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Abstract. Cryptographic agility is the ability to switch to larger crypto-
graphic parameters or different algorithms in the case of security doubts.
This very desirable property of cryptographic systems is inherently dif-
ficult to achieve in cryptocurrencies due to their permanent state in
the blockchain: for example, if it turns out that the employed signature
scheme is insecure, a switch to a different scheme can only protect the
outputs of future transactions but cannot fix transaction outputs already
recorded in the blockchain, exposing owners of the corresponding money
to risk of theft. This situation is even worse with Confidential Trans-
actions, a recent privacy-enhancing proposal to hide transacted mone-
tary amounts in homomorphic commitments. If an attacker manages to
break the computational binding property of a commitment, he can cre-
ate money out of thin air, jeopardizing the security of the entire currency.
The obvious solution is to use statistically or perfectly binding commit-
ment schemes but they come with performance drawbacks due to the
need for less efficient range proofs.
In this paper, our aim is to overcome this dilemma. We introduce switch
commitments, which constitute a cryptographic middle ground between
computationally binding and statistically binding commitments. The key
property of this novel primitive is the possibility to switch existing com-
mitments, e.g., recorded in the blockchain, from computational binding-
ness to statistical bindingness if doubts in the underlying hardness as-
sumption arise. This switch trades off efficiency for security. We provide a
practical and simple construction of switch commitments by proving that
ElGamal commitments with a restricted message space are secure switch
commitments. The combination of switch commitments and statistically
sound range proofs yields an instantiation of Confidential Transactions
that can be switched to be resilient against post-quantum attackers try-
ing to inflate the currency.

1 Introduction

The security of Bitcoin relies on cryptographic hardness assumptions, e.g., the
hardness of computing discrete logarithms on the secp256k1 [3] elliptic curve.
Advances in solving the discrete logarithm problem can lead to uncertainty about
whether currently deployed key sizes or algorithms are still safe.

In this situation, the obvious step is to obsolete current parameters, and
switch to larger parameters or even entirely different algorithms in the system.



Since Bitcoin relies on the hardness of the discrete logarithm problem for un-
forgeability of ECDSA signatures, this just ensures security of future transactions
but cannot fix already performed transactions: the current unspent transaction
outputs in the blockchain are still protected by the obsolete cryptographic pa-
rameters.

While this is a very unfortunate situation, because users’ funds are at risk
of theft, it is then the responsibility of users to spend these outputs to fresh
addresses of their own, thereby creating new unspent outputs protected by new
keys and possibly new cryptographic algorithms. (After this step, the attacker
can still break old signing keys. However, then consensus will ensure that the old
outputs are already spent and thus the signing keys are worthless.) To sum up,
individual users may lose their money if they fail to perform this safety measure,
but the security of the Bitcoin system as a whole is unaffected.

However, the situation will be much worse in a cryptocurrency with Confi-
dential Transactions (CT) [9,6]. CT is a privacy-enhancing technology thas has
been proposed as an extension to Bitcoin. The proposal is currently tested and
evaluated in the Elements Alpha sidechain [4]; moreover, it has been successfully
deployed in the cryptocurrency Monero [11].

The purpose of CT is to hide the monetary amounts in transactions by re-
placing plain amounts by commitments to the amounts. Since the commitment
scheme used is additively homomorphic, the creator of a transaction can easily
prove to the network that a transaction is balanced, i.e., the sum of its outputs
is not more money than the sum of its inputs. The proof essentially opens the
commitment to the homomorphic sum of the inputs minus the outputs to zero,
which does not reveal the individual monetary amounts of the inputs and out-
puts in the transaction. To be sound, a non-interactive zero-knowledge proof
is added to each commitment to show that the committed value is in a certain
range. These so-called range proofs ensure that the computation of the sum does
not overflow.

The current CT proposal relies on Pedersen commitments on an elliptic curve
computed as c = gmhr, where m is the message, r is a random value, and g and
h are public generators of the elliptic curve group. Pedersen commitments are
only computationally binding under the assumption that computing discrete log-
arithms is hard. Thus, if an attacker manages to break one discrete logarithm
with current parameters, the balance property of the currency breaks down with
catastrophic consequences: Knowledge of logg h enables the attacker to open
each of his commitments, no matter what amount it is supposed to commit to,
to an arbitrary amount of money. That is, the attacker can effectively create
an arbitrary amount of money, limited only by the maximum amount of money
that can be transferred in a transaction. Even worse, this attack will go un-
noticed due to the hiding property of the commitments. As a consequence, if
the attacker manages to compute a single discrete logarithm, not only is the
individual security of funds threatened, but the entire currency is doomed.

