untrusted technology nodes shrinks (Figs. 6e and 6f),
P’s energy cost increases relative toV’s, reducing overall performance versus the native baseline. As
the trusted technology node gets more advanced (i.e., smaller, Fig. 6f),V’s throughput increases and
thus P’s size must increase to avoid becoming a bottleneck. As the untrusted technology node gets less
advanced (i.e., bigger, Fig. 6e), P’s area grows and throughput decreases, making As/T worse.

19

// x1 and x2 are inputs

// y1 and y2 are outputs

y1 = F1(x1);

y2 = F2(x2);

(a) Slicing: a simple computation.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
δ1, fraction of multipliers in first subcomputation

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

P
er

fo
rm

an
ce

re
la

ti
ve

to
na

ti
ve

ba
se

lin
e

(h
ig

he
r

is
b

et
te

r)

slicing

full outsourcing

(b) Simple slicing vs. δ1.

// x1 and x2 are inputs

// y is output

if (pred) y = F1(x1);

else y = F2(x2);

(c) Slicing: conditionals.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
δ1, fraction of multipliers in first subcomputation

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

P
er

fo
rm

an
ce

re
la

ti
ve

to
na

ti
ve

ba
se

lin
e

(h
ig

he
r

is
b

et
te

r)

slicing

full outsourcing

(d) Conditional slicing vs. δ1.

// y is output, x is input

y = x;

for (i = 0; i < I; i++)

y = F1(y);

(e) Squashing: dependent iterations.

6 7 8 9 10 11 12 13 14
log2 I , number of loop iterations

1.0

2

5

10

20

30
40

P
er

fo
rm

an
ce

re
la

ti
ve

to
na

ti
ve

(h
ig

he
r

is
b

et
te

r)

(f) Squashing vs. number of iterations.

Figure 7—Evaluation of Giraffe’s front-end. Higher is better. F1 and F2 are computations corresponding to
arithmetic circuits with N = 210, G = 28, d = 20. δ1 and δ2 are the fraction of multipliers in F1 and F2,
respectively; we fix δ2 = 0.05. Figures 7a and 7c show inputs to Giraffe’s slicing transformation. In Figures 7b
and 7d, we vary δ1, which changes whether F1 is amenable to outsourcing. We compare the efficacy of outsourcing
the full computation and of first applying the slicing transform; when outsourcing would not result in savings,
Giraffe executes the computation natively. Figure 7e is a deep loop with dependent iterations. Giraffe converts
this to a data-parallel computation that can be outsourced, saving compared to native execution.

7 Front-end evaluation
This section answers the following questions:

1. How does slicing result in savings compared to full outsourcing and native execution?
2. For deep loops with dependent iterations, how effective is squashing at extracting parallelism?

Setup and method. We create a sequence of programs written in C, each containing two generic
blocks, F1 and F2, consisting of purely arithmetic computations. Among the programs, these blocks
vary in the fraction δ1 and δ2 of multipliers, width of computation (G1,G2 respectively), the depth
of the computation (d1, d2 respectively), and number of parallel instances N . Unless specified, we fix
N = 210, G1 = G2 = 28, d1 = d2 = 20, δ2 = 0.05.

We consider two baselines: native execution and full outsourcing. The cost of native execution is
defined as in the prior section: the cost of computation in the same technology node asV. We estimate
the cost of full outsourcing by applying Giraffe’s back-end to the raw program, without Giraffe’s
front-end transformations (§4).

To compute costs for Giraffe, we apply the selected transformation to produce a manifest (§4), then
evaluate the total cost of execution, as dictated by that manifest. We use the model of Section 6 to
determine the cost of the outsourced portions of the manifest. For local computations, we sum the cost
of all field operations, as in the native baseline.

Slicing. We consider a simple case and then conditionals.
Warmup. Consider the computation of Figure 7a. We vary δ1 from 0 to 1. The front-end decides for

F1 and F2 either to outsource or to execute locally. Note that F1’s amenability to outsourcing depends on
δ1: native execution cost increases with δ1 (multiplies are more expensive than adds) whileV’s protocol
costs depend only on AC size. Because δ2 = 0.05, F2 is not amenable to outsourcing: it native execution

20

cost is less than the cost to outsource. For full outsourcing we generate a sub-AC that combines F1 and
F2, which is conservative because it saves on precomputation.

Figure 7b plots the performance of executing the slicer’s manifest and of outsourcing the entire
computation, normalized to native execution. Giraffe’s front-end never outsources F2 because native
execution is cheaper. F1 is amenable to outsourcing when δ1 > 0.2. In contrast, full outsourcing pays
extra costs for F2 compared to native execution. Thus, slicing always beats full outsourcing.

Conditionals. In Figure 7c we consider a similar setup, but with a conditional. We assume that pred
evaluates to true, so F1 is the desired branch. Naively converting this program to an AC results in a
computation that materializes both F1 and F2, and selects the result based on pred. In essence, part of
the work is useless.

Figure 7d plots the performance of executing the slicer’s manifest and the performance of outsourcing
the entire computation, normalized to the performance of native execution. The manifest never invokes
F2 because that branch is never taken. When δ1 > 0.2, F1 is amenable to outsourcing and Giraffe’s
performance is better than native. Full outsourcing, meanwhile, evaluates an AC that incurs the cost
for both branches. For large enough δ1, though, the savings from F1 offsets the useless work and full
outsourcing beats native.

Squashing. We also experiment with a loop comprising I iterations of F1 (Fig. 7e). Parameters are
as above, δ1 = 0.5, and we vary I. This is deep (I · d1) and narrow (G1), and not data parallel. The
squasher (§4) chooses N . Effective depth is d ′ = I · d/N for each chunk, balancing V’s I/O cost
against the per-layer cost. This happens when depth and |x | + |y | are within a constant factor, i.e.,
N · G = d ′ = O

(√
I
)

(overall cost is the sum). Figure 7f shows the results: as I goes from 211 to 214,
performance improves by ≈ 3×.

8 Applications
8.1 Curve25519

Curve25519 is a high-performance elliptic curve used in cryptographic protocols [5, 25]. This section
compares three implementations of the point multiplication operation on this curve: a baseline, Zebra,
and Giraffe. This operation takes as inputs a 255-bit scalar value v and a curve point Q, and computes
the point R = [v]Q via 255 double-and-add steps [11], one for each bit of v. Our algorithm employs a
Montgomery ladder, as is standard [11, 25, 63]. Double-and-add is naturally expressed as an AC over
Fp, p = 2255 − 19, with d = 7 and G ≈ 8.

Zebra. This implementation [82, §8.2] groups 5 Montgomery ladder steps into a block and requires
51 (= 255/ 5) iterations of this block per operation. Zebra uses a special mux gate for efficiency, requiring
all double-and-add operations in a protocol run to use the same scalar input v. This restriction is
acceptable in some applications [82, §8.2].

Baseline implementation. Consistent with published hardware implementations of point multipli-
cation on Curve25519 [70, 71] and the implementation from Zebra, our baseline directly executes 5
Montgomery ladder steps.

Giraffe. In Giraffe there are two degrees of freedom: L, the number of parallel double-and-add
steps in a sub-AC (which determines G); and N . Each copy of the sub-AC uses the same L scalars,
{v1, . . . , vL}; this is because wiring predicates are reused across the N sub-ACs. In our experiment, we
fix L = 20, and vary N; larger values of L are also possible.

21

1 3 5 7 9 11 13 15
log2 N , number of copies of subcircuit

0.01

0.1

1

10

100

T
ot

al
en

er
gy

co
st

,
Jo

ul
es

(l
ow

er
is

b
et

te
r)

Native

Giraffe

Zebra

Figure 8—Energy cost of Giraffe, native baseline (§8.1), and Zebra [82, §8.2] versus number of copies of
Curve25519 subcircuit. Each subcircuit computes 20 parallel evaluations of five sequential double-and-add steps.
Untrusted technology node = 350 nm; trusted technology node = 7 nm; Amax = 200 mm2; Pmax = 150 W. Zebra’s
scaling is limited to about 1150 parallel evaluations. Giraffe scales to more than 500× more parallel computations
for the same chip area. Because of Giraffe’s refinements (§3), its improvement versus native is greater than
Zebra’s. But Giraffe must amortize precomputation, while Zebra assumes it is free; thus, Giraffe needs larger N
to break even.

