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Abstract. Recently, a number of results have been published that show
how to combine classical cryptanalysis with quantum algorithms, thereby
(potentially) achieving considerable speed-ups. We follow this trend but
add a novel twist by considering how to utilise side channel leakage in
a quantum setting. This is non-trivial because Grover’s algorithm deals
with unstructured data, however we are interested in searching through
a key space which has structure due to the side channel information. We
present a novel variation of a key enumeration algorithm that produces
batches of keys that can be efficiently tested using Grover’s algorithm.
This results in the first quantum key search that benefits from side chan-
nel information.
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1 Introduction

The announcement that NIST will embark on a post-quantum cryptography
project has injected further enthusiasm into researching cryptography in the
presence of quantum computers. At present there exist a number of algorithms
that run efficiently on a quantum computer (see [22] for a survey of the current
state of quantum computation). Some of these are a clear threat to existing
cryptographic techniques and algorithms. For instance, Shor’s algorithm [24] to
factor integers leaves a host of cryptographic schemes insecure. Another example
is Grover’s algorithm [9], which can be used to achieve a quadratic speedup in
the majority of unstructured search problems including brute force key search.

?? This research was carried out while D. P. Martin was a member of the Department
of Computer Science, University of Bristol.



Ongoing research in post quantum cryptography focuses on studying adver-
sarial models alongside cryptographic constructions that include access to quan-
tum algorithms (e.g. Anand et al. [1] investigate the quantum IND-CPA security
of various block cipher modes of operation). Recent research [12,13] also studies
how classical cryptanalytic techniques might benefit from quantum algorithms
via appropriating Simon’s algorithm [25], and enquire about how realistic, for
example, a potential brute-force key search on AES would be [8]. Interestingly,
current thinking about post quantum cryptography only marginally touches on
adversaries that also have access to additional information.

We believe that considering how leakage might be exploited within the quan-
tum setting should be a pressing research question. After all, since 1996 when
Kocher [14] showed how side channels5 can be used to to break implementations
of otherwise secure schemes, the community has witnessed a host of effective
side channel attacks.

Many side channel attacks operate in two steps: first the device/implementation
leakage is turned into information leakage about the key resulting in probability
or score vectors for each independent chunk of the key; second a search over
the most likely keys is conducted. Our paper is not concerned with the specifics
of the first step. It is the second step, which turns probability/score vectors on
chunks of the key into information about the (whole) key, on which our work
will focus, as we will motivate next.

Typical side channel attacks trade off data complexity (i.e. the number of
queries to a device/implementation as part of the first step) and computational
complexity (i.e. the effort that it takes to actually determine the secret in the
second step). Given that many practical side channel attacks have a compara-
tively low data complexity, there is little to be gained from quantum speed-ups
in that respect. However, if we consider side channel attacks that trade off us-
ing very few queries for a large computational effort (via some enumeration/key
search following the key leakage extraction) it seems (intuitively) that access to
a quantum algorithm could help.

The logical starting point for search problems is, of course, Grover’s algo-
rithm, which can speed up any unstructured search. However, we are interested
in a highly structured search. At first sight, it seems hence impossible to ‘marry
up’ Grover (which cannot, as written, benefit from structure on the search data)
and side channel information (which is essentially structure on the search data).

The post-leakage search problem essentially is a quantum search problem
where there is some additional information available about the likelihood of
each element being the key. The conundrum of how to effectively use Grover in
this context was first tackled by Montanaro [21]. The algorithm takes in a set
of elements (to be searched and tested), as well as an advice distribution for
the set, and inputs the most likely elements to Grover in ‘batches’ of increasing

5 A side channel is some additional (unintended) channel that an adversary has ac-
cess to. Beyond power and timing analysis, side channel attacks can be based on
the electromagnetic emanation of a device [16], error messages communicated by a
device [18] and even the sound that a device produces [6].
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sizes, optimised to obtain an efficient quantum search algorithm. It would thus
seem that this algorithm already gives the solution to the post-leakage search
problem. However, one crucial implicit assumption was made in [21]: that the
advice distribution was given in order of likelihood.