As a consequence, the situation is much worse with CT than without CT,
when there is doubt in the hardness of the selected parameters. With CT, the



only safe way out is to introduce new parameters or algorithms and force users
to spend unspent transaction outputs using the obsolete parameters before some
hard deadline T . After time T , such obsolete outputs will not be spendable
anymore, i.e., the corresponding funds will expire, effectively destroying money.
This is clearly highly undesirable and it is not clear at all if such a change will
be accepted by miners.

2 Switch Commitments

The obvious way to overcome all of the aforementioned issues is to use a com-
mitment scheme that is statistically binding, i.e., it is binding even for a com-
putationally unrestricted attacker. For instance, just adding gr turns a compu-
tationally binding Pedersen commitment into a statistically binding ElGamal
commitment.1

However, this modification requires efficient range proofs particularly suited
to the new commitment scheme and, as a consequence, precludes the use of the
highly optimized range proofs [13,8] developed for Pedersen commitments.

Instead, we aim for a solution compatible with the efficient range proofs.
Our tool to achieve this goal is a novel security notion between computational
and statistical bindingness. We introduce switch commitments, which are com-
mitments with a partial and a full verification algorithm and special binding
properties as follows.

– The commitment is computationally binding when partially verified.

– The commitment is statistically binding when fully verified.

– The commitment is everlastingly binding. This novel property captures the
essence of switch commitments. It states that if the commitment is created
by a computationally bounded attacker, and can be opened to some mes-
sage when partially verified, then later even a computationally unbounded
attacker can open the commitment to a different message when fully verified.

These properties enable verifiers to use the commitment scheme in a compu-
tationally binding or a statistically binding way, depending on the verification
algorithm used. In particular, everlasting bindingness ensures that it is possible
to start with partial verification and then switch to full verification, even for
already existing commitments, e.g., commitments stored in the blockchain.

We prove that an ElGamal commitment (gmhr, gr) with a message space of
polynomial size is a homomorphic switch commitment where the partial verifica-
tion algorithm ignores the element gr and verifies only the Pedersen commitment
gmhr. Since the message space of commitments used in CT is restricted to inte-
gers in a fixed range to avoid overflow anyway, this switch commitment scheme
is an optimal choice if a trade-off between security and performance is desired.

1 The ElGamal commitment is actually even perfectly binding. We stick to the more
general statistical property in this work.



2.1 Usage in Confidential Transactions

A switch commitment scheme can be used in CT as follows: When performing a
transaction now, the network relies only on the partial verification to ensure that
the transaction is balanced, i.e., the transaction does not generate money out of
thin air. In particular, creators of transactions are forced to prove that they can
open the commitments to messages such that no money will be created and the
partial verification algorithm accepts the openings. While this means that the
balance property holds only computationally, it is sufficient to use range proofs
that cover only partial verification, i.e., the creator of the commitment must only
demonstrate that he can open the commitment to a value in range when the
opening is partially verified. Applied to ElGamal commitments, this effectively
means that it suffices for the range proof to cover only the first element, which is
a Pedersen commitment. This is more efficient because the most efficient known
range proofs systems rely on Pedersen commitments.

In the future, if there is serious doubt about the cryptographic strength of the
used commitment scheme or its parameters, a soft-fork can require confidential
transactions created after some time T to be fully verified. Then, creators of
transactions are forced to prove that they can open commitments only to values
such that no money will be created, and that the full verification algorithm will
accept this opening. This means that further transactions are required to provide
proofs of the balance property with respect to full verification. In other words,
no attacker can spend an already existing output with more money than it is
supposed to contain, even if this output was created by the attacker before T
(when the attacker was assumed to be computationally bounded). These proofs
of the balance property require range proofs, which are potentially less efficient
than range proofs which only cover partial verification. As a result, this switch
to different range proofs trades off efficiency for security.

