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Abstract This work introduces Passphone, a new smartphone-based
authentication scheme that outsources user verification to a trusted third
party without sacrificing privacy: neither can the trusted third party
learn the relation between users and service providers, nor can service
providers learn those of their users to others. When employed as a sec-
ond factor in conjunction with, for instance, passwords as a first factor,
our scheme maximizes the deployability of two-factor authentication for
service providers while maintaining user privacy. We conduct a twofold
formal analysis of our scheme, the first regarding its general security,
and the second regarding anonymity and unlinkability of its users. More-
over, we provide an automatic analysis using AVISPA, a comparative
evaluation to existing schemes under Bonneau et al.’s framework, and
an evaluation of a prototypical implementation.
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1 Introduction

Two-factor authentication is an effective means to strengthen user authentication on
the Internet. In particular, the use of software-based second-factor tokens is attractive
for service providers since it relieves them from considerable costs that come along
with developing and delivering custom hardware tokens. For their users, phone-based
two-factor solutions have the advantage of employing the nowadays omnipresent smart-
phone, avoiding the inconvenience of carrying around yet another device for the sole
purpose of authentication. However, offering two-factor authentication is not at all the
default, yet.

Meanwhile, small and medium enterprises, and especially startups, outsource user
verification. This is due to the fact that the proper implementation of a secure authenti-
cation solution is a non-trivial task, and that many struggle to get even basic password
authentication right [12]. Hence, delegating user verification to a competent trusted
third party appears reasonable. In the context of password authentication, correspond-
ing infrastructures have been successfully established via OpenID [36] and OAuth [23]

Ȃ An earlier version of this work will be presented at NordSec2016 [35] and will appear
in Springer Lecture Notes of Computer Science. This is the full version from February
18, 2017.



(e.g., Google, Yahoo, and Wordpress for OpenID and Twitter, Facebook, and PayPal
for OAuth). On the upside, outsourcing user verification is convenient for users and
reduces development costs for service providers, mitigating the risks of developing a
custom solution from scratch. On the downside, however, outsourcing authentication
has been justly criticized for its impact on privacy: the authentication provider serving
as trusted third party gains precise information about a user’s preferred services, her
usage behavior, as well as the success of a given service. While undesirable for both
service providers and their users, the former often choose user convenience and devel-
opment speed over privacy, whereas most of the latter apparently do not care. Clearly,
there is a lot of room for improving the outsourcing of authentication in terms of user
privacy. The privacy of phone-based three-party authentication, however, has not been
considered until now.

This paper proposes Passphone, a smartphone-based two-factor authentication
scheme which outsources user verification to a trusted third party while protecting
user privacy. To the best of our knowledge, our scheme is the first smartphone-based
one to incorporate anonymity and unlinkability despite employing a trusted third party.
We conduct a systematic analysis of our scheme in terms of its security, privacy, feasi-
bility, and competitiveness. In particular, we analyze its security and privacy properties
formally, report on a practical implementation, and evaluate its competitiveness under
the framework of Bonneau et al. [11]. We also conduct an automatic security analy-
sis using the well-known computer-aided proof system AVISPA [4]. In what follows,
after a brief review of related work, Section 3 introduces our authentication scheme.
Section 4 formally analyzes its authentication security and privacy properties and Sec-
tion C reports results from an automatic security analysis. Section 6 discusses insights
gained from implementing our scheme, Section 7 compares it to a selection of existing
phone-based solutions, and Section 8 discusses its practical application.

2 Related Work

Privacy in federated authentication. Dey and Weis [16] propose PseudoID, which
can be considered the complement of our scheme for traditional password authenti-
cation. Their scheme also employs blinding to render users unlinkable across service
providers. Dey and Weis show the unlinkability of their authentication scheme, but give
neither an actual protocol nor an analysis. A proof of concept had been published, but
the associated web page has disappeared. Otherwise, the privacy issues of federated
authentication services have been highlighted in many contexts: for example, Urueña
et al. [43] consider a privacy problem that concerns OpenID and Facebook Connect.
They find that the unique identifier assigned to users by both services may leak to third
parties, allowing to track users across web services since they encode user identifiers
in the GET parameters of URLs. Riesch and Du [37] and Nuñez et al. [32] propose
ways to solve the privacy issues of OpenID; Nuñez and Agudo [31] finally proposed a
blinded version of OpenID called BlindIdM.

Phone-based two-factor authentication. Banks have been among the first to
roll out two-factor authentication schemes for transactions, whereas online games and
Google first deployed this technology at scale for web user authentication [21]. In light
of recent security breaches [20,26,27], a shift toward two-factor authentication can be
observed since several major companies such as Microsoft, Apple, and Facebook, some
of which suffered attacks, rolled out their own implementations [3,30,39].
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In the literature, Dodson et al. propose Snap2Pass [18,19] and van Rijswijk and
van Dijk propose Tiqr [44]: both are phone-based schemes that use QR codes to
transmit a challenge from a service provider via a user’s browser to her phone, which
responds to the challenge. Dodson et al. also consider outsourcing authentication to
a trusted third party (an OpenID provider); though, they do not tackle the privacy
issues associated with this approach. The authentication schemes by Aloul et al. [1]
and Hallsteinsen et al. [22] are also phone-based challenge-response protocols based
on one-time passwords (OTPs) that are generated using a previously shared secret
between a user and a key server. This OTP is then transmitted to the device and
used as a second means of authentication. In both two-factor authentication schemes,
the key server can learn precisely which user tries to authenticate at which service.
Karapanos et al.’s SoundProof [25] aims at increasing the adoption of two-factor
authentication by avoiding the need for user interaction with their device. Instead,
their authentication detects the physical proximity of the smartphone via matching
the ambient sound of their environment. While the approach puts forth usability, it
can protect neither against physical nor against man-in-the-middle or phishing attacks,
and it is not easily deployable for service providers. Shirvanian et al. [38] categorize
smartphone-based two-factor authentication schemes concerning the amount of data
transmitted between client and phone. They concern four challenge/response formats:
(1) a low-bandwidth variant which uses a PIN as second factor, (2) a mid-bandwidth
variant with a QR-code challenge, a full-bandwidth variant which transmits challenge
and response via Bluetooth, and another full-bandwidth variant which transmits chal-
lenge and response via WiFi. Their protocols are simpler and applicable on a wide
range of devices; however, their low-bandwidth variants provide only 20 bits of addi-
tional security from a PIN or a low-resolution QR code, and the mid-bandwidth and
the full-bandwidth versions require a complex setup with either a webcam, Bluetooth,
or WiFi channel controlled by the client.

While the above schemes are those closely related to ours, a number of other
schemes concern transaction authentication via untrusted devices, such as the ones of
Clarke et al. [14], Wu et al. [46], Parno et al.’s PhoolProof [34], Starnberger et al.’s
QR-TAN [40], Mannan and van Oorschot’s MP-Auth [28,29], and Czeskis et al.’s
PhoneAuth [15]. Altogether, however, we are unaware of any phone-based authenti-
cation scheme that improves deployability for service providers via outsourcing while
incorporating user privacy.

3 The Passphone Authentication Scheme

This section introduces our authentication scheme. We overview the three parties in-
volved, the devices at their disposal, and how they interact within protocols for boot-
strapping and authentication. For completeness, we also introduce protocols for key
management.

Parties and their devices. Our scheme involves the following parties:

– P A prover who wants to use a service provided by S .
– S A service provider, who wants to authenticate P .
– T A trusted third party of prover P and service provider S .

The prover is a human, while the service provider and the trusted third party host
server-side services. The prover uses the following means to interact with these services:
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– PS The prover’s browser to access a service of S .
– PT The prover’s phone to authenticate with T .
– PM The prover’s mail box.

We assume that servers and the prover’s devices have computational power at least
comparable to that of current commercial off-the-shelf computer hardware and that
they can communicate with each other via the Internet. The prover has all her devices
under her full control (i.e., they are not compromised).