Side channel attacks typically produce information about the independent
chunks of the unknown key (rather than the whole key) and thus they do not
conveniently output the kind of sorted list that the algorithm of [21] requires.
Also, it would be impossible to do so in the case of many interesting practical
scenarios, e.g. the minimum recommended key length today is 128 bits, thus it is
clearly impossible to explicitly generate an ordered list containing 2128 elements.

1.1 Contribution and Outline

We give a novel version of Martin et al. [20] that is able to efficiently generate
keys (to be tested) according to a side channel advice distribution. This novel
version can output single keys with a specific weight. We then show how to
define an efficient, distribution based quantum search algorithm inspired by the
quantum algorithm of Montanaro [21].

Our contribution is organised as follows. In Sect. 2 we introduce notation
and recap the latest developments in fast and parallel key search. The first
contribution of this work (in Sect. 3) is then to take the key rank algorithm of
Martin et al. [20] and show how to use it to return a single key (the rth) with a
weight in a particular range. Using this new insight, and varying the value of r,
we are able to construct a new, more efficient, key enumeration/search algorithm
in Sect. 3.1. Our main contribution is showing how the newly derived (classical)
search algorithm can then be turned into a quantum key search algorithm in
Section 4, which provides a quadratic speed-up over the classical algorithm. To
our knowledge this is the first time that a side channel attack has been improved
with the use of a quantum algorithm.

2 Preliminaries

Our work brings together recent advances from side channel research (key rank
and enumeration) and quantum algorithms (quantum search with advice). To
keep the paper reasonably self contained, we introduce and explain the necessary
background regarding key enumeration/search, alongside introducing notation.

The cryptographic attack may work against the secret key in any kind of
cryptography, e.g. symmetric cryptography (such as a block cipher) or public
key cryptography (such as a signing algorithm). All we assume about the secret
key, k, is that some information is leaked by the implementation about k, and
that this splits up into m independent chunks, called subkeys (k1, . . . , km), each
of which can take one of n possible values. Whilst our algorithms do not require
that each subkey is the same size, this assumption helps to ease explanation. We
denote the secret key to be targeted by the attack as t = (t1, . . . , tm).
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Overall weight
0 1 2 3 4 5

(1, 2) (1, 1) (2, 1) (2, 3) (3, 1) (3, 3)
(2, 2) (1, 3) (3, 2)

Table 1: All possible keys sorted by weight.

Our work is not concerned with how the leakage is obtained or how it is
manipulated to infer information about the key. We refer to the established lit-
erature (e.g. [17]) for an in-depth explanation. We only assume that the result
of a leakage attack is an n by m matrix w = (w1, . . . ,wm), wj,i ∈ Z+. Each
column represents the likelihood information that we have about the values of a
respective key chunk, whereby we adopt the convention that larger numbers cor-
respond to smaller likelihoods. We also assume that there is a notion of ‘adding’
likelihoods, and this is defined by integer addition. Thus, we can determine the
weight (likelihood) of any (sub)set of subkeys by simply adding up weights. The
likelihood of a key k will be denoted ρk =

∑m
i=1 wki,i

Remark 1. Different types of attack techniques may lead to different types of
matrix (i.e. some attacks might produce probabilities as outputs, others inte-
gers). There are existing techniques such as [3,23,26] that show that it is pos-
sible to ‘convert’ various side channel attack outputs to probabilities. Other
papers [20,19,4] discuss converting probabilities to integers (i.e. they enquire
regarding how much precision needs to be retained). In summary, whilst the
conversion of outcomes from typical leakage attacks to integer values is nor-
mally lossy, previous work shows that in well understood scenarios it can be
done and leads to sensible results.

2.1 Key Search with Additional Information

To ease further explanations, we now introduce a small example and use it to
motivate the notions of key rank, enumeration and search.

Example 1. Our illustrative toy example, which will run throughout the paper,
consists of a key that can be split into two subkeys, where each subkey can take
three different values {1, 2, 3}. The target key t in this example is t = (2, 1). The
observed leakage has been turned into the matrix that contains the information
about how likely each of the values are:

w =

0 1
1 0
3 2


Remember that lower weights indicate more likely values, and the weight of

the key can be derived by adding the weights of the subkeys. We can thus sort
the key combinations according to their overall weight, as shown in Table 1.
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The weight of the target key t is ρt = w2,1 + w1,2 = 1 + 1 = 2. Thus in
an ordered list, it would appear after the keys with weights 0 and 1. There are
three keys with weights 0 and 1, hence the rank of the target key will be 3 (the
number of more likely keys6).

