
Lattice-Based SNARGs and Their Application

to More Efficient Obfuscation∗

Dan Boneh† Yuval Ishai‡ Amit Sahai§ David J. Wu¶

Abstract

Succinct non-interactive arguments (SNARGs) enable verifying NP computations with sub-
stantially lower complexity than that required for classical NP verification. In this work, we
first construct a lattice-based SNARG candidate with quasi-optimal succinctness (where the
argument size is quasilinear in the security parameter). Further extension of our methods yields
the first SNARG (from any assumption) that is quasi-optimal in terms of both prover overhead
(polylogarithmic in the security parameter) as well as succinctness. Moreover, because our con-
structions are lattice-based, they plausibly resist quantum attacks. Central to our construction is
a new notion of linear-only vector encryption which is a generalization of the notion of linear-only
encryption introduced by Bitansky et al. (TCC 2013). We conjecture that variants of Regev
encryption satisfy our new linear-only definition. Then, together with new information-theoretic
approaches for building statistically-sound linear PCPs over small finite fields, we obtain the
first quasi-optimal SNARGs.

We then show a surprising connection between our new lattice-based SNARGs and the
concrete efficiency of program obfuscation. All existing obfuscation candidates currently rely
on multilinear maps. Among the constructions that make black-box use of the multilinear
map, obfuscating a circuit of even moderate depth (say, 100) requires a multilinear map with
multilinearity degree in excess of 2100. In this work, we show that an ideal obfuscation of
both the decryption function in a fully homomorphic encryption scheme and a variant of the
verification algorithm of our new lattice-based SNARG yields a general-purpose obfuscator for all
circuits. Finally, we give some concrete estimates needed to obfuscate this “obfuscation-complete”
primitive. We estimate that at 80-bits of security, a (black-box) multilinear map with ≈ 212

levels of multilinearity suffices. This is over 280 times more efficient than existing candidates,
and thus, represents an important milestone towards implementable program obfuscation for all
circuits.

1 Introduction

Interactive proofs systems [GMR85] are fundamental to modern cryptography and complexity
theory. In this work, we consider computationally sound proof systems for NP languages, also
known as argument systems. An argument system is succinct if its communication complexity is

∗This is a preliminary full version of [BISW17].
†Stanford and Center for Encrypted Functionalities. Email: dabo@cs.stanford.edu.
‡UCLA, Technion, and Center for Encrypted Functionalities. Email: yuvali@cs.technion.ac.il.
§UCLA and Center for Encrypted Functionalities. Email: sahai@cs.ucla.edu.
¶Stanford and Center for Encrypted Functionalities. Email: dwu4@cs.stanford.edu.

1

polylogarithmic in the running time of the NP verifier for the language. Notably, the size of the
argument is polylogarithmic in the size of the NP witness.

Kilian [Kil92] gave the first succinct four-round interactive argument system for NP based
on collision-resistant hash functions and probabilistically-checkable proofs (PCPs). Subsequently,
Micali [Mic00] showed how to convert Kilian’s four-round argument into a single-round argument
for NP by applying the Fiat-Shamir heuristic [FS86]. Micali’s “computationally-sound proofs”
(CS proofs) is the first candidate construction of a succinct non-interactive argument (i.e., a
“SNARG” [GW11]) in the random oracle model. In the standard model, single-round argument
systems are impossible for sufficiently hard languages, so we consider the weaker goal of two-message
succinct argument systems where the verifier’s initial message is generated independently of the
statement being proven. This message is often referred to as the common reference string (CRS).

In this work, we are interested in minimizing the prover complexity and proof length of SNARGs.
Concretely, for a security parameter λ, we measure the asymptotic cost of achieving soundness
against provers of circuit size 2λ with negl(λ) error. We say that a SNARG has quasi-optimal
succinctness if its proof length is Õ(λ) and that it is quasi-optimal if in addition, the SNARG prover’s
running time is larger than that of a classical prover by only a polylogarithmic factor (in λ and the
running time). In this paper, we construct the first SNARG that is quasi-optimal in this sense. The
soundness of our SNARG is based on a new plausible intractability assumption, which is in the
spirit of assumptions on which previous SNARGs were based (see Section 1.2). Moreover, based on
a stronger variant of the assumption, we get a SNARK [BCCT12] (i.e., a SNARG of knowledge)
with similar complexity (see Remark 4.9). All previous SNARGs, including heuristic ones, were
suboptimal in at least one of the two measures by a factor of Ω(λ). For a detailed comparison with
previous approaches, see Table 1.

We give two SNARG constructions: one with quasi-optimal succinctness based on standard
lattices, and another that is quasi-optimal based on ideal lattices over polynomial rings. Because
all of our SNARGs are lattice-based, they plausibly resist known quantum attacks. All existing
SNARGs with quasi-optimal succinctness rely, at the minimum, on number-theoretic assumptions
such as the hardness of discrete log. Thus, they are vulnerable to quantum attacks [Sho94, Sim97].1

Application to efficient obfuscation. Independently of their asymptotic efficiency, our SNARGs
can also be used to significantly improve the concrete efficiency of program obfuscation. Program
obfuscation is the task of making code unintelligible such that the obfuscated program reveals nothing
more about the implementation details beyond its functionality. The theory of program obfuscation
was first formalized by Barak et al. [BGI+01]. In their work, they introduced the natural notion of
virtual black-box (VBB) obfuscation, and moreover, showed that VBB obfuscation for all circuits is
impossible in the standard model. In the same work, Barak et al. also introduced the weaker notion
of indistinguishability obfuscation (iO); subsequently, Garg et al. [GGH+13b] gave the first candidate
construction of iO for general circuits based on multilinear maps [BS03, GGH13a, CLT13, GGH15].

Since the breakthrough result of Garg et al., there has been a flurry of works showcasing the
power of iO [GGH+13b, SW14, BZ14, GGHR14, BPW16]. However, in spite of the numerous
constructions and optimizations that have been developed in the last few years [BGK+14, BR14,
AGIS14, BMSZ16, Zim15, AB15], concrete instantiations of program obfuscation remain purely
theoretical. Even obfuscating a relatively simple function such as the AES block cipher requires

1Hash-based SNARGs [Mic00, BCCT12, BCC+14] plausibly remain secure against quantum algorithms, but these
constructions do not achieve quasi-optimal succinctness (Remark 4.16).

2

multilinear maps capable of supporting unimaginable levels of multilinearity (� 2100 [Zim15]). In
this work, we show that our new lattice-based SNARG constructions can be combined with existing
lattice-based fully homomorphic encryption schemes (FHE) to obtain an “obfuscation-complete”
primitive2 with significantly better concrete efficiency. Targeting 80 bits of security, we show
that we can instantiate our obfuscation-complete primitive over a composite-order multilinear map
supporting ≈ 212 levels of multilinearity. The number of multilinear map encodings in the description
of the obfuscated program is ≈ 244. While the levels of multilinearity required is still beyond what
we can efficiently realize using existing composite-order multilinear map candidates [CLT13], future
multilinear map candidates with better efficiency as well as further optimizations to the components
that underlie our transformation will bring our constructions closer to reality. Concretely, our
results are many orders of magnitude more efficient than existing constructions (that make black-box
use of the underlying multilinear map), and thus, represent an important stepping stone towards
implementable obfuscation.

Non-black-box alternatives. Nearly all obfuscation constructions [BGK+14, BR14, AGIS14,
BMSZ16, Zim15, AB15] rely on the underlying multilinear map as a black-box. Recently, several
works [Lin16a, LV16, Lin16b, AS17] gave the first candidate constructions of iO based on constant-
degree multilinear maps (by going through the functional encryption route introduced in [AJ15,
BV15]). Even more impressively, the most recent constructions by Lin [Lin16b] as well as Ananth and
Sahai [AS17] only require a degree-5 multilinear map, which is certainly implementable [LMA+16].
However, this reduction in multilinearity comes at the cost of a non-black-box construction. Notably,
their construction requires a gate-by-gate transformation to be applied to a Boolean circuit description
of the encoding function of the underlying multilinear map. While further investigation of non-
black-box approaches is certainly warranted, due to the complexity of existing multilinear map
constructions [GGH13a, CLT13], this approach faces major hurdles with regards to implementability.
In this work, we focus on constructions that use the multilinear map in a black-box manner.

1.1 Background

Constructing SNARGs. Gentry and Wichs [GW11] showed that no SNARG (for a sufficiently
difficult language) can be proven secure under any “falsifiable” assumption [Nao03]. Consequently,
all existing SNARG constructions for NP in the standard model (with a CRS) have relied on
non-falsifiable assumptions such as knowledge-of-exponent assumptions [Dam91, BP04a, Mie08,
Gro10, Lip12, GGPR13], extractable collision-resistant hashing [BCCT12, DFH12, BCC+14], ho-
momorphic encryption with a homomorphism extraction property [BC12, GGPR13] and linear-only
encryption [BCI+13].

Designated-verifier arguments. Typically, in a non-interactive argument system, the arguments
can be verified by anyone. Such systems are said to be “publicly verifiable.” In some applications
(notably, bootstrapping certain types of obfuscation), it suffices to consider a relaxation where the

2An “obfuscation-complete” primitive is a function whose ideal obfuscation (e.g., using tamper-proof hardware) can
be used for obfuscating arbitrary functions. While we do not provide a provably secure instantiation of this primitive
using iO, it can be heuristically instantiated using existing iO candidates. Moreover, our obfuscation-complete
primitive has the appealing property that it needs to be invoked exactly once regardless of the function being
obfuscated. This is in contrast to alternative constructions [GIS+10, App14] where the obfuscated primitive needs to
be invoked for each gate in the circuit or each step of a Turing machine evaluation.

3

setup algorithm for the argument system also outputs a secret verification state which is needed for
proof verification. Soundness holds provided that the prover does not know the secret verification
state. These systems are said to be designated verifier. A key question that arises in the design and
analysis of designated verifier arguments is whether the same common reference string can be reused
for multiple proofs. Formally, this “multi-theorem” setting is captured by requiring soundness to
hold even against a prover that makes adaptive queries to a proof verification oracle. If the prover
can choose its queries in a way that induces noticeable correlations between the outputs of the
verification oracle and the secret verification state, then the adversary can potentially compromise
the soundness of the scheme. Thus, special care is needed to construct designated-verifier argument
systems in the multi-theorem setting.

SNARGs from linear-only encryption. Bitansky et al. [BCI+13] introduced a generic compiler
for building SNARGs in the “preprocessing” model based on a notion called “linear-only” encryption.3

In the preprocessing model, the setup algorithm that constructs the CRS can run in time that
depends polynomially on a time bound T of the computations that will be verified. The resulting
scheme can then be used to verify computations that run in time at most T . The compiler
of [BCI+13] can be decomposed into an information-theoretic transformation and a cryptographic
transformation, which we outline here:

• First, they restrict the interactive proof model to only consider “affine-bounded” provers. An
affine-bounded prover is only able to compute affine functions (over a ring) of the verifier’s
queries.4 Bitansky et al. give several constructions of succinct two-message interactive
proofs in this restricted model by applying a generic transformation to existing “linear PCP”
constructions.

• Next, they introduce a new cryptographic primitive called linear-only encryption, which is
a (public-key) encryption scheme that only supports linear homomorphisms on ciphertexts.
Bitansky et al. show that combining a linear-only encryption scheme with the affine-restricted
interactive proofs from the previous step suffices to construct a designated-verifier SNARG in
the preprocessing model. The construction is quite natural: the CRS for the SNARG system
is a linear-only encryption of what would be the verifier’s first message. The prover then
homomorphically computes its response to the verifier’s encrypted queries. The linear-only
property of the encryption scheme constrains the prover to only using affine strategies. This
ensures soundness for the SNARG. To check a proof, the verifier decrypts the prover’s responses
and applies the decision algorithm for the underlying two-message proof system. Bitansky et al.
give several candidate instantiations for their linear-only encryption scheme based on Paillier
encryption [Pai99] as well as bilinear maps [Jou00, BF01].

Linear PCPs. Like [BCI+13], our SNARG constructions rely on linear PCPs (LPCPs).5 A LPCP
of length m over a finite field F is an oracle computing a linear function π : Fm → F. On any

3Gennaro et al. [GGPR13] described a similar technique based on additively homomorphic encodings and quadratic
span programs to construct publicly-verifiable and designated-verifier SNARGs.

4Bitansky et al. [BCI+13] refer to this as “linear-only,” even though the prover is allowed to compute affine functions.
To be consistent with their naming conventions, we will primarily write “linear-only” to refer to “affine-only.”

5Linear PCPs were first used by Ishai et al. [IKO07] to construct efficient interactive argument systems from any
homomorphic encryption scheme. Subsequently, Bitansky et al. [BCI+13] gave a construction of succinct non-
interactive arguments from linear PCPs together with a linear-only encryption scheme.

4

query q ∈ Fm, the LPCP oracle responds with q>π. More generally, if ` queries are made to the
LPCP oracle, the ` queries can be packed into the columns of a query matrix Q ∈ Fm×`. The
response of the LPCP oracle can then be written as Q>π. We provide more details in Section 3.

1.2 Our Results: New Constructions of Preprocessing SNARGs

In this section, we summarize our main results on constructing preprocessing SNARGs based on a
more advanced form of linear-only encryption. Our results extend the framework introduced by
Bitansky et al. [BCI+13].

New compiler for preprocessing SNARGs. The preprocessing SNARGs we construct in this
work enjoy several advantages over those of [BCI+13]. We enumerate some of them below:

• Direct construction of SNARGs from linear PCPs. Our compiler gives a direct com-
pilation from linear PCPs over a finite field F into a preprocessing SNARG. In contrast, the
compiler in [BCI+13] first constructs a two-message linear interactive proof from a linear
PCP by introducing an additional linear consistency check. The additional consistency check
not only increases the communication complexity of their construction, but also introduces
a soundness error O(1/ |F|). As a result, their construction only provides soundness when
working over a large field (that is, when |F| is super-polynomial in the security parameter). By
using a direct compilation of linear PCPs into SNARGs, we avoid both of these problems. Our
construction does not require any additional consistency checks and moreover, it preserves
the soundness of the underlying linear PCP. Thus, as long as the underlying linear PCP is
statistically sound, applying our compiler yields a computationally sound argument (even if
|F| is small).

• Constructing linear PCPs with strong soundness. As noted in the previous section,
constructing multi-theorem designated-verifier SNARGs can be quite challenging. In [BCI+13],
this is handled at the information-theoretic level (by constructing interactive proof systems
satisfying a notion of “strong” or “reusable” soundness) and at the cryptographic level (by
introducing strengthened definitions of linear-only encryption). A key limitation in their
approach is that the information-theoretic construction of two-round interactive proof systems
again requires LPCPs over super-polynomial-sized fields. This is a significant barrier to
applying their compiler to natural LPCP constructions over small finite fields (which are
critical to our approach for bootstrapping obfuscation). In this work, we show how to apply
soundness amplification to standard LPCPs with constant soundness error against linearly-
bounded provers (and which do not necessarily satisfy strong soundness) to obtain strong,
statistically-sound LPCPs against affine-bounded provers. Coupled with our direct compilation
of LPCPs to preprocessing SNARGs, we obtain multi-theorem designated-verifier SNARGs.

We describe our construction of strong statistically sound LPCPs against affine provers from LPCPs
with constant soundness error against linear provers in Section 3. Applying our transformation to
linear PCPs based on the Walsh-Hadamard code [ALM+92] as well as those based on quadratic-span
programs (QSPs) [GGPR13], we obtain two LPCPs with strong statistical soundness against affine
provers over polynomial-size fields.

5

From linear PCPs to preprocessing SNARGs. The primary tool we use construction of
preprocessing SNARGs from linear PCPs is a new cryptographic primitive we call linear-only vector
encryption. A vector encryption scheme is an encryption scheme where the plaintexts are vectors
of ring (or field) elements. Next, we extend the notion of linear-only encryption [BCI+13] to the
context of vector encryption. We say that a vector encryption scheme is linear-only if the only
homomorphisms it supports is addition (and scalar multiplication) of vectors.

Our new notion of linear-only vector encryption gives an immediate method of compiling an
`-query linear PCP (over a finite field F) into a designated-verifier SNARG. The construction works
as follows. In a `-query linear PCP over F, the verifier’s query can be written as a matrix Q ∈ Fm×`
where m is the query length of the LPCP. The LPCP oracle’s response is Q>π where π ∈ Fm
is the proof. To compile this LPCP into a preprocessing SNARG, we use a linear-only vector
encryption scheme with plaintext space F`. The setup algorithm takes the verifier’s query matrix Q
(which is independent of the statement being proved) and encrypts each row of Q using the vector
encryption scheme. The key observation is that the product Q>π is a linear combination of the
rows of Q. Thus, the prover can homomorphically compute an encryption of Q>π. To check the
proof, the verifier decrypts to obtain the prover’s responses and then invokes the decision algorithm
for the underlying LPCP. Soundness is ensured by the linear-only property of the underlying
vector encryption scheme. The advantage of linear-only vector encryption (as opposed to standard
linear-only encryption) is that the prover is constrained to evaluating a single linear function on
all of the query vectors simultaneously. This insight enables us to remove the extra consistency
check introduced in [BCI+13], and thus, avoids the soundness penalty O(1/ |F|) incurred by the
consistency check.6 Consequently, we can instantiate our transformation with statistically-sound
linear PCPs over any finite field F. We describe our construction in Section 4.

New lattice-based SNARG candidates. We then conjecture that the Regev-based [Reg05]
encryption scheme of Peikert, Vaikuntanathan, and Waters [PVW08] is a secret-key linear-only
vector encryption scheme over Z`p where p is a prime whose bit-length is polynomial in the security
parameter λ. Then, applying our generic compiler from LPCPs to SNARGs (Construction 4.5) to
our new LPCP constructions over polynomial-size fields Zp, we obtain a lattice-based construction
of a designated-verifier SNARG (for Boolean circuit satisfiability) in the preprocessing model.7

Specifically, starting with a QSP-based LPCP [GGPR13], we obtain a SNARG with quasi-optimal
succinctness. In fact, our SNARG is the first lattice-based candidate with quasi-optimal succinctness
and soundness error 2−λ against 2λ-size provers. When considering the weaker notion of negl(λ)
soundness against 2λ-size provers, the construction in [BCI+13] instantiated with a Regev-based
candidate for linear-only encryption also gives a SNARG with quasi-optimal succinctness. But under
the stronger notion of achieving soundness error 2−λ against 2λ-size provers, the corresponding
lattice-based instantiation of [BCI+13] is suboptimal in both prover complexity and proof length
(Remark 4.15). Thus, for Boolean circuit satisfiability, using lattice-based linear-only vector

6This is the main difference between our approach and that taken in [BCI+13]. By making the stronger assumption of
linear-only vector encryption, we avoid the need for an extra consistency check, thus allowing for a direct compilation
from linear PCPs to SNARGs. In contrast, [BCI+13] relies on the weaker assumption of linear-only encryption, but
requires an extra step of first constructing a two-message linear interactive proof (incorporating the consistency
check) from the linear PCP.

7While it would be preferable to obtain a construction based on the hardness of standard lattice assumptions like
learning with errors (LWE) [Reg05], the separation results of Gentry and Wichs [GW11] suggest that stronger,
non-falsifiable assumptions may be necessary to construct SNARGs.

6

encryption provides some concrete advantages over vanilla linear-only encryption.

Quasi-optimal SNARGs. In Section 4.4, we further extend our techniques to obtain the first
instantiation of a quasi-optimal SNARG for Boolean circuit satisfiability—that is, a SNARG where
the prover complexity is Õ(s) and the argument size is Õ(λ), where s is the size of the Boolean
circuit and λ is a security parameter guaranteeing soundness against 2λ-size provers with negl(λ)
error. All previous constructions with quasi-optimal succinctness (including our lattice-based
candidate described above) achieved at best prover complexity Õ(sλ). We refer to Table 1 for a
detailed comparison. Our construction relies on a new information-theoretic construction of a linear
PCP operating over rings. In conjunction with a linear-only vector encryption scheme where the
underlying message space is a ring, we can apply our compiler to obtain a SNARG. To achieve
quasi-optimality, we require that the ciphertext expansion factor of the underlying vector encryption
scheme be polylogarithmic. Using Regev-based vector encryption based on the ring learning with
errors (RLWE) problem [LPR10] and conjecturing that it satisfies our linear-only requirements,
we obtain the first quasi-optimal SNARG construction. We leave open the question of realizing
a stronger notion of quasi-optimality, where the soundness error (against 2λ-size provers) is 2−λ

rather than negl(λ).

Related work. One of the most compelling applications of succinct argument systems is in
outsourcing and verifiable delegation of computation. Over the last few years, there has been
significant progress in designing and implementing scalable systems for verifiable computation that
leverage succinct arguments in both the interactive setting [GKR08, CMT12, TRMP12, SMBW12,
SVP+12, Tha13, VSBW13] as well as the non-interactive setting [PHGR13, BCG+13, BFR+13,
BCTV14, WSR+15, CFH+15]. We refer to [WB15] and the references therein for a comprehensive
survey of this area.

1.3 Our Results: Concrete Efficiency of Bootstrapping Obfuscation

In spite of the numerous optimizations and simplifications that have been proposed for indistin-
guishability obfuscation (iO) and VBB obfuscation (in a generic model), obfuscating even relatively
simple functions like AES remains prohibitively expensive. In this section, we describe how the
combination of our new lattice-based SNARG candidate and fully homomorphic encryption (FHE)
allows us to obtain VBB obfuscation for all circuits (in a generic model) with concrete parameters
that are significantly closer to being implementable. Our construction is over 280 times more efficient
than existing constructions.

Background. The earliest candidates of iO and VBB obfuscation operated on matrix branching
programs [GGH+13b, BGK+14, BR14], which together with multilinear maps [GGH13a, CLT13,
GGH15], yielded obfuscation for NC1 (via Barrington’s theorem [Bar86]).8 The primary source of
inefficiency in these branching-program-based obfuscation candidates is the enormous overhead
incurred when converting NC1 circuits to an equivalent branching program representation. While

8Garg et al. [GGH+13b] as well as Brakerski and Rothblum [BR14] show how to combine obfuscation for NC1 together
with fully homomorphic encryption (FHE) and low-depth checkable proofs to bootstrap iO and VBB obfuscation
from NC1 to P/poly.

7

subsequent work [AGIS14, BMSZ16] has provided significant asymptotic improvements for repre-
senting NC1 circuits as matrix branching programs, the levels of multilinearity required to obfuscate
a computation of depth d still grows exponentially in d. Thus, obfuscating even a simple function
like AES, which has a circuit of relatively low depth (≈ 100), still requires a multilinear map capable
of supporting � 2100 levels of multilinearity and a similarly astronomical number of encodings. This
is completely infeasible.

Zimmerman [Zim15] as well as Applebaum and Brakerski [AB15] showed how to directly obfuscate
circuits. While their constructions do not incur the exponential overhead of converting NC1 circuits
to matrix branching programs, due to the noise growth in existing multilinear map candidates, the
level of multilinearity required again grows exponentially in the depth of the circuit d. However, the
number of multilinear map encodings is substantially smaller with these candidates. In the case of
VBB obfuscation of AES, Zimmerman estimates that the obfuscation would contain ≈ 217 encodings
of a multilinear map capable of supporting � 2100 levels of multilinearity. Despite the more modest
number of encodings required, the degree of multilinearity required remains prohibitively large.

Revisiting the branching-program based obfuscation. In this work, we revisit the branching-
program-based constructions of obfuscation. However, rather than follow the traditional paradigm
of taking a Boolean circuit, converting it to a matrix branching program via Barrington’s theorem,
and then obfuscating the resulting branching program, we take the more direct approach of using the
matrix branching program to compute simple functions over Zq (for polynomial-sized q). The key
observation is that the additive group Zq embeds into the symmetric group Sq of q × q permutation
matrices. This technique was previously used by Alperin-Sheriff and Peikert [AP14] for improving
the efficiency of bootstrapping for FHE. While the functions that can be evaluated in this way
are limited, they are expressive enough to include both the decryption function for lattice-based
FHE [BV11, BGV12, Bra12, GSW13, AP14, DM15] and the verification algorithm of our new
lattice-based SNARG. Using a variant of the bootstrapping theorem in [BR14], VBB obfuscation of
these two functionalities suffice for VBB obfuscation of all circuits.

We remark here that Applebaum [App14] described a simpler approach for bootstrapping VBB
obfuscation of all circuits based on obfuscating a pseudorandom function (PRF) in conjunction with
randomized encodings. While this approach is conceptually simpler, it is unclear whether this yields
a scheme with concrete efficiency. One problem is that we currently do not have any candidate PRFs
that are amenable to existing obfuscation candidates. Constructing an “obfuscation-friendly” PRF
remains an important open problem. Perhaps more significantly, this approach requires invoking the
obfuscated program multiple times (a constant number of times per gate in the circuit, or per step
of the computation in the case of Turing machines [KLW15]). In contrast, in this work, we focus
on building an “obfuscation-complete” primitive such that a single call to the obfuscated program
suffices for program evaluation.