Efficiency Comparison of Known Range Proof Systems. Assume we would like to
prove that the committed value m is in the range [0, bn]. We further assume that
we rely on elliptic curves, so group and field elements are of roughly the same size.
For Pedersen commitments, the smallest known range proof has been proposed
by Back and Maxwell [13] and needs bn+1 elements. For ElGamal commitments,
the smallest known range proof has been proposed by Andreev [1] and needs
(b+ 1)n+ 1 elements. Consequently, range proofs for Pedersen commitments are
more efficient.

Soundness of the Range Proofs. All discussed range proofs for ElGamal commit-
ments are constructed using the Fiat-Shamir transform. They are sound even if
the attacker is able to compute discrete logarithms, and a recent result of Un-
ruh [15] shows that their soundness holds up in a post-quantum world. That is,
an instantiation of CT using ElGamal commitments and one of the aforemen-
tioned range proof systems is secure against post-quantum attackers trying to
break the balance property.

We note that, even though the soundness of the aforementioned proofs is
unconditional in the random oracle model, the soundness only holds against



computationally bounded attackers due to the hash function in the Fiat-Shamir
transform. This means that even the usage of switch commitments in CT can
only protect against further advances in the discrete logarithm problem but
not against a failure of the hash function used in the Fiat-Shamir transform.
Consequently, larger parameters are necessary for the post-quantum soundness
of the range proofs as compared to classical security.

Hidingness of the Commitments. Note that switch commitments can only be
computationally hiding, so the privacy of individual commitments cannot be
guaranteed if we assume that the underlying problem is not hard anymore. How-
ever, giving up privacy is arguably better than putting the security of the entire
currency at risk.

Observe that a soft-fork is a possible way to perform the switch, but it is
not strictly necessary. In the time until the soft-fork is deployed (or if the fork
cannot be agreed upon), recipients could alternatively just force the new rules
by refusing to accept payments via non-statistically secure outputs created after
time T (and any of their child transaction outputs in the transaction graph),
effectively rendering the funds worthless.

3 Preliminaries

In this section we introduce the notation and the cryptographic primitives that
we will use throughout our work. We denote by λ ∈ N the security parameter
and by poly(λ) any function that is bounded by a polynomial in λ. We denote
any function that is negligible in the security parameter with negl(λ). We say
that an algorithm is ppt if its running time is bounded by some function poly(λ).
Given a set S, we denote by x← S that x is uniformly sampled from S.

3.1 Commitments

A commitment scheme [12] is a two-phase protocol between a sender and a
receiver. In the first phase, the sender commits to a message m with a string
com. In the second phase, the sender reveals the opening information op and
the message m to the receiver, who can check whether com was indeed a valid
commitment on m. All algorithms have access to a public random string crs
generated by a trusted setup party.

A commitment scheme is computationally hiding if commitment itself does
not reveal information about the message to a computationally bounded at-
tacker.

Definition 1 (Computationally Hiding). A commitment scheme with com-
mitment algorithm Commit is computationally hiding if there exists a negligi-
ble function negl(λ) such that for all ppt attackers A, for a randomly sampled
crs← Setup(1λ), and for all pairs of messages (m0,m1), we have that

Pr [A(crs, com) = b | b← {0, 1}; com← Commit(crs,mb)] ≤
1

2
+ negl(λ).



A commitment scheme is binding if no sender is able to output openings
(op, op′) for the same commitment com such that they open it to two different
values. We consider binding against computationally bounded and unbounded
attackers.

Definition 2 (Computationally and Statistically Binding). A verification
algorithm Verify is computationally binding if there exists a negligible function
negl(λ) such that for all ppt attackers A and for a randomly sampled crs ←
Setup(1λ), we have that

Pr

Verify(crs, com, op,m) = 1
∧ Verify(crs, com, op′,m′) = 1
∧ m 6= m′

∣∣∣∣∣∣ (com, op,m, op′,m′)← A(crs)

 ≤ negl(λ).

Statistical bindingness is defined identically except that A is computationally
unbounded.

3.2 Hardness Assumptions

Here we formally describe the computational hardness assumptions that we need
for the security of our construction. First, we introduce the discrete logarithm
assumption.