As should become clear from the example, we can define the rank of a key t
with respect to a weight matrix w in a natural manner.

Definition 1 (Key Rank). Given an n × m matrix w and target key t, the
rank of the key t is defined as the number of keys k with a weight smaller than
the weight of t. Formally:

rankt(w) = |{k = (k1, . . . , km) : ρk < ρt}|

In the context of an attack, where an adversary has access to a weight matrix
but does not know the target key t, the adversary will want to enumerate (and
test) keys with respect to their likelihood as given by the weight matrix. We
hence define key enumeration with respect to a weight matrix.

Definition 2 (Key Enumeration). Given an n × m weight matrix w and
e ∈ Z, output the e keys with the lowest weights (breaking ties arbitrarily).

Note that this definition only asks for the e most likely keys, and not that they
are returned in likelihood order. Optimal key enumeration would require exactly
that, i.e. output the e most likely keys k1, . . . ,ke in the order of their weights.

In certain scenarios (such as restarting an enumeration algorithm) the ad-
versary may require e keys from an arbitrary position in the key space. This is
captured by Extended Key Enumeration.

Definition 3 (Extended Key Enumeration). Given an n ×m weight ma-
trix w and e, f ∈ Z, output the e keys with the lowest weights (breaking ties
arbitrarily), after ignoring the first f keys.

In this scenario the algorithm will output keys kf+1, . . . ,ke+f .

Clearly to succeed in an attack, an adversary needs not just to enumerate the
most likely keys, but needs to check which one is the target key. This is achieved
using a testing function T which behaves as follows:

T(k) =

{
1 if k = t
0 otherwise

More concretely, in the context of symmetric encryption; the testing function
could utilise one or more plaintext/ciphertext pairs together with the underlying
scheme.

6 Rank could be defined as keys with a lower or equal weight but considering a strictly
lower weight favours the adversary.
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Example 2. Consider an attack on the block cipher AES with 128 bit keys. We
assume that the adversary has access to a plaintext/ciphertext pair (m, c =
AESt(m)), and an implementation of AES. In this situation T can be constructed
as follows:

T(k) =

{
1 if AESk(m) = c
0 otherwise

We can now define key search.

Definition 4 (Key Search). Given an n×m weight matrix w, a testing func-
tion T and e ∈ Z, output any ki, with i ≤ e, such that T(ki) = 1 and ki would
be output from enumeration, on input w and e. If no such i exists output ⊥.

A similar definition can be given for Extended Key Search.

2.2 Efficiently computing the rank of a key

We base our work on the key rank algorithm by Martin et al. [20] (along with the
improvements [19,15]). This might be surprising at first as we are aiming to con-
struct a quantum key search algorithm. However, Martin et al.’s rank algorithm
directly enables the construction of a quantum-compatible key search algorithm.
Therefore we now briefly sketch the working principle of their algorithm.

An integer parameter W is fixed, which denotes the target weight, or the
largest weight that should be considered. A graph is specified with n ·m ·W + 2
vertices, according to the following simple rules (described informally). Two
vertices are called ‘Accept’ and ‘Reject’ and these are sink vertices. The other
vertices are called vi,j,w for i ∈ [1..m], j ∈ [1..n], and w ∈ [0..W − 1]. Each has
out-valency two, so that each such vertex vi,j,w has a ‘right child’ that represents
the idea that ki = j (consider the ith subkey selected) and a ‘left child’ that
represents the idea that ki 6= j (consider the ith subkey yet to be determined).
A path from v1,1,0 to ‘Accept’ will take exactly m ‘right’ forks, so that each
subkey is selected exactly once on the path, so that the path effectively selects
a whole key. A path will only reach ‘Accept’ if the total accumulated weight
from these selections is kept below W , otherwise it will divert to ‘Reject’. The
number of paths from v1,1,0 to ‘Accept’ is therefore constructively identical with
the number of keys having weight strictly less than W , and therefore is actually
the rank of any key having weight exactly W , if such one exists.