3.1 Bootstrapping

To get started, a prover P completes two bootstrapping steps: registration with the
trusted third party T , and activation of our authentication scheme at her service pro-
vider S.

Registration protocol. For registration, P installs an authentication App PT on
her phone (authenticator, for short). The App may be shipped by T and is ideally
available open source. When P launches PT for the first time, PT generates a new key
pair (Kp

PT
,Ks

PT), asks for P ’s mail address IDPM , and then initiates the registration
protocol. Table 1 lists the protocol’s communication steps; each step is denoted as:

(<step>) <sender>→ <receiver> ∶ <message>,

where a message is optionally encrypted and consists of a header, a payload, and an
optional signature:

<message> ∶∶= EK((<header>, <payload>)<signature>),

where EK denotes an encryption scheme with key K. The <header> contains a domain
identifier, step number, protocol version, and sender identifier:

<header> ∶∶= [<domain>,<step>,<version>,<sender>].
In Step (1) of the registration protocol, the authenticator chooses uniformly at random
a nonce NPT and derives the hash value hPT =H(NPT ). Prior, it generates a key pair
with a secret part Ks

PT and a public part K
p

PT
; the public part, together with IDPM

and hPT , is signed by PT and sent to the trusted third party T . Since the identi-
fier IDPT has not been verified by T , yet, we reserve the zero byte value as sender
identifier. To verify the prover’s mail box PM , the trusted third party sends a signed
challenge containing a nonce NT in Step (2). The prover forwards this message X

to her authenticator in Step (3), which responds to the challenge by signing X and
sending it back to T in Step (4). After successful verification, the trusted third party
generates a new unique nonce N ′T , generates IDPT = H(N ′T , hPT), and sends N ′T
to PT in Step (5), which henceforth uses IDPT to identify itself. PT completes the
bootstrapping protocol by sending an encrypted key- management ticket for rekeying
to its mail account in Step (6). The prover keeps the ticket secret for later recovery
of her account. Since T is not aware of NPT , it cannot regenerate the tickets nor be
compelled to do so, e.g., by law enforcement.

Activation protocol. To activate our scheme, the prover P creates an account at S

using PS . S initiates the activation protocol shown in Table 2, the purpose of which is
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Table 1. Protocol to register with the trusted third party.

Protocol 1: Registration of P at T

Parties: PT , PM , and T

Pre-conditions: PT is blank, T is ignorant of PT
Post-conditions: PT stores (Kp

PT
,Ks

PT) and obtained IDPT ,
P received tickets for rekeying and key transfer,
T verified IDPM and stores (IDPT ,K

p

PT
,IDPM )

(1) PT → T ∶ TLS(([REG,1,v,0], K
p

PT
, IDPM , hPT)PT)

(2) PM ← T ∶ ([REG,2,v, IDT ], NT)T´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
X

(3) PM → PT ∶ X

(4) PT → T ∶ TLS(([REG,3,v,0], X)PT)
(5) PT ← T ∶ TLS(([REG,4,v, IDT ], N

′

T)T )
(6) PT → PM ∶ TLS(([REKEY,1,v, IDPT ],NPT ,N ′T ,K

p

PT
)PT)

to verify that P is capable of authenticating via T , and to learn the blinded identifier
hPT of PT .

In Step (1) of the activation protocol, S sends a nonce NS . Next, PS computes
the hash hS = H(IDS∥NS) to hide the identity of S from T . In Step (2), PS sends
hS to T . Note that for messages from PS , we use a constant 1 that is identical for
all users. In Step (3), T responds with a signed challenge, consisting of the nonce NT

along with the blinded identifier hS . In Step (4), PS forwards the entire previous
message X to PT along with IDS and NS . PT checks the message, and in particular
if hS found in X fulfills hS = H(IDS∥NS). Meanwhile, the prover has to confirm
manually that she wants to sign up for the service provider S . In that case, PT responds
to T ’s challenge by sending a copy of the message X in Step (5). After verification, in
Step (6), the trusted third party computes hPT =H(IDPT∥NT) to blind the prover’s
identity, IDPT , and sends a signed authentication ticket to PS which consists of the
blinded identifiers hPT and hS . Henceforth, the trusted third party maps hPT to IDPT .
In Step (7), PS forwards the ticket to S . Finally, if the ticket is valid, S assigns hPT

to the prover’s user account and activates our authentication scheme.
This protocol ensures the privacy properties of our authentication scheme by two

means: first, the identifier IDS of the service provider is blinded to obtain hS , so that
the trusted third party cannot figure out which service provider the prover uses. Second,
the trusted third party blinds IDPT to obtain a provider-specific identifier hPT . This
way, colluding service providers cannot identify shared users by comparing authentica-
tor identifiers.

3.2 Authentication

A prover P authenticates herself at her service provider S , e.g., when signing in for a
new session. Here, the second factor is checked using the authentication protocol shown
in Table 3. While all other protocols of our scheme are invoked only occasionally, this
protocol is run on a regular basis.

S initiates the authentication protocol. This protocol is designed similar to the afore-
mentioned activation protocol, with the difference that the prover’s provider-specific
identifier hPT is carried through all steps. In Step (1), the service provider sends a
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Table 2. Protocol to activate two-factor authentication.

Protocol 2: Activation of the second factor for P at S

Parties: PS , PT , S , and T

Pre-conditions: S is ignorant of PT , T is ignorant of P using S

Post-conditions:S has verified that P uses hPT , and S stores hPT

T stores (IDPT , hPT ); T is ignorant ofP usingS

(1) PS ← S ∶ TLS([ACTIVATE,1,v, IDS ], NS)
(2) PS → T ∶ TLS([ACTIVATE,2,v,1], hS)
(3) PS ← T ∶ TLS(([ACTIVATE,3,v, IDT ], hS , NT )T´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

X

))

(4) PS → PT ∶ ([ACTIVATE,4,v,1], X, NS , IDS)
(5) PT → T ∶ TLS(([ACTIVATE,5,v, IDPT ], X)PT)
(6) PS ← T ∶ TLS(([ACTIVATE,6,v, IDT ], hPT , hS)T´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Y

)

(7) PS → S ∶ TLS([ACTIVATE,7,v,1], Y )

session nonce NS to ensure freshness along with hPT to PS . In Step (2), PS blinds
the service provider’s identifier by computing hS =H(IDS∥NS), and sends it together
with hPT to T . In Step (3), T responds with a signed challenge containing NT , hPT ,
and hS . PS forwards the entire previous message X along with IDS and NS to PT in
Step (4), which verifies the incoming message. The prover then is asked to confirm that
she wants to authenticate herself at the service provider S . In the affirmative, PT re-
sponds to T ’s challenge by sending a signed copy of the message X in Step (5). After
successful verification, in Step (6), T sends a signed authentication ticket consisting
of hPT and hS to PS , which forwards it to the service provider S in Step (7). Finally,
if the ticket is valid, S grants P access to her service.

Again, the trusted third party never obtains information about the service
provider’s identity. Each time the prover logs into her service provider, the provider’s
identifier is blinded using a fresh nonce. Thus, from the perspective of the trusted third
party, every run of the authentication protocol is unique.

3.3 Key Management

The prover’s private key is stored on her phone. Losing it locks her out of service
providers where she activated our authentication scheme, whereas the lost authenticator
may still be used by an adversary to gain access to the prover’s accounts. To react in
case of such an emergency, corresponding protocols for key revocation and rekeying are
provided, which are concerned in the following.

Key-revocation protocol. As an immediate reaction upon the loss of her authenti-
cator, the prover turns to her service provider and logs in with her first factor. When
the service provider initiates the authentication protocol, its first three steps are exe-
cuted automatically. In Step (4), however, instead of proceeding, the prover initiates
the key-revocation protocol shown in Table 4 (top). In this case, PS sends a revocation
request to T , including the previous message X, and then cancels the login attempt
at S . Meanwhile, T revokes the prover’s public key if the signature of the revocation
request could be verified with the prover’s old key. Finally, a confirmation mail is sent
to the prover’s mail box PM .
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Table 3. Protocol to authenticate the second factor.