Computing in Zq via matrix branching programs. By leveraging the power of bootstrapping,
it suffices to obfuscate a program that performs FHE decryption and SNARG verification. Using
FHE schemes based on standard lattices [BV11, BGV12, Bra12, GSW13, AP14, DM15] and our new
lattice-based SNARG, both computations effectively reduce to computing rounded inner products
over Zq—that is, functions where we first compute the inner product 〈x,y〉 of two vectors x and y
in Z`q and then reduce the result modulo a smaller value p. In our setting, one of the vectors y is
embedded within the obfuscated program. We briefly describe the technique here. Our presentation

8

is adapted from [AP14], who use this technique to improve the efficiency of FHE bootstrapping.
The key idea is to embed the group Zq in the symmetric group Sq. The embedding is quite

straightforward. A group element y ∈ Zq is represented by the basis vector ey ∈ {0, 1}q (i.e., the
vector with a single 1 in the yth position). Addition by an element x ∈ Zq corresponds to multiplying
by a permutation matrix that implements a cyclic rotation by x positions. Specifically, to implement
the function fx(y) = x+ y where x, y ∈ Zq, we define the permutation matrix Bx ∈ {0, 1}q×q where
Bxey = ex+y mod q for all y ∈ [q]. Then, to compute fx on an input y, we simply take the q-by-q
permutation matrix Bx and multiply it with the basis vector ey representing the input. Scalar
multiplication can be implemented by repeated additions. Finally, modular reduction with respect
to p can be implemented via multiplication by a p-by-q matrix where the ith row sums the entries
of the q-dimensional indicator vector corresponding to those values in Zq that reduce to i modulo p.
As long as q is small, this method gives an efficient way to compute simple functions over Zq.

Optimizing the SNARG construction. While computing a single rounded inner product
suffices for FHE decryption, it is not sufficient for SNARG verification. We introduce a series of
additional optimizations to make our SNARG verification algorithm more branching-program-friendly
and minimize the concrete parameters needed to obfuscate the functionality. These optimizations
are described in detail in Sections 5.3 through 5.5. We highlight the most significant ones here:

• Modulus switching. Recall that the SNARG verifier has to first decrypt a proof (encrypted
under the linear-only vector encryption scheme) before applying the underlying LPCP decision
procedure. While decryption in this case does consist of evaluating a rounded inner product,
the size of the underlying field scales quadratically in the running time of the computation being
verified.9 As a result, the width of the branching programs needed to implement the SNARG
verification scales quadratically in the running time of the computation, which can quickly grow
out of hand. However, since the ciphertexts in question are essentially LWE ciphertexts, we can
apply the modulus switching trick that has featured in many FHE constructions [BV11, BGV12,
DM15]. With modulus switching, after the prover homomorphically computes its response (a
ciphertext vector over a large ring), the prover rescales each component of the ciphertext to
be defined with respect to a much smaller modulus (one that grows polylogarithmically with
the running time of the computation). The actual decryption then operates on the rescaled
ciphertext, which can be implemented as a (relatively) small branching program. We describe
this in Section 5.4.

• Strengthening the linear-only assumption. To further reduce the overhead of the
SNARG verification, we also consider strengthened definitions of (secret-key) linear-only vector
encryption. In particular, we conjecture that our candidate lattice-based vector encryption
scheme only supports a restricted set of affine homomorphisms. This allows us to use LPCPs
with simpler and more branching-program-friendly verification procedures. We introduce
the definition and state our conjecture in Section 5.5. We note that when considering the
public-key notion of linear-only encryption [BCI+13], one cannot restrict the set of affine

9This is fine from the SNARG perspective since the number of bits in the proof is still growing logarithmically in
the running time of the computation. The quadratic overhead is due to our reliance on a linear PCP based on the
Walsh-Hadamard code [ALM+92]. While it is possible to reduce the prover overhead to quasilinear in the running
time of the computation by using a linear PCP based on QSPs [GGPR13], the resulting SNARG construction is not
branching-program-friendly. We refer to Remark 5.7 for more details.

9

homomorphisms available to the adversary. By definition, the adversary can compute arbitrary
linear functions on the ciphertexts, and moreover, it can also encrypt values of its choosing
and linearly combine those values with the ciphertexts. This allows the adversary to realize
arbitrary affine functions in the public-key setting. However, in the secret-key setting, the
adversary does not have the flexibility of constructing arbitrary ciphertexts of its own, and so,
it is plausible that the encryption scheme only permits more limited homomorphisms. Our
techniques here are not specific to our particular SNARG instantiation, and thus, may be
useful in optimizing other SNARG constructions (at the expense of making stronger linear-only
assumptions).

• Parallelization via CRT. Unlike FHE decryption, the SNARG verification algorithm re-
quires computing a matrix-vector product of the form Ax, where the matrix A ∈ Zm×`q is

embedded inside the program and x ∈ Z`q is part of the input. Here, the matrix A is the secret
decryption key for the vector encryption scheme. The verification algorithm then applies an
(independent) test to each of the components of Ax. Verification succeeds if and only if each
of the underlying tests pass. While a matrix-vector product can be computed by iterating the
algorithm for computing an inner product m times and performing the m checks sequentially,
this increases the length of the branching program by a factor of m. A key observation here is
that since the components of Ax are processed independently of one another, this computation
can be performed in parallel if we consider matrix branching programs over composite-order
rings. Then, each of the rows of A can be embedded in the different sub-rings according
to the Chinese Remainder Theorem (CRT). Assuming the underlying multilinear map is
composite-order, this method can potentially yield a factor m reduction in the length of the
branching program. Indeed, using the CLT multilinear map [CLT13], the plaintext space
naturally decomposes into sufficiently many sub-rings, thus allowing us to take advantage of
parallelism with essentially no extra cost. A similar technique of leveraging CRT to parallelize
computations was also used in [AP14] to improve the concrete efficiency of FHE bootstrapping.

A concrete obfuscation construction. In Section 5.6, we describe our methodology for in-
stantiating the building blocks for our obfuscation-complete primitive (for VBB obfuscation). Our
parameter estimates show that targeting λ = 80 bits of security, implementing FHE decryption
together with SNARG verification can be done with a branching program (over composite-order
rings10 of length 4150 and size ≈ 244. While publishing 244 encodings of a multilinear map capable
of supporting 4150 levels of multilinearity is likely beyond the scope of existing candidates, further
optimizations to the underlying multilinear map as well as to the different components of our pipeline
can lead to a realizable construction. Compared to previous candidates which require � 2100 levels
of multilinearity, our construction is over 280 times more efficient.

Concurrent work. In a concurrent work [HHSS17], Halevi et al. describe a concrete implemen-
tation of a branching-program-based obfuscator using the Gentry et al. [GGH15] multilinear map.
Their implementation focuses on obfuscating (oblivious) read-once branching programs (equivalently,
nondeterministic finite automata). They describe a series of concrete optimizations tailored for their

10To minimize the degree of multilinearity required, we require a composite-order ring that splits into ≈ 200 sub-rings.
Instantiating our construction with the composite-order CLT multilinear map [CLT13], the plaintext ring already
supports the requisite number of sub-rings, so using CRT for parallelization does not incur any overhead. But this
may not be the case in general. We discuss this in greater detail in Remark 5.6.

10

specific implementation over the [GGH15] multilinear map. In this work, we focus on building an
obfuscation candidate that suffices for general circuits. Our construction relies only on black-box use
of an underlying multilinear map. Correspondingly, the simplifications and heuristics we introduce
in our concrete obfuscation candidate are not specific to the internal workings of any particular
multilinear map construction.

2 Preliminaries

We begin by defining the notation that we use throughout this paper. For an integer n, we write
[n] to denote the set of integers {1, . . . , n}. For a positive integer p, we write Zp to denote the ring
of integers modulo p. We typically use bold uppercase letters (e.g., A, B) to denote matrices and
bold lowercase letters (e.g., u,v) to denote vectors. Given two vectors u ∈ Zm and v ∈ Zn, we
write u⊗ v ∈ Zmn to denote the tensor product of u with v, or equivalently, the vector of pairwise
products uivj for i ∈ [m] and j ∈ [n] of the entries in u and v, respectively.

For a finite set S, we write x
r←− S to denote that x is drawn uniformly at random from S. For a

distribution D, we write x← D to denote a sample from D. Unless otherwise noted, we write λ to
denote a computational security parameter and κ to denote a statistical security parameter. We say
a function f(λ) is negligible in λ if f(λ) = o(1/λc) for all c ∈ N. We write f(λ) = negl(λ) to denote
that f is a negligible function in λ and f(λ) = poly(λ) to denote that f is a polynomial in λ. We say
an algorithm is efficient if it runs in probabilistic polynomial time. For two families of distributions

D1 and D2, we write D1
c
≈ D2 if the two distributions are computationally indistinguishable (that

is, if no efficient algorithm is able to distinguish D1 from D2, except with negligible probability).
We will also use the Schwartz-Zippel lemma [Sch80, Zip79]:

Lemma 2.1 (Schwartz-Zippel Lemma [Sch80, Zip79]). Let p be a prime and let f ∈ Zp[x1, . . . , xn]
be a multivariate polynomial of total degree d, not identically zero. Then,

Pr[α1, . . . , αn
r←− Zp : f(α1, . . . , αn) = 0] ≤ d

p
.

In Appendix A, we also review the standard definitions of succinct non-interactive arguments
(SNARGs).

3 Linear PCPs

We begin by reviewing the definition of linear probabilistically checkable proofs (LPCPs). In an
LPCP system for a binary relation R over a finite field F, the proof consists of a vector π ∈ Fm and
the PCP oracle is restricted to computing a linear function on the verifier’s query vector. Specifically,
on input a query matrix Q ∈ Fm×`, the PCP oracle responds with y = Q>π ∈ F`. We now give a
formal definition adapted from [BCI+13].

Definition 3.1 (Linear PCPs [BCI+13]). Let R be a binary relation, F be a finite field, PLPCP be
a deterministic prover algorithm, and VLPCP be a probabilistic oracle verification algorithm. Then,
(PLPCP, VLPCP) is a `-query linear PCP for R over F with soundness error ε and query length m if it
satisfies the following requirements:

11

• Syntax: For a vector π ∈ Fm, the verification algorithm V π
LPCP = (QLPCP, DLPCP) consists of

an input-oblivious probabilistic query algorithm QLPCP and a deterministic decision algorithm
DLPCP. The query algorithm QLPCP generates a query matrix Q ∈ Fm×` (independently of
the statement x) and some state information st. The decision algorithm DLPCP takes the
statement x, the state st, and the response vector y = Q>π ∈ F` and either “accepts” or
“rejects.”

• Completeness: For every (x,w) ∈ R, the output of PLPCP(x,w) is a vector π ∈ Fm such
that V π

LPCP(x) accepts with probability 1.

• Soundness: For all x where (x,w) /∈ R for all w and for all vectors π∗ ∈ Fm, the probability
that V π∗

LPCP(x) accepts is at most ε.

We say that (PLPCP, VLPCP) is statistically sound if ε(κ) = negl(κ), where κ is a statistical security
parameter.

Soundness against affine provers. In Definition 3.1, we have only required soundness to hold
against provers that employ a linear strategy, and not an affine strategy. Our construction of
SNARGs (Section 4), will require the stronger property that soundness holds against provers using
an affine strategy—that is, a strategy which can be described by a tuple Π = (π,b) where π ∈ Fm
represents a linear function and b ∈ F` represents an affine shift. Then, on input a query matrix
Q ∈ Fm×`, the response vector is constructed by evaluating the affine relation y = Q>π + b. We
now define this stronger notion of soundness against an affine prover.

Definition 3.2 (Soundness Against Affine Provers). Let R be a relation and F be a finite field.
A linear PCP (PLPCP, VLPCP) is a `-query linear PCP for R over F with soundness error ε against
affine provers if it satisfies the requirements in Definition 3.1 with the following modifications:

• Syntax: For any affine function Π = (π,b), the verification algorithm V Π
LPCP is still specified

by a tuple (QLPCP, DLPCP). Algorithms QLPCP, DLPCP are the same as in Definition 3.1, except
that the response vector y computed by the PCP oracle is an affine function y = Q>π+b ∈ F`
of the query matrix Q rather than a linear function.

• Soundness against affine provers: For all x where (x,w) /∈ R for all w, and for all affine
functions Π∗ = (π∗,b∗) where π∗ ∈ Fm and b∗ ∈ F`, the probability that V Π∗

LPCP(x) accepts is
at most ε.

Algebraic complexity. There are many ways one can measure the complexity of a linear PCP
system such as the number of queries or the number of field elements in the verifier’s queries.
Another important metric also considered in [BCI+13] is the algebraic complexity of the verifier. In
particular, the verifier’s query algorithm QLPCP and decision algorithm DLPCP can both be viewed
as multivariate polynomials (equivalently, arithmetic circuits) over the finite field F. We say that
the query algorithm QLPCP has degree dQ if the output of QLPCP can be computed by a collection
of multivariate polynomials of maximum degree dQ in the verifier’s choice of randomness. Similarly,
we say that the decision algorithm DLPCP has degree dD if the output of DLPCP can be computed by
a multivariate polynomial of maximum degree dD in the prover’s response and the verification state.

12

Strong soundness. In this work, we focus on constructing designated-verifier SNARGs. An
important consideration that arises in the design of designated-verifier SNARGs is whether the same
reference string σ can be reused across many proofs. This notion is formally captured by stipulating
that the SNARG system remains sound even if the prover has access to a proof-verification oracle.
While this property naturally follows from soundness if the SNARG system is publicly-verifiable,
the same is not true in the designated-verifier setting. Specifically, in the designated-verifier setting,
soundness is potentially compromised if the responses of the proof-verification oracle is correlated
with the verifier’s secrets. Thus, to construct a multi-theorem designated-verifier SNARG, we require
linear PCPs with a stronger soundness property, which we state below.

Definition 3.3 (Strong Soundness [BCI+13]). A `-query LPCP (PLPCP, VLPCP) with soundness
error ε satisfies strong soundness if for every input x and every proof π∗ ∈ Fm, either V π∗

LPCP(x)
accepts with probability 1 or with probability at most ε.

Roughly speaking, in an LPCP that satisfies strong soundness, every LPCP prover either causes
the LPCP verifier to accept with probability 1 or with bounded probability. This prevents correlation
attacks where a malicious prover is able to submit (potentially malformed) proofs to the verifier and
seeing responses that are correlated with the verifier’s secrets. We can define an analogous notion of
strong soundness against affine provers.

3.1 Constructing Linear PCPs with Strong Soundness

A natural first question is whether linear PCPs with strong soundness against affine provers exist.
Bitansky et al. [BCI+13] give two constructions of algebraic LPCPs for Boolean circuit satisfaction
problems: one from the Hadamard-based PCP of Arora et al. [ALM+92], and another from the
quadratic span programs (QSPs) of Gennaro et al. [GGPR13]. In both cases, the linear PCP is
defined over a finite field F and the soundness error scales inversely with |F|. Thus, the LPCP is
statistically sound only if |F| is superpolynomial in the (statistical) security parameter. However,
when we apply our LPCP-based SNARGs to bootstrap obfuscation, the size of the obfuscated
program grows polynomially in |F|, and so we require LPCPs with statistical soundness over small
(polynomially-sized) fields.

In this section, we show that starting from any LPCP with constant soundness error against
linear provers, we can generically obtain an LPCP that is statistically sound against affine provers.
Our generic transformation consists of two steps. The first is a standard soundness amplification
step where the verifier makes κ sets of independently generated queries (of the underlying LPCP
scheme) to the PCP oracle, where κ is a statistical security parameter. The verifier accepts only
if the prover’s responses to all κ sets of queries are valid. Since the queries are independently
generated, each of the κ sets of responses (for a false statement) is accepted with probability at
most ε (where ε is proportional to 1/ |F|). Thus, an honest verifier only accepts with probability at
most εκ = negl(κ).

However, this basic construction does not achieve strong soundness against affine provers. For
instance, a malicious LPCP prover using an affine strategy could selectively corrupt the responses
to exactly one set of queries (by applying an affine shift to its response for a single set of queries).
When this selective corruption is applied to a well-formed proof and the verifier’s decision algorithm
has low algebraic complexity, then the verifier will accept with some noticeable probability less than
1, which is sufficient to break strong soundness. To address this problem, the verifier first applies a
(secret) random linear shift to its queries before submitting them to the PCP oracle. This ensures

13

that any prover using an affine strategy with a non-zero offset will corrupt its responses to every
set of queries, and the proof will be rejected with overwhelming probability. We now describe our
generic construction in more detail.

Construction 3.4 (Statistically Sound Linear PCPs over Small Fields). Fix a statistical security

parameter κ. Let R be a binary relation, F be a finite field, and
(
P

(weak)
LPCP , V

(weak)
LPCP

)
be an `-

query linear PCP for R, where V
(weak)
LPCP =

(
Q

(weak)
LPCP , D

(weak)
LPCP

)
. Define the (κ`)-query linear PCP

(PLPCP, VLPCP) where VLPCP = (QLPCP, DLPCP) as follows:

• Prover’s Algorithm PLPCP: On input (x,w), output P
(weak)
LPCP (x,w).

• Verifier’s Query Algorithm QLPCP: The query algorithm invokes Q
(weak)
LPCP a total of κ times

to obtain (independent) query matrices Q1, . . . ,Qκ ∈ Fm×` and state information st1, . . . , stκ.
It constructs the concatenated matrix Q = [Q1|Q2| · · · |Qκ] ∈ Fm×κ`. Finally, it chooses a

random matrix Y
r←− Fκ`×κ` and outputs the queries Q′ = QY and state st = (st1, . . . , stκ,Y

′)
where Y′ = (Y>)−1.

• Verifier’s Decision Algorithm DLPCP: On input the statement x, the prover’s response
vector a′ ∈ Fκ` and the state st = (st1, . . . , stκ,Y

′), the verifier’s decision algorithm computes
a = Y′a′ ∈ Fκ`. Next, it writes a> = [a>1 |a>2 | · · · |a>κ] where each ai ∈ F` for i ∈ [κ]. Then,

for each i ∈ [κ], the verifier runs D
(weak)
LPCP (x,ai, sti) and accepts if D

(weak)
LPCP accepts for all κ

instances. It rejects otherwise.

Theorem 3.5. Fix a statistical security parameter κ. Let R be a binary relation, F be a finite

field, and (P
(weak)
LPCP , V

(weak)
LPCP) be a strongly-sound `-query linear PCP for R with constant soundness

error ε ∈ [0, 1) against linear provers. If |F| > dD, where dD is the degree of the verifier’s decision

algorithm D
(weak)
LPCP , then the linear PCP (PLPCP, VLPCP) from Construction 3.4 is a (κ`)-query linear

PCP for R with strong statistical soundness against affine provers.

Proof. Completeness follows immediately from completeness of the underlying LPCP system, so it
suffices to check that the linear PCP is statistically sound against affine provers. Take any statement
x, and consider an affine prover strategy Π∗ = (π∗,b∗), where π∗ ∈ Fm and b∗ ∈ Fκ`. We consider
two cases:

• Suppose b∗ 6= 0κ`. Then, the decision algorithm DLPCP starts by computing

a = Y′a′ = Y′(Y>Q>π∗ + b∗) = Q>π∗ + Y′b∗ ∈ Fκ`.

Next, the verifier invokes the decision algorithm D
(weak)
LPCP for the underlying LPCP on the

components of a. By assumption, D
(weak)
LPCP is a polynomial of maximum degree dD in the

components of the prover’s response a, and by extension, in the components of the matrix Y′.
Since b∗ is non-zero, this is a non-zero polynomial in the Y′. Since Y′ is sampled uniformly

at random (and independently of Q,π∗,b∗), by the Schwartz-Zippel lemma, D
(weak)
LPCP (x,ai, sti)

accepts with probability at most dD/ |F| for each i ∈ [κ]. Thus, the verifier rejects with
probability at least 1− (dD/ |F|)κ = 1− negl(κ) since |F| > dD.

14

• Suppose b∗ = 0κ`. Then, the prover’s strategy is a linear function π∗. Since the underlying

PCP satisfies strong soundness against linear provers, it follows that D
(weak)
LPCP (ai, sti) either

accepts with probability 1 or with probability at most ε. In the former case, DLPCP also
accepts with probability 1. In the latter case, because the verifier constructs the κ queries to
the underlying LPCP independently, DLPCP accepts with probability at most εκ = negl(κ).
We conclude that the proof system (PLPCP, VLPCP) satisfies strong soundness against affine
provers.

Remark 3.6 (Efficiency of Transformation). Construction 3.4 incurs a κ overhead in the number of
queries made to the PCP oracle and a quadratic overhead in the algebraic complexity of the verifier’s
decision algorithm. Specifically, the degree of the verifier’s decision algorithm in Construction 3.4 is
d2
D, where dD is the degree of the verifier’s decision algorithm in the underlying LPCP. The quadratic

factor arises from undoing the linear shift in the prover’s responses before applying the decision
algorithm of the underlying LPCP. In many existing LPCP systems, the verifier’s decision algorithm
has low algebraic complexity (e.g., dD = 2 for both the Hadamard-based LPCP [ALM+92] as well
as the QSP-based LPCP [GGPR13]), so the verifier’s algebraic complexity only increases modestly.
However, the increase in degree means that we can no longer leverage pairing-based linear-only
one-way encodings [BCI+13] to construct publicly-verifiable SNARGs (since these techniques only
apply when the algebraic complexity of the verifier’s decision algorithm is exactly 2). No such
limitations apply in the designated-verifier setting.

Remark 3.7 (Comparison with [BCI+13, Lemma C.3]). Bitansky et al. [BCI+13, Lemma C.3]
previously showed that any algebraic LPCP over a finite field F with soundness error ε is also

strongly sound with soundness error ε′ = max
{
ε,

dQdD
|F|

}
. For sufficiently large fields F (e.g., when

|F| is superpolynomial), statistical soundness implies strong statistical soundness. However, when
|F| is polynomial, then their lemma is insufficient to argue strong statistical soundness of the
underlying LPCP. In contrast, using our construction (Construction 3.4), any LPCP with just
constant soundness against linear provers can be used to construct an algebraic LPCP with strong
statistical soundness against affine provers (at the cost of increasing the query complexity and the
verifier’s algebraic complexity).

Concrete instantiations. Applying Construction 3.4 to the algebraic LPCPs for Boolean circuit
satisfaction of Bitansky et al. [BCI+13], we obtain statistically sound LPCPs for Boolean circuit
satisfaction over small finite fields. In the following, fix a (statistical) security parameter κ and let
C be a Boolean circuit of size s.

• Starting from the Hadamard-based PCP of Arora et al. [ALM+92] over a finite field F, there
exists a 3-query LPCP with strong soundness error 2/ |F|. The algebraic complexity of the
decision algorithm for this PCP is dD = 2. Applying Construction 3.4 and working over any
finite field where |F| > 2, we obtain a (3κ)-query LPCP with strong statistical soundness
against affine provers and where queries have length O(s2).

• Starting from the quadratic span programs of Gennaro et al. [GGPR13], there exists a 3-
query LPCP over any (sufficiently large) finite field F with strong soundness error O(s/ |F|).
The algebraic complexity of the decision algorithm for this PCP is dD = 2. Applying
Construction 3.4 and working over a sufficiently large finite field of size |F| = Õ(s), we obtain

15

a (3κ)-query LPCP with strong statistical soundness against affine provers where queries have
length O(s).

4 SNARGs from Linear-Only Vector Encryption

In this section, we introduce the notion of a linear-only vector encryption scheme. We then show
how linear-only vector encryption can be directly combined with the linear PCPs from Section 3 to
obtain multi-theorem designated-verifier preprocessing SNARGs in the standard model. Then, we
describe a candidate instantiation of our linear-only vector encryption scheme using the LWE-based
encryption scheme of Peikert, Vaikuntanathan, and Waters [PVW08]. Finally, we show how using
linear-only vector encryption over polynomial rings, our techniques can be further extended to obtain
the first quasi-optimal SNARG from any assumption (namely, a SNARG that is quasi-optimal in both
the prover complexity and the proof length). Our notion of linear-only vector encryption is a direct
generalization of the notion of linear-only encryption first introduced by Bitansky et al. [BCI+13].

4.1 Vector Encryption and Linear Targeted Malleability

A vector encryption scheme is an encryption scheme where the message space is a vector of ring
elements. In this section, we take Zp as the underlying ring and Z`p as the message space (for some
dimension `). In Section 4.4, we also consider vector encryption schemes where the ring R is a
polynomial ring and the message space is R`. We introduce the basic schema below:

Definition 4.1 (Vector Encryption Scheme over Z`p). A secret-key vector encryption scheme over

Z`p consists of a tuple of algorithms Πenc = (Setup,Encrypt,Decrypt) with the following properties:

• Setup(1λ, 1`) → sk: The setup algorithm takes as input the security parameter λ and the
dimension ` of the message space and outputs the secret key sk.

• Encrypt(sk,v)→ ct: The encryption algorithm takes as input the secret key sk and a message
vector v ∈ Z`p and outputs a ciphertext ct.

• Decrypt(sk, ct)→ Z`p ∪ {⊥}: The decryption algorithm takes as input the secret key sk and a

ciphertext ct and either outputs a message vector v ∈ Z`p or a special symbol ⊥ (to denote an
invalid ciphertext).