Example 3. We construct a graph for our running example and choose the target
weight W to equal 4, i.e. we want to know how many combinations of subkeys
lead to a key with weight strictly smaller than 4. Our graph hence contains
2 ·3 ·4+2 vertices and can be drawn in a ‘flattened’ version, as shown in Fig. 1a.
The upper ‘half’ corresponds to the first subkey, and the lower half to the second
subkey. The vertices in each column represent the current weight. To draw the
graph, we begin at the start node S (v1,1,0), and then draw the right child (it
points to a vertex representing the first value of the second subkey with the
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(b) The more efficient graph structure of [19]

Fig. 1: Two possible graph constructions for our running example (with W = 4).

correct weight v2,1,0) and the left child (points to a vertex representing the next
value in the subkey v1,2,0, unless it is the last value in which case it points to
reject – these are omitted for readability).

The right child of S points to weight 0 in the next subkey (because the weight
of having k1 = 1 equals zero in our example), and the left child points at the
weight 0 in the next row (because we are not choosing the element so the weight
remains unchanged). Suppose we now consider the vertex v2,1,0. This again has
two children. The right child corresponds to choosing the first value of subkey
2, which has weight 1. Hence the total weight is 1, which is smaller than 4 and
thus the right child goes into the accept node. The left child corresponds to
not choosing the first value, but considering the second value (v2,2,0). The other
paths in the graph are generated according to the same principles.

The algorithm to compute the key rank counts all paths that lead to the
accept node. Consequently, by augmenting the algorithm to also store the cor-
responding subkeys that are visited on those paths that lead to accept, this
algorithm immediately gives rise to a key enumeration algorithm. There are
different considerations (in particular the choice of ordering, which impacts on
memory complexity) when implementing this principle and [20] discusses these
in great depth. In recent work, the algorithm was further simplified and made
more efficient by slightly changing the recurrence relation that iterates through
the graph [19]. Further work gave evidence that there might be still a (signifi-
cantly) faster key rank algorithm possible: [15] contains an algorithm ‘Threshold’
which proves to be the fastest among the compared algorithms, but at the sig-
nificant disadvantage that it does not support extended key enumeration. Since
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the Threshold algorithm does not support ranking between two weights, it is not
suitable for our purpose.

3 Key Ranking Leading to Faster Enumeration

The key rank algorithm in the previous section constructed a graph (and counted
paths in it) by using right children to move ‘down the graph into the next chunk’
and left children to indicate that a value had not been selected. Thus every node
had exactly two outgoing edges. However, the graph could be compressed by
allowing vertices to have multiple outgoing edges, resulting in a two, instead of
three, index system. This was explored, and shown to be more efficient, in [19].

Example 4. We refer again to our running example. Let vi correspond to the
row, in the graph, for the ith key chunk. The start node now points to 3 vertices
representing the three possible values the subkey could take. The vertices for the
second subkey have edges going to accept if and only if adding the weight for
the respective value results in a total weight smaller than W . Figure 1b shows
the corresponding graph. There are three edges from v2,0 (and from v2,1) to the
accept node because all three weights in w2 are smaller than 4 (and 3 resp.).
There are two edges from v2,2 to the accept node because two weights of w2 are
smaller than 4 − 2 = 2, however no edge connects into v2,2 so we don’t draw it
in our graph. There is only one edge possible from v2,3 because only one value
of w2 is small enough such that the overall weight is smaller than 4.

Our key observation is that the number of vertices from the edge to the accept
node can be written down in a simple and elegant manner. Let us consider the
vertex vi,w for the pair (i, w). The vertices vi,w, for i < m, have out degree at
most n (vi,w has an edge to vi+1,w+wj,i

for 1 ≤ j ≤ n when w + wj,i < W ).
Let there also be an accept node (which is a sink) such that vm,w has edges to
the sink when wj,m < W − w. With this we can define a matrix b, where bi,w
stores how many paths there are from vi,w to the sink. Since each path from v1,0
corresponds to a key with weight at most W , this gives a representation that is
equivalent to the graph. The equations for constructing b are given below.

bi,w :=

n∑
j=1

bi+1,w+wj,i for i < m (1)

bm,w :=

n∑
j=1

1{wj,m < W − w} (2)

where 1{·} returns 1 if the expression in the curly brackets evaluates to true and
0 otherwise.