Definition 3 (Discrete Logarithm Assumption). Let G be a multiplicative
cyclic group of order p proportional to the security parameter λ and let g be
a generator of G. We say that the discrete logarithm problem is hard if, for
a random integer x ∈ Zp and for all ppt attackers A, there exists a negligible
function negl(λ) such that

Pr [A(G, g, gx) = x] ≤ negl(λ).

Second, we formalize the computational Diffie-Hellman problem and the in-
verse computational Diffie-Hellman problem. These problems are known to be
equivalent [2].

Definition 4 (Computational Diffie-Hellman Assumption). Let G be a
multiplicative cyclic group of order p proportional to the security parameter λ
and let g be a generator of G. We say that the computational Diffie-Hellman
problem is hard if, for two random integers x, y ∈ Zp and for all ppt attackers
A, there exists a negligible function negl(λ) such that

Pr [A(G, g, gx, gy) = gxy] ≤ negl(λ).

Definition 5 (Inverse Computational Diffie-Hellman Assumption). Let
G be a multiplicative cyclic group of order p proportional to the security parameter
λ and let g be a generator of G. We say that the inverse computational Diffie-
Hellman problem is hard if, for a random integer x ∈ Zp and for all ppt attackers
A, there exists a negligible function negl(λ) such that

Pr
[
A(G, g, gx) = gx

−1
]
≤ negl(λ),



where x−1 denotes the multiplicative inverse of x.

Finally, we formalize the decisional Diffie-Hellman problem.

Definition 6 (Decisional Diffie-Hellman Assumption). Let G be a multi-
plicative cyclic group of order p proportional to the security parameter λ and let
g be a generator of G. We say that the decisional Diffie-Hellman problem is hard
if, for three random integers x, y, z ∈ Zp and for all ppt attackers A, there exists
a negligible function negl(λ) such that:

Pr

[
A(G, g, gx, gy, h) = b | b← {0, 1};h =

{
gxy if b = 0

gz if b = 1

]
≤ 1

2
+ negl(λ).

4 Problem Description

The main ingredient of CT [9,6] is homomorphic Pedersen commitments [12].
Given a group G of prime order p, and two generators g and h, a Peder-
sen commitment on a message m consists of a single group element computed
as gmhr, for some r ∈ Zp chosen uniformly at random. The opening infor-
mation is the tuple (m, r) and the verifier can check the validity of a given
commitment by simply recomputing it. Commitments are homomorphic due to
gmhr · gm′hr′ = gm+m′hr+r

′
. It is easy to see that the commitment scheme is

information-theoretically hiding, and that it is computationally binding under
the discrete logarithm assumption.

Loosely speaking, a confidential transaction contains a collection of commit-
ments, whose messages add up to zero, and a publicly verifiable proof that this is
the case, which is essentially just opening of the homomorphic sum commitment
to zero. Additionally, each commitment comes with a range proof that demon-
strates that the committed integer value lies within a certain range [0, d], where
d is some fixed value that determines the maximum number of currency units
allowed in a single transaction output.2 We remark that, for the specific case of
Pedersen commitments, there exist efficient computationally sound range proofs
based on borromean ring signatures [8] and optimizations [13].

4.1 Attacker Model

We consider an attacker whose goal is to break the binding property of a com-
mitment by computing a commitment c over a certain value m for a confidential
transaction and later on perform a transaction opening c to some m′ 6= m (or
just proving that he knows how to open c to m′ 6= m). Clearly this implies that
the attacker was able to create money if m′ > m.

2 In fact, the value supported by CT is expressed by a floating point number, with
the exponent being public and only the mantissa hidden in the commitment [9,6].
We ignore the public exponent in our description, because it does not affect our
treatment. The valid range of values for the mantissa is [0, 232 − 1], i.e., d = 232 − 1
satoshis (currency units).



If we consider an attacker that is computationally bounded at the time of
the generation of a commitment, but later on unbounded, then it is easy to see
that the current implementation of confidential transactions is no longer secure:
An attacker could honestly compute a commitment to some small value m as
c = gmhr and then later on open it to any value m′ > m by computing x = logg h
and r′ = (m−m′)/x+ r. It is easy to see that (m′, r′) is a valid opening for c.