We can define the usual notions of correctness and semantic security [GM82] for a vector
encryption scheme. Next, we say that a vector encryption scheme over Z`p is additively homomorphic

if given encryptions ct1, ct2 of two vectors v1,v2 ∈ Z`p, respectively, there is a public operation11

that allows one to compute an encryption ct12 of the (component-wise) sum v1 + v2 ∈ Z`p. Note
that additively homomorphic vector encryption can be constructed directly from any additively
homomorphic encryption scheme by simply encrypting each component of the vector separately.
However, when leveraging vector encryption to build efficient SNARGs, we require that our encryption
scheme satisfies a more restrictive homomorphism property. We define this now.

11In principle, homomorphic evaluation might require additional public parameters to be published by the setup
algorithm. For simplicity of presentation, we will assume that no additional parameters are required, but all of our
notions extend to the setting where the setup algorithm outputs a public evaluation key.

16

A vector encryption scheme satisfies linear targeted malleability [BSW12] if the only homomorphic
operations the adversary can perform on ciphertexts is evaluate affine functions on the underlying
plaintext vectors. We now state our definition more precisely. Note that our definition is a vector
generalization of the “weaker” notion of linear-only encryption introduced by Bitansky et al. [BCI+13].
This notion already suffices for constructing a designated-verifier SNARG.

Definition 4.2 (Linear Targeted Malleability [BSW12, adapted]). Fix a security parameter λ.
A (secret-key) vector encryption scheme Πvenc = (Setup,Encrypt,Decrypt) for a message space Z`p
satisfies linear targeted malleability if for all efficient adversariesA and plaintext generation algorithms
M (on input 1`, algorithm M outputs vectors in Z`p), there exists a (possibly computationally

unbounded) simulator S such that for any auxiliary input z ∈ {0, 1}poly(λ), the following two
distributions are computationally indistinguishable:

Real Distribution:

1. sk← Setup(1λ, 1`)
2. (s,v1, . . . ,vm)←M(1`)
3. cti ← Encrypt(sk,vi) for all i ∈ [m]
4. ct′ ← A({cti}i∈[m] ; z) where

Decrypt(sk, ct′) 6= ⊥
5. Output

(
{vi}i∈[m] , s,Decrypt(sk, ct

′)
)

Ideal Distribution:

1. (s,v1, . . . ,vm)←M(1`)
2. (π,b)← S(z) where π ∈ Zmp , b ∈ Z`p
3. v′ ← [v1|v2| · · · |vm] · π + b

4. Output
(
{vi}i∈[m] , s,v

′
i

)

Remark 4.3 (Multiple Ciphertexts). Similar to [BSW12, BCI+13], we can also define a variant of
linear targeted malleability where the adversary is allowed to output multiple ciphertexts ct′1, . . . , ct

′
m.

In this case, the simulator should output an affine function (Π,B) where Π ∈ Zm×mp and B ∈ Z`×mp

that “explains” the ciphertexts ct′1, . . . , ct
′
m. However, the simple variant we have defined above

where the adversary just outputs a single ciphertext is sufficient for our construction.

Remark 4.4 (Auxiliary Input Distributions). In Definition 4.2, the simulator is required to succeed
for all auxiliary inputs z ∈ {0, 1}poly(λ). This requirement is quite strong since z can be used to encode
difficult cryptographic problems that the simulator needs to solve in order to correctly simulate the
output distribution [BCPR14]. However, many of these pathological auxiliary input distributions are
not problematic for Definition 4.2, since the simulator is allowed to be computationally unbounded.
In other cases where we require the simulator to be efficient (e.g., to obtain succinct arguments of
knowledge via Remark 4.9 or Definition C.2), we note that Definition 4.2 can be relaxed to only
consider “benign” auxiliary input distributions for which the definition plausibly holds. For instance,
for the multi-theorem SNARK construction described in Appendix C, it suffices that the auxiliary
information is a uniformly random string.

Construction 4.5 (SNARG from Linear-Only Vector Encryption). Fix a prime p (so the ring
Zp is a field), and let C = {Ck}k∈N be a family of arithmetic circuits over Zp.12 Let RC be the
relation associated with C. Let (PLPCP, VLPCP) be an `-query input-oblivious linear PCP for C.
Let Πvenc = (Setup,Encrypt,Decrypt) be a secret-key vector encryption scheme for Z`p. Our single-
theorem, designated-verifier SNARG ΠSNARG = (Setup,Prove,Verify) in the preprocessing model for
RC is defined as follows:

12While we describe a SNARG for arithmetic circuit satisfiability (over Zp), the problem of Boolean circuit satisfiability
easily reduces to arithmetic circuit satisfiability with only constant overhead [BCI+13, Claim A.2].

17

• Setup(1λ, 1k)→ (σ, τ): On input the security parameter λ and the circuit family parameter
k, the setup algorithm first invokes the query algorithm QLPCP for the LPCP to obtain a
query matrix Q ∈ Zm×`p and some state information st. Next, it generates a secret key for the

vector encryption scheme sk← Setup(1λ, 1`). Then, it encrypts each row (an element of Z`p)
of the query matrix Q. More specifically, for i ∈ [m], let qi ∈ Z`p be the ith row of Q. Then,
the setup algorithm computes ciphertexts cti ← Encrypt(sk,qi). Finally, the setup algorithm
outputs the common reference string σ = (ct1, . . . , ctm) and the verification state τ = (sk, st).

• Prove(σ,x,w): On input a common reference string σ = (ct1, . . . , ctm), a statement x, and a
witness w, the prover invokes the prover algorithm PLPCP for the LPCP to obtain a vector
π ∈ Zmp . Viewing ct1, . . . , ctm as vector encryptions of the rows of a query matrix Q ∈ Zm×`p ,
the prover uses the linear homomorphic properties of Πvenc to homomorphically compute an
encryption of the matrix vector product Q>π. In particular, the prover homomorphically
computes the sum ct′ =

∑
i∈[m] πi · cti. The prover outputs the ciphertext ct′ as its proof.

• Verify(τ,x, π): On input the (secret) verification state τ = (sk, st), the statement x, and the
proof π = ct′, the verifier decrypts the proof ct′ using the secret key sk to obtain the prover’s
responses a ← Decrypt(sk, ct′). If a = ⊥, the verifier stops and outputs 0. Otherwise, it
invokes the verification decision algorithm DLPCP on the statement x, the responses a, and
the LPCP verification state st to decide whether the proof is valid or not. The verification
algorithm echoes the output of the decision algorithm.

Theorem 4.6 ([BCI+13, Lemma 6.3]). Let (PLPCP, VLPCP) be a linear PCP that is statistically
sound against affine provers, and let Πvenc = (Setup,Encrypt,Decrypt) be a vector encryption scheme
with linear targeted malleability. Then, applying Construction 4.5 to (PLPCP, VLPCP) and Πvenc yields
a (non-adaptive) designated-verifier SNARG in the preprocessing model.

Proof. Our proof is similar to the proof of [BCI+13, Lemma 6.3]. Let P ∗ be a malicious prover that
convinces the verifier of some false statement x /∈ LC with non-negligible probability ε(λ), where LC
is the language associated with C. Since Πenc satisfies linear targeted malleability (Definition 4.2),
there exists a simulator S such that the following distributions are computationally indistinguishable:

Real Distribution:

1. sk← Setup(1λ, 1`)
2. (st,Q)← QLPCP where Q ∈ Zm×`p

3. cti ← Encrypt(sk,qi) where qi is the ith

row of Q for i ∈ [m]
4. ct′ ← P ∗(ct1, . . . , ctq; x) such that

Decrypt(sk, ct′) 6= ⊥
5. a← Decrypt(sk, ct′) ∈ Z`p
6. Output (Q, st,a)

Ideal Distribution:

1. (st,Q)← QLPCP where Q ∈ Zm×`p

2. (π,b)← S(x) where π ∈ Zmp and b ∈ Z`p
3. â← Q>π + b
4. Output (Q, st, â)

By assumption, P ∗ convinces an honest verifier with probability ε = ε(λ), or equivalently, in the real
distribution, DLPCP(x, st,a) = 1 with probability at least ε. Since DLPCP is efficiently computable,
computational indistinguishability of the real and ideal experiments means that DLPCP(x, st, â) = 1
with probability at least ε− negl(λ). However, in the ideal distribution, the affine function (π,b)
is generated independently of the verifier’s queries Q and state st. By an averaging argument,

18

this means that there must exist some affine function (π∗,b∗) such that with probability at least
ε− negl(λ) taken over the randomness of QLPCP, the verifier’s decision algorithm DLPCP on input
x /∈ LC , st, and Q>π∗+b∗ accepts. But this contradicts statistical soundness (against affine provers)
of the underlying linear PCP.

Remark 4.7 (Adaptivity). In Theorem 4.6, we showed that instantiating Construction 4.5 with a
vector encryption scheme with linear targeted malleability and a linear PCP yields a non-adaptive
SNARG in the preprocessing model. The same construction can be shown to satisfy adaptive
soundness for proving efficiently decidable statements. As noted in [BCI+13, Remark 6.5], we can
relax Definition 4.2 and allow the adversary to additionally output an arbitrary string in the real
distribution which the simulator must produce in the ideal distribution. Invoking Construction 4.5
with an encryption scheme that satisfies this strengthened linear targeted malleability definition
yields a SNARG with adaptive soundness for the case of verifying deterministic polynomial-time
computations. Note that the proof system necessary to bootstrap obfuscation is used to verify
correctness of a polynomial-time computation (i.e., FHE evaluation), so adaptivity for this restricted
class of statements is sufficient for our primary application.

Remark 4.8 (Multi-Theorem SNARGs). Our basic notion of linear targeted malleability for vector
encryption only suffices to construct a single-theorem SNARG. While the same construction can
be shown secure for an adversary that is allowed to make any constant number of queries to a
proof verification oracle, we are not able to prove that the construction is secure against a prover
who makes polynomially many queries to the proof verification oracle. In Appendix C, we present
an analog of the strengthened version of linear-only encryption from [BCI+13, Appendix C] that
suffices for constructing a multi-theorem SNARG. Combined with a linear PCP that is strongly
sound against affine provers, Construction 4.5 can then be applied to obtain a multi-theorem,
designated-verifier SNARG. This raises the question of whether the same construction using the
weaker notion of linear targeted malleability also suffices when the underlying linear PCP satisfies
strong soundness. While we do not know how to prove security from this weaker definition, we
also do not know of any attacks. This is especially interesting because at the information-theoretic
level, the underlying linear PCP satisfies strong soundness, which intuitively would suggest that the
responses the malicious prover obtains from querying the proof verification oracle are uncorrelated
with the verifier’s state (strong soundness states that for any proof, either the verifier accepts with
probability 1 or with negligible probability).

Remark 4.9 (Arguments of Knowledge). Theorem 4.6 shows that instantiating Construction 4.5
with a linear PCP with soundness against affine provers and a vector encryption scheme with linear
targeted malleability suffices for a SNARG. In fact, the same construction yields a SNARK (that is,
a succinct non-interactive argument of knowledge) if the soundness property of the underlying LPCP
is replaced with a corresponding knowledge property,13 and the vector encryption scheme satisfies a
variant of linear targeted malleability (Definition 4.2) where the simulator is required to be efficient
(i.e., polynomially-sized). For more details, we refer to [BCI+13, Lemma 6.3, Remark 6.4].

13Roughly, the knowledge property states that there exists an extractor such that for every affine strategy Π∗ that
convinces the verifier of some statement x with high probability, the extractor outputs a witness w such that
(x,w) ∈ R. The Hadamard LPCP (Appendix B) also satisfies this stronger knowledge property.

19

4.2 A Candidate Lattice-Based Linear-Only Vector Encryption Scheme

The core building block in our new SNARG construction is a vector encryption scheme for Z`p
that plausible satisfies our notion of linear targeted malleability (Definition 4.2). In particular, we
conjecture that the Regev-based encryption scheme [Reg05] due to Peikert, Vaikuntanathan, and
Waters [PVW08, §7.2] satisfies our required properties. Before describing the scheme, we review
some notation as well as the learning with errors (LWE) assumption which is essential (though not
sufficient) for arguing security of the vector encryption scheme.

Notation. For x ∈ Z and a positive odd integer q, we write [x]q to denote the value x mod q,
with values in the interval (−q/2, q/2]. For a lattice Λ and a positive real value σ > 0, we write
DΛ,σ to denote the discrete Gaussian distribution over Λ with standard deviation σ. In particular,
DΛ,σ assigns a probability proportional to exp(−π ‖x‖2 /σ2) to each element x ∈ Λ.

Learning with errors. The learning with errors problem [Reg05] is parameterized by a dimension
n ≥ 1, an integer modulus q ≥ 2 and an error distribution χ over the integers Z. In this work, the
noise distribution is always the discrete Gaussian distribution χ = DZ,σ. For s ∈ Znq , the LWE

distribution As,m,χ over Zm×nq ×Znq is specified by choosing a uniformly random matrix A
r←− Zm×nq

and error e ← χn and outputting the pair (A,As + e) ∈ Zm×nq × Zmq . The learning with errors
assumption LWEn,q,χ (parameterized by parameters n, q, χ) states that for all m = poly(n), the

LWE distribution As,m,χ for a randomly sampled s
r←− Znq is computationally indistinguishable from

the uniform distribution over Zm×nq × Zmq .

The PVW encryption scheme. We now review the encryption scheme due to Peikert, Vaikun-
tanathan, and Waters [PVW08, §7.2]. To slightly simplify the notation, we describe the scheme
where the message is embedded in the least significant bits of the plaintext. Note that when the
modulus q is odd, this choice of “most significant bit” and “least significant bit” encoding makes no
difference and the encodings are completely interchangeable [AP13, Appendix A]. In our setting, it
suffices to just consider the secret-key setting. Let Z`p be the plaintext space. The vector encryption
scheme Πvenc = (Setup,Encrypt,Decrypt) in [PVW08] is defined as follows:

• Setup(1λ, 1`): Choose Ā
r←− Zn×mq , S̄

r←− Zn×`q , and Ē ← χ`×m, where n = n(λ), m = m(λ),

and q = q(λ) are polynomials in the security parameter. Define the matrices A ∈ Z(n+`)×m
q

and S ∈ Z(n+`)×`
q as follows:

A =

[
Ā

S̄>Ā + pĒ

]
S =

[
−S̄
I`

]
,

where I` ∈ Z`×`q is the `-by-` identity matrix. Output the secret key sk = (A,S).

• Encrypt(sk,v): To encrypt a vector v ∈ Z`p, choose r
r←− {0, 1}m and output the ciphertext

c ∈ Zn+`
q where

c = Ar +

[
0n

v

]
.

• Decrypt(sk, c): Compute and output [[S>c]q]p.

20

Remark 4.10 (Low-Norm Secret Keys). For some of our applications (namely, those that leverage
modulus switching), it is advantageous to sample the LWE secret s ∈ Znq from a low-norm distribution.
Previously, Applebaum et al. [ACPS09] and Brakerski et al. [BLP+13] showed that the LWE variant
where the secret key s← χn is sampled from the error distribution is still hard under the standard
LWE assumption. In the same work, Brakerski et al. also showed that LWE instances with binary
secrets (i.e., s ∈ {0, 1}n) is as hard as standard LWE (with slightly larger parameters). Sampling
the secret keys from a binary distribution has been used to achieve significant concrete performance
gains in several implementations of lattice-based cryptosystems [GHS12, DM15].

Correctness. Correctness of the encryption scheme follows as in [PVW08]. Since we require
concrete parameter settings for our obfuscation analysis in Section 5, we state the concrete re-
quirements needed for correctness. Our analysis uses the following tail bound on discrete Gaussian
distributions due to Banaszczyk [Ban95].

Lemma 4.11 ([Ban95, Lemma 2.4]). For any real σ > 0 and T > 0, and x ∈ Rn,

Pr[|〈x, DZn,σ〉| ≥ T · σ ‖x‖] < 2 · exp(−π · T 2).

Lemma 4.12. Fix a statistical security parameter κ and a computational security parameter λ. Fix
parameters n,m, q = poly(λ). Let χ = DZ,σ be the discrete Gaussian distribution with standard
deviation σ = σ(λ). Suppose that q ≥ ps

√
mκ. Then, for sk← Setup(1λ, 1`) and any vector v ∈ Z`p,

letting c← Encrypt(sk,v), it follows that

Pr[Decrypt(sk, c) 6= v] = negl(κ).

Proof. By construction, we have that

[S>c]q =
[
−S̄> I`

]([Ā
S̄>Ā + pĒ

]
r +

[
0n

v

])
= pĒr + v (mod q).

(4.1)

Correctness follows as long as Ēr is small. In particular, it suffices to argue that with overwhelming
probability, each component (Ēr)j for j ∈ [`] is at most q/2p in magnitude. First, since r ∈ {0, 1}m,
‖r‖ ≤

√
m. Invoking Lemma 4.11,

Pr
[∣∣(Ēr)j

∣∣ ≥ T · σ√m] < 2 · exp(−π · T 2).

Since q ≥ pσ
√
mκ,

Pr
[∣∣(Ēr)j

∣∣ ≥ q/2p] ≤ Pr
[∣∣(Ēr)j

∣∣ ≥ √κ/2 · σ√m] < 2 · exp(−κ · π/4) < 2−κ = negl(κ).

The claim then follows by a union bound over the ` components of Ēr.

Additive homomorphism. Like Regev encryption, the scheme is additively homomorphic and
supports scalar multiplication. Since the error is additive, to compute a linear combination of ξ
ciphertexts (where the coefficients for the linear combination are drawn from Zp), we need to scale
the modulus q by a factor ξp for correctness to hold. This means we require that q ≥ ξp2σ

√
mκ. In

Section 5.4, we show that this encryption scheme supports modulus switching, and thus, it is possible
to work with a smaller modulus during decryption. However, this optimization is not necessary
when using the vector encryption scheme to construct a SNARG (via Construction 4.5). It becomes
important when we combine the SNARG with other tools to obtain more efficient bootstrapping of
obfuscation for all circuits (Section 5).

21

Semantic security. Security of this construction follows fairly naturally from the LWE assumption.
We state the main theorem here, but refer readers to [PVW08, Section 7.2.1] for the formal analysis.

Theorem 4.13 (Semantic Security [PVW08]). Fix a security parameter λ and let n, q = poly(λ).
Let χ = DZ,σ be a discrete Gaussian distribution with standard deviation σ = σ(λ). Then, if
m ≥ 3(n+ `) log q, and assuming the LWEn,q,χ assumption holds, then the vector encryption scheme
Πvenc is semantically secure.

4.3 Our Lattice-Based SNARG Candidate

We now state our concrete conjecture on the vector encryption scheme Πvenc from Section 4.2
that yields the first lattice-based candidate of a designated-verifier, preprocessing SNARG with
quasi-optimal succinctness.

Conjecture 4.14. The PVW vector encryption scheme Πvenc from Section 4.2 satisfies linear
targeted malleability (Definition 4.2).

Under Conjecture 4.14, we can apply Construction 4.5 in conjunction with algebraic LPCPs to
obtain designated-verifier SNARGs in the preprocessing model (Theorem 4.6). To conclude, we give
an asymptotic characterization of the complexity of our lattice-based SNARG system, and compare
against existing SNARG candidates for Boolean circuit satisfiability. Let λ be a security parameter,
and let C be a Boolean circuit of size s = s(λ). We describe the parameters needed to achieve 2−λ

soundness against provers of size 2λ.

• Prover complexity. In Construction 4.5, the prover performs m homomorphic operations on
the encrypted vectors, where m is the length of the underlying linear PCP. When instantiating
the vector encryption scheme Πvenc over the plaintext space Z`p where p = poly(λ), the
ciphertexts consist of vectors of dimension O(λ + `) over a ring of size q = poly(λ).14

Homomorphic operations on ciphertexts corresponds to scalar multiplication (by values from
Zp) and vector additions. Since all operations are performed over a polynomial-sized domain,
all of the basic arithmetic operations can be performed in polylog(λ) time. Thus, as long as the
underlying LPCP operates over a polynomial-sized field, the prover’s overhead is Õ(m(λ+ `)).

If the underlying LPCP is instantiated with the Arora et al. [ALM+92] PCP based on the
Walsh-Hadamard code, then m = O(s2) and ` = O(λ). The overall prover complexity in
this case is thus Õ(λs2). If the underlying LPCP is instead instantiated with one based on
the QSPs of Gennaro et al. [GGPR13], then m = Õ(s) and ` = O(λ). The overall prover
complexity in this case is Õ(λs).

• Proof length. Proofs in Construction 4.5 consist of a single ciphertext of the vector encryption
scheme, which has length Õ(λ+ `). Thus, both of our candidate instantiations of the LPCP
(based on the Hadamard code and on QSPs) yield proofs of size Õ(λ).

14More precisely, the ciphertexts are actually vectors of dimension n+ `, where n is the dimension of the lattice in the
LWE problem. Currently, the most effective algorithms for solving LWE rely either on BKW-style [BKW00, KF15]
or BKZ-based attacks [SE94, CN11]. Based on our current understanding [LP11, CN11, KF15, BCD+16], the
best-known algorithms for LWE all require time 2Ω(n/ logc n) for some constant c. Thus, in terms of a concrete
security parameter λ, we set the lattice dimension to be n = Õ(λ).

22

• Verifier complexity. In Construction 4.5, the verifier first invokes the decryption algorithm
of the underlying vector encryption scheme and then applies the verification procedure for
the underlying linear PCP. Decryption consists of a rounded matrix-vector product over a
polynomial-sized ring, which requires Õ(λ(λ+ `)) operations. In both of our candidate LPCP
constructions, the verifier’s decision algorithm runs in time O(n), where n is the length of
the statement. Moreover, the decision algorithm for the underlying LPCP is applied O(λ)
times for soundness amplification. Thus, the overall complexity of the verifier for both of our
candidate instantiations is Õ(λ2 + λn).

Note that we can generically reduce the verifier complexity to Õ(λ2 + n) by first applying a
collision-resistant hash function to the statement and having the prover argue that it knows a
preimage to the hash function and that the preimage is in the language. After applying this
transformation, the length of the statement is simple the output length of of a collision-resistant
hash function, namely O(λ).

Remark 4.15 (Comparison with [BCI+13]). An alternative route to obtaining a lattice-based
SNARG is to directly instantiate [BCI+13] with Regev-based encryption. However, to achieve
soundness error 2−λ, Bitansky et al. [BCI+13] require a LPCP (and consequently, an additively
homomorphic encryption) over a field of size 2λ. Instantiating the construction in [BCI+13] with
Regev-based encryption over a plaintext space of size 2λ, the resulting SNARGs have length Õ(λ2)
and the prover complexity is Õ(sλ2). Another possibility is to instantiate [BCI+13] with Regev-based
encryption over a polynomial-size field (thus incurring 1/poly(λ)-soundness error) and perform
parallel repetition at the SNARG level to amplify the soundness. But this method suffers from the
same drawback as above. While each individual SNARG instance (over a polynomial-size field)
is quasi-optimally succinct, the size of the overall proof is still Õ(λ2) and the prover’s complexity
remains at Õ(sλ2). This is a factor λ worse than using linear-only vector encryption over a
polynomial-size field.

For the weaker notion of achieving soundness error negl(λ) (rather than 2−λ) against provers
of size 2λ, it suffices to use LPCPs over a field of size 2logc λ for some c > 1. In this case, the
prover complexity of the [BCI+13] construction instantiated with Regev-based linear-only encryption
becomes Õ(sλ) and the proof size is Õ(λ). Using linear-only vector encryption over a polynomial-size
field, our SNARG construction achieves the same performance but with the stronger soundness
guarantee of providing 2−λ soundness error against provers of size 2λ.

Remark 4.16 (Comparison with Hash-Based SNARGs). An alternative approach for constructing
SNARGs is to start with Kilian’s succinct interactive argument [Kil92] and apply the Fiat-Shamir
heuristic [FS86] to obtain a SNARG in the random-oracle model (i.e., a CS proof [Mic00]). With a
suitable heuristic instantiation of the random oracle, this method yields a (quasi)-optimal SNARG
in terms of the prover’s complexity (i.e., the prover overhead is additive in poly(λ) rather than
multiplicative, where λ is a concrete security parameter). However, due to their reliance on Fiat-
Shamir, CS proofs inherently cannot satisfy (quasi)-optimal succinctness. Recall that in Kilian’s
protocol, the prover first uses a Merkle hash tree to commit to a (standard) PCP for the statement
being proved. The verifier then challenges the prover to open bits in the committed PCP, and
checks that the revealed bits satisfy the PCP verification algorithm. Using the quasilinear PCPs
of [Din06, BS08], Kilian’s protocol achieves constant soundness error ε < 1 against provers of size
2λ with Õ(λ) communication. Parallel repetition (using a polylogarithmic number of instances) can
be used to amplify the soundness to εω(log λ) = negl(λ) while maintaining proofs of size Õ(λ).