The array index b1,0 contains the rank of the key with score W . It is assumed
that bi,w = 0 for all 1 ≤ i ≤ m if w ≥W . Correctness follows from [20].
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In order to compute b1,0 we start by filling in the values for bm,w for 0 ≤
w < W (using Eq. 2) and then fill in bi,w working backwards over the i’s (using
Eq. 1). Each bi,w is computed and stored once. Since there are m ·W matrix
entries, each of which look at n bi,w’s and then writes an integer of size m · log n
(since there are nm total keys), the total time complexity is O(m2 ·n ·W · log n).

As b contains m · W elements, each of which contains an integer of size
m · log n, the required space is O(m2 ·W · log n).7

It is possible to change the rank algorithm such that it counts all keys with
weight in a particular range, instead of weight less than a target. We refer to
this algorithm as Rank(w,W1,W2), and define it formally in Alg. 6 (App. A).
This helps to meet the extended key enumeration definition and will be required
for our new enumeration algorithm. To achieve this Eq. 2 is replaced with the
following:

bm,w :=

n∑
j=1

1{W1 − w ≤ wj,m < W2 − w} (3)

We assume that an algorithm exists that ‘fills’ b with the correct values for
weights [W1,W2), called Initialise(w,W1,W2), which is formally defined in Alg. 4
(App. A).

The getKey algorithm We will require an algorithm getKey(b,w,W1,W2, r)
which returns the rth key with weight between W1 and W2 to design a quantum
search algorithm with side channel advice.8 This can be achieved utilising the
data structure b, as shown in Alg. 1.

Correctness of getKey follows from the correctness of b. Since the algorithm
is deterministic it is clear that given the same r twice it will return the same key
and that, due to its similarity to Depth First Search, no key will be returned
twice, for different r. Thus we indeed have a uniquely determined rth key. This
is also important for the quantum and classical enumeration algorithms that
follow. The algorithm has to assign values to each of the m subkeys, which can
involve up to n comparisons of integers of size m · log n. This gives the algorithm
a time complexity of O(m2 · n · log n).

3.1 A Faster Classical Enumeration Algorithm

The getKey algorithm given in Alg. 1 can trivially be converted into an algorithm
which enumerates all keys, with weight in the range [W1,W2).

7 Martin et al. [20] show how to tweak their algorithm such that the entirety of b does
not have to be stored. However, for enumeration, repeat access to b is required and
thus this is not applicable.

8 The rth key does not have to be the rth most likely key in this range, any arbitrary
ordering will suffice.
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Algorithm 1 An algorithm for requesting particular keys

function getKey(b,w,W1,W2, r)
if r > b1,0 then return ⊥ end if
k← [0]m

w ← 0
for i = 1 to m− 1 do

for j = 1 to n do
if r ≤ bi+1,w+wj,i

then
ki ← j
w ← w + wj,i
break j

end if
r ← r − bi+1,w+wj,i

end for
end for
for j = 1 to n do

if r ≤ 1{W1 − w ≤ wj,m < W2 − w} then
km ← j
break

end if
r ← r − 1{W1 − w ≤ wj,m < W2 − w}

end for
return k

end function

If there are e keys in the range [W1,W2), the keyEnumerate algorithm simply
runs getKey e times, giving a total time complexity of O(m2 · n ·W2 · log n+ e ·
m2 · n · log n). The original algorithm by Martin et al. [20] has time complexity
O(e · m2 · n · W2 · log n). Therefore, the new algorithm is considerably faster.
Since our algorithm can be split into enumeration ranges, it can be made highly
parallelisable using techniques from [15]. As there is a trade off between range size
and runtime, we will discuss this is more detail (for a single machine) below. A
formal description can be found in Alg. 5 (App. A). Correctness of keyEnumerate
follows from the correctness of getKey9.

To convert the enumeration algorithm into a key search algorithm keySearch,
rather than storing the keys they would be tested using T. Upon finding the
correct key the algorithm terminates, otherwise (if all keys in the budget have
been tested but the key was not found) the algorithm returns ⊥.