Results. We compute energy for Giraffe and the native baseline as in Section 6.1. For Zebra, we use
published results [82, §8.2]. We set the untrusted technology node = 350 nm, the trusted technology
node = 7 nm, and Amax = 200 mm2, the same as in Zebra.

Figure 8 shows the results. Giraffe breaks even when N ≈ 30, or at about 600 parallel double-and-
add operations, while Zebra breaks even for about 100 such operations. But Giraffe pays the cost of
precomputation, whereas Zebra assumes that precomputation is free. Meanwhile, Zebra handles at
most 1150 parallel copies for the given chip area, whereas Giraffe can accommodate roughly 32,000
parallel operations corresponding to roughly 100M AC gates, about 500× more than Zebra, for the
same technology nodes.

8.2 Image pyramid

An image pyramid is a data structure for image processing [6] that holds multiple copies of an image at
different resolutions. The “base” of the pyramid is a full resolution image and higher “layers” summarize
the image at progressively lower resolutions. One application of an image pyramid is fast pattern
matching. In the first step, a coarse pattern is matched against the coarsest layer (top) of the pyramid.
Guided by the results, a finer pattern is matched against a small part of the next layer until eventually a
portion of the full resolution image is matched against the finest pattern.

We use a convolution-based matching algorithm [35] where the pattern may contain “don’t care”
symbols that match any input. If the text is t = t0t1 . . . tn and the pattern is p = p0p1 . . . pm, then the
matching algorithm uses convolutions to compute ci =

∑m
j=0 pj(pj − ti+j)2, i ∈ {1, . . . , n}, and reports

a match at i if ci = 0.
In our implementation, the input consists of a two-layer image pyramid, a coarse pattern, and a

fine pattern. The bottom layer of the pyramid has 27 × 27 words, and the top layer has 1 × 27 words.
Both patterns comprise 24 words. Words are represented over Fp, p = 261 + 219 + 1, and we implement
convolution using the number theoretic transform over Fp. The entire application processes N instances
in parallel; each instance specifies its own input and pattern. The application is written as a C program.

Baseline implementation. In our baseline implementation, each convolution is implemented using
the direct iterative implementation of the number theoretic transform (NTT) and its inverse. Energy
costs are accounted as in the baseline of Section 6.

22

3 5 7 9 11 13 15
log2 N , number of copies of subcircuit

0.01

0.1

1

10

100

T
ot

al
en

er
gy

co
st

,
Jo

ul
es

(l
ow

er
is

b
et

te
r)

Native

Giraffe

Figure 9—Energy cost of Giraffe and native baseline (§8.2) versus number of parallel image pyramid matching
evaluations. Each evaluation matches 16-word needles against 128-word haystacks for a two-level image pyramid
(§8.2). Words are represented as elements in Fp, p = 261 + 219 + 1. Untrusted technology node = 350 nm; trusted
technology node = 7 nm; Amax = 200 mm2, Pmax = 150 W. Giraffe breaks even for ≈ 30 parallel searches.

Giraffe. We apply Giraffe’s front-end to process our C program into a manifest; the local computation
selects the needed portion of the next layer. We compute energy consumption of the resulting manifest
as in Section 7. Our results reflect fully automated compilation on a realistic application with no hand
optimizations.

Results. Figure 9 compares the cost of executing the manifest to the cost of the native baseline. Trusted
and untrusted technology nodes and Amax are as in Section 8.1. Giraffe needs roughly 30 parallel
evaluations to break even, after which it uses 5× less energy than the baseline. Giraffe can scale to
handle 32,000 parallel instances within the area constraint, or about 100 million AC gates.

9 Discussion and limitations
To understand Giraffe’s results, it is useful to provide context about the limitations of other implemented
systems for verifiable outsourcing. All such systems (including Giraffe) are reasonable only when the
computation to be outsourced is naturally expressed as an AC. Otherwise, translating the computation
to an AC entails such steep overheads compared to native execution that (asymptotic) savings do not
kick in for reasonable computation sizes [82, §9]. Moreover, all systems built on the interactive proofs
of GKR and CMT (including Giraffe) require the AC to be layered.

Another limitation of all built systems concerns their overheads and break-even points. As an example
we consider SNARKs [26, 47]. Before continuing, we note that SNARKs apply more widely, for example
to cryptocurrencies [18, 38] and beyond [39, 64]. In those contexts, which exploit SNARKs’ zero
knowledge property, overheads are less relevant. Thus, the following discussion should be understood
to cover only the proposed application of SNARKs to verifiable outsourcing [27, 47, 66].

Careful examination of the SNARK literature indicates that verifier overhead is so high that very
large computations are required to break even: millions of AC gates per instance [21; 66, §5.3; 83, §2;
84]. Furthermore, the required number of instances is large: even on the best-case problem of matrix
multiplication, Pinocchio [66] requires more than 6,000 instances, and BCTV [20, 22] requires more
than 90,000 instances to break even [84, Fig.4]. (Note that we have not even discussed keeping track of
prover overhead; even for small ACs, these provers take minutes on stock hardware.)

In contrast, Giraffe’s performance (keeping track of prover costs) has only a weak dependence on
computation size, even for ACs of only a few hundred gates (Figs. 6a and 6b, §6.2). Moreover, the
number of parallel copies required to amortize is small, ≈ 30 (§6, §8). The maximum instance size for a
Giraffe sub-AC is around 1.5 million gates (§6.1); this is largely a function of the constraints imposed
by hardware. These numbers are very encouraging (although we note that Allspice [81] achieves similar
break-even points).

23

Of course, SNARKs have distinct advantages:10 precomputation amortizes indefinitely in the
non-interactive setting (eliminating the requirement for data-parallel computations), the communication
costs are much lower, and a broader class of computations can be handled (there is no requirement that
ACs be layered, and computations can accept non-deterministic input).

Since Giraffe is largely focused on the hardware setting, it is also worthwhile to contrast with
Zebra [82]. On the one hand, Zebra does not impose the requirement for data-parallel computations (to
amortize precomputation), and its break-even points are lower. On the other hand, Zebra achieves these
things by not paying for computation (and making a fanciful assumption about daily delivery of trusted
precomputations [82, §4]). Giraffe, by contrast, can break even despite paying for precomputation.
Furthermore, Zebra is limited to approximately 500,000 AC gates total, whereas Giraffe supports 1.5
million gates per sub-AC and N scales to about 50 in this case (§6.1); Giraffe is thus two orders of
magnitude better than Zebra in total size (this is also demonstrated in §8.1). And, as the image pyramid
example (§8.2) shows, Giraffe can be practical in situations where Zebra or Giraffe simply cannot
outsource the entire computation.

To be sure, Giraffe has serious limitations. The price of verification remains high; evaluation shows
that the overall win is ≈3–5× (Fig. 5, §6; Figs. 8–9, §8). Given the prover overhead, Giraffe still requires
a large technology gap between the P andV technology nodes to be practical (§6.2), though there are
scenarios when this holds [82, §1]. And finally, the regime of applicability is fundamentally narrow (as
noted in the introduction).

10 Related work
Probabilistic proofs. Giraffe relates to the extensive body of recent work on verifiable outsourced
computation [14, 15, 17–19, 21, 22, 32, 34, 36, 37, 39, 40, 42, 45, 47, 56, 64, 66, 72–75, 77, 79, 81–
83, 87]; see [84] for a comparatively recent survey. Specifically, Giraffe descends from the GKR [49]
interactive proof line [36, 77, 79, 81, 82]. This line has historically imposed certain limitations: a
more restricted class of computations, and deterministic ACs. In work done concurrently with and
independently of Giraffe, vSQL [87] has demonstrated how to support non-deterministic ACs, by
composing GKR-derived protocols with polynomial commitment schemes [24, 41, 53, 65]. The result is
exciting, and for some application lowers prover costs relative to the argument protocols, discussed below.
However, the resulting prover is still much more costly than native computation; applying Giraffe’s
protocol refinements (§3.1) would reduce this overhead. Indeed, vSQL and Giraffe are complementary:
future work is to combine them, and thereby handle non-deterministic ACs in Giraffe’s operating model.