23

However, when applying the Fiat-Shamir heuristic to Kilian’s protocol to obtain a succinct non-
interactive argument, the resulting argument does not provides negl(λ) soundness against provers of
size 2λ. In particular, since the Fiat-Shamir heuristic yields a non-interactive, publicly-verifiable
argument system, the prover can leverage the public verifiability to sample a valid proof for each
individual Kilian instance in time 1/ε. If there are only polylogarithmic instances, then in time,
(1/ε)logc λ = o(2λ), the prover is able to break soundness of the system (with constant probability).
To defend against this rejection-sampling attack, it is necessary to use Ω(λ) independent instances
of Kilian’s protocol, resulting in proofs of size Õ(λ2). Thus, CS proofs cannot be quasi-optimally
succinct. We provide a concrete comparison in Table 1.

An alternative way of making Kilian’s protocol non-interactive is to use extractable collision-
resistant hash functions [BCCT12, BCC+14] and a single-server private information retrieval (PIR)
protocol with polylogarithmic communication complexity [CMS99]. While the [BCCT12, BCC+14]
construction is designated-verifier, and thus, not vulnerable to the proof rejection-sampling attack
described above, their construction is not (quasi)-optimal for the prover’s complexity (in contrast to
CS proofs). In the Bitansky et al. construction, the prover runs several instances of a PIR protocol
(playing the role of the server) over a database of size Ω̃(sλ). Since the computational complexity of
the server is necessarily linear in the size of the database size in any single-server PIR protocol, the
prover’s overhead is at least linear in the security parameter.

In Table 1, we compare our new lattice-based SNARG constructions to existing constructions
for Boolean circuit satisfiability (the same results apply for arithmetic circuit satisfiability over
polynomial-size fields). Among SNARGs with quasi-optimal succinctness (proof size Õ(λ)), Con-
struction 4.5 instantiated with a QSP-based LPCP achieves the same prover efficiency as the current
state-of-the-art (GGPR [GGPR13] and BCIOP [BCI+13]). However, in contrast to current schemes,
our construction is lattice-based, and thus, plausibly resists quantum attacks. One limitation is that
our new constructions are designated-verifier, while existing constructions are publicly verifiable.
We stress here though that a common limitation of designated-verifier SNARGs—that the common
reference string cannot be reused for multiple proofs [CL08, GLR11, BCCT12, BCC+14]—does not
apply to our construction. As noted by [BCI+13], this limitation can be circumvented by SNARG
constructions relying on algebraic PCPs such as ours. We show in Appendix C that a variant of
our construction (with the same asymptotic complexity) gives a multi-theorem designated-verifier
SNARG in the preprocessing model.

Remark 4.17 (Arithmetic Circuit Satisfiability over Large Fields). Construction 4.5 also applies to
arithmetic circuit satisfiability over large finite fields (say, Zp where p = 2λ). However, if the size of
the plaintext space for the vector encryption scheme Πvenc from Section 4.2 is 2λ, then the bit-length
of the ciphertexts becomes Õ(λ2) bits. Consequently, the proof system is no longer quasi-optimally
succinct. In contrast, the QSP-based constructions [GGPR13, BCI+13] remain quasi-optimally
succinct for arithmetic circuit satisfiability over large fields.

4.4 Quasi-Optimal SNARGs from Ideal Lattices

Our lattice-based SNARG construction from Section 4.3 achieves quasi-optimal succinctness, but like
existing constructions of SNARGs with quasi-optimal succinctness, the prover overhead is quasilinear
in the security parameter. A natural question to ask is whether we can construct quasi-optimal
SNARGs where the prover overhead is only polylogarithmic in the security parameter (i.e., a SNARG

24

Construction Type∗
Prover Proof

Assumption
Complexity Size

CS Proofs [Mic00] PV Õ(s+ λ2) Õ(λ2)† Random Oracle

Groth [Gro10] PV Õ(s2λ+ sλ2) Õ(λ) Knowledge

GGPR [GGPR13] PV Õ(sλ) Õ(λ) of Exponent

BCIOP [BCI+13]‡ (Paillier) DV Õ(sλ3) Õ(λ3)
Linear-Only

BCIOP [BCI+13]‡ (Pairing) PV Õ(sλ) Õ(λ)
Encryption

BCIOP [BCI+13]‡ (Regev)§ DV Õ(sλ) Õ(λ)

Const. 4.5¶ (Hadamard LPCP) DV Õ(s2λ) Õ(λ) Linear-Only

Const. 4.5¶ (QSP-based LPCP) DV Õ(sλ) Õ(λ) Vector Enc.

Const. 4.5 (Section 4.4)‖ DV Õ(s) Õ(λ)
Linear-Only
Vector Enc.

∗We write “PV” to denote public verifiability and “DV” for designated verifiability.
†Even though we only require negl(λ) soundness error, the length of a CS proof still scales with λ2 (Remark 4.16).
‡Instantiated using a LPCP based on QSPs.
§Based on a direct instantiation of [BCI+13] using Regev-based encryption. This construction achieves negl(λ)
soundness error (as opposed to 2−λ soundness error) against provers of size 2λ (Remark 4.15).
¶Instantiated with the PVW [PVW08] encryption scheme from Section 4.2.
‖Instantiated with the RLWE-based vector encryption scheme from Section 4.4. This construction is the first which is
quasi-optimal with respect to both prover complexity and proof size. This construction achieves negl(λ) soundness
error (as opposed to 2−λ soundness error) against provers of size 2λ.

Table 1: Asymptotic performance of different SNARG systems for Boolean circuit satisfiability. Here,
s is the size of the circuit and λ is a security parameter guaranteeing negl(λ) soundness error against
provers of size 2λ. Most of these schemes achieve 2−λ soundness error with the same complexity
(the exceptions being the direct instantiation of [BCI+13] with Regev-based encryption and the
quasi-optimal SNARG construction from Section 4.4). All of the schemes can be converted into
an argument of knowledge (i.e., a SNARK)—in some cases, this requires a stronger cryptographic
assumption.

where the overall prover complexity is Õ(s)), while maintaining quasi-optimal succinctness. In
this section, we show that using Regev encryption based on the ring learning with errors (RLWE)
problem [LPR10], we obtain the first quasi-optimal designated-verifier SNARG in the preprocessing
model.

Linear-only vector encryption over rings. Previously, we have only considered linear-only
encryption schemes where the message space is a finite field (or a vector space over a finite field).
It is equally valid to also consider a notion of linear-only vector encryption where the underlying
message space is a ring R that splits (via the Chinese Remainder Theorem) into multiple sub-rings
R1 × · · · × Rn. For instance, the ring might be ZN where N is composite or a polynomial ring
Zp[x]/Φm(x) for some modulus p and Φm(x) is the mth cyclotomic polynomial. In this case, an affine
combination of R-elements can be viewed as computing n independent affine combinations over the
CRT-components of R. One of the key advantages of considering linear-only vector encryption over

25

rings is that there exist candidate constructions (based on RLWE [GHS12]) where the encryption
overhead is only polylogarithmic in the security parameter. This in turn yields a viable route for
constructing SNARGs with polylogarithmic prover overhead.

Construction overview. We give a high-level description of our quasi-optimal SNARG con-
struction for Boolean circuit satisfiability. Let κ be a statistical security parameter and let
C : {0, 1}n × {0, 1}h → {0, 1} be a Boolean circuit of size s. We first describe how to con-
struct a linear PCP (over a ring R that splits into at least κ copies of some field Zp—this is possible,
for instance, when R is a polynomial ring R = Zp[x]/Φm(x) and p = 1 (mod m)). We can then
invoke our compiler (Construction 4.5) together with an appropriate linear-only vector encryption
scheme over R to obtain a SNARG.

To construct our LPCP, we first reduce the circuit satisfiability problem (for the circuit C)
to a Boolean satisfiability problem (for a formula ϕ). In particular, the formula ϕ contains O(s)
variables, one for each input wire and gate in C as well as O(s) clauses (each of constant size)
implementing gate-wise consistency checks. Next, we arbitrarily split ϕ into κ different formulas
ϕ1, . . . , ϕκ, each of size O(s/κ). The first observation is that we can check satisfiability of each
of these formulas using an LPCP of size Õ(s/κ), for instance, by using the 3-query QSP-based
LPCP from [GGPR13, BCI+13]. Note that if Zp is polynomial-sized, then this LPCP has soundness
error 1/poly(κ). We embed the ith LPCP instance (for checking ϕi) in the ith copy of Zp of R.
For a false statement, at least one of the formulas must be unsatisfiable, and so the verifier rejects
with at least 1− 1/poly(κ) probability. We can achieve negl(κ) soundness by parallel amplification
(using a polylogarithmic number of iterations). Note that this analysis only works if we assume the
prover makes a consistent assignment to the variables appearing in the formulas ϕ1, . . . , ϕκ. We
now describe how to perform consistency checks so as to bind the prover to making a consistent
assignment.

Enforcing consistency. As noted above, for soundness to hold, we need to enforce consistency
in the prover’s assignments to variables across the formulas ϕ1, . . . , ϕκ. Abstractly speaking, we
can view a proof π ∈ Rm as a κ-by-m matrix where the ith row contains the proof that formula ϕi
is satisfied. We can define a variable’s replication pattern to denote the positions in π where the
same variable appears. The goal is to check whether π conforms to a specific replication pattern of
variables. This can be done using a technique from [Gro09] and which was also used in [IPS09] for
performing a similar kind of consistency check. The high level idea is as follows. To test whether a
set of M values (v1, . . . , vM) satisfy a particular replication pattern, we choose M random values

r1, . . . , rM
r←− Zp and compare the value

∑
i∈[M] viri ∈ Zp to the value

∑
i∈[M] vir

′
i ∈ Zp where

r′1, . . . , r
′
M are obtained by permuting the values r1, . . . , rM along the “cycles” (the set of positions

corresponding to the same variable) induced by the replication pattern. The key is that each check
simply corresponds to evaluating a linear function on the proof entries, and thus, can be performed
by making additional queries to the LPCP oracle. By the Schwartz-Zippel lemma, an inconsistent
assignment will be discovered with at least constant probability (over the randomness of the ri’s).
By repeating this consistency check ω(log κ) times, the verifier will catch an inconsistent assignment
with overwhelming probability (though not necessarily probability 2−κ). We present our LPCP
construction below:

Construction 4.18 (Linear PCP with Polylogarithmic Query Complexity). Fix a statistical security
parameter κ. Let C : {0, 1}n × {0, 1}h → {0, 1} be a Boolean circuit of size s, R be a polynomial

26

ring that splits into (at least) κ isomorphic copies of a finite field Zp where p = Õ(s). Let ϕ be
the Boolean formula encoding the circuit satisfiability instance and let ϕ1, . . . , ϕκ be an arbitrary
partitioning of the clauses of ϕ into smaller formulas, each with O(s/κ) clauses (over the same
underlying set of variables). Take any Q where Q = logc κ for some c > 1. Define the Õ(1)-query
linear PCP (PLPCP, VLPCP) over R as follows:

• Prover’s algorithm PLPCP: On input the statement x ∈ {0, 1}n and witness w ∈ {0, 1}h, the
prover computes a satisfying assignment to ϕ. For each i ∈ [κ], the prover constructs a proof
πi ∈ Fmp that ϕi is satisfiable using the QSP-based LPCP of [BCI+13]. Here, m = Õ(s/κ)
since each ϕi is a formula of size O(s/κ). It outputs the proof π ∈ Rm where the CRT
decomposition of π is given by the vector (π1, . . . ,πκ).

• Verifier’s query algorithm QLPCP: For each i ∈ [κ] and j ∈ [Q], the verifier invokes the
query algorithm for the 3-query QSP-based LPCP (for proving the statement defined by

ϕi) to obtain queries q
(i,j)
1 ,q

(i,j)
2 ,q

(i,j)
3 ∈ Fmp . It sets q

(j)
1 ∈ Rm to be the vector whose CRT

decomposition is given by (q
(1,j)
1 , . . . ,q

(κ,j)
1). It constructs q

(j)
2 and q

(j)
3 in a similar manner.

Next, for each j ∈ [Q], the verifier samples s
(j)
1

r←− Rm, and defines s
(j)
2 to be s

(j)
1 permuted

according to the replication pattern of the variables in ϕ1, . . . , ϕκ. The verifier outputs the

queries
{
q

(j)
1 ,q

(j)
2 ,q

(j)
3 , s

(j)
1 , s

(j)
2

}
j∈[Q]

. The verifier’s secret verification state consists of the

verification state for each of the underlying QSP-based LPCP queries.

• Verifier’s decision algorithm DLPCP: For j ∈ [Q], let a
(j)
1 , a

(j)
2 , a

(j)
3 , b

(j)
1 , b

(j)
2 ∈ R be the

prover’s responses. Then, for each j ∈ [Q], the verifier first decomposes a
(j)
1 , a

(j)
2 , a

(j)
3 into

their CRT components and checks each of the κ instances of the underlying QSP-based LPCP.
If any of the κ proofs fail to verify, the verifier rejects. Next, for each j ∈ [Q], the verifier

takes b
(j)
1 and b

(j)
2 , decomposes them into their CRT components, and computes the sum of

the CRT components (over Zp). The verifier rejects if the sums do not match for any j ∈ [Q].
If all checks pass, the verifier accepts.

By inspection, the verifier in Construction 4.18 makes a total of 5·Q queries to the LPCP oracle. Since
Q = logc κ = Õ(1), Construction 4.18 is a Õ(1)-query LPCP. Before showing that Construction 4.18
has negligible soundness error, we briefly characterize the prover’s complexity. First, constructing
the formula ϕ from the circuit C can be done in time O(s). Constructing a LPCP proof for ϕi
requires Õ(s/κ) time since ϕi is a formula of size Õ(s/κ). Thus, constructing π can be done in time
Õ(s). Next, we formally show that Construction 4.18 is a statistically-sound LPCP.

Theorem 4.19. Construction 4.18 is a statistically-sound Õ(1)-query linear PCP.

Proof. Completeness is immediate. For soundness, take any x ∈ {0, 1}n such that C(x,w) = 0 for
all w ∈ {0, 1}h. Let π∗ ∈ R be a proof. We consider two cases:

• The proof π∗ contains a consistent assignment to all variables. Since x is false, at least
one of the formulas ϕ1, . . . , ϕκ is unsatisfiable. Thus, for all j ∈ [Q], each set of LPCP queries

(q
(j)
1 ,q

(j)
2 ,q

(j)
3) causes the verifier to (independently) reject with 1 − 1/poly(κ) probability.

Since Q = logc κ, the verifier accepts with probability at most (poly(κ))− logc κ = negl(κ).

• The proof π∗ contains an inconsistent assignment to the variables. In this case, the

difference in the sums over the CRT components of b
(j)
1 and b

(j)
2 can be viewed as a linear

27

polynomial over the CRT components of s
(j)
1 . Since π contains an inconsistent assignment,

by construction of s
(j)
1 and s

(j)
2 , this polynomial is not identically zero. Since s

(j)
1 is sampled

uniformly at random, by the Schwartz-Zippel lemma, the verifier rejects with probability 1/p.
Since the verifier performs Q = logc κ independent checks, the verifier accepts with probability
p− logc κ = negl(κ).

Soundness against affine prover strategies follows in a similar manner as long as the underlying
linear PCP provides (constant) soundness against affine provers.

Vector encryption over polynomial rings. To obtain a SNARG based on the linear PCP
from Construction 4.18, it suffices to construct a candidate vector encryption scheme over a ring
R that satisfies linear targeted malleability. Invoking Theorem 4.6 then yields the desired result.
One such candidate is the natural generalization of the cryptosystem in Section 4.2 to the ring
LWE setting. Ring LWE analogs of Regev encryption have been used previously for optimizing
FHE [BGV12, GHS12, GHS12]. We describe the construction for encrypting vectors below. Fix
a cyclotomic polynomial ring R = Z[x]/Φm(x) and let χ be an error distribution. The plaintext
ring will be Rp = Zp[x]/Φm(x) and the ciphertext ring will be Rq = Zq[x]/Φm(x) where m, q are
polynomials in the security parameter.

• Setup(1λ, 1`): Choose ā
r←− Rq, s

r←− R`q, and ē← χ`. Define a ∈ R(1+`)
q as follows:

a =

[
ā

ās + pē

]
,

Output the secret key sk = (a, s).

• Encrypt(sk,v): To encrypt a vector v ∈ R`p, choose r
r←− R2 and output the ciphertext

c ∈ R(1+`)
q where

c = ar +

[
0
v

]
.

• Decrypt(sk, c): Let c1 denote the first component of c and let c̄ ∈ R`q be the last ` components
of c. Compute and output [[c̄− c1s]q]p.

If we conjecture that the above vector encryption scheme satisfies linear targeted malleability, then
combining Construction 4.5 with the linear PCP from Construction 4.18, we obtain a quasi-optimal
SNARG (with respect to both the prover complexity as well as succinctness). This is because a
single ciphertext under this vector encryption scheme is Õ(λ) bits long (since ` = Õ(1)), and queries
in the LPCP of Construction 4.18 have length Õ(s/λ). Each homomorphic operation requires
Õ(λ) time (using fast Fourier transforms for the polynomial multiplications), so the overall prover
complexity is Õ(s). There are a couple caveats that we note below.

Remark 4.20 (Quasi-Optimality and Soundness Gap). The SNARG obtained by applying Con-
struction 4.5 to the LPCP from Construction 4.18 achieves 2− logc λ = negl(λ) (for c > 1) soundness
error against 2λ-bounded provers. Thus, it is the first quasi-optimal SNARG in terms of both prover
complexity as well as succinctness. An interesting open problem is to construct a quasi-optimal
SNARG that achieves the stronger notion of 2−λ soundness error against provers of size 2λ.

28

Remark 4.21 (Strong Soundness and Multi-Theorem SNARGs). One limitation of the LPCP
from Construction 4.18 is that it does not satisfy strong soundness (while retaining Õ(1) query
complexity). Thus, we are not able to leverage Theorem C.3 (in conjunction with a suitable vector
encryption scheme) to argue that the resulting SNARG construction is a multi-theorem SNARGs.
We leave the construction of a quasi-optimal multi-theorem SNARG as another open problem.

5 Concrete Efficiency of Bootstrapping VBB Obfuscation

In this section, we describe how to leverage our new lattice-based SNARG candidates to improve the
concrete efficiency of bootstrapping obfuscation. In Sections 5.1 and 5.2, we review some standard
definitions as well as the VBB bootstrapping theorem of [BR14]. Next, in Section 5.3, we describe
how matrix branching programs can be used to perform simple computations over Zq. In particular,
we show how we can implement FHE decryption and SNARG verification as a matrix branching
program. Then, in Sections 5.4 and 5.5, we introduce a series of algorithmic as well as heuristic
optimizations to improve the concrete efficiency of the candidate obfuscator. We conclude by giving
an estimate of the parameters needed to instantiate our obfuscation candidate in Section 5.6.

To summarize, after applying our optimizations, implementing FHE decryption together with
SNARG verification can be done with a branching program (over composite-order rings) of length
4150 and size ≈ 244 (at a security level of λ = 80). While publishing 244 encodings of a multilinear
map capable of supporting 4150 levels of multilinearity is likely beyond the scope of existing
candidates, further optimizations to the underlying multilinear map as well as to the different
components of our pipeline can plausibly lead to a realizable construction. Thus, our construction
represents an important milestone towards the ultimate goal of implementable program obfuscation.

5.1 Preliminaries

We begin by reviewing some standard definitions for obfuscation and matrix branching programs.

Definition 5.1 (Virtual Black-Box Obfuscation in an M-Idealized Model [BGI+01, BGK+14]).
Let M be a stateful (possibly randomized) oracle and C = {Cλ}λ∈N be a family of Boolean circuits.
We say that an efficient machine O is a virtual black-box (VBB) obfuscator for C in theM-idealized
model if the following conditions are satisfied:

• Correctness: For all λ ∈ N, every C ∈ Cλ, every input x to C, and all possible random coins
for M, it follows that

Pr[(OM(1λ, C))(x) 6= C(x)] = negl(λ),

where the probability is taken over the random coins of O.

• Virtual Black-Box: For every efficient adversary A, there exists an efficient simulator S
such that for all efficient distinguishers D, all λ ∈ N and all C ∈ Cλ, it follows that∣∣∣Pr[D(AM(OM(1λ, C))) = 1]− Pr[D(SC(1λ, 1|C|)) = 1]

∣∣∣ = negl(λ),

where the probability is taken over the random coins of D, A, S, O, and M.

Since the obfuscator O is required to be efficient, its output has size at most poly(λ). Thus, the
additional polynomial slowdown requirement in [BGI+01, BGK+14] is implicitly captured by this
definition.

29

Branching programs. In this work, we show how an VBB obfuscator for branching programs
(equivalently, the class NC1) can be efficiently bootstrapped to an VBB obfuscator for P/poly. We first
review the definition of a branching program. While previous works [BGK+14, AGIS14, BMSZ16]
focused exclusively on branching programs over inputs drawn from a binary field {0, 1}`, in our
applications, it is more conducive to consider branching programs where the inputs are vectors in a
larger finite field Z`q (see Remark 5.4). In our setting, we use the notion of a generalized matrix
branching program where the matrices can be non-square and singular [BMSZ16].

Definition 5.2 (Generalized Matrix Branching Program [BMSZ16, adapted]). Let R be a finite
ring. A generalized matrix branching program (MBP) over R of length n and shape (d0, . . . , dn) for
inputs over Z`q is given by a sequence

BP =
(
inp, {Bi,j}i∈[n],j∈[q]

)
,

where for all i ∈ [n] and j ∈ [q], Bi,j ∈ Rdi−1×di and inp : [n]→ [`] is the input bit position examined
in step i of the computation. When all of the matrices Bi,j are square matrices with dimension d,
we refer to d as the width of the branching program. The output of the branching program BP on
an input x ∈ Z`q is an element of {0, 1}d0×dn where for i ∈ [d0] and j ∈ [d1], we have

[BP(x)]i,j = 0 if and only if e>i

∏
i∈[n]

Bi,xinp(i)

 ej 6= 0,

where ei, ej denote the standard basis vectors of the appropriate dimension. We say that the
branching program is oblivious if inp : [n]→ [`] is a fixed function that is independent of the function
being evaluated.

Remark 5.3 (Dual-Input Matrix Branching Programs). Most existing branching-program based
constructions of VBB obfuscation [GGH+13b, BGK+14, AGIS14, BMSZ16] operate on dual-input
matrix branching programs. In a dual-input matrix branching program, each step of the computation
depends on two fixed bits of the input, and correspondingly, there are two input bit selector functions
inp0, inp1 : [n] → [`]. Likewise, the description of a dual-input branching program consists of a
sequence

BP =
(
inp0, inp1, {Bi,j0,j1}i∈[n],j0,j1∈[q]

)
.

As noted in previous works, any single-input MBP can be converted to a dual-input MBP by
simply setting inp0 = inp1 = inp, Bi,j0,j0 = Bi,j0 , and Bi,j0,j1 arbitrarily for all j1 6= j0. However,
this incurs a quadratic overhead (in q) on the size of the branching program. Since the extra
matrices Bi,j0,j1 for j1 6= j0 are never used in the normal functioning of the scheme (and only
show up in the context of the security proof), we can consider the analogous scheme where these
additional matrices are not available (this effectively brings us back to the single-input setting).
Although dropping the extraneous matrices means that we are no longer able to formally prove
VBB security, Lewi et al. [LMA+16] show that any attack on the simplified obfuscator (where the
obfuscated program does not include the unused matrices) translates to an attack on the original
VBB obfuscator. Thus, when estimating the concrete size of an obfuscated program, it suffices to
just consider the case where the extra matrices are not included.

30

Remark 5.4 (Binary Inputs vs. Zq Inputs). The matrix branching programs in Definition 5.2
are defined for inputs drawn from Z`q rather than the more traditional choice of {0, 1}`. All of the
functionalities we consider in this section can be modified to work when the inputs are represented
as binary strings of length ` · dlog qe. This increases the length of the branching program by a
factor log q, but reduces the number of matrices in each step of the computation by a factor q.
Asymptotically, for large values of q, this allows for substantially smaller branching programs.
However, in existing multilinear map candidates [GGH13a, CLT13], the size of each encoding scales
quadratically in the multilinearity. Thus, if the length of the branching program is increased by a
factor log q, then the size of the obfuscated program increases by a factor log3 q. For concrete values
of q, it is more efficient to obfuscate programs over Zq rather than F2. This optimization of using a
larger base field for the branching program representation to achieve better concrete performance
was also leveraged in [LMA+16].

5.2 Bootstrapping for VBB Obfuscation via FHE and SNARGs

In this section, we review how FHE and NC1-checkable proofs can be combined with VBB obfuscation
for matrix branching programs (of polynomial length and width) to obtain VBB obfuscation for
general circuits. Several variants of bootstrapping theorems have been proposed in the context of
both indistinguishability obfuscation [GGH+13b] as well as VBB obfuscation [BR14, App14]. For
completeness, we present our specific construction which is adapted from that of Brakerski and
Rothblum [BR14]. Traditionally, bootstrapping theorems have relied on statistically sound proofs
checkable in NC1. One of the observations we make in this work is that for VBB obfuscation, it suffices
to relax the statistical soundness requirement and use computationally sound arguments, which in
particular, enables the use of succinct arguments. However, substituting SNARGs for the statistically
sound proofs does not seem to suffice when considering bootstrapping of indistinguishability
obfuscation.