9 The keyEnumerate algorithm could be made more efficient by directly adjusting
getKey instead of calling it multiple times in a disjoint manner. The bottleneck
that arises is that getKey(b, r) and getKey(b, r + 1) might perform a lot of similar
work to output the key, for example they may have the same m − 1 first subkeys.
This can be avoided using backtracking to produce keys in a manner similar to depth
first search.
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Algorithm 2 The key search algorithm

function KS(w, e,T)
W1 ←Wmin

W2 ←Wmin + 1
step← 0
Choose We such that Rank(w, 0,We) is approx e
while W1 ≤We do

k← keySearch(w,W1,W2,T)
if k 6=⊥ then return k end if
step← step+ 1
W1 ←W2

Choose W2 such that Rank(w,W1,W2) is approx astep

end while
return ⊥

end function

Combining together the above algorithm with the techniques for searching
over partitions independently gives the key search algorithm in Alg. 2. To con-
struct our algorithm, we draw inspiration from the algorithm of Montanaro [21].
It works by partitioning the search space into sections whose size follows a geo-
metrically increasing sequence using a size parameter a = O(1). This parameter
is chosen such that the number of loop iterations is balanced with the number of
keys verified per block. It is fairly straightforward to see that this is the optimal
choice (it follows similar ideas to the Exponential Search Algorithm [2]).

3.2 Total Runtime

The algorithm starts by findingWe, which takesO(m2·n·Wmax·log n+logWmax)
time,10 where Wmax is the key with the largest weight. Since the algorithm
searches e keys such that approximately as keys are tested at each iteration s,
the loop will iterate O(loga e) times.

On iteration s, the call to keySearch takes O(m2 · n ·W2 · log n+ as ·m2 · n ·
log n). Finally, the call to calculate W2 costs O(logWe) look ups in the array
generated when choosing We, as W2 ≤ We we can binary search up to We

instead of Wmax. Putting it all together gives an asymptotic time complexity of
O(m2 · n · log n(Wmax + e+We · log e)). See App. B for the derivation details.

4 Quantum Key Search

Finally we are in a position to give the novel quantum search with side channel
advice algorithm, which achieves a quadratic speed-up over the classical key

10 As shown by Martin et al. [19]. The initial O(m2 ·n ·Wmax · logn) can be reused by
future queries reducing their work to O(logWmax).
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Algorithm 3 The quantum key search algorithm

function QKS(w, e,T)
W1 ←Wmin

W2 ←Wmin + 1
step← 0
Choose We such that Rank(w, 0,We) is approx e
while W1 ≤We do

b← Initialise(w,W1,W2)
f(·)← T(getKey(b,w,W1,W2, ·))
Call Grover using f for one or zero marked elements in range [W1,W2)
if marked element t found then

return getKey(b,w,W1,W2, t)
end if
step← step+ 1
W1 ←W2

Choose W2 such that Rank(w,W1,W2) is approx astep

end while
return ⊥

end function

search. We heavily rely on Grover’s algorithm [9], which is a quantum algorithm
to solve the following problem:Given a black box which returns 1 on a single
input x, and 0 on all other inputs, find x. If there are X possible inputs to
the black box, the classical algorithm uses O(X) queries to the black box – the
correct input might be the very last input tested. However, a version of Grover’s
algorithm solves the problem using O(

√
X) queries, with certainty [10,11,5]. It

is easy to generalise this to the case where we have either zero or one inputs
on which the testing function returns 1 (which is our setting), at the cost of
one extra query. To do this, run the algorithm of [10,11,5] and apply the testing
function to the answer obtained. If it returns 0, there must have been no input
on which the testing function would return 1.

Our QKS algorithm based on this subroutine is given in Alg. 3. The algorithm
is nearly identical to the classical KS one given in Alg. 2. The crucial difference is
the work done within the loop. Since Grover’s algorithm is being called instead
of keySearch, some of the work classically done in keySearch must be done within
the loop, so that it is compatible with Grover. The algorithm must generate the
array b, construct a testing function which takes in a ‘key index’ instead of a key
and convert the index output back to a key. Otherwise, the algorithm behaves
exactly the same as the classical algorithm.

4.1 Total Runtime

We assume we have access to a coherently addressable quantum RAM (QRAM) [7],
which allows us to efficiently read the data structure b in quantum superposition.
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Such a QRAM can be initialised in time proportional to the size of b. We stress
that in our case b is relatively small, so this does not substantially affect the
time complexity of the algorithm.