Protocol 3: Authentication of P at S

Parties: PS , PT , S , and T

Pre-conditions: S is ignorant of P using PS

Post-conditions:S has verified that P uses PS

(1) PS ← S ∶ TLS([AUTH,1,v, IDS ], hPT , NS)
(2) PS → T ∶ TLS([AUTH,2,v,1], hPT , hS)
(3) PS ← T ∶ TLS(([AUTH,3,v, IDT ], hPT , hS , NT )T´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

X

)

(4) PS → PT ∶ ([AUTH,4,v,1], X, NS , IDS)
(5) PT → T ∶ TLS(([AUTH,5,v, IDPT ], X)PT)
(6) PS ← T ∶ TLS(([AUTH,6,v, IDT ], hPT , hS)T´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Y

)

(7) PS → S ∶ TLS([AUTH,7,v,1], Y )

Rekeying protocol. To regain control of her accounts after key revocation, the prover
uses a rekeying ticket that was generated during registration (see Table 1, Step (6)).
Using this ticket, the prover initiates the rekeying protocol shown in Table 4 (bottom) to
exchange her revoked public key with a new one at the trusted third party. To do so, the
prover orders a new, blank authenticator PT from T and forwards the rekeying ticket
to PT in Step (1). PT checks the ticket’s validity by verifying that IDPT = H(NT ∥
H(NPT)) and then generates a new key pair (K ′sPT ,K ′pPT). PT samples a new nonce
N ′PT at random and computes h′PT = H(N ′PT). In Step (2), the new public key K

′p

PT

is sent along with the ticket and h′PT to T . The message is signed using the new secret
key K ′sPT . From the ticket, T extracts IDPT , and verifies if IDPT =H(NT ∥H(NPT))
holds and if IDPT corresponds to K

p

PT
in T ’s database. If successful, T registers K

′p

PT

as P ’s new public key and generates a new unique identifier ID
′

PT = H(N ′T∥h′PT),
using a fresh nonce N ′T . In Step (3), N ′T is sent to PT , which also computes ID

′

PT

and uses it as its new identifier. Rekeying is completed by sending a new rekeying ticket
to the prover’s mail box PM in Step (4).

Altogether, from a prover’s perspective, the infrequently invoked key-management
protocols provide for a consistent experience since manual actions (i.e., passing chal-
lenges to the authenticator) are unified with those of registration and authentication.

4 Formal Security Analysis

This section summarizes the results of an in-depth analysis of the security and privacy of
the Passphone scheme when employed as second factor in a two-factor-authentication
setup. The proofs to our theorems in this section are given in Appendices A and B.

4.1 Authentication-Attack Resistance

Notation. The quality of an adversary A against a security notion sec is measured by
its success probability Pr[Succsec] in winning a game Gsec that models sec. Let xĂ X
denote the sampling of x uniformly at random from a distribution X and let {0, 1}n
denote the set of all n-bit strings. We consider a set of provers P and a set of service
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Table 4. Protocols for key revocation and rekeying.

Protocol 4: Key revocation via PS

Parties: PS , PM , S , and T

Pre-conditions: T considers K
p

PT
active; T is ignorant ofP usingS

Post-conditions:T has revoked K
p

PT
; T is ignorant of P using S

Steps 1-3 of Protocol 3, the authentication protocol.
(4) PS → T ∶ TLS([REVOKE,1,v,1], X)
(5) PS → S ∶ TLS(Cancel login)
(6) PM ← T ∶ ([REVOKE,2,v, IDT ], X)T

Protocol 5: Rekeying for PT

Parties: P , PT , PM , and T

Pre-conditions: PT may be blank
Post-conditions:T revoked K

p

PT
and stores (ID ′PT ,K′pPT , IDPM )

P received new tickets for rekeying and key transfer

(1) P → PT ∶ ([REKEY,1,v, IDPT ],NPT ,NT ,K
p

PT
)PT´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

X

(2) PT → T ∶ TLS(([REKEY,2,v,0],K′p
PT

, h′PT , X)PT)
(3) PT ← T ∶ TLS(([REKEY,3,v, IDT ],N ′T )T)
(4) PT → PM ∶ TLS(([REKEY,1,v, ID ′PT ],N ′PT ,N ′T ,K

′p

PT
)PT)

providers S, where we define that each prover P i
∈ P has a browser instance PS

i and
her authenticator PT i under her control. The set U denotes the union of P ∪S ∪ {T}.
Assumptions. We follow the standard assumption that legitimate parties (provers and
service providers in our case) behave honestly : they do not understand the semantics of
a message before a protocol run completed successfully. We assume that provers, service
providers, and the trusted third party communicate over the open Internet, relying on
the existing Public-Key Infrastructure (PKI) of TLS for establishing a secure channel
with one-sided authentication of S and T towards the prover (PS , PT ). This means,
we assume that all service providers S and the trusted third party T possess a public
key encoded in a valid TLS certificate. The PKI trust assumption is a current best
practice for securing the communication between web services and their users. Further,
our cryptographic model assumes that the client PS does not manage any permanent
state, which is reasonable for a web browser, and that PS executes a correct version
of the protocols (e.g., code that was signed by T ).

We recommend that all honest parties employ certificate or public-key pinning
for the trusted third party and for service providers (i.e., mapping the hosts to their
expected X.509 certificate or public key by explicit whitelisting). Moreover, we propose
to bind TLS connections to specific channels by employing a fixed version of either the
tls-unique approach from RFC5929 [2] or Google’s Channel ID [6] (see [8,9,24] for
attacks and fixes).

Adversarial model. The goal of the probabilistic polynomial-time (PPT) adversary
A is to authenticate as some honest prover P

i at some honest service provider S
j . A

is aware of the behavioral limitations of honest parties and tries to exploit them. The
adversary can eavesdrop, intercept, insert, modify, or delete all communication that
is transmitted over the network, but cannot modify the communication transmitted
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from the prover’s browser to her authenticator, which is a fair assumption when using,
e.g., scanned QR codes. A can impersonate a prover, a service provider, or both. The
use of TLS prevents it from acting as T or as an honest S in the view of the prover.
Moreover, we assume that the cryptographic primitives used are secure. So, A cannot
recover a secret key, predict a random value, find a hash-value’s preimage, a collision,
or forge a signature with significant advantage. Prior to registration and activation, all
parties agree on a security parameter τ ,1 so that all signatures are of length at least
τ bits, all nonces and hash values created by H have 2τ bits, and all symmetric and
asymmetric secret keys for encryption (again, for TLS) and signing have an effective
key length of at least τ bits.

We define an authentication game denoted GAuth, which takes as input a tuple (τ ,
qexe, qsend, qtest), and provides A with access to the following queries:

– Setup(1τ): The registration and activation steps are executed once to generate the
secrets of all involved parties.

– Execute(P i,S j ,T): Models a passive adversary A who eavesdrops a correct exe-
cution of the authentication protocol between a prover P

i, a service provider S
j ,

and T . The output is given by the transcript of the protocol between P
i, S j , and

T .
– Send(U,U ′,m): Models an active attack, wherein the adversary A intercepts, mod-

ifies, replays, forwards, or creates a message m in the name of party U to party
U ′, where U,U ′ ∈ U . The output of such a query is the message that U ′ would
generate after receiving m. A special message Start can be sent in the name of a
prover to a service provider to initiate a session between them with the trusted
third party.

– Corrupt(P i,S j): Models that the secret for the first factor pwdi,j of P i at S j has
been compromised. The output of this query is pwdi,j .

– Test(P i,S j): Models an authentication request of A in the name of P i at service
provider S

j . The output is a bit b, which is 1 if and only if the authentication
succeeds and P

i and S
j are honest; otherwise b is 0.

For all inputs, the output bit b of Test(P i,S j) after a correct execution of the au-
thentication protocol between honest P

i and S
j will always be 1. We define that any

honest party immediately aborts a protocol run if it detects an invalid message, i.e.,
an incorrect signature, unexpected service provider, incorrect ID, non-matching hash,
or invalid message format.