Fully homomorphic encryption. The first primitive we require for bootstrapping VBB ob-
fuscation is fully homomorphic encryption [Gen09]. We briefly review the syntax here. Let C
be a class of polynomially-sized circuits. A public-key fully homomorphic encryption scheme
ΠFHE = (FHE.KeyGen,FHE.Encrypt,FHE.Decrypt,FHE.Eval) over a binary message space {0, 1} is a
tuple of algorithms with the following properties:

• FHE.KeyGen(1λ)→ (pk, sk): On input the security parameter λ, the key generation algorithm
outputs a public key pk and a secret key sk.

• FHE.Encrypt(pk,m)→ ct: On input the public key pk and a message m ∈ {0, 1}, the encryption
algorithm outputs a ciphertext ct.

• FHE.Decrypt(sk, ct) → m: On input the secret key sk and a ciphertext ct, the decryption
algorithm outputs a message m ∈ {0, 1}.

• FHE.Eval(pk, C, ct1, . . . , ct`)→ ct′: On input the public key pk, a circuit C ∈ C on ` = poly(λ)
inputs, and a collection of ` ciphertexts ct1, . . . , ct`, the evaluation algorithm is a deterministic
algorithm that outputs a ciphertext ct′.

The correctness requirement for an FHE scheme is that for any circuit C ∈ C and any sequence
of inputs m1, . . . ,m` ∈ {0, 1}, if (pk, sk)← FHE.KeyGen(1λ) and cti ← FHE.Encrypt(pk,mi) for all

31

i ∈ [`], the following holds:

Pr[FHE.Decrypt(sk,FHE.Eval(pk, C, ct1, . . . , ct`)) 6= C(m1, . . . ,m`)] = negl(λ).

Security is the usual notion of semantic security.

We now review how FHE encryption and SNARGs can be combined to bootstrap VBB obfuscation
from NC1 to P/poly

Construction 5.5 (VBB Bootstrapping [BR14, adapted]). Fix a security parameter λ. Let
C = {C` : {0, 1}n → {0, 1}}`∈N be a collection of Boolean circuits of polynomial size s = s(`) on
n = n(`) bit inputs. Let U` be the universal circuit for evaluating Boolean circuits of size s(`) on n(`)-
bit inputs, and let ΠFHE = (FHE.KeyGen,FHE.Encrypt,FHE.Decrypt,FHE.Eval) be an FHE scheme
where the decryption algorithm FHE.Decrypt can be implemented by a matrix branching program.
Let C′ = {C ′`}`∈N be a family of Boolean circuits for the following NP language (parameterized by
`):

L =
{

(x, ct) : ct = FHE.Eval(pk, U`(·,x), Ĉ`)
}
,

where (pk, sk) ← FHE.KeyGen(1λ, 1`) and Ĉ` ← FHE.Encrypt(pk, C`). Next, let ΠSNARG = (Setup,
Prove,Verify) be a SNARG system for the family of circuits C′. Let OMBP be a VBB obfuscator for
MBPs of polynomial length and width. The obfuscator O for C works as follows:

• Obfuscation. On input the security parameter λ and the circuit parameter `, the obfuscator
O does the following:

1. Run the setup algorithm (σ, τ)← Setup(1λ, 1`) for the SNARG system to obtain a CRS
σ and a verification state τ .

2. Generate a public/private key pair (pk, sk)← FHE.KeyGen(1λ) for the FHE scheme.

3. Encrypt the circuit C` to obtain an encrypted circuit Ĉ` ← FHE.Encrypt(pk, C`).

4. Construct an obfuscation P̂` of the following program using OMBP:

Constants: The program has the FHE secret key sk and the SNARG verification
state τ hard-coded inside it.

On input a tuple (x, ct, π), the program does the following:

(a) Run the SNARG verifier Verify(τ, (x, ct), π). If the SNARG fails to verify,
output 0.

(b) If the SNARG verification succeeds, output FHE.Decrypt(sk, ct).

5. Output (P̂`, σ, pk, Ĉ`)

• Evaluation. Evaluation of an obfuscated program (P̂`, σ, pk, Ĉ`) on an input x ∈ {0, 1}n
works as follows:

1. Homomorphically evaluate the function ct = FHE.Eval(pk, U`(·,x), Ĉ`).

2. Let s be the statement that ct = FHE.Eval(pk, U`(·,x), Ĉ`). Let w be a witness that
(x, ct) ∈ L (i.e., the steps of the computation). Construct a proof π ← Prove(σ, (x, ct), w).

3. Run the obfuscated decryption function P̂` on input (x, ct, π) and output the result.

32

Correctness. Correctness of the scheme follows from correctness of the underlying building blocks
(the VBB obfuscation for MBPs and the FHE scheme) as well as completeness of the SNARG.
Moreover, assuming that the FHE decryption circuit and the SNARG verification circuit can be
expressed as a matrix branching program (of polynomial length and width), then the decryption
program P̂` that is obfuscated can also be expressed as a matrix branching program (of polynomial
length and width). Correctness follows immediately.

Security. The proof of security proceeds analogously to the proof given in [BR14, Lemma 4.3].

5.3 Simple Functions over Zq via Branching Programs

In Section 5.2, we demonstrated that FHE and SNARGs suffice to bootstrap a VBB obfuscator
for matrix branching programs into one that works for general circuits, provided that both FHE
decryption and SNARG verification can themselves be expressed as a simple matrix branching pro-
gram. In many existing FHE candidates [BV11, BGV12, Bra12, GSW13, AP14, DM15], decryption
corresponds to evaluating a rounded inner product over a polynomial-size ring. Similarly, using the
SNARG formed by applying Construction 4.5 to our candidate linear-only vector encryption scheme
based on Regev encryption (Section 4.2) along with the Hadamard PCP, we obtain a SNARG where
the verification algorithm almost reduces to evaluating a rounded matrix-vector product over Zq
(followed by a simple quadratic test). Thus, the basic building block we require is evaluation of
rounded inner products over a polynomial-size ring Zq.

In this section, we show that computing rounded inner products over finite fields of polynomial
size can be efficiently realized using (generalized) matrix branching programs. In light of this,
we refer to schemes where the basic operations correspond to computing rounded inner products
as “branching-program-friendly.” This paper gives the first construction of a SNARG with a
branching-program-friendly verification procedure. Combined with existing FHE schemes with
branching-program-friendly decryption and VBB obfuscation for branching programs, we obtain
practical VBB obfuscation for general circuits.

Simple functions over Zq via branching programs. Many existing obfuscation candidates
are tailored for obfuscating branching programs. In these constructions, obfuscating a branching
program of length ` and width w typically requires a multilinear map that supports approximately `
levels of multilinearity and the resulting obfuscated program contains approximately w2 encodings.
Thus, existing constructions are best-suited for computations that are captured by simple branching
programs. In the more traditional approach of obfuscating Boolean circuits by first converting the
circuit into a branching program (via Barrington’s theorem [Bar86]), the length of the resulting
branching program grows exponentially in the depth of the circuit. Thus, the parameters needed to
obfuscate even a simple computation of moderate depth quickly becomes astronomical.

Instead of obfuscating branching programs obtained via Barrington’s theorem, in this work, we
take the more direct approach of using the matrix branching program to compute simple functions
over Zq (for polynomial-sized q). The key observation we use is that the additive group Zq embeds
into the symmetric group Sq of q × q permutation matrices. This idea was previously used by
Alperin-Sheriff and Peikert [AP14] for improving the efficiency of bootstrapping for FHE. While the
functions that can be evaluated in this way are limited, they are expressive enough to include both
the decryption function for lattice-based FHE [BV11, BGV12, Bra12, GSW13, AP14, DM15] and a
(simplified) variant of the verification algorithm of our new lattice-based SNARG.

33

Computing inner products over Zq. As described in Section 1.3, embedding Zq into Sq is
quite straightforward. An element x ∈ Zq is represented by the xth basis vector in {0, 1}q. The
group operation in Zq (i.e., addition of group elements) corresponds to performing cyclic rotations
(i.e., permutations) of the indicator vector. For example, the univariate function fx(y) = x+ y ∈ Zq,
can be represented by a q-by-q permutation matrix B ∈ {0, 1}q×q that performs a cyclic rotation by
x positions. In other words, given the embedding of y ∈ Zq (i.e., the yth basis vector ey ∈ {0, 1}q),
the product Bey yields an embedding of x+ y ∈ Zq (i.e., the (x+ y)th basis vector ex+y).

It is easy to extend this method to compute inner products. Consider the function fx(y) =
〈x,y〉 ∈ Zq where x,y ∈ Z`q. The inner product can be decomposed into ` steps, where each
step i ∈ [`] computes the product of the input value xi with the fixed value yi and adds it to an
“accumulator” that stores the value from first i− 1 operations (the accumulator is initialized to 0).
Each of these intermediate steps can be encoded by a permutation matrix in Sq. Specifically, for all
i ∈ [`] and j ∈ [q], let Bi,j ∈ {0, 1}q×q be the permutation matrix that performs a cyclic rotation
by xi · j (mod q) positions. In other words, for all t ∈ [q], we have that Bi,jet = et+xi·j (mod q). In
particular this means that

(∏
i∈[`] Bi,yi

)
eq = e[〈x,y〉]q .

The description of the (generalized) matrix branching program that computes the inner product
functionality fx then consists of the matrices {Bi,j}i∈[`],j∈[q]. The input encoding function inp is

simply the identity function over [`] (irrespective of x). Thus, computing an inner product over Z`q
can be done using an oblivious generalized branching program of length ` and width q.

Computing rounded inner products over Zq. Modular reduction are handled in a straightfor-
ward manner. Consider the function f ′x(y) = [[〈x,y〉]q]p where x,y ∈ Z`q. Previously, we described

a sequence of matrices Bi,j such that
(∏

i∈[n] Bi,yi

)
eq = e[〈x,y〉]q . Additionally, we now define the

matrix Rp ∈ {0, 1}p×q where Rp[i, j] = 1 if and only if i = j (mod p). By construction, for any
t ∈ [q], Rpet = e[t]p ∈ {0, 1}p. Thus, left-multiplying an embedded-Zq element by Rp corresponds

to rounding modulo p. Thus, it is straightforward to evaluate a rounded inner product over Z`q as
a matrix branching program. Moreover, since Rp is input-independent, it can be pre-multiplied
into the other input-dependent matrices, so the length of the resulting branching program (i.e., the
number of matrices that need to be multiplied) is unchanged.

Parallelizing computation via CRT. Thus far, we have only considered the case of evaluating
functions involving a single inner product. While computing a single rounded inner product suffices
for decryption in many FHE schemes, this is not the case for the verification algorithm in our
candidate SNARG construction from linear-only vector encryption. The verification algorithm from
Construction 4.5 (when instantiated with the PVW encryption scheme described in Section 4.2)
requires first evaluating a matrix-vector product followed by a simple decision procedure (based on
the verifier’s decision algorithm for the underlying linear PCP). The core operation is to compute
functions of the form fA(x) = Ax where A ∈ Zm×`q . Evaluating fA on an input x corresponds
to evaluating m independent inner products between the rows of A and the input vector x. The
direct way of doing this is to evaluate the m inner products sequentially. However, this will increase
the length of the branching program by a factor of m. When obfuscating branching programs
using multilinear maps, the degree of multilinearity required is linear in the length of the branching
program. Thus, sequential evaluation of the inner products will increase the multilinearity by a
multiplicative factor, which significantly reduces the concrete efficiency of the scheme.

34

We now describe an optimization that enables computation of the m inner products without
needing to increase the degree of multilinearity. The key observation that underlies our optimization
is the fact that evaluating fA(x) on some input x corresponds to taking the inner product of the
rows of A with the same vector x. We take advantage of this by considering branching programs
over a composite-order ring ZN rather than a finite field. Moreover, we choose the order N of
the ring such that it splits into (at least) m independent sub-rings Zq1 , . . . ,Zqm via the Chinese
Remainder Theorem (CRT): ZN ∼= Zq1 × · · · × Zqm . Then, to evaluate m inner products with an
input vector x ∈ Z`q in parallel, we embed the branching program matrices for each of the m inner
products in the m sub-rings of ZN .

More concretely, for k ∈ [m], let Ak denote the kth row of A. Let
{

B
(k)
i,j

}
i∈[`],j∈[q]

be a collection

of matrices where each B
(k)
i,j ∈ {0, 1}q×q such that

(∏
i∈[`] B

(k)
i,xi

)
eq = e[Akx]q . Now, define matrices

{Bi,j}i∈[`],j∈[q] where Bi,j ∈ Zq×qN , and for all i ∈ [`], j ∈ [q], and k ∈ [m],

Bi,j = B
(k)
i,j (mod qk).

By construction, for all k ∈ [m]∏
i∈[`]

Bi,xi

 eq =

∏
i∈[`]

B
(k)
i,xi

 eq = e[Akx]q (mod qk).

Thus, by considering matrix branching programs over composite-order rings, it is possible to evaluate
matrix-vector products without needing to increase the length of the branching program. However,
note that the different slots in the CRT representation are independent and non-interacting. Thus,
after computing a matrix-vector product in parallel, we are not able to evaluate additional functions
that depend on more than one component in the resulting vector. Nonetheless, we are able to
leverage this optimization to significantly reduce the length of the necessary branching program
needed for SNARG verification.

An important question to ask is whether considering matrix branching programs over large
composite-order rings introduces additional overhead. We discuss this in the following remark.

Remark 5.6 (Viability of CRT Embedding). It is possible that obfuscating matrix branching
programs over a ring that splits into m sub-rings incurs an overhead comparable to the cost of
obfuscating a matrix branching program over a smaller prime-order field that performs m sequential
evaluations. If this is the case, there is no benefit to this optimization. However, in existing
multilinear map candidates over composite-order rings [CLT13], security of the scheme already
necessitates working over a composite-order plaintext ring where the order is a product of ω(λ)
primes, where λ is a security parameter. Thus, when the number of parallel computations is bounded
by O(λ), the CLT multilinear map candidate naturally supports the parallelism (with no extra cost).
We note that this optimization is not possible in multilinear map candidates that only support
encodings over prime-order rings, such as [GGH13a].

5.4 Modulus Switching for Faster SNARG Verification

In this section as well as the next section, we describe optimizations and heuristics we apply to
make the SNARG verification procedure from Section 4 more branching-program friendly. We begin
by describing the concrete SNARG instantiation we use for bootstrapping obfuscation.

35

Instantiating the linear PCP. First, we instantiate Construction 3.4 with the linear PCP
based on the Walsh-Hadamard code [ALM+92] to obtain a (3κ)-query linear PCP with strong
soundness against affine provers. Here, κ is a statistical security parameter. A limitation of the
Hadamard LPCP is that the prover overhead is quadratic in the size of the circuit. While alternative
LPCP constructions exist where the prover overhead is only quasilinear, they seem less suitable for
bootstrapping obfuscation. We discuss one alternative and its limitation in the following remark.

Remark 5.7 (Other LPCP Candidates). We can also instantiate Construction 3.4 with an LPCP
based on QSPs [GGPR13]. While the prover overhead in the QSP-based construction is only
quasilinear in the size of the circuit, it is necessary to work over a field F of size Õ(s) (where s is the
size of the Boolean circuit). Using our construction, working over a field of this size would increase
the size of the branching program needed for the verifier’s decision algorithm by a multiplicative
factor Õ(s2). This quadratic factor in the field size arises from the fact that to implement the
verifier’s decision procedure in the QSP-based LPCP construction (as well as the Hadarmard LPCP
construction), the branching program needs to compute a quadratic relation over more than one
proof element. In other words, the branching program needs to “remember” one of the decrypted
proof components to run the verification algorithm. A simple (but inefficient) way of achieving this
is to increase the number of states in the branching program (by a factor equal to the field size).
But this incurs a Õ(s2) cost in the size of the branching program needed for SNARG verification.
Thus, under our design, using the Hadamard PCP results in greater prover inefficiency, but allows a
much more compact (and thus, more likely to be implementable) branching program representation.
An interesting problem is to design new LPCPs with quasilinear (or even quasi-optimal) prover
overhead over smaller fields. Alternatively, constructing more efficient branching programs for the
SNARG verification step would also improve the concrete efficiency of our construction.

Instantiating the vector encryption scheme. Next, we instantiate the vector encryption
scheme with the one by Peikert, Vaikuntanathan, and Waters [PVW08] described in Section 4.2. For
estimating concrete efficiency, we rely on the single-theorem SNARG construction from Section 4.3
rather than the slightly less efficient construction from Appendix C. This seems like a reasonable
heuristic to make when the underlying linear PCP satisfies strong soundness against affine prover
strategies (Remark 4.8). An alternative and more conservative approach is to instantiate the
encryption scheme with the “double-encryption” variant described in Remark C.4. Assuming the
modified encryption scheme satisfies the stronger notion of linear-only encryption (Definition C.2), it
can be combined with Construction 4.5 to obtain a multi-theorem SNARG (Theorem C.3). Applying
this transformation incurs a (multiplicative) factor of 2 overhead in the ciphertext size (which
translates roughly to a factor of 2 increase in the degree of multilinearity required).

In the remainder of this section, we describe how modulus switching can be used to reduce
the width of the branching program needed to implement the verification algorithm. Then, in
Section 5.5, we describe how to simplify the decision algorithm itself in the underlying linear PCPs
that we use (Construction 3.4) to further reduce the length of the branching program.

Modulus switching. As described in Section 5.3, computing an inner product between two
n-dimensional vectors over Zq requires a branching program of dimension n and width q. When we
instantiate Construction 3.4 with the Hadamard LPCP, the length of the verifier’s query vector is
O(s2), where s is the size of the Boolean circuit representing the computation being verified. Thus,

36

the underlying vector encryption scheme must be able to support O(s2) homomorphic operations.
Moreover, as described in Section 4.2, the ciphertext modulus q scales linearly with the number of
homomorphic operations the encryption scheme must support. In our concrete estimates, we target
s ≈ 220, in which case the ciphertext modulus is at least q ≥ 240. As a result, it is infeasible to
implement the matrix-vector product needed for decryption within a branching program. Thus, for
the SNARG verification procedure to be practically viable when implemented as a matrix branching
program, it is critical that the ciphertext modulus is much smaller.

Fortunately, as was previously observed in the context of fully homomorphic encryption [BV11,
BGV12, CNT12, AP14, DM15], it is possible to perform the homomorphic operations with respect
to a large modulus q, and then reduce the resulting ciphertexts to be with respect to a smaller
modulus q′ (that scales sublinearly in the number of homomorphic operations ξ the scheme supports).
In this work, we use the rescaling approach of [BGV12]. Modulus switching yields substantial
improvements when we combine our new SNARG constructions with fully homomorphic encryption
to bootstrap obfuscation (Section 5).

To apply modulus switching, we first define a rescaling operation Scaleq,p,r from [BGV12]. The
rescaling operation is parameterized by three values p, q, r where q > p > r.

• Scaleq,p,r(x): On input a vector x ∈ Znq , the Scaleq,p,r operator outputs the vector x′ ∈ Znp
that is closest to (p/q) · x such that x′ = x (mod r). In other words, the Scaleq,p,r operator
rescales each component of x by p/q (over the rationals) and then rounds the result to the
nearest value in Zp such that x′ = x (mod r).

To take advantage of modulus switching, we modify the decryption algorithm of the vector encryption
scheme from Section 4.2 as follows. First, fix some modulus q′ < q such that gcd(q′, q) = 1. Then,
we redefine the Decrypt function as follows:

• Decrypt(sk, c): Compute and output [[S> · Scaleq,q′,p(c)]q′]p.

The key observation is that the matrix-vector product between the secret key and the ciphertext
is now performed with respect to the modulus q′ rather than q. First, we show that modulus
switching cannot affect the correctness of our scheme (certainly, it cannot affect security, since the
only modification we have made to the original scheme is in the decryption function).

Lemma 5.8 ([BGV12, Lemma 4], adapted). Let q = q′ = 1 (mod p). Take any vector c ∈ Znq and
let c′ = Scaleq,q′,p(c). Then, for any s ∈ Zn where |[〈s, c〉]q| < q/2− (q/q′) · (p/2) · ‖s‖1, we have that

[[
〈
s, c′

〉
]q′]p = [[〈s, c〉]q]p.

Proof. First, we write [〈s, c〉]q = 〈s, c〉 − kq for some k ∈ Z. Let ε = 〈s, c′〉 − kq′. Then,

|ε| =
∣∣−kq′ + 〈s, (q′/q) · c〉+

〈
s, c′ − (q′/q) · c

〉∣∣
≤
∣∣−kq′ + 〈s, (q′/q) · c〉∣∣+

∣∣〈s, c′ − (q′/q) · c
〉∣∣

≤ (q′/q) |[〈s, c〉]q|+ p/2 · ‖s‖1
< q′/2.

We conclude that ε = [〈s, c′〉]q′ . Working modulo p, we thus have that

[
〈
s, c′

〉
]q′ = ε =

〈
s, c′

〉
− kq′ = 〈s, c〉 − kq = [〈s, c〉]q (mod p),

where we have used that fact that c = c′ (mod p) by definition of the Scaleq,q′,p function and the
assumption that q = q′ (mod p). The claim holds.

37

Bounding the modulus size. We now derive lower bounds on the size of the decryption modulus
q′ (for correctness to hold). Let h be a bound on the `1 norm of the columns of the secret key
S. Since the amount of noise introduced by the rescaling operation (Lemma 5.8) scales with h, it
is advantageous to work with low-norm secret keys. For example, if S̄ is sampled from a binary
distribution, then h ≤ n+ 1 ≤ m.15 Then, we obtain the following corollary to Lemma 5.8.

Corollary 5.9. Fix a statistical security parameter κ and a computational security parameter λ.
Define parameters n,m, q, χ, σ as in Lemma 4.12. Let ξ = ξ(λ) be a bound on the number of
homomorphic operations the scheme supports and let h = h(λ) be a bound on the `1 norm of the
columns of S. Suppose that q ≥ 2 · ξp2σ

√
κm and h < m. Then, setting q′ = 2 · p

√
mh, the vector

encryption scheme Πvenc with rescaled decryption is correct with overwhelming probability in κ.

Proof. Let c be the ciphertext formed after performing ξ homomorphic operations (addition and
scalar multiplications) on fresh ciphertexts. Since q ≥ 2 ·ξp2σ

√
mκ, we conclude by Lemma 4.12 that

the magnitude of [S>c]q is bounded by q/4 with probability 1− negl(κ). Next, q/q′ = ξpσ
√
κ/h

and

q/2− (q/q′) · (p/2) · h = q/2− ξpσ
√
κ/h · p/2 · h

= q/2− 1

2
· ξp2σ

√
κh

≥ q/2− 1

2
· ξp2σ

√
mκ ≥ q

4
.

The claim then follows by Lemma 5.8 (applied to the inner products between the ciphertext c and
the columns of the secret key S).

Putting the pieces together. By Corollary 5.9, the modulus q′ needed for decryption is now
q′ = O(p

√
mh). By Theorem 4.13, we need to set m = Θ(n log q) for the underlying scheme to be

semantically secure. Assuming the secret keys are drawn from a binary distribution (Remark 4.10),
h ≤ (n+ `) = poly(λ), where λ is a security parameter. In our construction, the plaintext space
is a polynomial-sized field Zp (e.g., p = 3). Thus, the size of the modulus q′ needed scales with
O(
√

log q · poly(λ)). Since q depends linearly on ξ, modulus switching allows us to use a modulus
that scales sub-logarithmically in the number of homomorphic operations rather than linearly. This
means decryption can be performed using branching programs of a much smaller width q′, even
if the computation that needs to be verified is complicated and requires a very large modulus q.
Moreover, the vector encryption scheme in [PVW08] naturally supports modulus switching, so
taking advantage of this optimization does not introduce any new security assumptions.

5.5 Simplifying the SNARG Decision Algorithm

In this section, we describe an optimization to reduce the length of the branching program needed
to implement the SNARG verification procedure. Our optimization requires making a stronger

15If the secret keys are sampled from a uniform distribution, then ‖s‖ is large, and the rescaling operation significantly
increases the noise in the ciphertext. Nonetheless, it is still possible to perform modulus switching by first applying
a binary decomposition to the components of the secret key (and a corresponding “powers-of-two” transformation
to the ciphertext components) before rescaling. This has the effect of increasing the dimension by a factor dlog qe.
Similar techniques have been widely applied in the context of FHE and other lattice-based primitives [BV11, BGV12].

38

linear-only assumption about the vector encryption scheme from Section 4.2. We note that the
relaxations we describe here are not specific to our particular instantiation and can be used more
generally to obtain SNARG candidates with better concrete efficiency (at the expense of needing a
stronger cryptographic assumption).

The linear PCP construction from Section 3 (Construction 3.4) works by running O(κ) indepen-
dent copies of some underlying PCP with constant soundness error. To defend against malicious
provers using affine strategies, the verifier first applies a random linear shift to its queries before
sending them to the prover. During verification, the verifier takes the prover’s response vector,
undoes the linear shift, and then verifies each of the underlying LPCPs. While performing this linear
shift does not significantly increase the verifier’s work in the standard model, the extra overhead is
quite considerable in the branching program model.