Another line of work uses argument protocols, both interactive [73–75] and non-interactive [14,
21, 26, 47, 56, 66] (“SNARK” refers to the latter). However, these protocols seem incompatible with
hardware implementation (as discussed in prior work [82, §9]) and impose cryptographic assumptions
(strong ones in the non-interactive setting). These protocols also have higher precomputation costs
(which can be tamed asymptotically, but at very high concrete cost [21, 22, 34]—for example, the prover
is two [22] to six [21, 34] orders of magnitude worse). On the other hand, non-interactive arguments can
support zero knowledge (zkSNARK) protocols; this enables applications that are not possible otherwise.

Much of the work in the area fits into the cost framework outlined in the introduction: precomputation,
verifier overhead, and prover overhead, with native execution as a sensible baseline. There are a few
exceptions. In the zkSNARK setting, the cost assessment depends on the premium that one is willing to
pay for otherwise unachievable functionality [14, 18, 39]. Also, two works in the verifiable outsourcing

10These advantages apply to the software regime; SNARKs do not seem easily implementable in hardware, an issue discussed
in detail in [82, §9].

24

setting do not require precomputation. The first is CMT [36, 79] (and [77]) when applied to highly
regular wiring patterns; however, such wiring patterns substantially limit applicability. The second is
SCI [17], which aims to be general purpose. SCI is, roughly speaking, an argument protocol built atop
“short PCPs” [23], and is an exciting development. But inspection of SCI reveals that some of its costs,
most notably the verifier’s, are orders of magnitude higher than in other works.

PL techniques in cryptographic protocols. Squashing (§4) is related to but distinct from Gep-
petto’s [37] optimizations for loops. At a high level the goals are similar (use loop transformations
to adapt a computation to a protocol), but they differ in particulars because each technique leverages
features of its respective back-end. In settings where they are both relevant, we believe the two approaches
are complementary. (Giraffe pursues automatic inference for this optimization, which is discussed but
not explored in [37].)

Our work on slicing is in the tradition of a great deal of work adapting PL techniques to implementing
cryptographic protocols. In the verifiable outsourcing literature, there are a handful of examples (e.g.,
Buffet [83] uses sophisticated loop unrolling techniques to optimize loop handling, and Geppetto
analyzes conditionals to minimize evaluation of “dead code”).

More generally, the secure multi-party computation literature has seen a great deal of work
using program analysis and transformation techniques to produce optimized protocols, starting with
Fairplay [59] and notably including the line of work represented by [86]. There has also been relevant
work in the Oblivious RAM community, for example [57] uses PL techniques to partition variables
to ensure obliviousness. Another area in which these techniques are used is in automatic compilation
for secure distributed programming [44]. Perhaps most similar to our slicing protocol are the various
compilers for zero knowledge proofs of knowledge [7, 16, 61], most notably ZQL and ZØ [43, 45].
The latter weaves together explicitly annotated zero knowledge regions with ordinary code, and does
automatic inference for assigning functionality to tiers in client-server applications (see also [60] for
automatic tier partitioning). Giraffe is distinguished by performing automatic inference for slicing using
a cost model, without explicit annotation.

11 Conclusion
We have described a number of techniques that are relevant to verifiable outsourcing generally: an
improvement to the T13 proof protocol that yields an asymptotically optimal prover and reduces
concrete costs by an order of magnitude or more; algorithmic refinements for the verifier that improve
its main bottleneck by ≈3× and apply to any CMT-based protocol; and two program transformations
that increase the range of suitable applications: squashing, which applies to any CMT-based protocol,
and slicing, which applies throughout the research area. We have also developed hardware primitives
tailored to the proof protocol and a design template that automatically generates optimized hardware
designs across a wide range of computations and physical substrates. And we have used all of these to
build Giraffe, a system for Verifiable ASICs. For a range of computations, Giraffe meets or exceeds the
performance of a chip built by a trusted manufacturer, while accounting for all costs: prover, verifier,
and precomputation. Although the regime in which Giraffe applies is narrow, it is the first system to
apply such a strict cost accounting—and win.

25

Acknowledgments

We thank Fraser Brown, Ioanna Tzialla, and Keith Winstein for helpful comments. The authors were
supported by NSF grants CNS-1423249, CNS-1514422, and CNS-1646671; AFOSR grant FA9550-15-
1-0302; ONR grant N00014-16-1-2154; DARPA grant HR0011-15-2-0047; and a Google Research
Award.

Giraffe’s source code is available at:
http://www.pepper-project.org/

References
[1] https://github.com/pepper-project/releases/blob/master/ginger-allspice.tar.gz.
[2] http://people.cs.georgetown.edu/jthaler/code/code.htm.
[3] http://people.cs.georgetown.edu/jthaler/TRMPcode.htm.
[4] https://github.com/pepper-project.
[5] Things that use Curve25519. https://ianix.com/pub/curve25519-deployment.html.
[6] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden. Pyramid method in image processing. RCA

Engineer, 29(6):33–41, Nov. 1984.
[7] J. B. Almeida, M. Barbosa, E. Bangerter, G. Barthe, S. Krenn, and S. Z. Béguelin. Full proof cryptography: verifiable

compilation of efficient zero-knowledge protocols. In ACM CCS, 2012.
[8] S. Arora and B. Barak. Computational Complexity: A modern approach. Cambridge University Press, 2009.
[9] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness of approximation

problems. J. ACM, 45(3):501–555, May 1998.
[10] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP. J. ACM, 45(1):70–122, Jan. 1998.
[11] R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Vercauteren. Handbook of Elliptic and

Hyperelliptic Curve Cryptography. Chapman & Hall/CRC, 2005.
[12] L. Babai. Trading group theory for randomness. In STOC, May 1985.
[13] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking computations in polylogarithmic time. In STOC, May

1991.
[14] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk. ADSNARK: Nearly practical and privacy-preserving proofs on

authenticated data. In IEEE S&P, May 2015.
[15] M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on outsourced data. In ACM CCS, Nov.

2013.
[16] E. Bangerter, J. Camenisch, S. Krenn, A. Sadeghi, and T. Schneider. Automatic generation of sound zero-knowledge

protocols. IACR Cryptology ePrint Archive, 2008. http://eprint.iacr.org/2008/471.
[17] E. Ben-Sasson, I. Ben-Tov, A. Chiesa, A. Gabizon, D. Genkin, M. Hamilis, E. Pergament, M. Riabzev, M. Silberstein,

E. Tromer, and M. Virza. Computational integrity with a public random string from quasi-linear PCPs. In
EUROCRYPT, 2017.

[18] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Decentralized anonymous
payments from Bitcoin. In IEEE S&P, May 2014.

[19] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs for C: Verifying program executions
succinctly and in zero knowledge. In CRYPTO, Aug. 2013.

[20] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. TinyRAM architecture specification, v0.991.
http://www.scipr-lab.org/system/files/TinyRAM-spec-0.991.pdf, 2013.

[21] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Scalable zero knowledge via cycles of elliptic curves. In CRYPTO,
Aug. 2014.

[22] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive zero knowledge for a von Neumann
architecture. In USENIX Security, Aug. 2014.

[23] E. Ben-Sasson and M. Sudan. Short PCPs with polylog query complexity. SIAM J. on Comp., 38(2):551–607, May 2008.
[24] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over large datasets. In CRYPTO, Aug.

2011.
[25] D. J. Bernstein. Curve25519: new Diffie-Hellman speed records. In PKC, Apr. 2006.
[26] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to succinct non-interactive

arguments of knowledge, and back again. In ITCS, Jan. 2012.

26

http://www.pepper-project.org/
https://github.com/pepper-project/releases/blob/master/ginger-allspice.tar.gz
http://people.cs.georgetown.edu/jthaler/code/code.htm
http://people.cs.georgetown.edu/jthaler/TRMPcode.htm
https://github.com/pepper-project
https://ianix.com/pub/curve25519-deployment.html
http://www.scipr-lab.org/system/files/TinyRAM-spec-0.991.pdf

[27] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and bootstrapping for SNARKs and
proof-carrying data. In STOC, 2013.

[28] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic polyhedral parallelizer and
locality optimizer. In PLDI, June 2008.

[29] P. Boulet, A. Darte, G. Silber, and F. Vivien. Loop parallelization algorithms: From parallelism extraction to code
generation. Parallel Computing, 24(3-4):421–444, 1998.