Theorem 1. Let the employed public-key signature scheme be EUF-CMA-secure and

H be a random oracle. Then, for any PPT adversary A whose run time is bounded

by t and whose number of execute, send, and test queries are bounded by qexe, qsend

and qtest, respectively, it holds for a random execution of GAuth
on our protocol P that

Pr[SuccAuth] ≤ q ⋅ 4/2τ , where q = qexe + qsend + qtest.

4.2 Anonymity

In the context of an outsourced three-party protocol, user anonymity refers to the
goal that an honest but curious trusted third party is unable to learn which service
provider(s) an individual prover has registered with and wants to authenticate to. We

1 In practice, τ ≥ 128 is fixed a-priori by the protocol (version).
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model this goal by a game GAnon and an adversary A who plays the role of T , i.e., A
has access to IDs, public keys, and blinded IDs IDi܂

PT ,K
p

PT i , hj܂

PTi܂܂ of all provers

P
i. We define that at least one honest prover P and two honest service providers S

0

and S
1 exist in the game. At setup, the challenger tosses a fair coin to obtain a bit b.

Depending on b, P registers with S
b, and generates a secret pwd for the first factor.

We define a special service provider Ŝ which wraps S
0 and S

1 and appears as a black
box to A. So, every time S

0 or S
1 are involved in an execution of our protocols, the

game models it as an execution with Ŝ in the view of A.
A is given access to the queries Setup(1τ), Execute(π, P i, S j , T), Send(π, U , U ′,

m), which work similarly to their equivalents in the authentication game above. As
a difference, A must provide a parameter π ∈ {REG, ACTIVATE, AUTH, REKEY,
REVOKE} to execute the different protocols. A is not given access to Corrupt queries,
assuming an honest but curious adversary. Wlog., we assume that A asks no Send

queries to T since it can always answer them without interaction from other parties
with the help of T ’s private key. Moreover, we define that A is prohibited from using
S
0 or S1 in its send or execute queries, and may only use Ŝ instead. At the end of the

game, A makes a Test(b′) query, to which it must provide a bit b′. A wins the game

GAnon if and only if b′ = b, i.e., if it successfully guesses which service provider P has
registered with. We denote this event by SuccAnon and define the anonymity advantage
of A against a protocol scheme P as AdvAnon

P (A) = 2 ⋅ ∣Pr [SuccAnon] − 0.5 ∣.
Theorem 2 (Anonymity). Let the employed public-key signature scheme be EUF-

CMA-secure and H be a random oracle. Then, for any PPT adversary A whose run time

is bounded by t and which asks at most qexe execute and qsend send queries, respectively,

it holds for a random execution of GAnon
on our protocol P:

Adv
Anon

P (A) ≤ (qexe + qsend) ⋅ 1/22τ .

4.3 Unlinkability

For authenticated key-exchange schemes, Tsudik and Xu [41] define unlinkability as the
property that no adversary A can associate two handshakes involving the same honest
party even if A participated in both executions. In the context of web authentication,
unlinkability means that no set of colluding service providers is able to link a prover
registered with multiple of their services. Clearly, there must be at least two uncor-
rupted users to prevent the adversary from deducing trivially which two executions
involve the same party.

We define a third game GUnlink wherein A plays the role of two disjoint service
providers S

0 and S
1. The challenger plays the role of two honest provers P

0 and P
1

and T . At the beginning, the challenger tosses a fair coin to obtain a bit b; if b = 1,
the challenger registers P

0 with both S
0 and S

1, and P
1 with none of them. If b = 0,

the challenger registers P0 with S
0 but not with S

1, and P
1 with S

1 but not with S
0.

Likewise to the anonymity game, we define a special prover P̂ which wraps P0 and P
1

and appears as a black box to A. So, every time P
0 or P

1 is involved in an execution
of a protocol, the game models this as an execution with P̂ instead of P0 or P

1 in
the view of A. As before, this configuration can be augmented by many more honest
provers and service providers. Additionally, A can control a set of malicious provers
EP as well as malicious service providers ES .
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A is given access to queries of the types Setup(1τ ), Execute(π,P i, S j , T), and
Send(π,U,U ′,m), for parties U,U ′ ∈ U , which work similar to their equivalents in the
anonymity game above. This time, A is prohibited from using P

0 or P1 in its queries,
and must use P̂ as a replacement. When A uses P̂ and either of S

0 and S
1 in an

execute or send query, the challenger uses the prover as a replacement for P̂ that can
process the execution of the protocol correctly. Moreover, if A invokes the registration,
activation, rekeying, or revocation protocol for P̂ , the challenger executes it for both
P

0 and P
1. At the end of the game, A makes a Test(b′) query and has to provide the

bit b′. A wins the game GUnlink if and only if b′ = b. We denote this event by SuccUnlink

and define the unlinkability advantage of an adversary A against a protocol scheme P

as AdvUnlink
P (A) = 2 ⋅ ∣Pr [SuccUnlink] − 0.5 ∣.

Theorem 3 (Unlinkability). Let the employed public-key signature scheme be EUF-

CMA-secure and H be a random oracle. Then, for any PPT adversary A whose run

time is bounded by t and which asks at most qexe execute and qsend send queries, it

holds for a random execution of GUnlink
on our protocol P:

Adv
Unlink

P (A) ≤ (qexe + qsend) ⋅ 1/22τ .

5 Automatic Security Analysis

Besides the formal security analysis, we also conducted an automatic security analysis
of Passphone using the well-known computer-aided proof system AVISPA. After a
brief overview of AVISPA’s capabilities, we describe the HLPSL implementations of
our protocols and the results obtained from feeding them to AVISPA. Moreover, we
conduct experiments by deliberately removing security features from our protocols and
observing the results from the proof system.

Background. AVISPA provides four backends for protocol verification: a Con-
straint-Logic-based ATtack SEarcher (CL-ATSE) [42], an On-the-Fly Model Checker
(OFMC) [7], a SAT-based Model Checker (SAT-MC) [5], and a Tree-Automata-based
backend (TA4SP) [10]. We rely on the widespread CL-ATSE, OFMC, and SAT-MC
backends; TA4SP does not support our setup. As input to AVISPA, protocols must be
implemented in the High-Level Protocol Specification Language (HLPSL) [13]. HLPSL
is a role-centric language well-suited for software engineers and protocol designers.

Implementation details. All of Passphone’s protocols have been implemented in
HLPSL. Appendix D lists the protocol implementations, and the source code is also
available via Passphone’s web page at http://www.passphone.org. Special care was
taken to align the implementation as closely as possible with the protocol specifications
found in this paper so as to ensure that the results obtained from AVISPA allow for
drawing conclusions about them. For consistency and where the syntax allowed it, vari-
able names have been chosen to correspond with those used in the formal specification
as well. The two communication channels send (SND) and receive (RCV) are defined
in terms of the Dolev-Yao model (dy).

Since our protocols make use of TLS, this has to be reflected in our HLPSL imple-
mentation. However, at present, neither AVISPA nor HLPSL support modularization
of protocol implementations, so that the implementation of the TLS protocol in HLPSL
cannot be invoked from ours. When mixing both protocol implementations into one
file, this severely affects legibility. Therefore, for simplicity, we model TLS by means of
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Table 5. Results from AVISPA when omitting TLS in individual protocols. A ● indi-
cates that TLS is mandatory to uphold security, and a ○ that TLS is optional.

Protocol Communication step

(1) (2) (3) (4) (5) (6) (7)

Registration ● n/a n/a ● ● n/a
Activation ● ● ● n/a ○ ● ●

Authentication ● ● ● n/a ○ ● ●

Key Revocation ● ● ● ● ●

Rekeying n/a ● ● n/a

public keys assigned to each party, which ensure both encryption and sender authen-
ticity. This approach is sound and has been applied in several other high-level protocol
implementations using TLS.