Suppose for sake of argument that the linear shift is unnecessary—that is, the verifier simply
decrypts the prover’s response vector and applies the decision procedure of the underlying LPCP
to each of the O(κ) instances. Since each of these O(κ) instances of the underlying LPCP are
independent, we can use the CRT embedding described in Section 5.3 to decrypt and verify the
O(κ) proofs in parallel. However, if the verification procedure requires applying a random linear
transformation to the decrypted responses, the verifier can no longer leverage the CRT embedding
to decrypt and verify the O(κ) responses in parallel. Verifying the O(κ) proofs sequentially incurs
an extra O(κ) overhead in the length of the branching program, which significantly reduces the
concrete efficiency of our candidate obfuscation construction.

Soundness against restricted affine provers. The random linear shift introduced in Construc-
tion 3.4 is essential for showing robustness against provers that use an arbitrary affine strategy.
However, if we impose additional restrictions on the strategies available to the prover, we can obtain
a more lightweight LPCP. In conjunction with a stronger notion of linear-only encryption that
constrains the prover to a restricted set of affine strategies, we can still apply Construction 4.5 to
obtain a designated-verifier SNARG.

One such relaxation of soundness against affine provers is to only require soundness against linear
provers. In this case, Construction 3.4 without the random linear shift suffices for obtaining a linear
PCP with soundness against linear provers. But to compile a proof system with soundness against
linear provers to a SNARG requires a very strict linear-only encryption scheme that our candidate
construction does not seem to satisfy. We now introduce an intermediate notion of “soundness
against restricted affine provers” that interpolates between requiring soundness to hold against
only linear strategies and requiring it to hold against arbitrary affine strategies. We then prove
(in Theorem 5.12) an analog of Theorem 3.5 and show that Construction 3.4 without the random
linear shift (i.e., Construction 3.4 where Y = Iκ` is the identity matrix) suffices to give a linear
PCP with strong soundness against certain classes of restricted affine provers. Since the random
linear shift is no longer applied, Theorem 5.12 imposes a stronger “robustness” requirement on
the underlying LPCP against affine strategies. Note that existing LPCP constructions such as the
Hadamard LPCP (Lemma B.2, Remark B.3) satisfy this robustness property.

Definition 5.10 (Soundness Against Restricted Affine Provers). Let R be a relation and F be
a finite field. Fix some parameter t ∈ N and let D be a distribution over Ft×k. A linear PCP
(PLPCP, VLPCP) is a k-query linear PCP for R over F with soundness error ε against D-restricted
affine provers if it satisfies the requirements in Definition 3.1 with the following modifications:

39

• Syntax: For vectors π ∈ Fm and v ∈ Ft, the verification algorithm V
(π,v)
LPCP is a tuple of two

algorithms (QLPCP, DLPCP) with the properties specified in Definition 3.1. The only difference
is that the response vector y computed by the PCP oracle is an affine function y = Q>π+S>v
where S← D.

• Completeness: For every (x,w) ∈ R, the output of PLPCP(x,w) is a vector π ∈ Fm such

that V
(π,0)
LPCP (x) accepts with probability 1.

• Soundness against D-restricted provers: For all x where (x,w) /∈ R for all w, and for

all vectors π∗ ∈ Fm and v∗ ∈ Ft, the probability that V
(π∗,v∗)
LPCP (x) accepts is at most ε, where

the probability is taken over the randomness of the verifier as well as the response from the
PCP oracle.

Following Definition 3.3, we can similarly define a notion of strong soundness against D-restricted
provers.

Remark 5.11 (Interpreting Definition 5.10). Definition 5.10 can be viewed as an interpolation
between requiring soundness against provers who can only use linear strategies (no affine term at
all) and provers that can use arbitrary affine strategies (fully specify the affine term). Both of these
extremes are captured by Definition 5.10. Soundness against linear provers corresponds to setting
t = 1 and letting D be a point distribution over the all-zeroes vector 0k, while soundness against
affine provers corresponds to setting t = k and letting D be a point distribution over the identity
matrix Ik.

Theorem 5.12. Fix a statistical security parameter κ. Let R be a binary relation, F be a finite field,

and (P
(weak)
LPCP , V

(weak)
LPCP) be a strongly sound `-query linear PCP for R with constant soundness error

ε ∈ [0, 1) against linear provers. Suppose moreover that (P
(weak)
LPCP , V

(weak)
LPCP) satisfies the following

robustness property against affine provers: for any prover P ∗LPCP employing an affine strategy

Π∗ = (π∗,b∗) where b∗ 6= 0`, the verifier V
(weak)
LPCP rejects with constant probability. Fix some

parameter t ∈ N and let D be a distribution over Ft×κ`. Suppose there exists some constant c ∈ (0, 1]
such that for all non-zero v ∈ Ft,

Pr
S←D

[
nonzero(S>v) ≥ c · κ`

]
= 1− negl(κ), (5.1)

where on input a vector x ∈ Fk, nonzero(x) outputs the number of non-zero entries in x. Then,
the linear PCP (PLPCP, VLPCP) from Construction 3.4 without the random linear shift (i.e., setting
Y = Iκ`) is a (κ`)-query linear PCP for R with strong statistical soundness against D-restricted
affine provers.

Proof. Completeness follows as in the proof of Theorem 3.5. It suffices to check that the linear PCP
is statistically sound with strong soundness against D-restricted affine provers. Take any statement
x and consider a prover strategy (π∗,v∗) where π∗ ∈ Fm and v∗ ∈ Ft. We consider two cases:

• Suppose v∗ 6= 0t. Then, the verifier applies its decision algorithm to the quantity a =
Q>π∗ + S>v∗ where S ← D. Specifically, the verifier VLPCP writes a = [a1|a2| · · · |aκ] and

applies D
(weak)
LPCP to each of a1, . . . ,aκ. Next, by assumption, with overwhelming probability,

nonzero(S>v∗) ≥ c · κ`. In particular, this means that there exists some collection of c · κ

40

indices i ∈ [κ] such that ai = Q>i π
∗ + zi where Qi ∈ Fm×` is the ith query and zi 6= 0`

is a non-zero affine term. But by the robustness property on the underlying linear PCP,

D
(weak)
LPCP rejects ai with constant probability. Thus, in this case, VLPCP rejects with probability

1− negl(κ).

• Suppose v∗ = 0t. In this case, the prover’s strategy is a linear function π∗. The claim then
follows by the corresponding argument in the proof of Theorem 3.5.

The main advantage of Theorem 5.12 over Theorem 3.5 is that it is possible to achieve strong
soundness against certain algebraically-bounded provers without needing to apply a random linear
shift to the queries. Combined with a stronger notion of of linear-only vector encryption, it is
possible to construct a SNARG where the verification algorithm can be efficiently implemented
using a matrix branching program (over a composite-order ring).

Restricted linear targeted malleability. We now introduce our strengthened notion of D-
restricted targeted malleability for a (secret-key) vector encryption scheme.

Definition 5.13 (D-Restricted Targeted Malleability). Fix a security parameter λ and a finite field
F. Let D be a distribution over Ft×k for some t ∈ N. A secret-key vector encryption scheme for a
vector space over a finite field F satisfies D-restricted linear targeted malleability if for all efficient
adversaries A and plaintext generation algorithms M (on input 1k, algorithm M outputs vectors in
Fk), there exists a (possibly computationally unbounded) simulator S such that for any auxiliary
input z ∈ {0, 1}poly(λ), the following two distributions are computationally indistinguishable:

Real Distribution:

1. sk← Setup(1λ, 1k)
2. (s,v1, . . . ,vq)←M(1k)
3. cti ← Encrypt(sk,vi) for all i ∈ [q]
4. ct′ ← A({cti}i∈[q] ; z) where Decrypt(sk, ct′) 6=
⊥

5. Output
(
{vi}i∈[q] , s,Decryptsk(ct

′)
)

Ideal Distribution:

1. (s,v1, . . . ,vq)←M(1k)
2. (π,b)← S(z) where π ∈ Fq, b ∈ Ft
3. v′ ← [v1|v2| · · · |vq] · π + S>b where

S← D
4. Output

(
{vi}i∈[q] , s,v

′
i

)

At a high level, a vector encryption scheme satisfying Definition 5.13 is (at the minimum) linearly
homomorphic, but also supports a limited number of affine transformations (determined by the
distribution D). Note that this notion only makes sense in the secret-key setting. In the public-key
setting, any linearly homomorphic encryption scheme necessarily supports affine transformations
since the adversary can simply encrypt vectors of its choosing. In the secret-key setting where the
adversary is unable to generate encryptions of arbitrary vectors, the vector encryption scheme can
plausibly only support a limited set of affine transformations.

Next, we combine a vector encryption scheme that only allows a restricted set of affine homomor-
phisms with a linear PCP with soundness against prover strategies belonging to the same restricted
set of affine functions to obtain a SNARG. We state the analog of Theorem 4.6 in the context
of D-restricted linear targeted malleability and LPCPs with soundness against D-restricted affine
provers.

Theorem 5.14. Let (PLPCP, VLPCP) be a linear PCP that is sound against D-restricted affine provers
for some distribution D, and let Πvenc = (Setup,Encrypt,Decrypt) be a vector encryption scheme

41

satisfying D-restricted linear targeted malleability. Then, applying Construction 4.5 to (PLPCP, VLPCP)
and Πvenc yields a single-theorem, designated-verifier SNARG in the preprocessing model.

Proof. Identical to the proof of Theorem 4.6, except using Definitions 5.10 and 5.13 in place of
Definitions 3.2 and 4.2, respectively.

Tweaking the vector encryption scheme. Consider the vector encryption scheme from [PVW08]
in Section 4.2. Decryption in that scheme consists of taking a matrix-vector product between the
secret key S and the ciphertext vector c and then reducing each component modulo p. Notably,
modifying any single component of the ciphertext will affect the decrypted value in multiple compo-
nents of the underlying vector (provided that the rows of the secret key S do not have low-weight).
More concretely, take a ciphertext c ∈ Zn+`

q and suppose we add a fixed vector v ∈ Zn+`
q offset to

c. The decryption function then computes [[S>c + S>v]q]p. This has the semblance of applying
an affine shift to the underlying message, where the affine offset is given by a linear combination
of the rows of S with coefficients specified by the components of v. In light of this observation,
we conjecture that the vector encryption scheme from Section 4.2 plausibly satisfies D-restricted
targeted malleability where D is the distribution from which the secret key S is sampled.

The question then becomes whether there exists a linear PCP with strong soundness against
D-restricted affine provers, where D is the secret-key distribution for the encryption scheme from
Section 4.2. The best candidate is to apply Theorem 5.12 to a suitable constant-error LPCP such
as the Hadamard PCP. However, to invoke Theorem 5.12, it is necessary that for all v ∈ Zn×`q , the

product S>v where S ← D has a constant fraction of non-zero elements. This is not true when
D is the secret-key distribution for the Peikert-Vaikuntanathan-Waters encryption scheme from
Section 4.2. Specifically, when S> = [−S̄>| I`], where S̄ is uniformly random, there are many vectors
v ∈ Zn+`

q where S>v has a small (constant) number of non-zero entries (for instance, the basis
vectors en+1, . . . , en+`). The problem arises from the fact that S is sampled from a distribution where
some rows have low Hamming weight (i.e., the rows of I`). This can be addressed by substituting
a random invertible matrix U for the identity matrix in the secret key. We describe the modified
vector encryption Π′venc = (Setup,Encrypt,Decrypt) scheme below:

• Setup(1λ, 1`): Choose Ā
r←− Zn×mq , S̄

r←− Zn×`q , Ū
r←− Z`×`q , and Ē ← χ`×m, where n = n(λ),

m = m(λ), and q = q(λ) are polynomials in the security parameter. Define matrices

A ∈ Z(n+`)×m
q and S ∈ Z(n+`)×`

q as follows:

A =

[
Ā

Ū−1(S̄>Ā + pĒ)

]
S =

[
−S̄
Ū>

]
,

where I` ∈ Z`×`q is the `-by-` identity matrix. Output the secret key sk = (A,S,U).

• Encrypt(sk,v): To encrypt a vector v ∈ Z`p, choose r
r←− {0, 1}m and output the ciphertext

c ∈ Zn+`
q where

c = Ar +

[
0n

U−1v

]
.

• Decrypt(sk, c): Compute and output [[S>c]q]p.

42

By inspection, applying the secret linear shift on the messages does not affect the correctness or the
security of the scheme. Additionally, this scheme remains compatible with the modulus switching
optimization described in Section 5.4.

In addition, in this variant of the vector encryption scheme, the secret key is uniformly random

over Z(n+`)×`
q . Thus, for all v ∈ Zn+`

q , it follows that for any i ∈ [`], (S>v)i = 0 with probability

1/q over the randomness used to sample S. Since each row of S> is sampled independently, it holds
that S>v is zero in any constant fraction of the components with probability that is negligible in
the dimension `. We remark that this remains true even if S̄ and Ū are sampled from a binary
distribution (where each entry is independently 0/1 with equal probability).

Finally, putting all the pieces together, we obtain a new candidate SNARG construction with a
more lightweight verification procedure:

Corollary 5.15. Let Π′venc be the vector encryption scheme described above and suppose that Π′venc
satisfies D-restricted linear targeted malleability where D is the distribution from which the secret key
of Π′venc is sampled. Let (PLPCP, VLPCP) be the linear PCP be the output of applying Construction 3.4
without the random affine shift to the 3-query Hadamard LPCP. Then applying Construction 4.5 to
(PLPCP, VLPCP) and Π′venc yields a single-theorem, designated-verifier SNARG in the preprocessing
model.

Proof. By construction of Π′venc, the distribution D is the uniform distribution over Z(n+`)×`
q , and

thus, trivially satisfies Equation (5.1). The 3-query Hadamard LPCP (described in detail in
Appendix B) satisfies the stronger notion of “robustness” against affine queries needed to invoke
Theorem 5.12. The corollary then follows from Theorems 5.12 and 5.14.

The verification procedure for the SNARG given by Corollary 5.15 has the appealing property
that it can be efficiently implemented using a matrix branching program. Specifically, verification
consists of decrypting the encrypted response vector and then applying the Hadamard decision
algorithm to each of the decrypted responses. Verification succeeds only if all of the underlying O(κ)
Hadamard instances verify. Notably, decrypting and verifying the prover’s responses to each of of
the underlying Hadamard LPCP instances can be performed in parallel via the CRT embedding
trick described in Section 5.3. In fact, the verification algorithm for the Hadamard LPCP16 also
decomposes into two independent checks on the prover’s responses, which can also be verified in
parallel.

5.6 Concrete Parameters for Bootstrapping VBB Obfuscation

In this section, we give some concrete parameter estimates for the length and width of the branching
programs needed to implement the VBB bootstrapping construction in Section 5.2 (after applying
the optimizations of Sections 5.4 and 5.5).

Our concrete parameter estimates are based on choosing parameters for both the FHE scheme
as well as our optimized vector encryption scheme from Section 5.5. For all of our estimates, we
set the computational security parameter to λ = 80 bits and the statistical security parameter to
κ = 40 bits. Similar to other practical works on lattice-based cryptography [GHS12, DM15], we
choose our parameters based on the runtime of the best-known attack (to our knowledge) rather
than the (more pessimistic) bounds given by the worst-case reduction to hard lattice problems.

16The details of the verification algorithm are given in Appendix B.

43

Concrete parameters for LWE. The security of our core building blocks for bootstrapping
VBB obfuscation relies on the hardness of LWE. Our parameter estimates for LWE instances follow
the analysis of Ducas and Micciancio [DM15], which is itself derived from the analysis of Lindner
and Peikert [LP11]. This type of analysis has also been used as the basis for setting parameters in
other lattice-based cryptosystems [GHS12].

To achieve a distinguishing advantage of ε for the LWE problem with dimension n, modulus q,
and an error distribution χ = DZ,σ with standard deviation σ, Lindner and Peikert [LP11] estimate
that the best known attack via lattice reduction requires computing a basis with root Hermite factor

δ = δ-LWE(n, q, σ, ε) = 2(log2 β)/(4n log q),

where β = (q/σ)
√

ln(1/ε)/π. Based on an empirical study, Lindner and Peikert give the following
estimate on the runtime t(δ) of the BKZ lattice reduction algorithm needed to obtain a basis with a
root Hermite factor δ:

t(δ) ≥ 1.8/ log(δ)− 110.

We use this estimate to set our parameters. We caution readers here that our analysis is only
intended to serve as a rough estimate for the parameters under which our scheme should be secure.
For a more precise analysis, one should also take into consideration the more involved analysis
of [CN11, LN13, APS15] as well as any recent advances in lattice cryptanalysis.

The analysis of Lindner and Peikert pertains to the standard LWE setting where the secret keys
are sampled from a uniform distribution. For better control over the noise growth, it is preferable
to sample the secret key from a low norm distribution (Remark 4.10). In deriving our concrete
parameter estimates, we assume that the secret keys are sampled from a binary distribution. For a
lattice dimension n, modulus q, and error distribution χ = DZ,σ, we write binLWEn,q,χ to denote the
LWE assumption where the secret keys are instead sampled uniformly at random from the binary
distribution {0, 1}n.

While the hardness of binLWEn,q,χ reduces to the standard LWE assumption (with larger
parameters) [BLP+13], choosing the parameters according to the security reduction is overly
pessimistic. Instead, we adopt the approaches of [GHS12, DM15] and base our parameters on the
known attacks on LWE instances with a binary secret. As noted in [DM15], LWE with binary
secrets does not enjoy the same level of concrete security as standard LWE. In particular, binary
secrets allow an attacker to switch the LWE ciphertexts to a smaller modulus q′ without significantly
affecting the modulus-to-noise ratio (the parameter β). As shown in [DM15], given a binary LWE
instance binLWEn,q,χ where χ = DZ,σ, one can apply modulus switching to obtain a new binary
LWE instance binLWEn,q′,χ′ of the same dimension, but with smaller modulus q′ < q and scaled
noise distribution χ′ = DZ,σ′ where σ′ =

√
(q′/q)2σ2 + ‖s‖1 /12 ≈ σq′/q. In light of this, Ducas and

Micciancio estimate the necessary root Hermite factor needed to break an binLWEn,q,χ instance to
be

δ-binLWE(n, q, σ, ε) = min
q′≤q

δ-LWE(n, q′, σ′ =
√

(q′/q)2σ2 + ‖s‖1 /12, ε), (5.2)

where s ∈ Znq is the LWE secret. When s is sampled from a binary distribution (i.e., s
r←− {0, 1}n),

we can use n/2 as a bound on s (concretely, one can sample the keys as usual, but only take the
ones where the norm is at most n/2). Computing the minimum can be done using standard numeric
analysis tools. This is the heuristic we use when estimating our concrete parameters.

44

Fully homomorphic encryption. The first building block we require is a FHE scheme where the
decryption function can be efficiently computed by a matrix branching program, or more concretely,
a rounded inner product over a polynomial-sized ring (Section 5.3). Most existing FHE constructions
based on LWE have this property. To facilitate concrete parameter estimates, we use the lightweight
scheme by Ducas and Micciancio [DM15]. In the Ducas-Micciancio FHE scheme, ciphertexts are
plain LWE ciphertexts and decryption consists of a single rounded inner product between the secret
key and the ciphertext. Ducas and Micciancio recommend using an LWE instance with dimension
n = 500 and modulus q = 29. These parameter settings17 should correspond to approximately 80
bits of security (the requisite root Hermite factor needed to obtain a 2−40 advantage in breaking
the binary LWE assumption for their proposed set of parameters is δ = 1.008, which under the
Lindner-Peikert run-time estimates for lattice reduction algorithms, requires time ≈ 240 to compute).

Remark 5.16 (Alternative FHE Schemes). When performing long computations, it is oftentimes
more efficient (both concretely and asymptotically) to use FHE schemes where the overhead of
FHE evaluation is only polylogarithmic [GHS12] or ones that supports parallel evaluation of vectors
of plaintexts [BGV12, SV14]. Many of these alternative constructions are based on the ring-LWE
problem, where decryption corresponds to evaluating an inner product in a polynomial ring. While
it does not seem straightforward to represent these more involved decryption functions as simple
branching programs, we note that using a combination of a “branching-program-friendly” FHE
scheme (i.e. FHE scheme where decryption can be implemented by a rounded inner product over a
polynomial-size ring) with a more efficient FHE scheme gives a construction that achieves the “best
of both worlds”. The hybrid scheme works as follows:

• Setup: The public key for the hybrid FHE scheme consists of the public keys for both
underlying FHE schemes as well as an encryption of the secret key for the efficient FHE
scheme under the public key of the branching-program-friendly FHE scheme. The secret key
is the decryption key for the branching-program-friendly FHE scheme.

• Encryption: Encryption is just encryption under the public key for the efficient FHE scheme.

• Evaluation: Computing on ciphertexts is handled using the homomorphic properties of the
efficient FHE scheme.

• Decryption: Recall that ciphertexts in the scheme are all encrypted under the efficient FHE
scheme. Decryption works by first converting the ciphertext into a ciphertext that encrypts
the same message, but under the key for the branching-program-friendly FHE scheme. This is
done by first re-encrypting the ciphertext using the branching-program-friendly FHE scheme
and then homomorphically evaluating the decryption function for the efficient FHE scheme
(using the encrypted secret key provided in the public parameters). This yields an encryption
of the original message under the secret key for the branching-program-friendly FHE scheme,
which can now be decrypted.

By using this kind of composition, the computational overhead of the FHE evaluation is determined
by the asymptotic (or concrete) efficiency of the efficient FHE scheme. The possibly less efficient, but
branching-program-friendly FHE scheme is only used to homomorphically evaluate the decryption

17Due to specific details of their construction, they require security for a binary LWE instance with a much larger
modulus Q = 232. This is the modulus used to estimate the concrete security of the scheme. Note that because of
modulus switching, the final LWE ciphertext that is decrypted is still with respect to the small modulus q.

45

function of another FHE scheme, which is usually a simple circuit (of size that depends only on the
security parameter) and independent of the complexity of the obfuscated program.

SNARG system. The second building block we require is a SNARG system where the SNARG
verification procedure can be expressed as a simple branching program. As noted in Section 5.4,
while the basic SNARG obtained from directly applying Constructions 3.4 and 4.5 can be computed
using an MBP, it is unlikely to yield much concrete efficiency. To obtain a more efficient construction
(at the cost of making more aggressive assumptions about our underlying primitives), we use the
optimized variant of the SNARG construction from Section 5.5 (Corollary 5.15). We now describe
how we choose the concrete parameters for our SNARG system.

• The plaintext modulus p. Since we are instantiating our SNARG construction (Construc-
tion 4.5) using the Hadamard-based linear PCP, we require p > 2. Using larger values of p will
allow for using a smaller plaintext dimension ` (described below), but in exchange, requires a
larger ciphertext modulus q to accommodate the greater noise introduced by the homomorphic
operations. In our setting, using the smallest value of p = 3 yields the best parameters.

• The plaintext dimension `. The plaintext dimension ` corresponds to the number of LPCP
oracle queries. For the linear PCP resulting from applying Construction 3.4 to the 3-query
Hadamard LPCP, we have ` = 3`′ where `′ is the number of instances of the constant-query
LPCP we perform to obtain the desired security level. Targeting a statistical soundness error
of 2−κ, and applying Construction 3.4 to the Hadamard PCP, we require that (2/p)`

′
< 2−κ.

For p = 3, we require `′ ≥ 68 independent instances of the underlying LPCP. For our estimates,
we use a larger `′ than necessary so as to be able to use a sparser secret key distribution
(discussed below). We set `′ = 120, which corresponds to ` = 3`′ = 360.

• The ciphertext modulus q. The ciphertext modulus q is chosen based on the number of
homomorphic operations ξ the scheme needs to support (additions and scalar multiplications).
When we apply Construction 4.5 to construct a SNARG from the Hadamard PCP, the
underlying linear-only vector encryption scheme must be able to support a total of s2 + s
homomorphic additions, where s is the size of the Boolean circuit for the computation being
verified. In the case of bootstrapping for VBB obfuscation, the statement being verified is
correctness of FHE evaluation. Due to the complicated arithmetic operations involved in FHE
evaluation, the circuit needed to verify correctness of such a computation can be very large.
In this case, the quadratic overhead of the Hadamard PCP can render the scheme infeasible.
In Remark 5.17, we show that using SNARK composition techniques, it suffices that our
branching-program-friendly SNARG is able to verify computations of modest size. For our
estimates, we consider verifying computations containing up to 220 gates. Thus, we choose
the ciphertext modulus q so that the linear-only encryption scheme is able to support ξ ≥ 240

homomorphic operations (with some slack to allow for modulus switching). This corresponds
to q ≈ 259.

• The secret key distribution. The first step in SNARG verification is linear-only decryption
which requires computing a series of (rounded) inner products over Zq. Using our approach
for inner product evaluation (Section 5.3), this requires branching programs of width q ≈ 262,
which is prohibitively expensive. Thus, it is critical that we apply the modulus switching
optimization (Section 5.4) to shrink the ciphertext modulus before decryption. Since the size of

46

the branching program scales cubically in the magnitude of the reduced modulus q′ (the MBPs
are defined over an alphabet of size q), to maximize the concrete efficiency of the scheme, it is
important to minimize the value of q′. According to Lemma 5.8 (and Corollary 5.9), the value

of q′ scales with the norm of the rows of the secret key matrix S> =
[
−S̄>| Ū

]
∈ Z`×(n+`)

q .