[30] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge. J. of Comp. and Sys. Sciences,
37(2):156–189, Oct. 1988.

[31] B. Braun. Compiling computations to constraints for verified computation. UT Austin Honors thesis HR-12-10, Dec.
2012.

[32] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and M. Walfish. Verifying computations with state. In SOSP,
Nov. 2013.

[33] S. Campanoni, K. Brownell, S. Kanev, T. M. Jones, G.-Y. Wei, and D. Brooks. HELIX-RC: an architecture-compiler
co-design for automatic parallelization of irregular programs. In ISCA, June 2014.

[34] A. Chiesa, E. Tromer, and M. Virza. Cluster computing in zero knowledge. In EUROCRYPT, Apr. 2015.
[35] P. Clifford and R. Clifford. Simple deterministic wildcard matching. Information Processing Letters, 101(2):53 – 54,

2007.
[36] G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified computation with streaming interactive proofs. In ITCS,

Jan. 2012.
[37] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig, B. Parno, and S. Zahur. Geppetto: Versatile

verifiable computation. In IEEE S&P, May 2015.
[38] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno. Pinocchio coin: Building zerocoin from a succinct pairing-based

proof system. In Workshop on Language Support for Privacy-enhancing Technologies, Nov. 2013.
[39] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and B. Parno. Cinderella: Turning shabby X.509 certificates into

elegant anonymous credentials with the magic of verifiable computation. In IEEE S&P, May 2016.
[40] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss, O. Ohrimenko, and B. Parno. Hash first, argue later: Adaptive verifiable

computations on outsourced data. In ACM CCS, Oct. 2016.
[41] D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and matrix computations, with

applications. In ACM CCS, Oct. 2012.
[42] D. Fiore, R. Gennaro, and V. Pastro. Efficiently verifiable computation on encrypted data. In ACM CCS, Nov. 2014.
[43] C. Fournet, M. Kohlweiss, G. Danezis, and Z. Luo. ZQL: A compiler for privacy-preserving data processing. In

USENIX Security, Aug. 2013.
[44] C. Fournet, G. Le Guernic, and T. Rezk. A security-preserving compiler for distributed programs: From

information-flow policies to cryptographic mechanisms. In ACM CCS, 2009.
[45] M. Fredrikson and B. Livshits. ZØ: An optimizing distributing zero-knowledge compiler. In USENIX Security, Aug.

2014.
[46] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation to untrusted

workers. In CRYPTO, Aug. 2010.
[47] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct NIZKs without PCPs. In

EUROCRYPT, 2013.
[48] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions. In STOC, June

2011.
[49] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: Interactive proofs for muggles. J. ACM,

62(4):27:1–27:64, Aug. 2015. Prelim version STOC 2008.
[50] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM J. on Comp.,

18(1):186–208, 1989.
[51] B. Hoefflinger. ITRS: The international technology roadmap for semiconductors. In Chips 2020. Springer, 2012.
[52] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Efficient arguments without short PCPs. In IEEE CCC, June 2007.
[53] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and their applications. In

ASIACRYPT, Dec. 2010.
[54] J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In STOC, May 1992.
[55] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming, chapter 4.6.4.

Addison-Wesley, third edition, 1997.
[56] A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi, and N. Triandopoulos. TrueSet: Faster verifiable

set computations. In USENIX Security, Aug. 2014.

27

[57] C. Liu, M. Hicks, and E. Shi. Memory trace oblivious program execution. In Computer Security Foundations
Symposium (CSF), June 2013.

[58] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. J. ACM,
39(4):859–868, Oct. 1992.

[59] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay—a secure two-party computation system. In USENIX Security,
Aug. 2004.

[60] D. Manolescu, B. Beckman, and B. Livshits. Volta: Developing distributed applications by recompiling. IEEE Software,
2008.

[61] S. Meiklejohn, C. C. Erway, A. Küpçü, T. Hinkle, and A. Lysyanskaya. ZKPDL: a language-based system for efficient
zero-knowledge proofs and electronic cash. In USENIX Security, 2010.

[62] S. Micali. Computationally sound proofs. SIAM J. on Comp., 30(4):1253–1298, 2000.
[63] P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Math. of Computation,

48(177):243–264, Jan. 1987.
[64] A. Naveh and E. Tromer. PhotoProof: Cryptographic image authentication for any set of permissible transformations. In

IEEE S&P, May 2016.
[65] C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. In IACR TCC, Mar. 2013.
[66] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio: Nearly practical verifiable computation. In IEEE S&P, May

2013.
[67] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio: Nearly practical verifiable computation. In

Communications of the ACM, volume 59, pages 103–112, Feb. 2016.
[68] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic. Digital integrated circuits, volume 2. Prentice Hall Englewood Cliffs,

2002.
[69] G. N. Rothblum. Delegating Computation Reliably: Paradigms and Constructions. PhD thesis, Massachusetts Institute

of Technology, 2009.
[70] P. Sasdrich and T. Güneysu. Efficient elliptic-curve cryptography using Curve25519 on reconfigurable devices. In ARC,

Apr. 2014.
[71] P. Sasdrich and T. Güneysu. Implementing Curve25519 for side-channel–protected elliptic curve cryptography. ACM

TRETS, 9(1):3:1–3:15, Nov. 2015.
[72] S. Setty, A. J. Blumberg, and M. Walfish. Toward practical and unconditional verification of remote computations. In

HotOS, May 2011.
[73] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M. Walfish. Resolving the conflict between generality and

plausibility in verified computation. In EuroSys, Apr. 2013.
[74] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish. Making argument systems for outsourced computation

practical (sometimes). In NDSS, Feb. 2012.
[75] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish. Taking proof-based verified computation a few

steps closer to practicality. In USENIX Security, Aug. 2012.
[76] A. Shamir. IP = PSPACE. J. ACM, 39(4):869–877, Oct. 1992.
[77] J. Thaler. Time-optimal interactive proofs for circuit evaluation. In CRYPTO, Aug. 2013. Citations refer to full version:

https://arxiv.org/abs/1304.3812.
[78] J. Thaler. A note on the GKR protocol. http://people.seas.harvard.edu/ jthaler/GKRNote.pdf, 2015.
[79] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister. Verifiable computation with massively parallel interactive

proofs. In USENIX HotCloud Workshop, June 2012.
[80] Victor Vu. Personal communication, 2013.
[81] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid architecture for interactive verifiable computation. In IEEE

S&P, May 2013.
[82] R. S. Wahby, M. Howald, S. Garg, abhi shelat, and M. Walfish. Verifiable ASICs. In IEEE S&P, May 2016.
[83] R. S. Wahby, S. Setty, Z. Ren, A. J. Blumberg, and M. Walfish. Efficient RAM and control flow in verifiable outsourced

computation. In NDSS, Feb. 2015.
[84] M. Walfish and A. J. Blumberg. Verifying computations without reexecuting them: from theoretical possibility to near

practicality. Communications of the ACM, 58(2):74–84, Feb. 2015.
[85] S. Williams. Icarus Verilog. http://iverilog.icarus.com.
[86] S. Zahur and D. Evans. Circuit structures for improved efficiency of security and privacy tools. In IEEE S&P, pages

493–507, May 2013.
[87] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. vSQL: Verifying arbitrary SQL queries over

dynamic outsourced databases. In IEEE S&P, May 2017.

28

https://arxiv.org/abs/1304.3812
http://iverilog.icarus.com

1: function Verify(ArithCircuit c, input x, output y)
2: (q′0, q0)

R←− Flog N × FlogG

3: a0 ← Ṽy(q′0, q0) // Ṽy is the multilin. ext. of the output y
4: SendToProver(q′0, q0)
5: d ← c.depth
6:
7: for i = 1, . . . , d do
8: // Reduce Ṽi−1(q′i−1, qi−1)

?
= ai−1 to Pq,i(r0, r1, r ′)

?
= e

9: (e, r ′, r0, r1) ← SumCheckV(i, ai−1)
10:
11: // Below, P describes a univariate polynomial H(t),
12: // of degree log G, claimed to be Ṽi (r ′, (r1 − r0) t + r0)
13: H ← ReceiveFromProver() // see line 47 of Figure 14
14: v0 ← H(0)
15: v1 ← H(1)
16:
17: // Reduce Pq,i(r0, r1, r ′)

?
= e to two questions:

18: // Ṽi(r ′, r0)
?
= v0 and Ṽi(r ′, r1)

?
= v1

19:
20: if e , ẽq(q′

i−1, r ′) ·
[˜addi(qi−1, r0, r1) · (v0 + v1) + ˜multi(qi−1, r0, r1) · v0 · v1

]
then

21: return reject
22:
23: // Reduce the two v0, v1 questions to Ṽi(q′i, qi)

?
= ai

24: τi
R←− F

25: ai ← H(τi)
26: (q′i, qi) ← (r ′, (r1 − r0) · τi + r0)
27:
28: SendToProver(τi)
29:
30: // Ṽd(·) is the multilinear extension of the input x
31: if Ṽd(q′d, qd) = ad then
32: return accept
33: return reject

Figure 10—(Copy of Fig. 1.)V’s side of T13 [77, §7] and Giraffe.