Experiments and results. We fed each protocol’s HLPSL implementation to
AVISPA and found that all of the aforementioned backends report that they cannot
identify any attacks. However, since implementations can be erroneous and since there
is currently no standardized unit-testing framework for HLPSL protocol implementa-
tions, we conduct experiments and sanity checks in order to verify that our implementa-
tion meets our expectations from the manual security analysis. First, we changed each
protocol’s implementation in a deliberate attempt to make it insecure. The flaws intro-
duced include the removal of TLS for data-origin authentication, signatures, and nonces
which opened various attack vectors. We then fed the flawed versions to AVISPA in
order to check whether it picks up the vulnerabilities. Without fail, AVISPA identified
them. This experiment serves to raise confidence both that the authentication scheme
comprises little redundancy and that our implementation reflects well our scheme’s
formal specification. Second, we were particularly interested whether and to what ex-
tent TLS is required to secure our protocols. We employ TLS mainly as a means for
data-origin authentication, whereas message encryption is optional. Since TLS is the de
facto standard in secure web communications, using a different protocol would severely
limit the applicability and acceptance of our authentication scheme in practice. We
systematically disabled TLS in a given step of a protocol, re-running AVISPA each
time to identify potential attacks that result from doing so. Table 7 summarizes the
results for each protocol. As expected, turning TLS off allows for man-in-the-middle
attacks in most steps that result from missing data-origin authentication.

6 Prototype Implementation

We implemented all of Passphone’s protocols as a proof-of-concept prototype, which
is freely available at https://www.passphone.org. This section discusses a selection of
implementation details.

Trusted third party T . The trusted third party is a web service that offers an API
used by authenticators and the prover’s browser PS . We implemented it as a Java
Servlet to share the implementations for message encoding and cryptography between
T and that from our current smartphone implementation. To protect the signing key,
we recommend the use of a cryptographic module—e.g., according to the FIPS-140
standard [33]—which protects the signing key of the trusted third party from being
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copied and which would accelerate cryptographic computations for scalability. This
would render compromising the trusted third party’s key much more difficult compared
to keeping it on hard disk.

Service provider S and client PS . For our prototype, we implemented two service
provider stacks: one as a Ruby-based service running on an nginx server with a MySQL
database, and a similar second service provider as a Java Servlet. The trusted third
party provides plugins for the most widely-used web software stacks (LEMP/ LAMP,
Ruby on Rails, etc.), authentication libraries, and web applications. However, given
the large number of possible configurations, it is difficult to provide a plugin for each
one right away. To minimize the development overhead, we divide plugins into a major,
canonical part, and a lightweight, stack-specific part. The major components may be
deployed into a virtual machine or on a dedicated server to be run next to an existing
service. The lightweight plugins offer the stack-specific API to handle our authentica-
tion scheme so that the required changes to existing services are minimally invasive.

Authenticator PT . We implemented the prover’s mobile authenticator as a smart-
phone App for Android devices with SDK 16 and above which currently supports more
than 96% of Android smartphones on the market.2 The widespread distribution of
Android smartphones made this design decision straightforward in terms of usability
since they are among the few things many people carry with them at all times. We
employed the BouncyCastle library3 for cryptographic primitives, using SHA-256 as
hash function and 256-bit EC-DSA as signature scheme, and the ZXing library4 for
handling QR codes.

Challenge encoding and transmission. We resort to QR codes for encoding chal-
lenges to reduce the typing effort for the user [19,38,40,44]. QR codes exploit the
physical proximity of the prover’s devices by changing the communication medium in
a way so that an adversary cannot intercept a transmitted message unless looking over
the prover’s shoulder. In general, the more coarse-grained a QR code can be made,
the more robust it is with regard to legibility in various situations of screens, light-
ing, and camera quality. In our setup, we keep the messages that are transmitted via
QR codes small by the use of EC-DSA instead of, for example, RSA-based signatures.
Our tests show that scanning QR codes is a robust channel when employing version-10
codes (which can encode up to 213 bytes) and medium-level error correction (15% of
codewords can be restored).

Performance and usability. To estimate the performance of our implementation, we
evaluate the run times needed for the authentication protocol. We use two dual-core
mobile phones with 1.2 GHz (Samsung-Intrinsity Exynos S5PV310) and 1.7 GHz (Qual-
comm Snapdragon 400) processors and cameras with resolutions of eight megapixels.
We conduct 20 authentication processes. Besides logging in with the first factor, the
majority of time was spent to align the QR code, which took trained smartphone users
about 3-5 seconds on average, whereas the ZXing library picks up a QR code as soon
as it is in view.

In terms of usability, our implementation adopts the current best practices—e. g.,
scanning of QR codes—employed in phone-based authentication. Since the required
user actions do not differ from those of other authentication schemes employed in prac-
tice, we omit a detailed discussion of usability. Nevertheless, we have tested and used
our implementation on human test subjects. Our prototype has been deployed as an

2
https://developer.android.com/about/dashboards, State of Aug 1, 2016.

3
http://bouncycastle.org/

4
https://github.com/zxing/zxing
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exhibit at a recent open house presentation. On that occasion, laymen from the general
public as well as interested colleagues from other universities for a total of 55 people
have tried our prototype. We observed that all visitors expressed concern for their own
security, and understood the concept and importance of privacy preservation in authen-
tication. All regular smartphone users among our testers had little to no difficulty in
following the instructions given by our App, as all of them said they occasionally scan
QR codes, and, with little explanation (i.e., within less than three minutes), all inter-
ested visitors also managed to perform a test run of the rekeying protocol. Altogether,
in terms of usability, our prototype is on par with the state of the art in that it adopts
their best practices, but of course a lot has still to be done to achieve maturity.

7 Comparative Evaluation

This section compares Passphone to others from the literature under the framework
of Bonneau et al. [11]. Table 6 summarizes the results of comparing our scheme to
10 other smartphone-based two-factor authentication schemes with respect to 25 com-
mon features an authentication scheme can offer.5 The features have been collected
by Bonneau et al., and while their names may seem self-explanatory, some of their
definitions are intricate. For many features, Bonneau et al. also specify a quasi-variant,
where an authentication scheme offers a feature with some reservations. In what follows,
we discuss Passphone’s rating in comparison to that of the others.

Usability. As outlined above, Passphone is on par with previously published schemes
in terms of usability since it adopts their best practices (i.e., transmitting QR codes
via smartphones has been studied already). Therefore, we consider our scheme Quasi-

Scalable-for-Users since it reduces the risks of password reuse similar to PhoneAuth,
and Quasi-Nothing-To-Carry, based on the assumption that smartphones will continue
to spread. Likewise, our scheme is quite Easy-to-Learn since scanning QR codes is a
daily routine for regular smartphone users. During authentication, the user has to enter
only her password as a first factor, which results in Quasi-Infrequent-Errors, and which
makes it Quasi-Efficient-to-Use. More generally, our scheme provides equivalent usabil-
ity compared to Google 2-step, but performs better than PhoolProof, Cronto,
and Tiqr, because it features Easy-Recovery-From-Loss based on our extensive key
management protocols. Arguably, key management may be added to these schemes,
but corresponding research is still missing.

Deployability. Concerning deployability, Passphone outperforms most other solu-
tions. PhoneAuth and Tiqr have the highest ratings with respect to Bonneau et al.’s
framework, whereas Tiqr is more mature. Our scheme is Quasi-Accessible since it is
compatible with screen readers on both desktop and mobile. Moreover, it has Quasi-

Negligible-Cost-per-User since no SMS need to be delivered. Our scheme requires only
small changes at service site (i.e., the integration of a plugin), which renders it Quasi-

Server-Compatible. In this regard, our scheme is comparable to PhoolProof, which
has been similarly assessed in [11]. Beyond JavaScript, our scheme has no requirements
to the prover’s browser, which sets it apart from PhoneAuth or PhoolProof.