One possibility is to choose S> uniformly from the binary distribution {0, 1}`×(n+`). An even
more aggressive option is to sample the rows from a binary distribution with a fixed Hamming
weight. This kind of secret key distribution has previously been used in [GHS12] to improve
the concrete performance of FHE.

When choosing a secret key distribution, it is important to also keep in mind the requirements
of Corollary 5.15, namely, that the distribution from which we sample the secret key should
satisfy Equation (5.1). Our goal is to minimize the weight of the rows of S> while ensuring
that each column of S> have approximately ≈ κ = 40 non-zero entries. For our estimates, we
sample each row of S̄> (each of the ` LWE secret keys) from a binary distribution with exactly
hS̄ = 130 non-zero values, each set to ±1 with equal probability. Up to small constant factors,
the number of non-zero entries in each column of S̄ can be approximated by hS̄/n · `. Similarly,
we sample each column of Ū to have hŪ = 40 non-zero entries. Thus, each row of S> has
exactly h = hS̄ + hŪ = 170 non-zero entries. For this setting of parameters, the columns of
S> should have approximately 40 non-zero entries. We estimate the concrete security of this
LWE instance using the Ducas-Micciancio heuristic for LWE instances with binary secrets
(Equation (5.2)).

• Other parameters. The other LWE parameters (the lattice dimension n and the standard
deviation σ of the error distribution χ = DZ,σ) are chosen to provide λ = 80 bits of security.
The number of samples m is set to m = 3(n + `) log q, as required by Theorem 4.13. The
reduced modulus q′ is chosen to be the smallest value such that the resulting scheme remains
correct assuming the rows of the secret key matrix S> have fixed Hamming weight h = 170.
We compute q′ based on the concrete error bounds in Lemma 5.8.18 This yields concrete
estimates n = 1175, σ = 8, and q′ ≈ 210.

Based on our analysis, to achieve a distinguishing advantage of 2−40 for a binLWEn,q,σ instance (with
secret key drawn from a fixed Hamming weight distribution) with this set of parameters (n = 1175,
q ≈ 259, and σ ≈ 9) requires computing a reduced basis with root Hermite factor δ = 1.008, which
under current estimates, requires computation time t(δ) ≈ 240.

Remark 5.17 (Reducing Overhead via SNARK Composition). While our Hadamard-based SNARG
construction has a branching-program-friendly verification procedure, there is a significant amount
of prover overhead (quadratic in the size of the computation being verified). However, if we use a
SNARK in place of the SNARG (recall that the difference between a SNARG and a SNARK is that
the soundness requirement in the SNARG is replaced by a knowledge requirement in the SNARK),
it is possible to compose several independent SNARK construction to achieve better asymptotic
efficiency. We give a high-level description of our construction:

• Minimizing prover overhead: On input a statement-witness pair (x,w), the prover first
constructs a proof of the statement using a publicly-verifiable SNARK system that minimizes

18Using the concrete error bounds of Lemma 5.8, we can use a smaller value for q′ than that recommended by
Corollary 5.9. This is because there is a lot of slack in the bounds provided by Corollary 5.9 when the LWE secret
keys are sampled from a low-norm distribution.

47

the prover overhead. One candidate is the pairing-based scheme of [GGPR13] which has
quasilinear prover overhead.

• Minimizing circuit complexity of SNARK verification: Next, the prover proves that it
knows a proof for the statement x that verifies under the public verification key of the previous
SNARK scheme. The prover’s run-time in this step scales with the size of the verification
circuit of the previous (pairing-based) SNARK. While the size of this circuit depends only
polylogarithmically on the size of the original computation, the verification circuit is still quite
large in concrete terms (due to needing to encapsulate a pairing computation). Thus, for better
concrete efficiency at the obfuscation layer, we apply an intermediate SNARK that reduces
(concretely) the size of the verification circuit. Here, we use the publicly-verifiable hash-based
constructions of computationally-sound (CS) arguments of knowledge [Mic00, Val08]. The
prover overhead of this step is only quasilinear in the size of the verification circuit if we use
the quasilinear PCPs of [BBGR16, BBC+17] to construct the CS arguments.

• Minimizing branching-program complexity of verification: As in the previous step,
the prover again proves that it knows a proof for x that verifies under the previous SNARK
scheme. This SNARK should be branching-program friendly, so we use Construction 4.5
instantiated with the Regev-based vector-encryption scheme. Note that Construction 4.5 also
yields a SNARK if we make a slightly stronger assumption about the linear-only properties
of the underlying vector encryption scheme (Remark 4.9). Due to the use of the Hadamard
LPCP, the prover’s complexity is now quadratic in the size of the verification circuit for the
previous SNARG. Since verifying CS arguments require (many) evaluation of hash functions,
we conjecture (optimistically) that using circuits of size ≈ 220 suffice.

Similar flavors of SNARK composition have been previously explored in the context of “incremental
program verification,” and decomposition of SNARKs for a complex computation into SNARKs
for simpler computations [Val08, BCCT13]. In this setting, we compose several different SNARK
constructions to optimize for different factors, thus allowing the resulting construction to inherit
the best of many worlds.

Remark 5.18 (More Efficient Linear PCPs). As noted in Remark 5.7, the simplicity of the
Hadamard LPCP verification algorithm makes it a natural building block for constructing branching-
program-friendly SNARGs. However, this simplicity comes at a high cost: a quadratic blowup
in the prover’s complexity. Suppose instead that there exists a linear PCP where the verification
algorithm is of comparable efficiency as the Hadamard LPCP, but the prover overhead is linear
(i.e., interpolating between the simplicity of the Hadamard LPCP and the (quasi)-efficiency of the
QSP-based LPCP). This can potentially give a considerable reduction to our parameter estimates
from above:

• The ciphertext modulus q. Instead of choosing q to support ≈ 240 homomorphic operations,
we can instead choose q to support ≈ 220 homomorphic operations. This means that we can
take q ≈ 239.

• Other parameters. Since we are able to use a much smaller ciphertext modulus q in this
setting, we can use a smaller lattice dimension n = 760 to obtain similar levels of security.
Since the dimension of the lattice is smaller, we can also use slightly sparser secret keys and
still satisfy the requirements of Equation (5.1). For instance, we can set hS̄ = 90 and q′ ≥ 780.

48

If we substitute this set of parameters into the concrete estimates at the end of this section, we
obtain a 20% reduction in the length of the branching program and a 68% reduction in the overall
size of the branching program, which is a nontrivial concrete improvement. Thus, we leave the
problem of constructing an LPCP with simple verification and small prover overhead as an open
problem with important concrete implications for designing practical obfuscation.

Combining FHE decryption with SNARG verification. We now describe how to concretely
implement the program in Construction 5.5 as a matrix branching program, assuming that the
underlying components (FHE decryption and SNARG verification) can be represented as matrix

branching programs. Let
(
inpf , {B

(FHE)
i,j }i∈[nf],j∈[qf]

)
be a matrix branching program of length nf

and width qf that implements the FHE decryption function with respect to a particular secret key
sk. In particular, on input a ciphertext c encrypting a bit b ∈ {0, 1} under sk, ∏

i∈[nf]

B
(FHE)
i,cinpf (i)

 eqf =

{
e1 b = 1

e2 b = 0.

Similarly, let
(
inps, {B

(SNARG)
i,j }i∈[ns],j∈[qs]

)
be a matrix branching program with length ns and width

qs that implements the SNARG verification procedure. Specifically, on input a tuple x = (c,π)
consisting of a ciphertext c and a proof π, ∏

i∈[ns]

B
(SNARG)
i,xinps(i)

 eqs =

{
e1 π is a valid proof of c

e2 otherwise.

For simplicity, suppose that the output dimension of both of these matrix branching programs
is 2 (i.e., the outputs are standard basis vectors of a 2-dimensional space). The program in
Construction 5.5 outputs 1 if and only if the SNARG verifies and the FHE ciphertext decrypts to 1.
This algorithm can be implemented as a matrix branching program in the following way:

• We construct a branching program that first performs the FHE decryption and then verifies the
SNARG. To combine the two computations, we first embed the output of the FHE decryption
in a (qs + 1)-dimensional space. Specifically, let Y ∈ {0, 1}(qs+1)×2 be the matrix where

Ye1 = eqs and Ye2 = eqs+1. Then the product Y
(∏

i∈[nf] B
(FHE)
i,cinpf (i)

)
eqf equals eqs if the FHE

ciphertext decrypts to 1 and eqs+1 if the FHE ciphertext decrypts to 0.

• Next, for each i ∈ [ns] and j ∈ [qs], define matrices C
(SNARG)
i,j as a block diagonal matrix with

B
(SNARG)
i,j in the upper left-hand corner and 1 in the lower right-hand:

C
(SNARG)
i,j =

(
B

(SNARG)
i,j 0

0 1

)
.

Consider the product

z =

 ∏
i∈[ns]

C
(SNARG)
i,xinps(i)

 ·Y ·
 ∏
i∈[nf]

B
(FHE)
i,cinpf (i)

 eqf .

49

By construction, if the FHE ciphertext decrypts to 0, then z = e3 since the matrices B
(SNARG)
i,j

are applied to the all-zeroes vector 0qs . Alternatively, if the FHE ciphertext decrypts to 1,
then z = e1 if π is a valid proof of the well-formedness of c and z = e2 otherwise. Computing
the output can be done by introducing an additional bookend vector (e2 +e3) and outputting 1
if (e2 + e3)>z = 0, and 0 otherwise. In other words, the output is 1 if and only if z = e1.

• As an optimization, we will construct our matrix branching programs over a composite-order
ring (ZN ∼= Zq1 × · · · × Zqm) and leverage the CRT embedding described in Section 5.3 to
parallelize the SNARG verification. In our case, we decompose the SNARG verification
into many independent sub-verifications and verification succeeds if and only if all of the
sub-verifications pass: z = e1 (mod pi) for all i ∈ [m]). If any of the sub-computations fails,
then for some i ∈ [m], z = e2 (mod qi) for some i, in which case (e2 + e3)>z 6= 0 (mod qi).
Thus, (e2 + e3)>z 6= 0 ∈ ZN , and the branching program outputs 0.

Given matrix branching programs that implement FHE decryption and the SNARG verification,
we can essentially concatenate them to obtain a matrix branching program for the bootstrapping
program in Construction 5.5. The length of the resulting program is the sum of the length of the
underlying programs while the dimension of the underlying matrices increases slightly.

The overall complexity. Having estimated the parameters needed for FHE decryption and our
SNARG construction, we can now derive estimates on the length and size of the (generalized) matrix
branching programs needed to implement the bootstrapping program in Construction 5.5. For our
estimates, we assume that the inputs to the obfuscated program is λ = 80 bits (e.g., an input to a
PRF).

• FHE Decryption: FHE decryption requires computing a rounded inner product between
two vectors of dimension nFHE = 500 over a modulus qFHE = 29 (based on concrete estimates
in [DM15]). Using the construction described in Section 5.3, this can be done using a matrix
branching program of length nFHE and width qFHE.

• SNARG Verification: SNARG verification consists of two steps: decrypting the prover’s
responses and applying the Hadamard verification procedure to each of the `/3 independent
instances of the Hadamard LPCP. Verification succeeds if and only if each of the underlying
verifications succeed. Both of these steps can be parallelized using the CRT trick described in
Section 5.3. Moreover, the decision algorithm for the Hadamard PCP (Equation B.1) consists
of two independent checks (Construction B.1), so these operations can also be partially
parallelized. The concrete estimates can be determined as follows:

– Verifying the first relation of Equation B.1 requires decrypting one entry of the encrypted
vector followed by computing an inner product with the ciphertext vector. Decryption
consists of a rounded inner product between two vectors of dimension nSNARG + ` =
1175 + 360 = 1535 over a modulus of size qSNARG = 210. Computing the inner product
between the bits of the statement (the input to the program and the FHE ciphertext)
with the secret verification state can be done using a branching program of length
λ+ nFHE = 580 over a much smaller field (the plaintext field Zp for the SNARG system).

– Verifying the second relation of Equation B.1 requires decrypting two entries of the
encrypted vector and checking that one is the square of the other. This can be done using

50

a branching program of length 2(nSNARG + `) = 3070. It is necessary to store the first
decrypted value in order to compare against the second. Thus, for the first decryption
(the first 1535 matrices), we use matrices of dimension qSNARG × qSNARG. For the second
decryption, we use matrices of dimension (p · qSNARG)× (p · qSNARG) where the extra factor
of p corresponds to the possible values from the first decryption.

– These checks can be implemented in parallel, provided that on any particular step, the
matrix branching program inspects the same input value. Thus, the decryption in the
first relation can be evaluated in parallel with the first decryption in the second relation.
The length of the overall branching program that implements the SNARG verification is
given by 2(nSNARG + `) + λ+ nFHE = 3650.

Putting everything together, the overall length of the branching program is 500 for the FHE
decryption and 3650 for the SNARG verification. Thus, the overall length of the branching program
needed to implement the bootstrapping functionality of Construction 4.5 is roughly 4150. The
number of components in the matrix branching program can be estimated as follows:

• The FHE decryption consists of a matrix branching program of length nFHE and uniform
width qFHE, so the total number of components is nFHE · (qFHE)3 ≈ 236.0. The cubic factor in
qFHE arises from the fact that each matrix in the branching program is qFHE × qFHE, and there
are qFHE possible matrices in each input position.

• Verifying the first SNARG relation requires decrypting an entry in the encrypted proof vector
followed by computing an inner product modulo p = 3 with the components of the ciphertext
vector. The number of encodings required is (nSNARG + `)(qSNARG)3 for the decryption and at
most (λ+ nFHE) · qFHE · p2 for the inner product computation. The total number of entries
comes out to be ≈ 240.6.

• Verifying the second SNARG relation requires two decryption operations. The first one is
performed in parallel with the decryption for the first check. The remaining decryption query
requires an additional (nSNARG + `) · qSNARG · (p · qSNARG)2 encodings (the extra factor of p2

arises from the fact that the branching program needs to “remember” the output of the first
decryption). The number of entries is then ≈ 243.8.

Summing together the different contributions and taking into account the padding needed to combine
the FHE decryption with the SNARG verification, the size of the final matrix branching program
needed to implement the bootstrapping functionality of Construction 5.5 is about 244. Thus, if we
now apply the obfuscation candidate of [BMSZ16] (instantiated appropriately with a composite-order
multilinear map [CLT13]), we can obfuscate the bootstrapping functionality in Construction 5.5.
The underlying multilinear map needs to support approximately 4150 levels of multilinearity and
the description of the obfuscated program contains roughly 244 multilinear map encodings.

Overhead of other building blocks. While the program in Construction 5.5 is an “obfuscation-
complete” primitive, the concrete efficiency of the resulting obfuscation scheme also depends critically
on the concrete efficiency of the other building blocks, namely that of the FHE scheme as well as
the intermediate SNARG schemes we rely on (Remark 5.17). We briefly discuss the overhead of
these additional components.

51

• FHE. The concrete performance of fully homomorphic encryption has improved significantly
in the last couple years. Using the scheme of Ducas and Micciancio [DM15], homomorphic
evaluation of an NAND gate requires about half a second of computation. With more
recent optimizations [CGGI16], the cost of FHE has dropped to under 0.1 seconds per gate.
The main limiting factor in this scheme seems to be the large ciphertext expansion factor
(≈ 218). Alternatively, one can also use FHE schemes that support batching (e.g., encrypting
multiple messages in a single ciphertext block [SV14, BGV12, GHS12]) to obtain schemes
with better (amortized) space complexity. For instance, using [BGV12], Gentry, Halevi, and
Smart [GHS12] show that evaluating a PRF (i.e., AES) on 120 blocks completes in just 4
minutes on a typical desktop. Note that even though the FHE scheme used in [GHS12] does
not have branching-program-friendly decryption, we can still leverage it for function evaluation
via the technique described in Remark 5.16.

• SNARG Constructions. Our bootstrapping construction requires using a SNARG to
verify correctness of an FHE evaluation, which can be a very large circuit in practice. As
described in Remark 5.17, we can compose several independent SNARK constructions to
avoid the quadratic overhead of the Hadamard-based SNARG construction from Section 4
we use in our bootstrapping construction (since it is the only SNARG with a branching-
program-friendly verification procedure). We now examine the overhead of these SNARK
constructions. The first SNARK is intended to optimize for prover efficiency, so a reasonable
candidate is the QSP-based SNARK in [GGPR13] or [BCI+13]. Both candidates have been
implemented [PHGR13, BCG+13, BCTV14] and have been shown to be effective in verifying a
number of real-world scenarios. For instance, Ben-Sasson et al. [BCG+13] show that generating
a proof for a computation with 107 gates requires just a couple hours of computation. With
further advancements in computing power as well as new optimizations, this step is unlikely
to be the bottleneck in our candidate obfuscation construction.

The second SNARK construction needed for the composition in Remark 5.17 is designed to
minimize the circuit complexity of the verifier. For this, one reasonable candidate is to use
Micali’s CS proofs [Mic00]. The primary bottleneck here is the overhead needed to encode the
computation as a PCP. While we are not aware of any existing implementations that employ
general-purpose PCPs (since these types of solutions are typically less efficient compared to
alternative approaches), recent work by Ben-Sasson et al. [BBGR16] show that for certain
parameter settings, PCPs can become practically viable and even competitive with other
techniques. We remark here that our particular goal of minimizing the circuit complexity of
SNARK verification is not one of the standard objectives in the design of SNARKs. In any
case, the recent improvements in the concrete efficiency of PCPs suggest that this step too is
not entirely out of the question.

Since existing work suggest that the other components in our candidate obfuscation construction
are implementable, the primary bottleneck in our construction is likely to be the 4150-degree
multilinear map. Since the study of multilinear maps is still in its infancy, we are optimistic that
future candidates of multilinear maps with improved efficiency will provide a viable route towards
general-purpose program obfuscation.

52

6 Conclusions

In this work, we construct the first (designated-verifier) SNARG that is quasi-optimal in both the
prover complexity as well as the proof length. Our new SNARG candidates are lattice-based, and
thus, resist all currently-known quantum attacks. Another appealing property of our SNARGs is
that proof verification is very simple (i.e., consists of taking an inner product over a finite field or a
polynomial ring, followed by checking a quadratic relation on the inner products). The simplicity
of SNARG verification makes it a natural choice for bootstrapping obfuscation. Together with
FHE and a branching-program-based obfuscation candidate, we make significant progress towards
implementable obfuscation for all circuits.

Our new lattice-based SNARG candidates rely primarily on additively-homomorphic encryption
based on integer lattices or ideal lattices. The main operations needed to construct and verify proofs
are essentially vector additions and scalar multiplications over small (polynomial-size) fields (or
polynomial rings). Since these operations are very simple and elementary (especially in comparison
to multiplications and exponentiations over an elliptic-curve group), the concrete performance of our
new lattice-based SNARGs is likely competitive with existing candidates based on other algebraic
structures. In subsequent work, we intend to implement and measure the concrete performance of our
new lattice-based SNARG constructions, as well as compare them against the existing candidates.

On the theoretical side, we leave open the problem of constructing quasi-optimal SNARGs that
achieve a stronger notion of soundness—that is, 2−λ soundness against provers of size 2λ. As noted
in Remark 4.20, our current quasi-optimal candidate in Section 4.4 achieves the weaker notion
of negl(λ) soundness against provers of size 2λ. Another interesting open problem is to construct
quasi-optimal SNARGs that are publicly-verifiable (from any assumption).

Acknowledgments

We thank the anonymous reviewers for helpful feedback on the presentation. D. Boneh and D. J. Wu
are supported by NSF, DARPA, a grant from ONR, the Simons Foundation, and an NSF Graduate
Research Fellowship. Y. Ishai and A. Sahai are supported in part from a DARPA/ARL SAFEWARE
award, NSF Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174, and 1065276, BSF
grant 2012378, NSF-BSF grant 2015782, a Xerox Faculty Research Award, a Google Faculty Research
Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. Y. Ishai is
additionally supported by ISF grant 1709/14. This material is based upon work supported by the
Defense Advanced Research Projects Agency through the ARL under Contract W911NF-15-C-0205.
The views expressed are those of the authors and do not reflect the official policy or position of the
Department of Defense, the National Science Foundation, or the U.S. Government.

References

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order
graded encoding. In TCC, 2015.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In CRYPTO,
2009.

53

[AGIS14] Prabhanjan Vijendra Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing
obfuscation: Avoiding barrington’s theorem. In ACM CCS, 2014.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In CRYPTO, 2015.

[ALM+92] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. In FOCS, 1992.

[AP13] Jacob Alperin-Sheriff and Chris Peikert. Practical bootstrapping in quasilinear time.
In CRYPTO, 2013.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error.
In CRYPTO, 2014.

[App14] Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom functions. In
ASIACRYPT, 2014.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of
learning with errors. J. Mathematical Cryptology, 9(3), 2015.

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. In EUROCRYPT,
2017.

[Ban95] Wojciech Banaszczyk. Inequalities for convex bodies and polar reciprocal lattices in
$rˆn$. Discrete & Computational Geometry, 13(2), 1995.

[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. In STOC, 1986.

[BBC+17] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan
Hamilis, Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran Tromer, and
Madars Virza. Computational integrity with a public random string from quasi-linear
PCPs. In EUROCRYPT, 2017.

[BBGR16] Eli Ben-Sasson, Iddo Bentov, Ariel Gabizon, and Michael Riabzev. Improved concrete
efficiency and security analysis of Reed-Solomon PCPPs. Electronic Colloquium on
Computational Complexity (ECCC), 23, 2016.

[BC12] Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover interactive
proofs and their efficiency benefits. In CRYPTO, 2012.

[BCC+14] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad
Rubinstein, and Eran Tromer. The hunting of the SNARK. IACR Cryptology ePrint
Archive, 2014:580, 2014.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back again.
In ITCS, 2012.

54

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In STOC, 2013.

[BCD+16] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Niko-
laenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! Practical,
quantum-secure key exchange from LWE. IACR Cryptology ePrint Archive, 2016, 2016.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
SNARKs for C: verifying program executions succinctly and in zero knowledge. In
CRYPTO, 2013.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In TCC, 2013.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of
extractable one-way functions. In STOC, 2014.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-
interactive zero knowledge for a von Neumann architecture. In USENIX Security
Symposium, pages 781–796, 2014.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
In CRYPTO, 2001.

[BFR+13] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath T. V. Setty, Andrew J.
Blumberg, and Michael Walfish. Verifying computations with state. In ACM SIGOPS
24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA,
November 3-6, 2013, pages 341–357, 2013.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO,
2001.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In EUROCRYPT, 2014.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomor-
phic encryption without bootstrapping. In ITCS, 2012.

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and
their application to more efficient obfuscation. In EUROCRYPT, 2017.

[BKW00] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. In STOC, 2000.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In STOC, 2013.

[BMSZ16] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-zeroizing
obfuscation: New mathematical tools, and the case of evasive circuits. In EUROCRYPT,
2016.

55

[BP04a] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and
3-round zero-knowledge protocols. In CRYPTO, 2004.

[BP04b] Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-key encryption
without random oracles. In ASIACRYPT, 2004.

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of chaos -
trapdoor permutations from indistinguishability obfuscation. In TCC, 2016.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In TCC, 2014.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical gapsvp. In CRYPTO, 2012.

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
Contemporary Mathematics, 324(1), 2003.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM
J. Comput., 38(2), 2008.

[BSW12] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: homomorphic
encryption for restricted computations. In ITCS, 2012.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In FOCS, 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In FOCS, 2015.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In CRYPTO, 2014.

[CFH+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter,
Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable
computation. In IEEE SP, pages 253–270, 2015.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachéne. Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds. In ASIACRYPT,
2016.

[CL08] Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP proofs from an extractability
assumption. In 4th Conference on Computability, 2008.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In CRYPTO, 2013.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private informa-
tion retrieval with polylogarithmic communication. In EUROCRYPT, pages 402–414,
1999.

56

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified
computation with streaming interactive proofs. In ITCS, pages 90–112, 2012.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In
ASIACRYPT, 2011.

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compres-
sion and modulus switching for fully homomorphic encryption over the integers. In
EUROCRYPT, 2012.

[Dam91] Ivan Damg̊ard. Towards practical public key systems secure against chosen ciphertext
attacks. In CRYPTO, 1991.

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span
programs with applications to succinct NIZK arguments. In ASIACRYPT, pages
532–550, 2014.

[DFH12] Ivan Damg̊ard, Sebastian Faust, and Carmit Hazay. Secure two-party computation
with low communication. In TCC, 2012.

[Din06] Irit Dinur. The PCP theorem by gap amplification. In STOC, 2006.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption in
less than a second. In EUROCRYPT, 2015.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO, 1986.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In EUROCRYPT, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In TCC, 2015.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In TCC, 2014.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct nizks without PCPs. In EUROCRYPT, 2013.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with
polylog overhead. In EUROCRYPT, 2012.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In TCC, 2010.

57

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In STOC, pages 113–122, 2008.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation without
rejection problem from designated verifier cs-proofs. IACR Cryptology ePrint Archive,
2011, 2011.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In STOC, 1982.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In STOC, 1985.