A Details of T13 (with an optimization)
Recall from Section 2.2 that the starting point of Giraffe’s back-end is T13 [77, §7], with an optimiza-
tion [78]. A complete description of the verifier’s work in this protocol can be found in Figures 10
and 11. A complete description of the prover’s work can be found in Figures 12 and 14.

The following theorem restates the relevant properties of this protocol (§2.2): completeness,
soundness,V’s runtime, and P’s runtime. The proof of this theorem is omitted for brevity; it essentially
follows the analysis of [77, §7], as the only difference between the protocol of [77, §7] and the protocol
of this section is the inclusion of the optimization of [78]. We do, however, provide a detailed proof of
the claim aboutV’s runtime, as Giraffe’s verifier is implemented in a similar manner.

Theorem A.1. Consider the protocol with verifier described in Figures 10 and 11, and prover described
in Figure 14. When applied to a circuit C as in Section 2.2, the protocol satisfies completeness, and
satisfies soundness with ϵ = (⌈log |y |⌉+6d log (G · N))/|F|.V requires precomputation that is O(d ·G).
Then, to validate all inputs and outputs,V incurs cost O(d · log (N · G) + |x | + |y |). P’s running time
is O(d · G · N · log G).

29

1: function SumCheckV(layer i, ai−1)
2: e← ai−1
3:
4: (r ′, r0, r1)

R←− FbN × FbG × FbG

5: r ← (r ′, r0, r1) // variable order is from §3.1
6: // For the protocol of Theorem A.1 (variable order of §2.2)
7: // replace the above line with r ← (r0, r1, r ′)
8:
9: for j = 1, 2, . . . , (bN + 2bG) do

10:
11: // Fj is a degree-2 or degree-3 polynomial
12: Fj ← ReceiveFromProver() // see lines 18,46 of Fig. 15
13: // For the protocol of Theorem A.1,
14: // see lines 22 and 41 of Figure 14
15:
16: if Fj (0) + Fj (1) , e then
17: return reject
18:
19: SendToProver(r[j])
20:
21: e← Fj (r[j])
22:
23: return (e, r ′, r0, r1)

Figure 11—V’s side of the sum-check protocol in T13 and Giraffe. This protocol reduces the claim that ai equals
the sum

∑
n,h0,h1 P∗q,i(n, h0, h1) (this sum equals Ṽi−1(q′i−1, qi−1), per Equation (2)) to the claim e = P∗q,i(r ′, r0, r1).

The depiction here follows Section 3.1: r ′ comes before r0, r1 in the variable order, and the polynomial is
P∗q,i(n, h0, h1), not Pq,i(h0, h1, n).

It will be convenient to have the following expression for the multilinear extension. For a function
f : {0, 1}γ → F, the multilinear extension f̃ of f is given by:

f̃ =
∑

s∈{0,1}γ
f (s) · χs . (7)

This follows because both sides of the equality are multilinear polynomials that agree at all Boolean
inputs, and hence must be equal as formal polynomials.

Remark. f̃ can be viewed as an encoding of a table of f ’s values. Specifically, let us view f (·) as a
function table with 2γ entries, where each s ∈ {0, 1}γ is an index into that table. Notice that every point
in the domain of f̃ is a linear combination of all 2γ entries in this table.

V’s Precomputation. V’s precomputation evaluates ˜addi(qi−1, r0, r1) and ˜multi(qi−1, r0, r1) for each
i = 1, . . . , d, and all points (qi−1, r0, r1) ∈ FlogG × FlogG × FlogG encountered in Lines 20 and 21 of
Figure 10 over the course of the protocol execution.11

Hence, to show that V’s precomputation work is O(d · G), it suffices to show that for each i,
˜addi(qi−1, r0, r1) and ˜multi(qi−1, r0, r1) can be evaluated in O(G) time. An algorithm for achieving this

was claimed by Vu et al. [81]; we present the details of such an algorithm.

11Figure 10 states that the (qi−1, r0, r1) values are only determined over the course of the protocol execution, but in fact they
can be determined in precomputation, as they only depend onV’s randomness.

30

1: function Prove(ArithCircuit c, input x)
2: (q′0, q0) ← ReceiveFromVerifier() // see line 4
3: d ← c.depth
4:
5: // each circuit layer induces one sumcheck invocation
6: for i = 1, . . . , d do
7: r ′, r0, r1 ← SumCheckP(c, i, (q′

i−1, qi−1))
8: τi ← ReceiveFromVerifier() // see line 29 of Figure 1
9: (q′i, qi) ← (r ′, (r1 − r0) · τi + r0)

Figure 12—Pseudocode for P in T13 and Giraffe. SumCheckP is defined in Figures 14 and 15 for T13 and
Giraffe, respectively.

Let Sadd,i ⊆ Sall,i ⊆ {0, 1}3bG denote the set of all addition gates at layer-(i−1), with their layer-i
neighbors, and similarly for Smult,i. By Equation (7),

˜addi =
∑

u∈{0,1}3bG
addi(u) · χu =

∑
u∈Sadd, i

χu

=
∑

(g,gL,gR)∈Sadd, i

χg · χgL · χgR (8)

Likewise,
multi =

∑
(g,gL,gR)∈Smult, i

χg · χgL · χgR (9)

Hence, V’s algorithm for evaluating ˜addi(qi−1, r0, r1) and ˜multi(qi−1, r0, r1) first constructs three
zero-indexed arrays, each with G elements:

Aq = {χ0(q), . . . , χG−1(q)}
Ar0 = {χ0(r0), . . . , χG−1(r0)}
Ar1 = {χ0(r1), . . . , χG−1(r1)} .

To construct each array, consider the algorithm in Figure 13. This algorithm uses dynamic
programming to avoid recomputing suffixes. For example, notice that for all even h ∈ [0,G−1],
χh(q) = (1 − q[1]) · L and χh+1(q) = q[1] · L, where L =

∏bG

ℓ=2 χh[ℓ](q[ℓ]); the algorithm computes
L only once. Constructing an array takes O(G) time because for each iteration of the outer loop, the
number of iterations in the inner loop ascends as 21, 22, . . . , 2bG−1, making the total number of inner
loop iterations

∑bG−1
i=1 2i < 2bG = G. Moreover, each inner loop iteration requires 2 field multiplications,

so constructing all 3 arrays requires at most 6 · G multiplications.
Once the three arrays are computed, V computes the right hand sides of Equations (8) and

Equation (9) by iterating over each gate s = (g, gL, gR); looking up the three quantities Aq[g], Ar0[gL],
Ar1[gR]; multiplying them; and adding this product to a running sum for ˜addi(q, r0, r1) or ˜multi(q, r0, r1),
depending on whether the gate is an addition or multiplication gate. This requires an additional 2G
multiplications, and G additions.

In summary, the above shows that both ˜addi(qi−1, r0, r1) and ˜multi(qi−1, r0, r1) can be computed in
O(G) time, with at most 8G field multiplications in total.

Finally,V must evaluate H(τi) (line 26, Fig. 10). Prior work has the prover specify the univariate
polynomial H appearing in Figure 10 by specifying its evaluations at bG + 1 inputs (§3.3). In some prior
work, V evaluates Lagrange basis polynomials at various points in precomputation, in O(d log2 G)
time [81, 82]. This allowsV to evaluate H(τi) online in O(log G) time per evaluation.