We do not fully agree with the rating of PhoneAuth provided by its authors re-
garding Maturity as well as Browser-Compatibility : currently, the research prototype

5
Regarding Google 2-step, we adopt the rating from [15] since one of that paper’s authors works
at Google Security and may have deeper insights into their scheme; regarding the proposals
from [38], we consider the mid-bandwidth and the full-bandwidth schemes with a similar security
level as ours.
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Table 6. Comparison of phone-based two-factor authentication schemes according to
the evaluation framework for authentication schemes by Bonneau et al. [11]. The frame-
work considers 25 features an authentication scheme can offer with respect to usability,
deployability, and security. Each column names one feature, and each scheme is rated
based on whether it offers the feature (●), it quasi offers the feature with reservations (○),
or it does not offer the feature (–).
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#● #○

Cronto [45] – – ○ – ● ○ ○ – – ○ – ● ● – ● ● ● ● ○ ● ● ● ● ● ● 13 5

FBD-BT-BT/WF-WF [38] – ○ ○ – ● ● ● – ○ ○ – – – ● ● ● ● ● ● ● – ● ● – ● 13 4

FBD-QR-BT/WF [38] – ○ ○ – ● ● ○ – ○ ○ – – – ● ● ● ● ● ● ● – ● ● ● ● 13 5

Google 2-step [21] – – ○ – ● ○ ○ ○ ○ – – ● ● – – ○ ● – – ● ● ● ● ● ● 10 6

MBD-QR-QR [38] – ○ ○ – ○ ○ – – ○ ○ – ○ – ● – ● ● ● – ● – ● ● ● ● 9 7

MP-Auth [29] – – ○ – ● ○ – ○ ○ ○ – – – ● – ○ – – – – ● ● ● ● ● 7 6

PhoneAuth (opportunistic) [15] – ○ ○ – ● ● ○ ● ● ● ○ – ○ ● ○ ○ ○ ○ ○ ○ ○ ● ● ● ○ 9 13

PhoolProof [34] – – ○ – ● ○ ○ – ○ ○ ○ – – ● ● ● ● ● ○ ● ● ● ● ● ● 12 7

SoundProof [25] – – ○ – ● ● ○ ○ ● ● – ● – ● ○ – ● ● – ● ● ● ● ● – 13 4

Tiqr [44] – – ○ – ● ○ ○ – ○ ○ ○ ● ● ● – ● – – ○ ● ○ ● ● ● ● 10 8

Passphone (this paper) – ○ ○ – ● ○ ○ ● ○ ○ ○ ● – ● ● ● ● ● – ● ● ● – ● ● 13 7

seems unavailable at any public outlet, and the scheme works only with an experimen-
tal version of Google Chrome. Thus, we demoted PhoneAuth’s ratings accordingly,
compared to those reported in [15]. Obviously, being a research prototype, our scheme
is also not mature, yet.

Security. Concerning security, Passphone is almost on par with the two best-
performing schemes PhoolProof and Cronto, the only difference being that our
scheme involves a trusted third party. While resorting to trusted third parties is often
avoided in security protocols, we argue that including a trusted third party becomes
a lot less detrimental when incorporating user privacy. It is an open question if this
consideration merits introducing the feature Quasi-No-Trusted-Third-Party into Bon-
neau et al.’s framework, but we refrained from doing so in our evaluation. In general,
our scheme covers all security-related features, but we cannot guarantee Resilience-

to-Internal-Observation; if an adversary has full control over the prover’s device, she
might be able to recover the secret key. Our threat model does not cover this case and
we leave it for future work. Finally, we would like to point out that our scheme features
Unlinkability despite the fact that it uses a trusted third party.

For ease of comparison, Column “Summary” in Table 6 gives the counts of features
and quasi-features. Altogether, our scheme offers as many full features as the compe-
tition despite suffering losses for introducing a trusted third party and for not being
mature, yet. This is encouraging since this evaluation demonstrates the potential of
our authentication scheme for future research and development as well as for transfer
into practice.
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8 Practical Application

Choosing the first factor. Similar to other phone-based two-factor authentication
schemes from the literature, Passphone does not aim at replacing the still prevalent
password authentication, but at strengthening it in a two-factor setup. The option
of outsourcing the verification of the second factor plus the privacy properties of our
scheme, however, renders it attractive for small service providers since it enables them
to add two-factor authentication with comparably small development overhead to their
existing authentication solution. The first factor used in conjunction with our protocols
is therefore not at all tied to the use of login and password; for example, it can be
based on physical tokens, biometric properties, or another challenge-response protocol.
In practice, however, most service providers still employ passwords as a first factor,
exchanging passwords over TLS, processing them with a password-hashing function,
and storing them at server side as salted password hashes. Nevertheless, Passphone’s
security does not rest with the first factor employed.

Limitations of web-based authentication. Regarding authentication for web ser-
vices, we concede that privacy-unaware users may still easily be tracked by means not
related to our protocol (e.g., by searching for reused mail addresses or credentials).
Moreover, users should be aware that their browser and OS configuration is used by
many tracking services. Anonymous communication techniques, such as TOR [17], can
be combined with Passphone to also provide IP-level anonymity and unlinkability;
however, securing the user from all privacy perils is clearly beyond the scope of what a
web-based authentication protocol can address. We stress, however, that Passphone

does not introduce yet another angle of de-anonymizing users, which is a first in the
domain of web authentication.

9 Conclusion

This work introduces Passphone, a new phone-based two-factor authentication scheme,
consisting of all protocols necessary for bootstrapping, authentication, and key man-
agement. Passphone is designed with a focus on deployability: it allows for easy in-
tegration at service providers by outsourcing authentication to a trusted third party.
Moreover, it is the first web-based three-party authentication scheme that protects the
privacy of its users by minimizing the amount of information shared among the parties
involved, hiding the relation of users and service providers from the trusted third party,
and rendering users unlinkable among service providers. We analyze Passphone’s se-
curity, show its privacy properties, and present insights from a proof-of-concept imple-
mentation. Under the authentication scheme evaluation framework of Bonneau et al.,
our scheme competes with the best-performing ones from the literature. In conclusion,
with the success of outsourcing first-factor authentication, also outsourcing the second-
factor authentication in a two-factor setup is reasonable, albeit, ideally using different
trusted third parties for each factor to spread risks. We hope that Passphone’s privacy
properties will inspire more privacy-awareness in future protocol designs.
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A Security Analaysis

This section provides our proof of Theorem 1. We restate it below for the sake of
readability.

Theorem 1. Let the employed public-key signature scheme be EUF-CMA-secure and

H be a random oracle. Then, for any PPT adversary A whose run time is bounded

by t and whose number of execute, send, and test queries are bounded by qexe, qsend

and qtest, respectively, it holds for a random execution of GAuth
on our protocol P that

Pr[SuccAuth] ≤ q ⋅ 4/2τ , where q = qexe + qsend + qtest.

Proof. In the following, we say that A has managed to be successfully authenticated
with the first factor for some honest prover P

i at some honest service provider S
j

using a corruption query Corrupt(P i,S j). For also being authenticated with the second
factor, Amust provide S j with a valid authentication ticket. Therefore, Amust achieve
at least one of the following:
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1. to forge the (signature of the) ticket,
2. to replay an old accepted ticket from a previous session,
3. to obtain a fresh valid ticket.

We upper bound the success probabilities of A in the individual cases in the following.

Case 1. Concerning the first subcase, we can upper bound the success probability for
A to forge the signature of the ticket in the final step by (qsend + qtest) ⋅ 1/2τ due to
the use of a secure signature scheme. Since this involves an action of A, the number of
passive queries qexe is not relevant.

Case 2. To get an old ticket from a previous session accepted by S
j , the contained value

hS in the ticket must be a valid hash value for (IDSj ,NSj), where NSj denotes the
nonce issued by S

j in the first step of the current protocol run. Since H is modelled as
a random oracle with 2τ -bit hash values, the probability of a collision between multiple
hash values hS and h′S ′ is at most (qexe + qsend + qtest)2 ⋅ 1/(2 ⋅ 22τ). Since A asks
only a polynomial number of queries q (which assumably is less than 2

τ ), this can be
upper bounded by q ⋅ 1/2τ .