[Gro09] Jens Groth. Linear algebra with sub-linear zero-knowledge arguments. In CRYPTO,
2009.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI-
ACRYPT, 2010.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO,
2013.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In STOC, 2011.

[HHSS17] Shai Halevi, Tzipora Halevi, Victor Shoup, and Noah Stephens-Davidowitz. Implement-
ing bp-obfuscation using graph-induced encoding. IACR Cryptology ePrint Archive,
2017:104, 2017.

[IKO07] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short
PCPs. In CCC, pages 278–291, 2007.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with
no honest majority. In TCC, 2009.

[Jou00] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In ANTS, 2000.

[KF15] Paul Kirchner and Pierre-Alain Fouque. An improved BKW algorithm for LWE with
applications to cryptography and lattices. In CRYPTO, 2015.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In STOC, 1992.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability
obfuscation for turing machines with unbounded memory. In STOC, 2015.

[Lin16a] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In EUROCRYPT, 2016.

[Lin16b] Huijia Lin. Indistinguishability obfuscation from DDH on 5-linear maps and locality-5
prgs. IACR Cryptology ePrint Archive, 2016, 2016.

58

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive
zero-knowledge arguments. In TCC, 2012.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs
and linear error-correcting codes. In ASIACRYPT, pages 41–60, 2013.

[Lip16] Helger Lipmaa. Prover-efficient commit-and-prove zero-knowledge SNARKs. In
AFRICACRYPT, pages 185–206, 2016.

[LMA+16] Kevin Lewi, Alex J. Malozemoff, Daniel Apon, Brent Carmer, Adam Foltzer, Daniel
Wagner, David W. Archer, Dan Boneh, Jonathan Katz, and Mariana Raykova. 5Gen:
A framework for prototyping applications using multilinear maps and matrix branching
programs. In ACM CCS, 2016.

[LN13] Mingjie Liu and Phong Q. Nguyen. Solving BDD by enumeration: An update. In
CT-RSA, 2013.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based
encryption. In CT-RSA, 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, 2010.

[LV16] Rachel Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In FOCS, 2016.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4), 2000.

[Mie08] Thilo Mie. Polylogarithmic two-round argument systems. J. Mathematical Cryptology,
2(4):343–363, 2008.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, 2003.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In EUROCRYPT, 1999.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In IEEE SP, 2013.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In CRYPTO, 2008.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, 2005.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4), 1980.

[SE94] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Math. Program., 66, 1994.

59

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring.
In FOCS, 1994.

[Sim97] Daniel R. Simon. On the power of quantum computation. SIAM J. Comput., 26(5),
1997.

[SMBW12] Srinath T. V. Setty, Richard McPherson, Andrew J. Blumberg, and Michael Walfish.
Making argument systems for outsourced computation practical (sometimes). In NDSS,
2012.

[SV14] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Des.
Codes Cryptography, 71(1), 2014.

[SVP+12] Srinath T. V. Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blumberg,
and Michael Walfish. Taking proof-based verified computation a few steps closer to
practicality. In USENIX Security Symposium, pages 253–268, 2012.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In STOC, 2014.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In CRYPTO,
pages 71–89, 2013.

[TRMP12] Justin Thaler, Mike Roberts, Michael Mitzenmacher, and Hanspeter Pfister. Verifiable
computation with massively parallel interactive proofs. In HotCloud, 2012.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In TCC, 2008.

[VSBW13] Victor Vu, Srinath T. V. Setty, Andrew J. Blumberg, and Michael Walfish. A hybrid
architecture for interactive verifiable computation. In IEEE SP, pages 223–237, 2013.

[WB15] Michael Walfish and Andrew J. Blumberg. Verifying computations without reexecuting
them. Commun. ACM, 58(2):74–84, 2015.

[WSR+15] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and Michael
Walfish. Efficient RAM and control flow in verifiable outsourced computation. In
NDSS, 2015.

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In EUROCRYPT, 2015.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM, 1979.

A Succinct Non-Interactive Arguments

We review the definition of succinct non-interactive argument (SNARG) systems. For clarity of
exposition, we present our definitions for Boolean circuit satisfaction problems. Given a Boolean
circuit C : {0, 1}n × {0, 1}h → {0, 1}, the Boolean circuit satisfaction problem is defined by the
relation RC =

{
(x,w) ∈ {0, 1}n × {0, 1}h : C(x,w) = 1

}
. We often refer to x ∈ {0, 1}n as the

statement and w ∈ {0, 1}h as the witness. We write LC to denote the language (the set of

60

statements x ∈ {0, 1}n where (x,w) ∈ RC for some w ∈ {0, 1}h). For a family of Boolean circuits
C =

{
C` : {0, 1}n(`) × {0, 1}h(`) → {0, 1}

}
`∈N indexed by a parameter `, we write RC =

⋃
`∈NRC`

and LC =
⋃
`∈N LC` for the corresponding (infinite) relation and language, respectively.

Definition A.1 (Succinct Non-Interactive Arguments). Let C = {C`}`∈N be a family of circuits
indexed by a parameter `. A succinct non-interactive argument (SNARG) for the relation RC is a
tuple ΠSNARG = (Setup,Prove,Verify) of three algorithms defined as follows:

• Setup(1λ, 1`)→ (σ, τ): On input the security parameter λ and the circuit family parameter `,
the setup algorithm outputs a reference string σ and a verification state τ .

• Prove(σ, x, w) → π: On input the reference string σ, a statement x, and a witness w, the
prove algorithm outputs a proof π.

• Verify(τ, x, π)→ {0, 1}: On input the verification state τ , a statement x, and a proof π, the
verification algorithm outputs 1 if it “accepts” the proof, and 0 otherwise.

Moreover, ΠSNARG satisfies the following properties:

• Completeness: For all (x,w) ∈ RC ,

Pr[(σ, τ)← Setup(1λ, 1`);π ← Prove(σ, x, w) : Verify(τ, x, π) = 1] = 1.

• Soundness: Depending on the notion of soundness:

– Adaptive Soundness: For every polynomial-size prover P ∗,

Pr[(σ, τ)← Setup(1λ, 1`); (x, π)← P ∗(σ) :

Verify(τ, x, π) = 1 and (x,w) /∈ RC for all w] = negl(λ).

– Non-adaptive Soundness: For every polynomial-size prover P ∗, and all statements
x /∈ LC ,

Pr[(σ, τ)← Setup(1λ, 1`);π ← P ∗(σ, x) : Verify(τ, x, π) = 1] = negl(λ).

• Succinctness: Depending on the notion of succinctness:

– Fully Succinct: There exists a universal polynomial p (independent of C) such that
Setup runs in time p(λ+ log |C`|), Verify runs in time p(λ+ |x|+ log |C`|), and the length
of the proof output by Prove is bounded by p(λ+ log |C`|).

– Preprocessing: There exists a universal polynomial p (independent of C) such that
Setup runs in time p(λ+ |C`|), Verify runs in time p(λ+ |x|+ log |C`|) and the length of
the proof output by Prove is bounded by p(λ+ log |C`|).

Before proceeding, we give some intuition on the different soundness and succinctness notions.
A SNARG is adaptive if the prover can choose the statement after seeing the reference string σ;
otherwise, it is non-adaptive. Next, a SNARG is fully-succinct if the setup algorithm is efficient
(runs in time polylogarithmic in the size of the circuit); otherwise, the SNARG is a preprocessing
SNARG. For both fully-succinct as well as preprocessing SNARGs, the verifier’s runtime and the
length of the proof grow polylogarithmically in the size of the underlying circuit.

61

Public vs. designated verifiability. A SNARG is publicly verifiable if the verification state τ
is allowed to be public. Alternatively, a designated-verifier SNARG is one where security only holds
if τ remains secret. In this work, we focus exclusively on constructing designated-verifier SNARGs.
In Section 5.2, we show that designated-verifier SNARGs suffice for our primary application of
obtaining an efficient general-purpose program obfuscator.

Multi-theorem SNARGs. A useful property for SNARGs to have is the ability to reuse the
same reference string σ for multiple proofs. This is particularly important in the case of preprocessing
SNARGs where an expensive precomputation stage is needed to construct the reference string. This
multi-theorem setting can be modeled by imposing a stronger requirement where soundness should
hold even if the adversary has access to a proof verification oracle. While this stronger soundness
requirement follows immediately if the SNARG system is publicly verifiable, the same is not true in
the designated-verifier setting. In fact, by issuing carefully crafted queries to the proof verification
oracle, a dishonest prover can potentially learn information about the secret verification state, and
thus, compromise the soundness of the SNARG system.

In this work, we construct a compiler that combines an information-theoretic primitive (linear
PCPs) with a cryptographic primitive (linear-only vector encryption) to obtain a designated-verifier
SNARG. Correspondingly, we address this core issue of reusability at both the information-theoretic
level (via a stronger soundness definition) as well as at the cryptographic level (via a stronger notion
of linear-only encryption). We give more detail sin Section 3 and Appendix C.

Other properties. In addition to the basic properties outlined above, there are numerous
additional notions that pertain to SNARGs. In some applications, the soundness requirement is
further strengthened to an extractability property—that is, whenever a prover is able to convince
the verifier that a statement x is in the language, there is also an (efficient) extraction algorithm
that is able to extract a witness w for x such that (x,w) ∈ R. This gives rise to succinct arguments
of knowledge (SNARKs).

Another commonly considered notion is zero-knowledge, which roughly states that an honest
prover can generate a valid proof for any true statement without revealing any information about
the witness or how the proof is generated. As shown by Bitansky et al. [BCCT12], preprocessing
SNARKs can be combined with (possibly non-succinct) non-interactive arguments of knowledge
(NIZK arguments) to obtain zero-knowledge SNARKs (i.e., “zkSNARKs”) in the preprocessing
model. We also refer to [Gro10, Lip12, PHGR13, BCG+13, GGPR13, BCI+13, Lip13, BCTV14,
DFGK14, Lip16] for constructions and implementations of zero-knowledge SNARKs. Since we do
not require these additional notions in this work, we do not discuss them further in this paper.

B A Linear PCP from the Walsh-Hadamard Code

In this section, we review a simple linear PCP due to Arora et al. [ALM+92] which is based on
the Walsh-Hadamard code. Our presentation here is largely taken from [BCI+13, Appendix A.1].
Similar to [BCI+13], we describe our variant of the ALMSS construction for a relation R(x,w)
in terms of an arithmetic circuit over a field Zp (for some p > 2). We say an arithmetic circuit
C : Znp ×Zhp → Z`p is satisfied on an input (x,w) ∈ Znp ×Zhp if C(x,w) = 0`. The problem of Boolean
circuit satisfiability is reducible to arithmetic circuit satisfiability with only constant overhead. We
refer to [BCI+13, Claim A.2] for additional details.

62

Construction. We now describe the LPCP construction for an arithmetic circuit C : Znp×Zhp → Z`p
of size s. Let zi denote the value of the ith wire of C on an input x ∈ Znp and a witness w ∈ Zhp .
The wires zi for i ∈ [n] correspond to the values of the input wires, and the wires zs−i+1 = 0 for
i ∈ [`] correspond to the values of the output wires. An honestly generated proof consists of a
vector π ∈ Zs+s2p whose components are the values z1, . . . , zs ∈ Zp and the products zizj ∈ Zp for
all i, j ∈ [s]. If we define z = [z1, . . . , zs], then we can write π = [z, z⊗ z]. To verify the proof, the
verifier performs the following four consistency checks:

1. Consistency of π: each entry zizj is the product of the corresponding zi and zj .

2. Input consistency: zi = xi for all i ∈ [n].

3. Output consistency: zs−i = 0 for all i ∈ [`].

4. Gate consistency: For each gate, the value of the output wire is consistent with the value
of its input wires. In particular, for addition gates with input wires i1, . . . , im and output wire

k, this corresponds to checking that
(∑m

j=1 zij

)
− zk = 0. For the multiplication gates with

input wires i, j and output wire k, this corresponds to checking that zizj − zk = 0.

To verify the first condition, the verifier requests a random linear combination of the zi’s and a
corresponding linear combination of the product terms zizj ’s whose sum corresponds to the square
of the first query. The verifier then checks that the square of the oracle’s response to the first query
matches the oracle’s response to the second query. By the Schwartz-Zippel lemma, an inconsistent
proof π satisfies this quadratic relation with probability at most 2/p.

The remaining three consistency checks can be performed by taking a random linear combination
of the left-hand side of the relations (a function in the zi’s) and comparing against the corresponding
combination of the right-hand side of the relations (a function of the xi’s). If π is consistent, we
conclude via the Schwartz-Zippel lemma that the verifier will reject a inconsistent wire assignment
with probability at least 1/p.

Construction B.1 (Linear PCP from the Walsh-Hadamard Code). Let C : Znp × Zhp → Z`p be an
arithmetic circuit of size s over Zp. The prover and verifier algorithms are then defined as follows:

• Prover’s Algorithm PLPCP: On input (x,w) ∈ Znp × Zhp where C(x,w) = 1, the prover
computes the values z1, . . . , zs for the wires of C. It sets z = [z1, . . . , zs] ∈ Zsp and outputs the

proof π = [z, z⊗ z] ∈ Zs+s2p .

• Verifier’s Query Algorithm QLPCP: The query algorithm QLPCP has hard-coded inside

it a matrix AC ∈ Zs×(s+s2)
p and a vector bC ∈ Zs−np . Both AC and bC can be efficiently

computed (in linear time) from the circuit C. These correspond precisely to the consistency
checks enumerated above. Then, the query algorithm outputs a tuple of three query vectors
(q1,q2,q3), where q1,q2,q3 ∈ Zs+s2p , are constructed as follows:

1. Sample u
r←− Zsp. Let ux ∈ Znp be the first n components of u and let uC ∈ Zs−np be the

last s− n components of ui. Let q1 = u ·AC .

2. Sample v
r←− Zsp. Set q2 = [v, 0s

2
] and q3 = [0s,v ⊗ v].

63

The query algorithm constructs the query matrix Q ∈ Z3×(s+s2)
p whose columns are the

query vectors (q1,q2,q3). It outputs the query matrix Q and the state st = (uC ,ux), where
uC = 〈uC ,bC〉.

• Verifier’s Decision Algorithm DLPCP: Let a1, a2, a3 ∈ Zp be the prover’s responses to the
verifier’s query. The verifier accepts if

a1 − uC + 〈ux,x〉 = 0 and a2
2 − a3 = 0. (B.1)

Lemma B.2. Let C : Znp × Zhp → Z`p be an arithmetic circuit. Then, Construction B.1 is a 3-query
LPCP for RC with strong soundness error 2/p against affine provers and query length s+ s2.

Proof. First, we show that Construction B.1 satisfies strong soundness against linear provers. Take
any input x ∈ Zsp and any proof π∗ ∈ Zs+s2p . Let z ∈ Zsp denote the first s components of π∗. We
consider two possibilities:

• The proof π∗ is inconsistent, namely π∗ 6= [z, z⊗ z]. In this case, recall the second verification
condition

〈π∗,q2〉2 − 〈π∗,q3〉 = a2
2 − a3

?
= 0.

By construction of q2 and q3, the left-hand side of this expression can be viewed as a quadratic
test polynomial tπ∗(v) in the random test vector v ∈ Zsp chosen by the verifier. Since π∗

does not correspond to a consistent assignment, the polynomial tπ∗ is not the identically zero
polynomial in v. By the Schwartz-Zippel lemma, for v

r←− Zsp, the value tπ∗(v) is zero with
probability at most 2/p. In this case, the verifier accepts with probability at most 2/p.

• The proof π∗ is consistent, namely π∗ = [z, z⊗ z] for some assignment z ∈ Zsp. In this case,
the second verification condition is satisfied. We just consider the first verification condition.
We express the first verification condition as a linear polynomial t′π∗(u) in the random test
vector u ∈ Zsp chosen by the verifier. There are two cases to consider. Suppose z corresponds
to a valid assignment to all of the wires of the arithmetic circuit C on input x ∈ Znp and some

witness w ∈ Zhp where C(x,w) = 0`. In this case, tπ∗ is the identically zero polynomial over
Zp, and so, the first verification condition is satisfied for all i ∈ [κ], and the verifier accepts
with probability 1.

Otherwise, suppose z corresponds to an inconsistent labeling of the wires of C or to a consistent
labeling for an input (x′,w′) where either x 6= x′ or C(x,w′) 6= 0`. By construction, t′π∗ is not
the identically zero polynomial over its input u, so by the Schwartz-Zippel lemma, t′π∗(u) = 0
with probability at most 1/p. Thus, the verifier accepts with probability at most 1/p.

This suffices to show that Construction B.1 satisfies strong soundness against linear provers with
soundness error 2/p. To conclude, we show that the same construction actually enjoys strong
soundness against affine provers. Consider an affine strategy Π∗ = (π∗,b∗) where π∗ ∈ Zs2+s

p and
b∗ ∈ Z3

p. We just consider the case where b∗ 6= 0.

• Suppose b∗2 6= 0 or b∗3 6= 0. Then the second verification condition becomes

(〈π∗,q2〉+ b2)2 − 〈π∗,q3〉 − b3
?
= 0.

64

Writing q2 and q3 in terms of v, and assuming that at least one of b∗2, b
∗
3 is non-zero, this is

then a non-zero polynomial in v for all π∗ ∈ Zs2+s
p . By Schwartz-Zippel, this check passes

with probability at most 2/p.

• Suppose b∗1 6= 0. Then the first verification condition becomes

〈π∗,q1〉+ b1 − uC + 〈ux,x〉
?
= 0.

Now, q1, uC and ux are all linear functions of u (no affine term), so this is necessarily a
non-zero polynomial in u. By Schwartz-Zippel, the verifier accepts with probability at most
1/p.

We have shown that in each case, either the verifier accepts with probability 1, or it accepts with
probability 2/p. This suffices to show strong soundness against affine provers with soundness error
2/p.

Remark B.3 (Hadamard LPCP and Affine Provers). The proof of Lemma B.2 shows that the
verifier in the Hadamard LPCP rejects all non-linear strategies with probability at least 1−2/p. This
property is useful when we use the Hadamard LPCP as a building block to construct statistically
sound LPCPs satisfying relaxed notions of soundness against affine provers (e.g., Definition 5.10
and Theorem 5.12).

C Multi-Theorem Designated Verifier SNARGs

In Theorem 4.6 of Section 4.1, we showed how a vector encryption scheme satisfying linear targeted
malleability can be combined with a linear PCP with soundness against affine provers to obtain
a single-theorem, designated-verifier SNARG. In this section, we introduce a stronger notion of
linear-only encryption that can be combined with linear PCPs satisfying strong soundness against
affine provers to obtain multi-theorem SNARGs. However, as noted in Section 4.1, it is interesting
to see whether the simpler definition of linear targeted malleability together with strongly sound
LPCPs already suffices in the multi-theorem setting. We begin by formally introducing the notion
of a multi-theorem SNARG.

Definition C.1 (Adaptive, Multi-Theorem SNARG). Let C = {C`}`∈N be a family of circuits
indexed by a parameter `. Let ΠSNARG = (Setup,Prove,Verify) be a SNARG for the relation RC.
Then, ΠSNARG is an adaptive, multi-theorem SNARG if for all polynomial-size provers P ∗, the
following holds:

Pr[(σ, τ)← Setup(1λ, 1`); (x, π)← (P ∗)Verify(τ,·,·)(σ) :

Verify(τ, x, π) = 1 and (x,w) /∈ RC for all w] = negl(λ).

In other words, soundness should hold even if the prover has access to a proof verification oracle
Verify(τ, ·, ·).

Next, we introduce a stronger notion of linear-only encryption that can be used to obtain a
multi-theorem SNARG (via the same construction as Construction 4.5). In order to show a SNARG
system is multi-theorem, we need a way to simulate the prover’s queries to the verification oracle. In
past works [BP04a, BP04b, BCI+13] this has been handled by defining an interactive extractability
assumption. Here, we extend the definition in [BCI+13, Definition C.6] to the vector case.

65

Definition C.2 (Linear-Only with Interactive Extraction [BCI+13]). Fix a security parameter λ.
Let Πvenc = (Setup,Encrypt,Decrypt) be a secret-key vector encryption scheme where the message
space consists of vectors of Zp-elements. Let M be a message generation algorithm that on input
1`, outputs a sequence of vectors in Z`p. Let z ∈ {0, 1}poly(λ) be some auxiliary input. We define the
interactive linear-only extraction game between A and E as follows:

1. Setup phase:

• sk← Setup(1λ)

• (v1, . . . ,vm)←M(1`)

• cti ← Encrypt(sk,vi) for all i ∈ [m]

2. Query phase: for all i ∈ [q] where q = poly(λ):

• ct′i ← A(ct1, . . . , ctm; e1, . . . , ei−1; z)

• Πi ← E(ct1, . . . , ctm; i; z) where Πi is either an affine function (πi,bi) or ⊥ where
πi ∈ Zmp and b ∈ Z`p

We say that A wins the game if one of the following conditions hold:

• For some i ∈ [q], Decrypt(sk, ct′i) = ⊥ but Πi 6= ⊥.

• For some i ∈ [q], Decrypt(sk, ct′i) 6= ⊥ and either Πi = ⊥ or Decrypt(sk, ct′i) 6= ai where
Πi = (πi,bi) and ai = [v1|v2| · · ·vm] · π + b

Finally, we say that Πvenc satisfies linear-only with interactive extraction if for all polynomial-size
interactive adversaries A, there exists a polynomial-size interactive extractor E such that for any
auxiliary input z ∈ {0, 1}poly(λ), any plaintext generation algorithm M, the probability that A wins
the above interactive linear-only extraction game is negligible.

We note state the corresponding theorem that applying Construction 4.5 to a linear PCP with
strong soundness against affine provers and a vector encryption scheme satisfying the stronger
notion of linear-only encryption with interactive extraction suffices to construct a multi-theorem
SNARG. The proof follows analogously to the proof in [BCI+13, Lemma C.8].

Theorem C.3 (Multi-Theorem SNARG [BCI+13, adapted]). Let (PLPCP, VLPCP) be a linear PCP
that is strongly sound against affine provers. Let Πvenc = (Setup,Encrypt,Decrypt) be a linear-only
encryption scheme that satisfies linear-only with interactive extraction (Definition C.2). Then,
applying Construction 4.5 to (PLPCP, VLPCP) and Πvenc yields an adaptive, multi-theorem SNARG
in the preprocessing model. Moreover, if (PLPCP, VLPCP) satisfies strong knowledge against affine
provers, then applying Construction 4.5 to (PLPCP, VLPCP) and Πvenc yields an adaptive, multi-theorem
SNARK in the preprocessing model.

Remark C.4 (Double-Encryption.). As noted in [BCI+13, Remark 5.6], encryption schemes that
allow for “oblivious sampling” of ciphertexts cannot satisfy Definition C.2. To potentially satisfy
Definition C.2, it should be the case that the set of strings c where Decrypt(sk, c) 6= ⊥ should be
sparse (i.e., an adversary cannot simply sample a random string c that successfully decrypts to a
valid vector). Certainly, the vector encryption scheme from Section 4.2 does not satisfy this property
since Decrypt(sk, c) 6= ⊥ for all strings c in the ciphertext space.

66

A heuristic method to prevent oblivious sampling is to “sparsify” the ciphertext space using
“double-encryption” [GGPR13, BCI+13]. Specifically, an encryption of a vector v ∈ Z`p consists of
two encryptions (ct1, ct2) of v under two independent secret keys sk1 and sk2, respectively. The secret
key for the vector encryption includes the secret keys of both underlying schemes. During decryption,
ct1 and ct2 are decrypted using sk1 and sk2, respectively. The decryption algorithm outputs ⊥ if ct1
and ct2 do not decrypt to the same value; otherwise, the output is Decrypt(sk1, ct1). Intuitively, if the
adversary was to sample random vectors from the ciphertext space, with overwhelming probability,
the two ciphertexts will not decrypt to the same vector. We conjecture that this modified version of
Regev-based vector encryption satisfies the stronger notion of linear-only encryption as defined in
Definition C.2. Thus, with a factor of 2 overhead, we can obtain multi-theorem SNARGs (resp.,
SNARKs) based on any LPCP satisfying strong soundness (resp., knowledge) against affine provers.

67

	Introduction
	Background
	Our Results: New Constructions of Preprocessing SNARGs
	Our Results: Concrete Efficiency of Bootstrapping Obfuscation

	Preliminaries
	Linear PCPs
	Constructing Linear PCPs with Strong Soundness

	SNARGs from Linear-Only Vector Encryption
	Vector Encryption and Linear Targeted Malleability
	A Candidate Lattice-Based Linear-Only Vector Encryption Scheme
	Our Lattice-Based SNARG Candidate
	Quasi-Optimal SNARGs from Ideal Lattices

	Concrete Efficiency of Bootstrapping VBB Obfuscation
	Preliminaries
	Bootstrapping for VBB Obfuscation via FHE and SNARGs
	Simple Functions over Zq via Branching Programs
	Modulus Switching for Faster SNARG Verification
	Simplifying the SNARG Decision Algorithm
	Concrete Parameters for Bootstrapping VBB Obfuscation

	Conclusions
	Succinct Non-Interactive Arguments
	A Linear PCP from the Walsh-Hadamard Code
	Multi-Theorem Designated Verifier SNARGs