31

1: // t[ℓ] ∈ F are elements of vector t,
2: // which is indexed 1, . . . , bG from LSB to MSB
3: // A is an array of length G
4:
5: A[0] ← 1 − t[bG]
6: A[1] ← t[bG]
7: for ℓ = bG − 1, bG − 2, . . . , 1 do
8: for k = 2bG−ℓ − 1, 2bG−ℓ − 2, . . . , 0 do
9: A[2k] ← (1 − t[ℓ]) · A[k]

10: A[2k + 1] ← t[ℓ] · A[k]

Figure 13—Pseudocode for computing At = {χ0(t), . . . , χG−1(t)} in time O(G).V needs to compute Aq , Ar0 ,
and Ar1 . Each of q, r0, r1 is in FbG .

V’s remaining costs. Given the results of V’s precomputation, inspection of Figures 10 and 11
indicates thatV runs in O(d · log (N · G)+ |x |+ |y |) time, provided thatV can accomplish the following
tasks in the following time bounds:

• For any point (q′
d
, qd) ∈ FbN × FbG , evaluate Ṽ0(q′0, q0) in time O(|y |).

• For any point (q′
i−1, r ′) ∈ FbN × FbN , evaluate ẽq(q′

i−1, r ′) in time O(bN).

• For any point (q′
d
, qd) ∈ FbN × FbG , evaluate Ṽd(q′d, qd) in time O(|x |).

The first and third bullets are handled as in Section 3.3 (cf. the paragraph on multilinear extensions
of I/O). To establish the second bullet, note that ẽq : F2bN → F has the following form [69, Prop. 3.2.1]
(see also [81, Appx. A.1]):12

ẽq(q′, r ′) =
bN∏
ℓ=1
(q′[ℓ]·r ′[ℓ] + (1 − q′[ℓ])·(1 − r ′[ℓ])) (10)

Each term simplifies to 2q′[ℓ] · r ′[ℓ] + 1 − (q′[ℓ] + r ′[ℓ]), which can be computed with one mul-
tiplication and four additions. Thus the whole computation requires 4bN additions and 2bN − 1
multiplications.

B Details of Giraffe’s back-end
As stated in Section 3.1, Giraffe’s back-end differs from T13 (the protocol of Appx. A) in that Giraffe
changes the order in which variables are bound within each invocation of the sum-check protocol, and
exploits that order to simplify P’s work.

A complete description of the verifier’s work in Giraffe can be found in Figures 10 and 11. A
complete description of the prover’s work can be found in Figures 12 and 15. The following theorem
states the relevant properties of this protocol.

Theorem B.1. Consider the protocol with verifier described in Figures 10 and 11, and prover described
in Figure 15. When applied to a circuit C as in Section 2.2, the protocol satisfies completeness, and
satisfies soundness with ϵ = (⌈log |y |⌉+6d log (G · N))/|F|.V requires precomputation that is O(d ·G).
Then, to validate all inputs and outputs,V incurs cost O(d · log (N · G) + |x | + |y |). P’s running time
is O(d · (G · N + G · log G)).

12The validity of this equation can be seen by observing that the right hand side is a multilinear polynomial in the components
of q′ and r ′, and agrees with the function eq whenever q′ and r ′ are in {0, 1}bN

32

1: function SumCheckP(ArithCircuit c, layer i, q′
i−1, qi−1)

2: for j = 1, . . . , 2bG do
3: // In these rounds, prover sends degree-2 polynomial Fj . Does this by computing and sending Fj (0), Fj (1), Fj (2).
4:
5: for all σ ∈ {0, 1}bN and all g ∈ {0, 1}bG and k ∈ {0, 1, 2} do
6: s← (g, gL, gR) // gL, gR are labels of g’s layer-i inputs in subcircuit
7: uk ← (qi−1[1], . . . , qi−1[bG], r[1], . . . , r[j−1], k)
8: termP← ẽq(q′

i−1, σ) ·
∏bG+j

ℓ=1 χs[ℓ](uk [ℓ])
9:

10: if j ≤ bG then
11: termL← Ṽi (σ, r[1], . . . , r[j − 1], k, gL[j+1], . . . , gL[bG])
12: termR← Vi (σ, gR) // Vi = Ṽi on gate labels
13: else // bG < j ≤ 2bG
14: termL← Ṽi(σ, r[1], . . . , r[bG])
15: termR← Ṽi (σ, r[bG+1], . . . , r[j−1], k, gR[j−bG+1], . . . , gR[bG])
16:
17: if g is an add gate then Fj [σ, g][k] ← termP · (termL + termR)
18: else if g is a mult gate then Fj [σ, g][k] ← termP · termL · termR
19:
20: for k ∈ {0, 1, 2} do
21: Fj [k] ←

∑
σ∈{0,1}bN

∑
g∈{0,1}bG Fj [σ, g][k]

22: SendToVerifier(Fj , 2)
23: r[j] ← ReceiveFromVerifier() // see line 19 of Figure 11
24:
25: r0 ← (r[1], . . . , r[bG]) // notation
26: r1 ← (r[bG+1], . . . , r[2bG]) // notation
27:
28: for j = 1, . . . , bN do
29: // In these rounds, prover sends degree-3 polynomial F2bG+j , so computes F2bG+j (0), . . . , F2bG+j (3)
30:
31: for all σ ∈ {0, 1}bN−j and k ∈ {0, 1, 2, 3} do
32: termP← ẽq(q′

i−1, r
′[1], . . . , r ′[j − 1], k, σ[1], . . . , σ[bN − j])

33: termL← Ṽi (r ′[1], . . . , r ′[j − 1], k, σ[1], . . . , σ[bN − j], r0)
34: termR← Ṽi (r ′[1], . . . , r ′[j − 1], k, σ[1], . . . , σ[bN − j], r1)
35:
36: // See text for computation of ˜add(qi−1, r0, r1) and ˜mult(qi−1, r0, r1)
37: F2bG+j [σ][k] ← termP ·

(˜add(qi−1, r0, r1) · (termL + termR) + ˜mult(qi−1, r0, r1) · termL · termR
)

38:
39: for k ∈ {0, 1, 2, 3} do
40: F2bG+j [k] ←

∑
σ∈{0,1}bN − j F2bG+j [σ][k]

41: SendToVerifier(F2bG+j , 3)
42: r ′[j] ← ReceiveFromVerifier() // see line 19 of Figure 11
43:
44: r ′ ← (r ′[1], . . . , r ′[bN]) // notation
45:
46: for ℓ = {0, . . . , bG}, H[ℓ] ← Ṽi(r ′, (r1 − r0) · ℓ + r0)
47: SendToVerifier(H, bG)
48:
49: return (r ′, r0, r1)

Figure 14—P pseudocode in T13 [77, §7] (with optimization [78]) for the layer-i sum-check invocation.

33

1: function SumCheckP(ArithCircuit c, layer i, q′
i−1, qi−1)

2: for j = 1, . . . , bN do
3: // Prover sends degree-3 polynomial Fj . Does this by computing Fj (−1), Fj (0), Fj (1), Fj (2) and then interpolating.
4:
5: for all σ ∈ {0, 1}bN−j and g ∈ {0, 1}bG and k ∈ {−1, 0, 1, 2} do
6: s← (g, gL, gR) // gL, gR are labels of g’s layer-i inputs in sub-circuit.
7:
8: termP← ẽq(q′

i−1, r
′[1], . . . , r ′[j − 1], k, σ[1], . . . , σ[bN − j]) · χg(qi−1)

9: termL← Ṽi (r ′[1], . . . , r ′[j − 1], k, σ[1], . . . , σ[bN − j], gL)
10: termR← Ṽi (r ′[1], . . . , r ′[j − 1], k, σ[1], . . . , σ[bN − j], gR)
11:
12: if g is an add gate then Fj [σ, g][k] ← termP · (termL + termR)
13: else if g is a mult gate then Fj [σ, g][k] ← termP · termL · termR
14:
15: for k ∈ {−1, 0, 1, 2} do
16: Fj [k] ←

∑
σ∈{0,1}bN − j

∑
g∈{0,1}bG Fj [σ, g][k]