Such a scenario may appear artificial at first glance, but one must consider
that system parameters are chosen based on an estimation of the progress of the
field, and therefore it is possible that unexpected developments of algorithms or
new technologies render current choices for key lengths obsolete. Among others,
the advent of quantum computers would imply an immediate breakdown of all
systems based on discrete logarithm-related assumptions. Therefore we believe
that considering an attacker that is computationally bounded only during the
execution of the protocol constitutes a problem of practical relevance. We note
that a similar model has already been considered for privacy properties in the
context of electronic voting [10], multi-party computation [14], and encryption
in the bounded storage model [7].

4.2 Switch Commitments

Here we extend the notion of a commitment scheme to support the switching
functionality and we formally introduce the security definitions for our primitive.

Definition 7 (Switch Commitment Scheme). A switch commitment scheme
(Commit,Verifypart,Verifyfull) consists of four ppt algorithms as follows:

– crs← Setup(1λ): Given the security parameter λ, the setup algorithm Setup
outputs a public random string crs.

– (com, op)← Commit(crs,m): Given the public random string crs, and a mes-
sage m, the commitment algorithm Commit outputs a commitment com and
opening information op.

– b← Verifypart(crs, com, op,m): Given the public random string crs, a message
m, a commitment com and opening information op, the partial verification
algorithm Verifypart outputs 1 iff op is a valid partial opening for commitment
com on message m.

– b← Verifyfull(crs, com, op,m): Given the public random string crs, a message
m, a commitment com and opening information op, the full verification al-
gorithm Verifyfull outputs 1 iff op is a valid full opening for commitment com
on message m.

A switch commitment essentially defines two commitment schemes, namely
a scheme with the partial verification algorithm and a scheme with the full
verification algorithm. We require that both schemes fulfill standard security
notions.

Definition 8 (Standard Security Properties). For security of a switch com-
mitment scheme (Setup,Commit,Verifypart,Verifyfull), we require that



– the commitment algorithm Commit is computationally hiding,
– the verification algorithm Verifypart is computationally binding, and
– the verification algorithm Verifyfull is statistically binding.

Following our the attacker model as described in Section 4.1, we further
require that even an unbounded attacker cannot open an old commitment (from
the time when the attacker was still bounded) to a different message than it was
created for. The novel security property is crucial for the intended application.
In the following we formally define the notion of everlasting bindingness for a
switch commitment scheme.

Definition 9 (Everlastingly Binding). A switch commitment scheme (Setup,
Commit,Verifypart,Verifyfull) is everlastingly binding if there exists a negligible
function negl(λ) such that for all attackers A = (A0,A1), where A0 is ppt
(and A1 is not computationally bounded), and for a randomly sampled crs ←
Setup(1λ), we have that

Pr


Verifypart (crs, com, op,m) = 1

∧ Verifyfull (crs, com, op′,m′) = 1
∧ m 6= m′

(com,m, op, state)← A0(crs);
(m′, op′)← A1(crs, state)

 ≤ negl(λ).

5 Construction

In the following we describe our construction for a switch commitment scheme
with efficient range proof. Our scheme is essentially a combination of a Pedersen
and ElGamal commitment scheme with restricted message space. The commit-
ment algorithm outputs an ElGamal commitment (gxhr, gr) and the full verifi-
cation algorithm recomputes the commitment to verify it. However, the partial
verification algorithm verifies only the Pedersen commitment gxhr. This makes
it possible to use efficient range proofs optimized for Pedersen commitments.

It is crucial for the security of our construction that the message space is
restricted to a size polynomial in the security parameter and the verification
algorithm rejects messages not in the space. In the proof of everlasting binding-
ness, the reduction guesses a message in a commitment, and thus the reduction
incurs a loss proportional to the size of the message space. Slightly increased
parameters are necessary to compensate for this loss of security.

Note that that the message space of the commitments used in CT is already
is restricted to integers in the range [0, d] for a fixed non-negative integer d that is
a parameter of the system and determines the maximum value of a transaction.

With the application in CT in mind, we describe the scheme for concreteness
with this message space. We however stress that any other restriction of the
message space is possible, as long as the message space has polynomial size in
the security parameter.



– Setup(1λ, d): Initialize a multiplicative cyclic group G of order p, for some
prime p of size proportional to λ. Sample random g and h in G and output
crs = (G, g, h, d).

– Commit(crs,m): Parse crs as (G, g, h, d) and sample r ∈ Zp. Return com
= (gmhr, gr), and op = r.