Case 3. To obtain a fresh valid ticket, A must achieve at least one of the following:

– to capture a valid ticket for a parallel session by playing S
j in the view of P i,

– to forge the signature of PT i for a message to T in Step (5),
– to make P

i ask T for the ticket for S j by silently replacing IDSj ,NSj ,NT in the
message to PT

i in Step (4) so P will not notice the manipulation.

The use of TLS prevents that A can act as S j . Hence, the success probability for A in
the first subcase is 0. In the second subcase, the probability of A to forge the signature
of a response of an honest prover PT

i in Step (4) is at most qsend ⋅ 1/2τ since we
assume a secure signature scheme.

It remains to bound the success probability for replacing the message from T over
PS

i to PT
i in Steps (3) and (4) such that the prover will not notice the replacement

and will not abort the current run of the protocol. Since the message is signed by T ,
A can forge a new message with probability at most 1/2τ ; replaying an old message
with a nonce other than that for the current session will be noticed by S

j at the end,
and the success probability is 0 then. Further, since the channel between S

j and PS
i

is one-sided authenticated by TLS, A can not replace the message with an IDS ′ of a
different service provider S ’ that may be under control of A. So, A can not impersonate
S
j without the prover noticing it. So, if A replaces hSj , IDSj , and/or NSj to log-in as

the prover in a parallel session of a different service provider, the prover instance will
abort its run of the protocol the success probability for A is also 0 in this case. Hence,
the success probability is limited to qsend ⋅max{1/2τ , 0, 0} = qsend ⋅ 1/2τ for the third
case. Summing up the terms from all cases yields that

Pr[SuccAuth] ≤ qsend + qtest
2τ

+
q

2τ
+ (0 + qsend

2τ
+
qsend

2τ
) ≤ 4q

2τ
,

which gives our claim in Theorem 1.

B Anonymity Analysis

This section provides our proof of Theorem 2.
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Theorem 2 (Anonymity). Let the employed public-key signature scheme be EUF-

CMA-secure and H be a random oracle. Then, for any PPT adversary A whose run

time is bounded by t and which asks at most qexe execute and qsend send queries,

respectively, it holds for a random execution of GAnon
on our protocol P:

Adv
Anon

P (A) ≤ (qexe + qsend) ⋅ 1/22τ .
Proof. From the setup, execute, and send queries, A can learn the following relations
between provers and service providers:

– From an execution of the registration protocol between a prover P
i and T , the

adversary can learn the relation between IDPT
i , Kp

PT i , and IDPM
i .

– From an execution of the activation protocol between a prover P i, service provider
S
j , and T , A can learn the relation of hSj to IDPT

i and h
j

PTi .

– From an execution of the authentication protocol between P
i, S

j , and T , the
adversary can learn the relation between IDPT

i , hj

PT i , and h′
Sj =H(IDSj∥NSj).

– The key-revocation protocol recalls the first three steps of the authentication pro-
tocol; so, from an execution between P

i, S j , and T , the adversary can observe
again IDPT

i , hj

PT i , and a fresh value h′′
Sj .

– The rekeying protocol provides A with no information about the relation between
provers and service providers.

From the above, we can see that the only information about service providers is con-
tained in the blinded hash values h

ID
Ŝ , h′

ID
Ŝ , h′′

ID
Ŝ . So, the only way for A can only

determine if P interacts with S
0 or S1 is to find a value N such that H(IDSb∥N) is a

preimage to any of the blinded hashes. In the protocols, the hash values have been com-
puted using a fresh unpredictable nonce each, for which we assume that they have been
sampled uniformly at random from {0, 1}2τ and that H is a random oracle. In each
execution of a protocol, A observes at most one hash value. So, we can upper bound
the advantage for A by (qexe + qsend) ⋅ 1/22τ , which gives our bound in Theorem 2.

Remarks. Clearly, a malicious trusted third party could – like any other adversary –
try to guess the secret of P for the first-factor at Ŝ. In case of success, A could try to
log-in as P at both service providers S

0 and S
1 and create the authentication ticket

for the second factor itself. Since P is registered at only one of {S0,S1}, A would be
able to easily determine b and win the anonymity game. Though, the security of the
first factor is not a concern covered by a protocol that focuses on the security of the
second factor.

Unlinkability Analysis

This section provides our proof of Theorem 3.

Theorem 3 (Unlinkability). Let the employed public-key signature scheme be EUF-

CMA-secure and H be a random oracle. Then, for any PPT adversary A whose run

time is bounded by t and which asks at most qexe execute and qsend send queries, it

holds for a random execution of GUnlink
on our protocol P:

Adv
Unlink

P (A) ≤ (qexe + qsend) ⋅ 1/22τ .
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Proof. From the setup, execute, and send queries, A can learn the following relations
between provers and service providers:

– From an execution of the activation protocol with a prover P
i, A, and T , the

adversary chooses a fresh nonce NSj and can learn the relation between h
j

PTi and
the chosen values hSj =H(IDSj∥NSj).

– From a correct execution of the authentication or key-revocation protocol with a
prover P i, A, and T , the adversary can learn only h

j

PTi (as after an execution of

the activation protocol) as information about P i.
– Executions of registration and rekeying protocols give A no information about the

relation of provers to service providers.

From the above, we can see that the only information about provers that is visible to A
in our protocols is contained in the blinded hash values h

j

P̂
=H(IDPTb∥NT). So, under

the assumption that provers are privacy-aware (use distinct credentials for their first
factor, and blind their browser/OS configuration, IP, etc.), the only way for colluding
service providers to link common provers is to find a preimage (ID

PTb ,NT) for hP̂ .
Though, by definition, the hash values hPTb were generated from a 2τ -bit nonce NT

that was chosen uniformly at random from {0, 1}2τ . Since H is modeled as a random
oracle, A’s advantage is at most (qexe + qsend) ⋅ 1/22τ , which gives Theorem 3.

C Automatic Security Analysis

Besides our formal security analysis, we also conducted an automatic security anal-
ysis of our authentication scheme using the well-known computer-aided proof system
AVISPA. After a brief overview of AVISPA’s capabilities, we describe the HLPSL imple-
mentations of our protocols and the results obtained from feeding them into AVISPA.
Moreover, we conduct experiments by deliberately removing security features from our
protocols and observing the results from the proof system.

Background

AVISPA provides four backends for protocol verification: a Constraint-Logic-based AT-
tack SEarcher (CL-ATSE) [42], an On-the-Fly Model Checker (OFMC) [7], a SAT-
based Model Checker (SAT-MC) [5], and a Tree-Automata-based backend (TA4SP) [10].
We rely on the widespread CL-ATSE, OFMC, and SAT-MC backends; TA4SP does not
support our setup. As input to AVISPA, protocols must be implemented in the High-
Level Protocol Specification Language (HLPSL) [13]. HLPSL is a role-centric language
that is well-suited for software engineers and protocol designers.

Implementation Details

All protocols of our authentication scheme have been implemented in HLPSL. Ap-
pendix D shows the implementation of the authentication protocol (see Table 3 for
comparison). The full source code of all our protocols will be provided to the public
domain. Four roles are implemented, one for each agent that takes part in the protocol,
namely the service provider S , the prover’s browser PS , the trusted third party T , and
the prover’s phone authenticator PT . Each role implements the role- specific steps of
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Table 7. Results from AVISPA when omitting TLS in individual protocols. A ● indi-
cates that TLS is mandatory to uphold security, and a ○ that TLS is optional.

Protocol Communication step

(1) (2) (3) (4) (5) (6) (7)

Registration ● n/a n/a ● ● n/a
Activation ● ● ● n/a ○ ● ●

Authentication ● ● ● n/a ○ ● ●

Key Revocation ● ● ● ● ●

Rekeying n/a ● ● n/a

the authentication protocol, whereas the step numbers correspond with those of the
protocol’s formal specification of Table 3. For further consistency and where the syntax
would allow it, variable names have been chosen to correspond with those used in the
formal specification as well. The two communication channels send (SND) and receive
(RCV) are defined in terms of the Dolev-Yao model (dy).