17: // Use Lagrange interpolation to compute coefficients of Fj and send them toV
18: SendToVerifier(Fj , 3)
19: r ′[j] ← ReceiveFromVerifier() // see line 19 of Figure 11
20:
21: r ′ ← (r ′[1], . . . , r ′[bN]) // notation
22:
23: for j = 1, . . . , 2bG do
24: // In these rounds, prover sends degree-2 polynomial FbN+j .
25: for all gates g ∈ {0, 1}bG and k ∈ {−1, 0, 1} do
26:
27: s← (g, gL, gR) // gL, gR are labels of g’s layer-i inputs in subcircuit
28: uk ← (qi−1[1], . . . , qi−1[bG], r[1], . . . , r[j−1], k)
29: termP← ẽq(q′

i−1, r
′) ·∏bG+j

ℓ=1 χs[ℓ](uk [ℓ])
30:
31: if j ≤ bG then
32: termL← Ṽi (r ′, r[1], . . . , r[j − 1], k, gL[j+1], . . . , gL[bG])
33: termR← Ṽi (r ′, gR)
34: else // bG < j ≤ 2bG
35: termL← Ṽi(r ′, r[1], . . . , r[bG])
36: termR← Ṽi (r ′, r[bG+1], . . . , r[j−1], k, gR[j−bG+1], . . . , gR[bG])
37:
38: if g is an add gate then
39: FbN+j [g][k] ← termP · (termL + termR)
40: else if g is a mult gate then
41: FbN+j [g][k] ← termP · termL · termR

42:
43: for k ∈ {−1, 0, 1} do
44: FbN+j [k] ←

∑
g∈{0,1}bG FbN+j [g][k]

45: // Use Lagrange interpolation to compute coefficients of FbN+j and send them to verifier
46: SendToVerifier(FbN+j , 2)
47: r[j] ← ReceiveFromVerifier() // see line 19 of Figure 11
48:
49: r0 ← (r[1], . . . , r[bG]) // notation
50: r1 ← (r[bG+1], . . . , r[2bG]) // notation
51:
52: for ℓ = {0, . . . , bG}, H[ℓ] ← Ṽi(r ′, (r1 − r0) · ℓ + r0)
53: // Use Lagrange interpolation to compute coefficients of H and send them toV
54: SendToVerifier(H, bG)
55:
56: return (r ′, r0, r1)

Figure 15—P pseudocode in Giraffe for the layer-i sum-check invocation.

34

The conclusion of Theorem B.1 is identical to that of Theorem A.1, except for the improvement in P’s
runtime.

Proof. Completeness, soundness, and the bound onV’s runtime are established via the analyses in [77,
§7] and Appendix A. This is because the principal difference between Giraffe and T13 is the order in
which variables are bound, which does not affect completeness, soundness, orV’s runtime.

The remainder of the proof is devoted to bounding P’s runtime. From inspection of Figure 12, the
claim about P’s runtime is true as long as each of the d calls to SumCheckP (cf. line 7 of Fig. 12) can
be implemented in time O(G · N + G · log G).

To show this, we begin by explaining how the first for loop of the SumCheckP function (lines 2–19
in Fig. 15) can be implemented to run in time O(G · N). As in Section 3.1, we call this part of the
protocol “phase 1”.

We begin with the inner for loop of phase 1 (lines 5-13 in Fig. 15). This loop has 4G ·N/2j iterations.
Lines 12 and 13 each take constant time per iteration, leading to a contribution of O(∑bN

j=1 G · N/2j) =
O(G · N). Next, consider the computation of termL and termR in lines 9 and 10. Section 3.2 (see the
“algorithm” paragraph) explained how to compute, in iteration j, all required values of termL and termR
(acrossσ, g, k) in total time O(G ·N/2j), leading to another contribution of O(∑bN

j=1 G ·N/2j) = O(G ·N).
The bulk of our attention on the inner loop is on computing all required values of termP in line 8

in O(G + N) time across all iterations j = 1, . . . , bN . This decomposes into (a) computing χg(qi−1)
for all g ∈ {0, 1}bG , and (b) computing ẽq(q′

i−1, r
′[1], . . . , r ′[j − 1], k, σ[1], . . . , σ[bN − j]), where j

ranges from 1 up to bN , σ ranges over {0, 1}bN−j , and k ranges over {−1, 0, 1, 2}. For (a), Appx A (the
“precomputation” paragraph) explained precisely how to compute the χg(qi−1) in time O(G).

To achieve (b) in time O(N), consider the function Z : {0, 1}bN → F given by Z(·) = ẽq(q′
i−1, ·).

Observe that Z̃(·) and ẽq(q′
i−1, ·) are equal as formal polynomials, because they are both multilinear

and agree at all Boolean inputs. Hence, task (b) is equivalent to evaluating Z̃ at all points of the form
(r ′[1], . . . , r ′[j − 1], k, σ[1], . . . , σ[bN − j]).
P can achieve this in two steps. In the first step, prior to round j = 1, P evaluates Z on all Boolean

inputs as follows. Observe that for any σ ∈ {0, 1}bN , Equation (10) implies that Z(σ) = ẽq(q′
i−1, σ) =

χσ(q′i−1). P can again use the technique from Appendix A, this time to build an array containing
χσ(q′i−1) for all σ ∈ {0, 1}bN in time O(N).

In the second step, P evaluates Z̃ at all of the necessary points using the following method.
Notice that when explaining how to efficiently compute termL and termR (§3.2), we more generally
showed that the following is true. For any b-variate function f : {0, 1}b → F and any k ∈ F, given
f ’s values on all Boolean inputs, one can, in total time O(2b), evaluate f̃ at all points of the form
(r ′[1], . . . , r ′[j − 1], k, σ[1], . . . , σ[b− j]), where j ranges from 1 up to b, and σ ranges over {0, 1}b−j .
Hence, once P has evaluated Z on all Boolean inputs, P can apply the aforementioned result to f = Z
in order to evaluate Z̃ at the necessary points in time O(2bN) = O(N).

In total, both steps of task (b) are dispatched in O(N) time.

By inspection, lines 15–19 of Figure 15 can be dispatched in
∑bN

j=1 O(G · N/2j) = O(G · N) time.
Hence, phase 1 of the protocol can be dispatched in O(G · N) time in total.

The next cost to P to account for is the for loop with 2bG iterations (cf. line 23); as in Section 3.1, we
refer to this as “phase 2”. This for loop can be dispatched in O(G) time per iteration (hence, O(G log G)
time in total), in a manner analogous to the prover implementation of CMT [36] (indeed, the pseudocode
of Fig. 15 already incorporates key insights from [36]).

35

In more detail, it is enough to show that for each iteration j ∈ [1, 2bG] of this for loop, all 3G
iterations of the inner for loop in line 25 of Figure 15 can be dispatched in O(G) total time, as this will
yield a time bound of O(G · bG) = O(G log G). The dominant cost of these iterations is in computing
the termP, termL, and termR values. The termL and termR values are handled via essentially the same
method as in phase 1, requiring O(∑bN+bG

j=bN+1 G/2j) = O(G) time in total (across all 2bG iterations j).
The bottleneck for phase 2 is the time required to compute termP (cf. line 29). The prover stores,

at all iterations j ∈ [1, 2bG] of the outer loop, and for each gate g ∈ {0, 1}bG and k = 0, the value
U[g] = ẽq(q′

i−1, r
′) ·∏bG+j−1

ℓ=1 χs[ℓ](uk[ℓ]) (see lines 27 and 28 for the definition of s and u). Given
these U[g] quantities, in each iteration j of the outer loop, P can compute each value of termP and
update U[g] in constant time. This means that for each iteration j, all O(G) values of termP can be
computed in O(G) total time, resulting in the claimed O(G log G) time bound across all 2bG iterations
of the outer loop.

The final cost to account for in P’s work is evaluating the degree-bG univariate polynomial
H = Ṽi(r ′, (r1 − r0) · ℓ + r0) at bG + 1 values of ℓ (see lines 52 and 53 of Fig. 15). Consider the function
Q : {0, 1}bG → F, defined as Q(·) = Ṽi(r ′, ·). Then Q̃(·) and Ṽi(r ′, ·) are equal as formal polynomials,
because the right- and left-hand sides are multilinear polynomials that agree at all Boolean inputs.