– Verifypart (crs, com, op,m): Parse crs as (G, g, h, d), com as (c, `), and op as r.
If c = gmhr and m ≤ d, then return 1. Return 0 otherwise.

– Verifyfull (crs, com, op,m): Parse crs as (G, g, h, d), com as (c, `), and op as r.
If c = gmhr, ` = gr, and m ≤ d, then return 1. Return 0 otherwise.

Avoiding Trusted Setup. We have chosen a description in the standard model
to stress that the construction does not require random oracles. However, it is
possible to avoid a trusted setup in the random oracle model by setting h = H(g),
for a hash function H. This is essentially what has been proposed in the draft
of CT.

Homomorphic Property. Since the commitment algorithm is identical to the one
of ElGamal commitments, the commitments are homomorphic due to gmhr ·
gm
′
hr
′

= gm+m′hr+r
′

and gr · gr′ = gr+r
′
.

5.1 Security Analysis

Here, we formally argue about the security of the construction described above.

Claim 1 (Standard Security Properties) The construction fulfills the stan-
dard security properties. In particular, commitments are computationally hiding
under the decisional Diffie-Hellman assumption, the commitment scheme with
the partial verification algorithm is computationally binding under the discrete
logarithm assumption, and the scheme with the full verification algorithm is sta-
tistically binding.

Proof. The construction is computationally hiding under the decisional Diffie-
Hellman assumption, because the commitment algorithm is identical to the one
for ElGamal commitments. For binding, recall that ElGamal commitments are
perfectly (and thus statistically) binding, and that Pedersen commitments are
computationally binding under the discrete logarithm assumption. We refer the
reader to ElGamal [5] and Pedersen [12] for detailed discussions. ut

Theorem 2 (Everlastingly Binding). The construction is everlastingly bind-
ing under the computational Diffie-Hellman assumption.

Proof. We prove that the construction is everlastingly binding under the inverse
computational Diffie-Hellman assumption, which is known to be equivalent to
the (standard) computational Diffie-Hellman assumption [2]. Assume towards



contradiction that there exists an attacker (A0,A1) such that A0 is ppt and

Pr


Verifypart (crs, com, op,m) = 1

∧ Verifyfull (crs, com, op′,m′) = 1
∧ m 6= m′

(com,m, op, state)← A0(crs);
(m′, op′)← A1(crs, state)

 ≥ ε(λ).

for some non-negligible function ε(λ). We construct the following reduction R
against the inverse computational Diffie-Hellman assumption.
R(1λ,G, g, h): On input the group description G, the generator g and a ran-

dom element h, the reduction sets crs = (G, g, h, d) for a fixed d. Then it runs
A0 in input crs, which outputs (com = (c, `),m = w, op = v), at some point of
the execution. Finally, the reduction samples a random d′ ≤ d and returns to
the challenger

I =

(
`

gv

)(w−d′)−1

.

The reduction is efficient since it only executes A0, which is ppt; note that
the reduction never executes A1. Let us denote w as mpart and v as rpart. By
assumption, A1 will be able to open the commitment to some value mfull such
that mfull 6= mpart and mfull ≤ d with probability at least ε(λ). Assume that the
reduction guesses such a value mfull when selecting d′ (note that this happens
with probability at least 1/d); then we have that d′ = mfull. Now we observe that

I =

(
`

gv

)(w−d′)−1

=

(
gr

full

grpart

)(mpart−mfull)−1

.

Since gm
full

hr
full

= c (by the winning conditions of the game) or equivalently

gr
full

=

(
c

gmfull

)x−1

,

we have

I =


(

c

gmfull

)x−1

grpart


(mpart−mfull)−1

.

Since also gm
part

hr
part

= c, it holds that

I =


(
gm

part
hrpart

gmfull

)x−1

grpart


(mpart−mfull)−1

=


(
gm

part+xrpart

gmfull

)x−1

grpart


(mpart−mfull)−1

=

(
g(m

part−mfull)x−1+rpart

grpart

)(mpart−mfull)−1

= gx
−1

.



As argued above, this happens with probability at least ε(λ)
d , which is non-

negligible. This represents a contradiction to the computational inverse Diffie-
Hellman assumption and concludes the proof. ut
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