Since our protocols make use of TLS, this has to be reflected in our HLPSL imple-
mentation. However, at present, neither AVISPA nor HLPSL support modularization
of protocol implementations, so that the implementation of the TLS protocol in HLPSL
cannot be invoked from ours. When mixing both protocol implementations into one
file, this severely affects legibility. Therefore, for simplicity, we model TLS by means of
public keys assigned to each role, which ensure both encryption and sender authentic-
ity. This approach is sound and has been applied similarly in several other high-level
protocol implementations built on top of TLS.

Results and Experiments

We fed each protocol’s HLPSL implementation to AVISPA and found that all of the
aforementioned backends report that they cannot identify any attacks. However, since
implementations can be erroneous and since there is currently no standardized unit-
testing framework for HLPSL protocol implementations, we conduct experiments and
sanity checks in order to verify that our implementation meets our expectations from
the manual security analysis.

As a first experiment, we changed each protocol’s implementation in a deliberate
attempt to make it insecure. The flaws introduced include the removal of TLS for data-
origin authentication, signatures, and nonces which opened various attack vectors. We
then fed the flawed versions to AVISPA in order to check whether it picks up the
vulnerabilities. Without fail, AVISPA identified them. This experiment serves to raise
confidence both that the authentication scheme comprises little redundancy and that
our implementation reflects well our scheme’s formal specification.

We were particularly interested whether and to what extent TLS is required to
secure our protocols. We employ TLS mainly as a means for data-origin authentica-
tion, whereas message encryption is optional. Since TLS is the de facto standard in
secure web communications, using a different protocol would severely limit the ap-
plicability and acceptance of our authentication scheme in practice. We conducted a
second experiment wherein we systematically disabled TLS in a given step of a protocol,
re-running AVISPA each time to identify potential attacks that result from doing so.
Table 7 summarizes the results for each protocol. As expected, turning TLS off allows
for man-in-the-middle attacks that result from the missing data-origin authentication.
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D AVISPA Code for the Authentication Protocol

HLPSL implementation of the authentication protocol:

1 role service (S,PS,T,PT : agent ,
2 SND , RCV : channel (dy),
3 Ks, Kps : public_key ,
4 H : hash_func ,
5 Hpt : text)
6 played_by S def=
7 local
8 Step : nat ,
9 Ns : text ,

10 Hs : hash(text.agent)
11 init Step := 0
12 transition
13 % Start the protocol , create a new session nonce and
14 % send it with Hpt to P
15 0. Step = 0 /\ RCV(start) =|>
16 Step ’:= 7 /\ Ns’ := new()
17 /\ SND({{S.Hpt.Ns ’}_S}_Kps)
18 /\ Hs’ := H(Ns ’.S)
19 /\ witness (S,PT,nsSPT ,Ns ’)
20 /\ witness (S,PT,hptSPT ,Hpt)
21 % receive the authentication ticket -> protocol end
22 7. Step = 7 /\ RCV({{{T.Hpt.Hs}_T}_PS}_Ks) =|>
23 Step ’:= 8 /\ request (S,PS,hsPSS ,Hs)
24 end role
25
26 role browser (S,PS,T,PT : agent ,
27 SND , RCV : channel (dy),
28 Ks, Kps , Kt, Kpt : public_key ,
29 H : hash_func)
30 played_by PS def=
31 local
32 Step : nat ,
33 Hpt, Ns , Nt : text ,
34 Hs : hash(text.agent)
35 init Step := 1
36 transition
37 % Receive session nonce and hpt, blind it and
38 % send it to T
39 1. Step = 1 /\ RCV({{S.Hpt ’.Ns ’}_S}_Kps) =|>
40 Step ’:= 3 /\ Hs’ := H(Ns ’.S)
41 /\ SND({{Hpt ’.Hs ’}_PS}_Kt)
42 /\ witness (PS,S,hsPSS ,Hs ’)
43 % Receive the challenge and display it for PT
44 % (with additional information)
45 3. Step = 3 /\ RCV({{T.Hpt.Hs.Nt ’}_T}_Kps) =|>
46 Step ’:= 6 /\ SND({{{T.Hpt.Hs.Nt ’}_T.Ns.S}_PS}_Kpt)
47 % Receive the authentication ticket and
48 % forward it to S
49 6. Step = 6 /\ RCV({{T.Hpt.Hs}_T}_Kps) =|>
50 Step ’:= 8 /\ SND({{{T.Hpt.Hs}_T}_PS}_Ks)
51 end role
52
53 role ttp(S,PS,T,PT : agent ,
54 SND , RCV : channel (dy),
55 Kps , Kt, Kpt : public_key ,
56 Hpt : text ,
57 H : hash_func)
58 played_by T def=
59 local
60 Step : nat ,
61 Hs : hash(text.agent),
62 Nt : text
63 init Step := 2
64 transition
65 % Receive a new authentication request and

24



66 % create the challenge
67 2. Step = 2 /\ RCV({{Hpt.Hs ’}_PS}_Kt) =|>
68 Step ’:= 5 /\ Nt’ := new()
69 /\ SND({{T.Hpt.Hs ’.Nt ’}_T}_Kps)
70 /\ witness (T,PT,ntTPT ,Nt ’)
71 % Receive the challenge from PT (implicit check for
72 % all values ) and send a signed authentication ticket
73 5. Step = 5 /\ RCV({{PT.{T.Hpt.Hs.Nt}_T}_PT}_Kt) =|>
74 Step ’:= 8 /\ SND({{T.Hpt.Hs}_T}_Kps)
75 end role
76
77 role smartphone(S,PS,T,PT : agent ,
78 SND , RCV : channel (dy),
79 Kps , Kt, Kpt : public_key)
80 played_by PT def=
81 local
82 Step : nat ,
83 Hpt, Nt , Ns : text ,
84 Hs : hash(text.agent)
85 init Step := 4
86 transition
87 % Scan the challenge , check possible values,
88 % sign it and send it back to T
89 4. Step = 4
90 /\ RCV({{{T.Hpt ’.Hs ’.Nt ’}_T.Ns ’.S}_PS}_Kpt)
91 =|>
92 Step ’:= 8 /\ SND({{PT.{T.Hpt ’.Hs ’.Nt ’}_T}_PT}_Kt)
93 /\ request (PT,S,nsSPT ,Ns ’)
94 /\ request (PT,T,ntTPT ,Nt ’)
95 /\ request (PT,S,hptSPT ,Hpt ’)
96 end role
97
98 role session (S,PS,T,PT : agent ,
99 H : hash_func)

100 def=
101 local
102 SS, RS , SPS , RPS , ST, RT, SPT, RPT : channel (dy)
103 const
104 % Initialize the keys for every session
105 ks, kps , kt, kpt : public_key ,
106 % Simulate a valid hpt
107 hpt : text
108 composition
109 service (S,PS,T,PT,SS,RS,ks,kps ,H,hpt)
110 /\ browser (S,PS,T,PT,SPS,RPS,ks ,kps ,kt,kpt ,H)
111 /\ ttp(S,PS,T,PT,ST,RT,kps,kt,kpt ,hpt ,H)
112 /\ smartphone(S,PS,T,PT,SPT,RPT ,kps ,kt,kpt)
113 end role
114
115 role environment()
116 def=
117 const
118 s,ps,t,pt : agent ,
119 h : hash_func ,
120 nsSPT , ntTPT , hsPSS , hptSPT : protocol_id
121 intruder_knowledge = {s,ps,t,pt,h}
122 composition
123 session (s,ps,t,pt,h)
124 end role
125
126 goal
127 authentication_on nsSPT
128 authentication_on ntTPT
129 authentication_on hsPSS
130 authentication_on hptSPT
131 end goal
132
133 environment()
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