Hence, P must compute Q̃((r1 − r0) · ℓ + r0) for ℓ ∈ {0, . . . , bG}. For this purpose, we use the
following result, which is a variant of the one given earlier (in reference to task (b)): given the evaluations
of a bG-variate function Q on all Boolean inputs, one can evaluate Q̃ at any point in time O(2bG) = O(G).
This follows from again applying the technique from Section 3.2 used to compute all of the termL and
termR values (and is described in Section 3.3, the paragraph on multilinear extensions of I/O).

To get the evaluations of Q(·) on all Boolean inputs, we need Ṽi(r ′, σ) for σ ∈ {0, 1}bG . These
evaluations can be computed in time O(N · G), again using the Section 3.2 technique. Then, we apply
the previous paragraph to the bG + 1 points {(r1 − r0) · ℓ + r0 | ℓ = 0, . . . , bG}, yielding additional
computational cost of O(G · bG).

In summary, lines 52 and 53 of Figure 15 together can be dispatched in time O(N ·G+G · log G). □

B.1 Recursive expression for Ṽi

The Equation (5) recurrence in Section 3.2 is derived as follows:

Ṽi (r ′[1.. j], σ, h)=
∑

s∈{0,1}bN +bG

Vi(s) · χs (r ′[1.. j], σ, h)

=
∑

s∈{0,1}bN +bG :sj=0

Vi(s) · χs (r ′[1.. j], σ, h)

+
∑

s∈{0,1}bN +bG :sj=1

Vi(s) · χs (r ′[1.. j], σ, h)

=(1 − r ′[j]) · Ṽi (r ′[1.. j−1], 0, σ, h)
+ r ′[j] · Ṽi (r ′[1.. j−1], 1, σ, h) .

The first and last equalities apply Equation (7).

B.2 Other implementation considerations

The choice of values k ∈ {−1, 0, 1, 2}. In phase 1, Giraffe’s P evaluates Fj(k), k ∈ {−1, 0, 1, 2}. This
is a small optimization compared to, e.g., k ∈ {0, 1, 2, 3}. Recall from Section 3.2 that for k = −1,

36

cost verifier prover
energy

compute G (8d + 4N) Emul,t + G (d + 2N) Eadd,t d
[
G (6N + 8 log G) Emul,u + G (11N + 8 log G) Eadd,u + 4G (N + log G)

〈
Eg,u

〉]
V-P tx (d (2 log G + log N) + GN) Etx,t (d (7 log G + 4 log N) + NG) Etx,u

store — dNG · Esto,u
PRNG d (2 log G + log N) Eprng,t —
V I/O 2NG · Eio,t —

area
compute nV,sc

(
4Amul,t + 3Aadd,t

)
+ 2nV,io

(
2Amul,t + Aadd,t

)
nP,sc

[(
4GnP,ea +

N
2 + 2nP,Ṽ log G

)
Amul,u +

(
4GnP,ea +

N
2 + nP,Ṽ log G

)
Aadd,u

]
V-P tx (d (2 log G + log N) + GN) Atx,t (d (7 log G + 4 log N) + NG) Atx,u

store — dNGnP,pl · Asto,u
PRNG d (2 log G + log N) Aprng,t —
V I/O 2NG · Aio,t —

delay: Giraffe’s overall throughput is 1/max (V delay,P delay); the expressions forV and P delay are given immediately
below:

max
(

dG
nV,sc

(
3λmul,t + λadd,t

)
, NG

nV, io

(
λmul,t + λadd,t

)) d
nP,sc

[(
3C
nP,ea

+ G
nP,Ṽ

) (
λmul,u + λadd,u

)]
nV,io:V template argument; trades area vs I/O delay nV,sc:V template argument; trades area vs sumcheck delay
nP,pl: P template argument; # in-flight runs nP,ea: P template argument; parallelism in phase 1 (§3.2)
nP,sc: P template argument; trades area vs delay nP,Ṽ: P template argument; parallelism for final Ṽ(z3, ·) eval〈
Eg,u

〉
: mean per-gate energy of C, untrusted d,G, N: depth, width, and number of copies of arithmetic circuit C

E{add,mul,tx,sto,prng,io}, {t,u}: energy cost in {trusted, untrusted} technology node for {+, ×,V-P interaction, store, PRNG,V I/O}
A{add,mul,tx,sto,prng,io}, {t,u}: area cost in {trusted, untrusted} technology node for {+, ×,V-P interaction, store, PRNG,V I/O}
λ{add,mul}, {t,u}: delay in {trusted, untrusted} technology node for {+, ×}

Figure 16—V and P costs as a function of AC parameters and technology nodes (simplified model; low-order
terms discarded). We assume |x | = |y | = N · G. Energy and area constants for interaction, store, PRNG, and
I/O indicate costs for a single element of Fp.V-P tx is the cost of interaction betweenV and P;V I/O is the
cost for the operator to communicate with Giraffe. For P, store is the cost of buffering pipelined computations.
Transmit, store, and PRNG occur in parallel with execution, so their delay is not included under the assumption
that the corresponding circuits execute quickly enough.

termLj,n,gL,−1 = 2 · termLj,n,gL,0 + (−1) · termLj,n,gL,1. Multiplication by 2 and by −1 can both be
implemented as an addition rather than a multiplication, while k = 3 requires either two additions
or a multiplication. A further slight optimization arises in P’s work interpolating Fj : interpolating a
third-degree polynomial for evaluations at the chosen points allows a few more multiplications to be
traded for additions. In phase 2, Giraffe uses k ∈ {−1, 0, 1} (Fig. 15) for the same reason.

V’s precomputation hardware. V implements the dynamic programming algorithm of Figure 13
using an approach similar to the one described in Section 3.2. In brief, the access pattern of the algorithm
is read one, write two, read one, and so forth.V instantiates two multipliers, one for each of the products
in the innermost loop of Figure 13, and uses a variant of the RWSR design to store operands and results.

C Cost model
Figure 16 presents a simplified cost model for Giraffe’s operating cost (energy), manufacturing cost
(chip area), and performance (delay, i.e., inverse throughput). Roughly speaking, energy captures the
number of operations executed, area corresponds to parallelism, and throughput represents the time
spent on the critical path of execution.

Both P and V are designed to allow the designer to trade chip area for throughput. Section 3.2
describes one such tradeoff; Giraffe applies similar techniques in other parts of both P and V. In
addition, Giraffe’s protocol requires computations expressed as layered arithmetic circuits (§2), and

37

2 4 6 8 10 12 14 16
log2 G , width of sub-AC

1

2

5

10

20

P
er

fo
rm

an
ce

of
G

ir
aff

e
re

la
ti

ve
to

T
13

(h
ig

he
r

is
b

et
te

r)

Figure 17— Effect of Giraffe’s protocol optimizations (§3.1). We compare the performance of Giraffe’s prover
to T13’s prover by counting field multiplications for a generic AC (§6.1) with number of sub-AC copies N = 210,
fraction of multipliers δ = 0.5, and depth d = 20. Giraffe’s protocol improves over T13 by about a factor of log G.
This improvement is essentially insensitive to N , δ, and d. Comparing field additions gives a similar result.

as with prior work [82, §3.2], Giraffe can take advantage of this requirement using pipelining. In this
arrangement, P andV comprise a number of submodules, all running in parallel and executing different
instances of the proof protocol.

To control area and throughput, Giraffe’s P andV design templates each take several arguments.
For V, the arguments are nV,io, the chip area dedicated to computing the multilinear extension of
inputs and outputs; and nV,sc, the number of sum-check instances V executes simultaneously. For
P, the arguments are nP,pl, the number of in-flight computations in the pipeline; nP,sc, the number
of sum-check instances P executes simultaneously; nP,ea, P’s parallelism in the early rounds of the
sum-check (§3.2); and nP,Ṽ, P’s parallelism in the final Ṽ evaluation (Fig. 15, line 52).

D Effect of protocol improvements
To measure the effect of Giraffe’s protocol improvements (§3.1) versus T13, we compare the number of
field multiplications that each requires when proving correct execution of a generic AC (§6.1). Here, we
vary G and fix N = 210, δ = 0.5, and d = 20.

Figure 17 shows the ratio of T13’s cost to Giraffe’s (1 is equal performance; higher is better).
Giraffe’s prover is a factor of log G less expensive in terms of number of field multiplications than T13.
We have confirmed that this result is similar when counting field additions and that it is insensitive to N ,
δ, and d.

38