Most of the time complexity of the quantum algorithm can be assessed in the
same way as for the classical algorithm. The only exception is that at iteration
s, the algorithm makes O(a

s
2 ) calls to getKey instead of the as calls classically.

We show (details are in App. B) that the time complexity of the total calls
that Grover’s algorithm makes to getKey is O(

√
e · m2 · n · log n). Combining

this with the classical analysis of the rest of the algorithm gives the total time
complexity of O(m2 · n · log n(Wmax +

√
e+We · log e)).

While the classical and quantum time complexities look fairly similar, we get
a quadratic speed-up because the parameters m,n,W are attack dependent and
tend to be fairly small. For example, for typical attacks on AES-128, m = 16 and
n = 256. The weights W are normally controlled by the attacker using a precision
parameter and thus unlikely to grow large. Thus the dominating variable is the
number of keys enumerated, which gains a quadratic improvement in a quantum
setting.

Conclusion We demonstrated that it is possible to leverage the power of a
side channel attack in the quantum setting. Our quantum key search with side
channel advice thus benefits from a quadratic improvement over a classical key
search. Clearly our work is restricted to the setting of ‘classical’ side channel
attacks that follow a divide and conquer principle, which result in information
about subkeys independently. However, this setting is very common and applies
to attacks such as differential and simple power (EM, timing, cache) analysis.
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A Additional Algorithms

For completeness, in this appendix we give any additional algorithms required
for implementation of the key search algorithms.

Algorithm 4 The initialise algorithm to generate b

function Initialise(w,W1,W2)
b← [[0]W2 ]m

for w = 0 to W2 − 1 do
for j = 1 to n do

bm,w ← bm,w + 1{W1 − w ≤ wj,m < W2 − w}
end for

end for
for i = m− 1 down to 1 do

for w = 0 to W2 − 1 do
for j = 1 to n do

if w + wj,i < W2 then
bi,w ← bi,w + bi+1,w+wj,i

end if
end for

end for
end for
return b

end function

15



Algorithm 5 A new enumeration algorithm.

function keyEnumerate(w,W1,W2)
K ← {}
b← Initialise(w,W1,W2)
k← ∅
r ← 1
while True do

k← getKey(b,w,W1,W2, r)
if k =⊥ then break end if
K ←K ∪ {k}
r ← r + 1

end while
return K

end function

Algorithm 6 The key rank algorithm

function Rank(w,W1,W2)
b← Initialise(w,W1,W2)
return b1,0

end function

B Time Complexity Calculations

The time complexity of the classical key search algorithm was derived using the
following calculations:

m2 · n ·Wmax · log n+ logWmax

+

bloga e+1c∑
s=0

(m2 · n ·W2 · log n+ as ·m2 · n · log n+ logWe)

= m2 · n ·Wmax · log n+ logWmax

+e ·m2 · n · log n+

bloga e+1c∑
s=0

(m2 · n ·W2 · log n+ logWe)

≤ m2 · n ·Wmax · log n+ logWmax

+e ·m2 · n · log n+ (loga e+ 2)(m2 · n ·We · log n+ logWe)

= m2 · n · log n(Wmax + e+ (loga e+ 2)We) + (loga e+ 2) logWe + logWmax

= O(m2 · n · log n(Wmax + e+We · log e))

Where the classical algorithm made as calls to getKey for iteration s of the
loop, Grover’s algorithm makes dπ4 ·a

s
2 e+1 calls [10,11,5].The time complexity of

total calls to getKey, made by Grover’s algorithm, can be calculated as follows:
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bloga e+1c∑
s=0

(dπ
4
· a s

2 e+ 1) ·m2 · n · log n

= m2 · n · log n · (
bloga e+1c∑

s=0

(dπ
4
· a s

2 e+ 1))

≤ m2 · n · log n · (2 loga e+ 4 +
π

4
·
bloga e+1c∑

s=0

a
s
2 )

≈ m2 · n · log n · (2 loga e+ 4 +
π

4
·
∫ bloga e+1c

s=0

a
s
2 )

= 2 ·m2 · n · log n · (loga e+ 2 +
π

4
+
π · a
4 ln a

·
√
e)

= O(
√
e ·m2 · n · log n)
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